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Terence Bayen∗†, Jérôme Harmand‡†, Matthieu Sebbah§

September 9, 2015

Abstract

Our aim in this work is to study the problem of driving in minimal time a system describing a chemostat
model to a target point. This problem finds applications typically in the case where the input substrate
concentration changes yielding in a new steady state. One essential feature is that the system takes into
account a recirculation of biomass effect. We depict an optimal synthesis and provide an optimal feedback
control of the problem by using the Pontryagin Maximum Principle and geometric control theory for both
Monod and Haldane kinetics.
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1 Introduction

INTRO A CHANGER COMPLETEMENT SAUF LE PLAN A LA FIN Dire l’intérêt du α, Dire que quand
α < 1, alors techniquement le problème est plus difficile car une dissymétrie entre s et x. Dans les références,
j’ai mis principalement des articles récents sur le contrôle optimal pour un réacteur fed-batch : pour montrer
la différence avec notre système (réacteur continue) The chemostat is an apparatus which has been introduced
in the fifties to describe continuous a culture of microorganisms that can be controlled by the input flow
rate (see [13, 16]). Today, it is widely used in many domains at both laboratory or industrial scales and its
optimization poses a number of both practical as well as theoretical problems [21].

There exists essentially two modes of operation for the chemostat : either it operates in fed-batch or
in continuous mode. In the fed-batch mode, the output flow rate is equal to zero such that the volume of
the chemostat increases over the time until its maximum working volume has been reached. This mode is
commonly used when the optimization objective consists in maximizing process productivity notably in the
presence of non-monotonic growth rate. For such a functioning mode, theoretical results have been obtained
by Moreno (see [14]) for single reaction systems and for a large class of growth rate functions, and more
recently in [2, 3, 9, 10]. In these papers dedicated to the optimal control of wastewater treatment plants, the
objective was to reach in minimal time a given target (the value of the output substrate concentration should
be typically below a prescribed value). When the growth function is monotonic, one can show that there is
no advantage of applying any profile to the input flow if one desires to minimize the time necessary to reach
a given substrate concentration: the optimal control consists in filling in the process as fast as possible until
the maximum working volume is reached and then wait until the concentration of substrate has reached the
target. However, when the growth rate is non-monotonic (for instance for growth functions of Haldane type),
there exists a singular arc and the optimal input profile to stay on it is provided. This problem has been also
investigated for multi-species systems and partially solved by Gajardo et al. (see [10]). Many others papers -
rather practical but not only - are available on the optimal control of fed-batch systems for the maximization
of products or of the biomass (see for instance the survey by Smets and Van Impe [20] or papers like [18] or
[24] and references herein).
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pellier cedex 5, France. tbayen@math.univ-montp2.fr
†INRA-INRIA ’MODEMIC’ team, INRIA Sophia-Antipolis Méditerranée.
‡LBE-INRA, Avenue des étangs 11100 Narbonne .jerome.harmand@supagro.inra.fr
§Univ. Tecnica Federico Santa Maria, Dep. Mat., Avda Espana 1680, Valparaiso, Chile. matthieu.sebbah@usm.cl

1



In this paper, we consider the continuous mode, that is the input and output flow rate are identical, and
the volume of the tank remains constant. In this case and for monotonic growth function (i.e. for a growth
function of Monod type), D’Ans et al. have solved the problem of going from an arbitrary initial state to
another one in minimal time (see [8]). Such a problem finds application typically in the case where the input
substrate concentration changes yielding in a new steady state. Converging fast towards this new equilibrium
may present some practical interest. In this case, D’Ans et al. established that the control is necessary
bang-bang. From their pioneering work, many authors have investigated other optimization problems such as
the maximization of biogas production for anaerobic processes (see e.g. [11, 22]). Surprisingly, the problem
of minimizing the time necessary to go from an arbitrary initial point to a final one in minimal time for
non-monotonic growth rates in a continuous bioreactor has not been investigated in the literature of optimal
control. It is precisely this problem we investigate in the present paper.

The paper is organized as follows. In section 2, we state the optimal control problem, and we apply the
Pontryagin Maximum on the optimal control problem. We also provide properties of the switching function
that are crucial in sections 3 and 4. Section 3 provides an optimal feedback control for Haldane kinetics when
α = 1 (Proposition 3.1 and 3.2 are our main results), and section 4 discusses the case α < 1.

2 Preliminaries

2.1 Statement of the problem

We consider the system {
ẋ = µ(s)x− αux,
ṡ = −µ(s)x+ u(sin − s),

(2.1)

describing a chemostat model with one species and one substrate. Here x, resp. s is the micro-organisms
concentration, resp. substrate concentration, µ is the growth function of the species, sin > 0 is the input
substrate concentration, α ∈ [0, 1] is a coefficient for separating the biomass (or recirculation parameter), and
u is the dilution rate which is the control variable. The admissible control set is defined as:

U := {u : [0,∞)→ [0, umax] ; u meas.}. (2.2)

Given u ∈ U and an initial condition (x0, s0) ∈ R∗+×R+, we denote by (xu(·), su(·)) the unique solution of (2.1)
defined over [0,∞) such that xu(0) = x0 and su(0) = s0 at time 0. It is clear that the set E := R∗+ × [0, sin]
is invariant by the dynamics (2.1), therefore we can consider initial conditions in E.

Throughout this paper, we are interested in the following optimal control problem. Given a target point
(x̄, s̄) ∈ E, our aim is to steer (2.1) in minimal time from (x0, s0) ∈ E to (x̄, s̄), that is:

v(x0, s0) := inf
u∈U

t(u) s.t. xu(t(u)) = x̄ and su(t(u)) = s̄, (2.3)

where t(u) is the first time such that xu(t(u)) = x̄ and su(t(u)) = s̄. If the value function v(x0, s0) is infinite,
the problem has no solution, i.e. the target point is not reachable from (x0, s0). The determination of the
controllability set, i.e. the set of points that can reach the target in finite horizon, is part of the analysis and
will be discussed precisely in sections 3 and 4. Without any loss of generality, we suppose that umax = 1 and
we consider the following hypotheses :

(H1) The function µ satisfies µ(0) = 0, is bounded, non-negative and of class C2.

(H2) For any s ∈ [0, sin], one has µ(s) < α.

Remark 2.1. Assumption (H2) amounts to saying that the washout is possible and that the dilution rate can
be chosen large enough in order to compete the growth of micro-organisms.

It will be more convenient to study (2.4) in the variables (s,M) where M := x + s is the total mass of the
system. By changing x into M , (2.1) can be equivalently written{

ṡ = −µ(s)(M − s) + u(sin − s),
Ṁ = u(sin − s− α(M − s)). (2.4)
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As x > 0, we consider initial conditions for (2.4) in the set F defined by

F := {(s,M) ∈ R+ × R+ ; 0 ≤ s < M and s ≤ sin}, (2.5)

that is clearly invariant by (2.4). Similarly as above, we denote by (su(·),Mu(·)) the unique solution of (2.4)
associated to a control u ∈ U such that su(0) = s0 and Mu(0) = x0+s0 at time 0. Moreover, we set M̄ := x̄+s̄.

It will be convenient to consider the solutions of (2.4) backward in time starting at (s̄, M̄) at time 0. More
precisely, for u = i (i = 0 or i = 1), let zi(·) = (si(·),M i(·)) the unique solution of (2.4) defined over [0, ti)
backward in time with u = i and such that zi(0) = (s̄, M̄). Without any loss of generality, we suppose that
ti ∈ [0,∞) is the first exit time of zi of the set F , i.e. zi(ti) ∈ ∂F (where ∂F is the boundary of F ). We call
Γi, i = 0, 1 the graph of zi(·) for t ∈ [0, ti). We note that Γ0 ∪ Γ1 partitions F into two subsets Aα and A′α.
More precisely, we take for Aα the unique component containing Γ0 ∪ Γ1 and points in F below Γ0.

Finally, if B is any given non-empty subset of R2, we denote by Int(B) its interior.

2.2 Pontryagin’s Principle

In this section, we derive optimality conditions for problem (2.3) (in variables (s,M), see (2.4)). Notice that if
(H1) holds true and if (x0, s0) is in the controllability set, then the existence of an optimal control follows by
standard arguments (in fact, (2.4) is linear w.r.t. u and the admissible control set is compact). We are then
in position to apply Pontryagin’s Principle on (2.4) which provides necessary conditions on optimal strategies
([12, 15]).

Let H : R2 × R2 × R× R→ R the Hamiltonian associated to (2.4) and defined by:

H = H(s,M, λs, λM , λ0, u) := −λsµ(s)(M − s) + λ0 + u[(λs + λM )(sin − s)− αλM (M − s)].

Let u ∈ U an optimal control of (2.3) such that the associated trajectory steers (s0,M0) to (s̄, M̄) in minimal
time. For convenience, we write this trajectory z(·) := (s(·),M(·)). According to Pontryagin’s Principle, the
following conditions hold true :

• There exists tf ≥ 0, λ0 ≤ 0 and an absolutely continuous function λ = (λs, λM ) : [0, tf ]→ R2 satisfying

a.e. the adjoint equation λ̇(t) = −∂H∂z (z(t), λ(t), λ0, u(t)), that is:{
λ̇s = λs(µ

′(s)(M − s)− µ(s) + u) + (1− α)λMu,

λ̇M = λsµ(s) + αλMu.
(2.6)

• The pair (λ0, λ(·)) is non-trivial i.e. (λ0, λ(·)) 6= 0.

• The following maximization condition holds true :

u(t) ∈ argmaxv∈[0,1]H(s(t),M(t), λs(t), λM (t), λ0, v) a.e. t ∈ [0, tf ]. (2.7)

We call extremal trajectory a triple (z(·), λ(·), u(·)) satisfying (2.4)-(2.6)-(2.7). If λ0 = 0, then we say that
the extremal is abnormal whereas if λ0 < 0, then we say that it is a normal extremal. In the latter, we may
suppose that λ0 = −1. Along any extremal trajectory, one has H = 0 (using that (2.4) is autonomous and
that the terminal time is free). The switching function φ is defined by

φ := (λs + λM )(sin − s)− αλM (M − s). (2.8)

The maximization condition (2.7) can be then expressed as follows : φ(t) > 0 ⇒ u(t) = +1,
φ(t) < 0 ⇒ u(t) = −1,
φ(t) = 0 ⇒ u(t) ∈ [−1, 1].

(2.9)

Moreover, if we differentiate φ w.r.t. t, a straightforward computation shows that we have :

φ̇ = (M − s)[λsµ′(s)(sin − s) + (1− α)(λM + λs)µ(s)]. (2.10)
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2.3 Frame curves and frame points

An important feature in the study of (2.3) is the presence of particular curves in the state space that are
called frame curves. These curves play an important role for obtaining an optimal feedback control. In our
context, they are of three types :

• The colinearity curve ∆α
0 is defined as the set of points where the dimension of the vector space spanned

by (2.4) is equal to 1.

• The singular locus ∆α
SA is the set of points where the switching function vanishes on a time interval (a

more precise definition can be found in [7]).

• A switching curve C is a locus in the state space where the control u has a switching point i.e. the
control switches from 1 to 0 or from 0 to 1 at this point (the corresponding instant of switching is called
switching time).

An important property of ∆α
0 is that any switching point of an abnormal trajectory necessarily occurs on ∆α

0

(see [7]). In our setting, we can compute easily ∆α
0 and ∆α

SA as follows whereas switching curves are in general
more delicate to characterize by an implicit equation (in particular such curves are usually target dependent).
If fα0 : R2 → R and fαSA : R2 → R are the functions defined by :

fα0 (s,M) := −µ(s)(M − s)(sin − s− α(M − s)),
fαSA(s,M) := (M − s)[α(M − s)((1− α)µ(s) + µ′(s)(sin − s))− (sin − s)2µ′(s)],

(2.11)

then, a straightforward computation shows that:

∆α
0 = {(s,M) ∈ F ; fα0 (s,M) = 0} and ∆α

SA = {(s,M) ∈ F ; fαSA(s,M) = 0}. (2.12)

The next proposition provides a linear ODE satisfied by the switching function and will be crucial in the
optimal synthesis of the problem (see sections 3 and 4).

Proposition 2.1. Let (z(·), λ(·), u(·)) a normal extremal trajectory. Then, the following properties hold true.

(i) There exists a function gα : R× (F\∆α
0 )→ R, (u, s,M) 7−→ gα(u, s,M) such that one has:

φ̇(t) = gα(u(t), s(t),M(t))φ(t)− fαSA(s(t),M(t))

fα0 (s(t),M(t))
a.e. t ∈ [0, T ], (2.13)

provided that (s(t),M(t)) /∈ ∆α
0 .

(ii) If (z(·), λ(·), u(·)) is optimal, then it cannot have a switching point from u = 1 to u = 0, resp. from u = 0

to u = 1 at a time t such that
fαSA(s(t),M(t))
fα0 (s(t),M(t)) > 0, resp.

fαSA(s(t),M(t))
fα0 (s(t),M(t)) < 0.

Proof. To prove (i), notice that λs = uφ−1
µ(s)(M−s) using that H = 0. From the expression of φ, we get:

λM =
φ− λs(sin − s)

sin − s− α(M − s)
. (2.14)

If we replace λs in (2.14), we obtain λM = µ(s)(M−s)φ−(uφ−1)(sin−s)
µ(s)(M−s)(sin−s−α(M−s)) . Now, if we substitute in (2.10) this

expression of λM and the one for λs, we obtain (2.13) with :

gα(u, s,M) :=
µ′(s)(sin − s)

µ(s)
u+ (1− α)(M − s) µ(s)− αu

sin − s− α(M − s)

To prove (ii), notice that at a switching time t from u = +1 to u = −1, we necessarily have φ(t) = 0 and

φ̇(t) ≤ 0. Hence, we obtain that
fαSA(s(t),M(t))
fα0 (s(t),M(t)) ≤ 0 whenever (s(t),M(t)) /∈ ∆α

0 . At a switching time t from

u = 0 to u = 1, a similar reasoning shows the second part of (ii).

Frame points are the points at the intersection of two frame curves. The determination of such points is
also crucial for the optimal synthesis. A frame point of type (C, S) is by definition a point at the intersection
of a switching curve and the singular locus. More precisely, (C, S) points are of two types : either the singular
arc emanates from such a point (in that case it is a (C, S)1 point), or the singular arc stops to be optimal at
this point (in that case it is a (C, S)2 point). A steady state singular point is a frame point at the intersection
of ∆α

0 and ∆α
SA (see [4]).
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3 Optimal synthesis when α = 1

In this section, we study (2.3) in the particular case where α = 1 which corresponds to the case where no
biomass filtration is considered in the chemostat model (2.1). The quantity M then satisfies the ODE

Ṁ = u(sin −M). (3.1)

Therefore, we can assume that either M < sin (case I) or M > sin (case II) depending on the choice of the
M̄ w.r.t. sin. Indeed, for M = sin, the optimal control problem is one-dimensional and is straightforward.

We suppose in this section that µ satisfies the following assumption :

(H’1) The function µ satisfies µ(0) = 0, is bounded, non-negative, of class C2 and has a unique maximum
s? ∈ (0, sin).

Remark 3.1. (H′1) is verified in the case of Haldane kinetic function µ(s) = µmaxs

ks+s+
s2

ki

with ki > 0, ks > 0.

It is straightforward to check that ∆1
0∩F = ∅, and so the only possible abnormal trajectories are the solutions

of (2.4) with u = 0 and u = 1 that reach the target point (s̄, M̄). Hence, we can assume that λ0 = −1, so
(2.13) becomes

φ̇ =
(sin − s)µ′(s)

µ(s)
uφ− (sin − s)µ′(s)

µ(s)
, (3.2)

which in particular implies that the singular locus is the line ∆1
SA = {s?} × (s?,+∞). The singular control is

defined as the control us such that (sus(t),Mus(t)) ∈ ∆1
SA and is given by :

us(M) := µ(s?)
M − s?

sin − s?
. (3.3)

Furthermore, M satisfies the following ODE along ∆1
SA :

Ṁ|u=us(M)
= µ(s?)

(M − s?)(sin −M)

sin − s?
.

3.1 Study of case I : M̄ < sin

In that case, we can consider initial conditions (s,M) ∈ F satisfying M < sin. The system under consideration
satisfies the following properties :

• We have Ṁ ≥ 0 for any control u (see (3.1)).

• We have ṡ|u=1
> 0 (in fact, M < sin and (H2) imply the inequality µ(s) < 1 < sin−s

M−s ).

• The singular locus ∆1
SA is such that ∆1

SA = {s?} × (s?, sin).

• The singular control us is admissible, i.e. us(M) ∈ [0, 1] for any M ∈ (s?, sin) and Ṁ > 0 along ∆1
SA.

The previous considerations show that for i = 0, 1 the trajectory zi(·) is the graph of a C1-mapping s 7−→
M := ϕi(s) in the plane (s,M). Therefore, A1 can be written as:

A1 := {(s,M) ∈ F ; M ≤ min(ϕ0(s), ϕ1(s))}. (3.4)

Lemma 3.1. Suppose that M̄ < sin. Then, the controllability set for (2.3) is A1.

Proof. According to Pontryagin’s Principle, an extremal trajectory contains three types of arcs : u = 1, u = 0
or u = us (singular arc). Let us consider an extremal trajectory starting in F\A1. If the trajectory is singular,
then it cannot intersect the boundary of A1 as we have Ṁ > 0 along the singular arc ∆1

SA. Notice also that
an arc u = 1 cannot intersect Γ1 (by Cauchy-Lipschitz Theorem) nor Γ0 as M|u=1

(·) is increasing. Similarly
an arc u = 0 cannot intersect Γ0 (by Cauchy-Lipschitz Theorem) nor Γ1 (as we have ṡ < 0 along u = 0). The
result follows.

We deduce the following optimality result.
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Theorem 3.1. If (H′1) and (H2) hold true and M̄ < sin, an optimal feedback policy in Int(A1) is given by : u?[s,M ] = 0 if s > s?,
u?[s,M ] = 1 if s < s?,
u?[s,M ] = us(M) if s = s?.

(3.5)

Proof. The proof follows from Proposition 2.1 (ii). Suppose that (s0,M0) ∈ A1\(Γ0∪Γ1). Then, if s0 < s?, we
must have u = 1 until reaching either s = s? or Γ0. Otherwise, we would have u = 0 by Pontryagin’s Principle,
and the trajectory would necessarily have a switching point at a time t0 > 0 (if not, then it cannot reach the

target). At this time t0, we have φ̇(t0) ≥ 0 in contradiction with φ̇(t0) = − (sin−s(t0))µ′(s(t0))
µ(s(t0))

< 0. Hence, we

have u = 1 until reaching either the singular arc or Γ0. Similar arguments show that if s0 is such that s0 > s?,
then we have u = 0 until reaching either s = s? or Γ1. We deduce that for any point (s0,M0) ∈ A1\(Γ0 ∪Γ1),
the optimal control satisfies u = 1 if s0 < s? and u = 0 if s0 > s?. Finally, the previous argumentation shows
also that if s0 = s? and (s0,M0) ∈ A1\(Γ0 ∪ Γ1), then an optimal trajectory does not leave the singular arc
either with u = 0 or u = 1. Therefore singular trajectories are optimal until reaching Γ0 ∪ Γ1.

The optimal synthesis provided by Theorem 3.1 is depicted on Fig 1.

s⋆s

M

sin

sin0
 

 

Non controllable target zone

Optimal singular arc

Γ1

Γ0

u = 1

u = 0

s⋆ s

M

M⋆

sin

sin0
 

 

Non controllable target zone

Optimal singular arc

Γ1

Γ0

u = 1

u = 0

Figure 1: Optimal synthesis for α = 1 and M̄ < sin (case I). Picture left : the target point is such that s̄ < s?

(the singular arc ∆1
SA intersects Γ0). Picture right : the target point is such that s̄ > s? (the singular arc ∆1

SA

intersects Γ1.

Remark 3.2. (i) If s̄ < s?, then a singular trajectory will reach M̄ , and then will satisfy u = 0 until reaching
the target (see Fig. 1). If s̄ > s?, then a singular trajectory will reach Γ1, and then will satisfy u = 1 until
reaching the target (see Fig. 1).
(ii)When s? > sin, the previous considerations show that for Monod kinetic function the feedback in Int(A1){

um[s,M ] = 1 if (s,M) ∈ A1\Γ0,
um[s,M ] = 0 if (s,M) ∈ Γ0,

(3.6)

is optimal (see [8]).

3.2 Study of case II : M̄ > sin

In that case, we can consider initial conditions (s,M) ∈ F such that M > sin. The system under consideration
satisfies the following properties :

• From (3.1), we have Ṁ ≤ 0 for any control u.

• The singular control us is admissible provided that M ∈ (sin,Msat] where us(Msat) = 1, that is :

Msat := sin + (sin − s?)
[

1

µ(s?)
− 1

]
. (3.7)
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• The singular locus ∆1
SA then becomes ∆1

SA = {s?} × (sin,Msat).

Notice that ds
dt |u=1

is not of constant sign along u = 1 as in case I (see Fig. 2 for the plot of solutions of

(2.4) with u = 1). The previous considerations show that the trajectory z1(·) is the graph of a C1-mapping

0 0.5 1 1.5 2 2.5 3

4

6

8

10

12

14

16

18

Figure 2: Solutions of (2.4) for the control u = 1 and different initial conditions (s0,M0) with M0 > sin. The
black curve is the set of points where the tangent to this trajectory is vertical.

M 7−→ s := ψ1(M) defined over [M̄,+∞) in the plane (s,M) (indeed we have Ṁ < 0 along u = 1). Therefore,
the set A′1 can be written:

A′1 := {(s,M) ∈ F ; M ≥ M̄ and max(0, ψ1(M)) ≤ s ≤ sin}.

Lemma 3.2. Suppose that M̄ > sin. Then, the controllability set for (2.3) is A′1.

Proof. The proof is similar to the proof of Lemma 3.1.

3.2.1 Switching curve and optimal synthesis

Whereas in the case M < sin, the singular arc is always admissible, we have now a saturation phenomena for
the singular control, that is the singular arc is non-admissible when M > Msat (see (3.7)). This will imply
the existence of a switching curve C. We now provide a description of this locus.

Lemma 3.3. Let M̃ := max(M̄,Msat). Then, there exists Me ∈ (M̃,+∞] and a function sc : [M̃,Me]→ R+

M 7−→ sc(M) satisfying the following properties :

(1) If Me < +∞, then one has sc(Me) = sin. Moreover, one has sc(M̃) = s? and sc(M) ∈ (s?, sin) for any
M ∈ (M̃,Me).

(2) For any M ∈ (M̃,Me), there exists exactly one point sc(M) such that an optimal control u satisfies u = 0
for s > sc(M) and u = 1 for s? < s < sc(M).

Proof. For brevity, we have postponed the proof of this lemma in the appendix.

The switching curve C is then defined as

C := {(sc(M),M) ; M ∈ [M?,Me]}.

We obtain the following optimality result.

Theorem 3.2. Suppose that (H′1) and (H2) hold true, that M̄ > sin, and let h(M) := max(s?, sc(M)) for
M ∈ [M̄,Me]. Then, an optimal feedback policy in Int(A′1) is given by : u?[s,M ] = us(M) if s = s? and M < Msat,

u?[s,M ] = 1 if s < h(M) and M > M̄,
u?[s,M ] = 0 elsewhere

(3.8)

7



Proof. The proof is straightforward using the previous lemma and following the proof of Theorem 3.1 to
exclude extremal trajectories that are not optimal.

The optimal synthesis provided by Theorem 3.2 is depicted on Fig. 3, Fig. 4 and Fig. 5 in different cases
explained below.

3.2.2 Numerical simulations

First, we summarize the numerical compution of the curve C defined by M 7−→ sc(M). We consider the system
(2.4)-(3.2) with u = 1 backward in time :

ds
dt = µ(s)(M − s)− sin − s,
dM
dt = −(sin −M),
dφ
dt = − (sin−s)µ′(s)

µ(s) φ− (sin−s)µ′(s)
µ(s) ,

(3.9)

with initial conditions (s0,M0, 0) such that (s0,M0) ∈ Γ0 ∪∆1
SA. We know that an optimal trajectory that

reaches at time t either ∆SA or Γ0\{(s̄, M̄)} is such that φ(t) = 0. Hence, for a given point (s0,M0) ∈ Γ0∪∆1
SA,

we integrate (3.9) from (s0,M0, 0) at t = 0 until the first time tc > 0 such that φ(tc) = 0 and (s(tc),M(tc)) ∈ F .
Thanks to Lemma 3.3, we know that there exist points of Γ0 ∪∆1

SA such that such a switching time tc exists.
We repeat this procedure for points (s0,M0) ∈ Γ0 ∪∆1

SA until finding completely M 7−→ sc(M).
To highlight Theorem 3.2, we have considered the following cases depending on the choice of the target

point (s̄, M̄) w.r.t. the singular arc and the value of Msat.

• Case II a (see Fig. 3) : M̄ < Msat and s̄ < s?. The two figures correspond to the case where z1(·)
leaves F either through s = 0 or s = sin.

• Case II b (see Fig. 4) : M̄ < Msat and s̄ > s?. The two figures correspond to the case where z1(·)
leaves F either through s = 0 or s = sin.

• Case II c (see Fig. 5) : M̄ > Msat and s̄ < s?. The two figures correspond to the case where z1(·)
leaves F either through s = 0 or s = sin.

• Case II d (see Fig. 6) : M̄ > Msat and s̄ > s?. The two figures correspond to the case where z1(·)
leaves F either through s = 0 or s = sin.

In Fig. 3, 4, 5 and 6, the switching curve C can be decomposed as C = ∆1 ∪∆2. The curve ∆1 (in purple),
resp. ∆2 (in green) corresponds to initial conditions for system (3.9) on ∆1

SA, resp. on Γ0.

s⋆s

M
Msat

sin sin 

 
Non controllable target zone

Optimal singular arc

Γ1

Γ0

∆1

∆2

u = 1

u = 0

s⋆s

M

Msat

sin sin 

 
Non controllable

Optimal singular arc

Γ1

Γ0

∆1

∆2

u = 1

u = 0

Figure 3: Case II a. Optimal synthesis for α = 1, M > sin. The dotted line represents the switching curve
M 7−→ sc(M) (in purple, resp. in green, it is obtained backward in time from ∆1

SA, resp. from Γ0.
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s⋆ s

M

Msat

sin sin 

 
Non controllable

Optimal singular arc

Γ1

Γ0

∆2

u = 1

u = 0

s⋆ s

M

Msat

sin sin 

 

Non controllable

Optimal singular arc

Γ1

Γ0

∆2

u = 1

u = 0

Figure 4: Case II b. Optimal synthesis for α = 1, M > sin. The dotted line represents the switching curve
M 7−→ sc(M) (in purple, resp. in green, it is obtained backward in time from ∆1

SA, resp. from Γ0.

s⋆s

M

Msat

sin sin 

 

Non controllable

Γ1

Γ0

∆1

u = 1

u = 0

Figure 5: Case II c. Optimal synthesis for α = 1, M > sin. The dotted line represents the switching curve
M 7−→ sc(M) (in purple, resp. in green, it is obtained backward in time from ∆1

SA, resp. from Γ0.

3.2.3 Additional properties of the switching curve C

The aim of this section is to provide additional properties on the switching curve C depending on the behavior
of the curve Γ1. First, we analyze the case where Γ1 exits F through s = sin. We can then show that C leaves
F at a value (sc(Me),Me) such that sc(Me) = sin as shown in the next proposition.

Proposition 3.1. Suppose that Γ1 intersects the boundary of F at some point (sin,Mout) with Mout > M̃ .
Then, we have Me ≤Mout and sc(Me) = sin.

Proof. Clearly, C cannot intersect Γ1 before reaching s = sin as we would have a contradiction with the
controllability set A′1. Suppose now that C stops at some point (sc(Me),Me) such that ψ1(Me) < sc(Me) < sin.
Then, we consider the unique solution of (2.4) backward in time from (sc(Me),Me), and we call Γ̃ the restriction
of its graph in F . Now, take an initial condition (s0,M0) ∈ F below Γ̃ and such that sc(Me) < s0 < sin,
M0 > Me. Then, if we have u = 1 at time t = 0, we obtain a contradiction as the corresponding trajectory
reaches Γ0 at a point s > s? (see Proposition 2.1 (ii)). Thus, we must have u = 0 until reaching s = s? as no
switching point occurs. We have again a contradiction by Proposition 2.1 (ii). This shows that sc(Me) = sin
and that Me ≤Mout.

Remark 3.3. We can prove that C is continuous by showing first the continuity of tc w.r.t. initial conditions
(this point follows by considering tc as the first entry time into the target φ ≥ 0 and using regularity properties
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s⋆s

M

Msat

sin sin 

 

Non controllable

Γ1

Γ0

∆1

u = 1

u = 0

Figure 6: Case II d. Optimal synthesis for α = 1, M > sin. The dotted line represents the switching curve
M 7−→ sc(M) (in purple, resp. in green, it is obtained backward in time from ∆1

SA, resp. from Γ0).

of the value function [1]). The continuity of C then follows from the continuity of solutions of an ODE w.r.t.
initial conditions. For brevity, we have not detailed this point.

When Γ1 exits F through s = 0, the controllability set A2 is unbounded, therefore the proof of Proposition
3.1 cannot be applied in this case. Nevertheless, we believe that C exits F at some point Me < +∞ as in the
previous case. Notice that initial conditions such that M � sin are not interesting for a practionner. Observe
also that the time of an arc u = 0 connecting sin to s? is equal to

∫ sin
s?

dσ
µ(σ)(M−σ) . Clearly, this integral goes

to zero if M goes to infinity. When M → ∞, the dominant term in the value function v(x0, s0) of (2.3) is
therefore the time spent by an arc u = 1 connecting M0 to Γ0 or ∆1

SA.

4 Optimal synthesis when α < 1

In this section, we study the optimal synthesis whenever α < 1. The set ∆α
0 is the line segment of equation:

ξα(s) := s+
sin − s
α

, s ∈ [0, sin],

and the singular locus ∆α
SA is the graph of the curve :

s 7−→M = ζα(s) := s+ ψα(s), s ∈ [0, sin],

where

ψα(s) :=
1

α

µ′(s)(sin − s)2

(sin − s)µ′(s) + (1− α)µ(s)
.

The function ψα and ζα may be undefined at some points of [0, sin] if µ′ < 0. By differentiating M−s = ψα(s)
w.r.t. to the time along a singular arc, one finds the expression of the singular control:

us(s) = µ(s)ψα(s)
1 + ψ′α(s)

αψα(s) + ψ′α(s)(sin − s)
.

4.1 Optimal synthesis for Monod kinetic function

We suppose in this section that the growth rate function is given by :

µ(s) :=
µms

k + s
, (4.1)

where µm > 0 and k > 0. Notice that µ, resp. µ′ is positive over (0, sin], resp. over [0, sin]. Therefore ψα and
ζα are well defined over [0, sin]. Moreover, we can make the following observations :
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• If E0 := (0, sinα ) and E1 := (sin, sin), then we have ∆α
0 ∩∆α

SA := {E0, E1}.

• The steady state singular point E0, resp. E1 is attractive, resp. repulsive for the dynamical system (2.4)
with the feedback control u = us(s).

• The singular control s 7−→ us(s) is negative on the interval (sm, sin) where sm ∈ (0, sin) is the unique
point such that ζ ′(sm) = 0.

Figures 7 depicts the singular locus ∆α
SA and the collinearity set ∆α

0 for different values of α. The corresponding
singular control is plotted on Figure 8. We observe that if α is small, then the singular control us can be

Figure 7: Plot of ∆α
0 and ∆α

SA for α = 0.1, 0.5, 0.9 with µ(s) = s
5+s and sin = 10.

Figure 8: Plot of the singular control with µ(s) = s
5+s and sin = 10 for α = 0.1, 0.5, 0.9.

larger than 1 which corresponds to the maximal admissible value for the control. To simplify the study, we
consider the following assumption :

(H3) The singular control satisfies us(M) ≤ 1 for any s ∈ [0, sm].

If Hypothesis (H3) is satisfied, then the singular arc is admissible on [0, sm]. The optimal synthesis will depend
on the position of the target point (s̄, M̄) w.r.t. the points E0 and E1. More precisely, we consider the three
following cases:

• Case I : E1 /∈ Aα and E0 /∈ Aα

• Case II : E1 ∈ Aα and E0 /∈ Aα

• Case III : E1 ∈ Aα and E0 ∈ Aα
Note that if E1 ∈ Aα, then E0 is in A′α, hence the case E1 /∈ Aα and E0 ∈ Aα is not possible. When E0 /∈ Aα,
we introduce the feedback control law :

uαm[s,M ] :=

 1 if M < ζα(s),
0 if M > ζα(s) or (M = ζα(s) and s > sm),
us(M) if M = ζα(s) and s < sm,

(4.2)
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The optimal synthesis then reads as follows.

Theorem 4.1. Suppose that µ is given by (4.1) and that (H2)-(H3) hold true. Then, an optimal synthesis
reads as follows.

(i) If E1 /∈ Aα and E0 /∈ Aα (case I), then the controllability set is Aα and an optimal feedback policy in
Int(Aα) is given by (4.2).

(ii) If E1 ∈ Aα and E0 /∈ Aα (case II), then the controllability set is F . Moreover, an optimal feedback policy
in Int(Aα) is given by (4.2), and an optimal control satisfies u = 1 in Int(A′α).

(iii) If E1 ∈ Aα and E0 ∈ Aα (case III), then the controllability set is A′1 and an optimal control satisfies
u = 1 in Int(A′α).

Proof. Let us prove (i). Using section 3.1 and the equivalence dM
ds |u=1

> 0 ⇐⇒ M < s+ 1
α (sin− s), one can

easily show that the controllability set is Aα. Moreover, from (2.13), we obtain that an optimal control cannot
switch from u = 0 to u = 1, resp. from u = 1 to u = 0 at some point in Aα\(Γ0 ∪ Γ1) such that M < ζ(s),
resp. M > ζ(s). Hence, optimal trajectories can only switch on the singular locus ∆α

SA. It follows that an
optimal control satisfies u = 1 when M < ζ(s) and u = 0 when M > ζ(s). Moreover, we deduce that at some
point (s,M)
inDeltaαSA either we have s ≤ sm and u = us (from (2.13), optimal trajectories cannot leave the singular arc
before reaching Γ0 ∪ Γ1) or s > sm and then an optimal control necessarily satisfies u = 0.

To prove (ii), notice that the optimality result in Aα is similar to (i). Now, solutions of (2.4) with u = 1
starting above Γ0 ∪ Γ1 necessarily converge to the point E1 (recall (H2)). Hence, trajectories with u = 1
starting in A′α necessarily intersect Γ0 (as E1 ∈ Aα). To prove that an optimal control satisfies u = 1 in
Int(A′α), we use (2.13) and similar arguments as in the proof of (i).

The proof of (iii) is similar to the proof of (ii) except that the target point cannot be reached by points in
Int(A1).

Remark 4.1. (i) We point out that optimal trajectories can switch from u = 1 to u = 0 on the part of the
singular locus defined for s ∈ (sm, sin).
(ii) Whenever α = 1 and µ is of Monod type, we know from (3.6) that no singular arc occurs. We see that
when α < 1, then optimal strategies can take advantage of a singular arc depending on the position of the
target point w.r.t. ∆α

SA.
(iii) It is interesting to observe that when α → 1, then one has ξα(s) → sin and ζα(s) → ssin. Hence, if
M̄ < sin, then the optimal control policy (4.2) converges to the feedback (3.6) as expected.

4.2 Discussion for Haldane kinetic function

TODO? Or just give the idea of the synthesis?

5 Conclusion, Discussion, Perspectives

• Dans le cas Monod, lorsque α→ 1 on retrouve la même synthèse que lorsque α = 1, ouf.

• Message : dans le cas Monod, lorsque α 6= 1 il y a un arc singulier (pas d’arc singulier pour Monod
quand α = 1. De plus, l’ensemble de contrôlabilité peut être plus grand. La synthèse dépend de la
position de la cible par rapport à la courbe ∆α.

• Perspectives? Inclure la mortalité (α > 1) : mais bon les équations sont les mêmes donc il suffirait de
regarder ce cas aussi qui ne doit pas être très différent...

• Perspectives? Etudier le système en dimension 4 de digestion anaérobie proposé par Olivier Bernard
sans mortalité et sans α (cf mail Jérôme) : quel système?
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6 Appendix

Proof of Lemma 3.3. The following claim is crucial and follows from 3.2 and Proposition 2.1 (ii).

Claim 6.1. Any extremal trajectory cannot switch from u = 1 to u = 0, resp. from u = 0 to u = 1 at a point
(s(t),M(t)) such that s(t) > s?, resp. s(t) < s? (t).

Step 1. Let us prove the existence of the switching curve sc : [M̃,Me]→ [s?, sin].

Consider an initial condition (s0,M0) such that s0 > s?, M0 > M̃ and an optimal trajectory starting from
this point. Suppose that we have u = 0 until reaching s? at a time t0. We then have u = 0 for any time t > t0,
and the trajectory cannot reach the target. Therefore, either we have u = 1 at time 0 until reaching s = s?

with M < Msat or M = M̄ , or there exists a unique point switching point to u = 1 at a time t0 such that
s? < s†(t0) < s0 (the uniqueness follows from Claim 6.1).

Let us now denote by M 7−→ s†(M) the unique solution of (2.4) with u = 1 backward in time from (s?, M̃)
satisfying the Cauchy problem:

dσ

dM
= −µ(σ)(M − s) + sin − σ

sin −M
, σ(M̃) = s?.

When M̃ = Msat we know that this curve is tangent to the singular arc at (s?,M?). Therefore, it leaves F
through s = sin i.e. there exists a unique point Mout such that s†(Mout) = sin. By a monotonicity argument,
we argue that it also leaves F through s = sin whenever M̃ = M̄ .

Finally, take an initial condition (s0,M0) such that M̃ < M0 < Mout and s0 > s†(M0). Claim 6.1 then
implies the existence and uniqueness of a switching point from u = 0 to u = 1 at a time t0 such that s(t0) > s?.
Hence, we have proved that for any M ∈ [M̃,Mout], there exists exactly one switching point that we denote
sc(M). We then define Me ∈ [Mout,+∞] as :

Me := sup{M > Mout ; sc(·) is defined over [Mout,M ]}.

Step 2. Proof of Lemma 3.3 (1)-(2). First, we have sc(M) goes to s? when M ↓ M̃ . Otherwise, we would

have a contradiction by using Claim 6.1 and s†(·). Now, If Me < +∞, we necessarily have sc(Me) = sin.
Otherwise, we would have sc(Me) ∈ (s?, sin). In that case, we consider the unique solution of (2.4) with
u = 1 backward in time from (sc(Me),Me). Then, consider an initial condition (s0,M0) below this curve and
such that s0 > sc(Me) and M0 > Me. We then have u = 1 until reaching M = Me. We necessarily have
a contradiction by Claim 6.1 as the trajectory cannot switch to u = 0 at a time t0 such that s(t0) > s?.
Therefore, we have sc(Me) = sin. Finally, we have seen by construction of sc that we have sc(M) ∈ (s?, sin)
for any point M ∈ (M?,Me). This proves Lemma 3.3 (1). The proof of (2) is a direct consequence of Claim
6.1.

�
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