Applications de la théorie d'intersection des diviseurs de Hassett

Michele Bolognesi

Université de Montpellier

23 Mars 2021

- Intersection of Hassett divisors
- 4 Cubic fourfolds with finite-dimensional Chow motive of abelian type

- 2 General Stuff
- 3 Intersection of Hassett divisors
- 4 Cubic fourfolds with finite-dimensional Chow motive of abelian type

Image: A matrix and a matrix

• Zero locus of homogeneous polynomial of degree 3 in \mathbb{P}^5 .

- \bullet Zero locus of homogeneous polynomial of degree 3 in $\mathbb{P}^5.$
- Probably the simplest algebraic variety whose rationality is not known.

- Zero locus of homogeneous polynomial of degree 3 in \mathbb{P}^5 .
- Probably the simplest algebraic variety whose rationality is not known.

Definition

An algebraic variety X of dimension n is rational if there exists a birational map $X - \stackrel{\sim}{\rightarrow} \mathbb{P}^n$ i.e there exist $U \subseteq X$, $V \subseteq \mathbb{P}^n$ open subsets, such that U is isomorphic to V.

- Zero locus of homogeneous polynomial of degree 3 in \mathbb{P}^5 .
- Probably the simplest algebraic variety whose rationality is not known.

Definition

An algebraic variety X of dimension n is rational if there exists a birational map $X - \stackrel{\sim}{\rightarrow} \mathbb{P}^n$ i.e there exist $U \subseteq X$, $V \subseteq \mathbb{P}^n$ open subsets, such that U is isomorphic to V.

• Birational invariants: Plurigenera $P_X^d = dim H^0(X, K_X^d)$, Kodaira dimension, fundamental group $\pi_1(X)$, CG-component of intermediate Jacobian.

- Zero locus of homogeneous polynomial of degree 3 in \mathbb{P}^5 .
- Probably the simplest algebraic variety whose rationality is not known.

Definition

An algebraic variety X of dimension n is rational if there exists a birational map $X - \stackrel{\sim}{\rightarrow} \mathbb{P}^n$ i.e there exist $U \subseteq X$, $V \subseteq \mathbb{P}^n$ open subsets, such that U is isomorphic to V.

- Birational invariants: Plurigenera $P_X^d = dim H^0(X, K_X^d)$, Kodaira dimension, fundamental group $\pi_1(X)$, CG-component of intermediate Jacobian.
- Quadrics on $\mathbb C$ are all rational (by projection)

• Dim 1: smooth cubic curves (genus 1 curves) are nonrational.

- Dim 1: smooth cubic curves (genus 1 curves) are nonrational.
- Dim 2: smooth cubic surfaces are rational (as long as they contain 2 disjoint lines, this is the case on \mathbb{C}).

- Dim 1: smooth cubic curves (genus 1 curves) are nonrational.
- Dim 2: smooth cubic surfaces are rational (as long as they contain 2 disjoint lines, this is the case on \mathbb{C}).
- Dim 3: cubic threefolds are nonrational (Intermediate Jacobian, \sim 1972).

- Dim 1: smooth cubic curves (genus 1 curves) are nonrational.
- Dim 2: smooth cubic surfaces are rational (as long as they contain 2 disjoint lines, this is the case on \mathbb{C}).
- Dim 3: cubic threefolds are nonrational (Intermediate Jacobian, \sim 1972).
- Dim 4: cubic fourfolds? conjecture: very general cubic fourfolds are nonrational/ only rational examples.

3) Intersection of Hassett divisors

4 Cubic fourfolds with finite-dimensional Chow motive of abelian type

Michele Bolognesi

23 Mars 2021 6 / 47

• Let $X \subset \mathbb{P}^5$ be a cubic fourfold.

≣ ▶ ৰ ≣ ▶ ≣ ৩৭৫ 23 Mars 2021 7/47

- Let $X \subset \mathbb{P}^5$ be a cubic fourfold.
- Cubic hypersurfaces in \mathbb{P}^5 are parametrized by $\mathbb{P}(H^0(\mathbb{P}^5, \mathcal{O}(3))) \cong \mathbb{P}^{55}$.

- Let $X \subset \mathbb{P}^5$ be a cubic fourfold.
- Cubic hypersurfaces in \mathbb{P}^5 are parametrized by $\mathbb{P}(H^0(\mathbb{P}^5, \mathcal{O}(3))) \cong \mathbb{P}^{55}$.
- The coarse moduli space is a GIT quotient

$$\mathcal{C} = \mathcal{U} / / PGL(6, \mathbb{C}),$$

with $\mathcal{U} \subset \mathbb{P}^{55}$ open subset parametrizing smooth cubic hypersurfaces.

- Let $X \subset \mathbb{P}^5$ be a cubic fourfold.
- Cubic hypersurfaces in \mathbb{P}^5 are parametrized by $\mathbb{P}(H^0(\mathbb{P}^5, \mathcal{O}(3))) \cong \mathbb{P}^{55}$.
- The coarse moduli space is a GIT quotient

$$\mathcal{C} = \mathcal{U} / / PGL(6, \mathbb{C}),$$

with $\mathcal{U} \subset \mathbb{P}^{55}$ open subset parametrizing smooth cubic hypersurfaces.

• \mathcal{C} is a 20-dimensional quasi-projective variety.

The Hodge theorem holds for cubic fourfolds:

The Hodge theorem holds for cubic fourfolds:

$$H^r(X,\mathbb{C}) = \bigoplus_{p+q=r} H^{p,q}(X),$$

where $H^{p,q}(X) := H^q(X, \Omega^p)$.

23 Mars 2021 8 / 47

3

イロト イポト イヨト イヨト

$$\begin{array}{c} & h^{0,0} \\ & h^{1,0} & h^{0,1} \\ & h^{2,0} & h^{1,1} & h^{0,2} \\ & h^{3,0} & h^{2,1} & h^{1,2} & h^{0,3} \\ & h^{4,0} & h^{3,1} & h^{2,2} & h^{1,3} & h^{0,4} \end{array}$$

 $h^{p,q} = \dim H^q(X, \Omega^p_X)$

イロト イヨト イヨト

 $\begin{array}{cccc} & h^{0,0} & & \\ & h^{1,0} & h^{0,1} & \\ & h^{2,0} & h^{1,1} & h^{0,2} & \\ & h^{3,0} & h^{2,1} & h^{1,2} & h^{0,3} & \\ & h^{4,0} & h^{3,1} & h^{2,2} & h^{1,3} & h^{0,4} \end{array}$ 0 1

 $h^{p,q} = \dim H^q(X, \Omega_X^p)$

æ

→

Lattice theory for cubic fourfolds

The cohomology $H^{\bullet}(X,\mathbb{Z})$ is well understood and torsion free.

Lattice theory for cubic fourfolds

The cohomology $H^{\bullet}(X, \mathbb{Z})$ is well understood and torsion free. On $H^{4}(X, \mathbb{Z})$ we have the symmetric intersection form. The cohomology $H^{\bullet}(X,\mathbb{Z})$ is well understood and torsion free. On $H^4(X,\mathbb{Z})$ we have the symmetric intersection form. The cohomology lattice for cubic fourfolds is diagonalizable:

$$H^4(X,\mathbb{Z})\cong$$
 $(+1)^{\bigoplus 21}\bigoplus (-1)^{\bigoplus 2},$

The cohomology $H^{\bullet}(X,\mathbb{Z})$ is well understood and torsion free. On $H^{4}(X,\mathbb{Z})$ we have the symmetric intersection form. The cohomology lattice for cubic fourfolds is diagonalizable:

$$H^4(X,\mathbb{Z})\cong$$
 $(+1)^{\bigoplus 21}\bigoplus (-1)^{\bigoplus 2},$

and the primitive cohomology lattice:

$$H^4(X,\mathbb{Z})_{prim} := \langle h^2 \rangle^{\perp} \cong E_8^{\bigoplus 2} \bigoplus U^{\bigoplus 2} \bigoplus A_2,$$

 $h \in H^2(X, \mathbb{Z})$ is a hyperlane section;

 E_8 is the positive definite even lattice of rank 8 associated to the corresponding Dynkin diagram;

$$U := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 is the hyperbolic plane; and $A_2 := \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$

The integral Hodge conjecture holds,

Image: A matrix

The integral Hodge conjecture holds, and $\sim_{rat} = \sim_{alg} = \sim_{hom}$ for codimension 2 cycles on cubic 4folds, hence:

э

47 ▶ ◀

The integral Hodge conjecture holds, and $\sim_{rat} = \sim_{alg} = \sim_{hom}$ for codimension 2 cycles on cubic 4folds, hence:

 A(X) = H²(X, Ω²_X) ∩ H⁴(X, ℤ) the lattice of algebraic 2-cycles on X up to rational equivalence. The integral Hodge conjecture holds, and $\sim_{rat} = \sim_{alg} = \sim_{hom}$ for codimension 2 cycles on cubic 4folds, hence:

- A(X) = H²(X, Ω²_X) ∩ H⁴(X, ℤ) the lattice of algebraic 2-cycles on X up to rational equivalence.
- For a very general cubic fourfold X, any algebraic surface T ⊂ X is homologous to a multiple of h², so that rk(A(X)) = 1.

Definitions (H)

• X is a *special* cubic fourfold iff it contains an algebraic surface T not homologous to a complete intersection.

Definitions (H)

- X is a *special* cubic fourfold iff it contains an algebraic surface T not homologous to a complete intersection.
- X is special IFF A(X) has rank at least 2.

Definitions (H)

- X is a *special* cubic fourfold iff it contains an algebraic surface T not homologous to a complete intersection.
- X is special IFF A(X) has rank at least 2.

• We associate to X special a rank 2 saturated sublattice (labelling)

$$h^2 \in K_d \subseteq A(X)$$

with d the determinant of the intersection form on K_d ;

Definitions (H)

- X is a *special* cubic fourfold iff it contains an algebraic surface T not homologous to a complete intersection.
- X is special IFF A(X) has rank at least 2.

• We associate to X special a rank 2 saturated sublattice (labelling)

$$h^2 \in K_d \subseteq A(X)$$

with d the determinant of the intersection form on K_d ;

$$K_d := \begin{array}{c|c} h^2 & T \\ \hline h^2 & 3 & d_T \\ T & d_T & (T,T) \end{array}$$

where the self-intersection $(T, T) = c_2(\mathcal{N}_{T/X}) = 6H^2 + 3H.K_T + K_T^2 - \chi_T, H = h|S, \chi_T \text{ top. Euler char;} d = 3(T, T) - d_T^2.$

Michele Bolognesi
• The Noehter-Lefschetz loci $C_d \subset C$ parametrizing special cubic fourfolds with a labelling of discriminant d are divisors, i.e. codimension one subvarieties. These divisors C_d are called Hassett divisors.

• The Noehter-Lefschetz loci $C_d \subset C$ parametrizing special cubic fourfolds with a labelling of discriminant d are divisors, i.e. codimension one subvarieties. These divisors C_d are called Hassett divisors.

Proposition (H)

 C_d is irreducible and nonempty iff d > 6 and $d \equiv 0, 2 \pmod{6}$.

Examples

• $C_{14} \leftrightarrow$ cubic fourfolds containing a quartic scroll S_{14} : $K_{14} := \frac{\begin{array}{c|c} h^2 & S_{14} \end{array}}{\begin{array}{c|c} h^2 & 3 & 4 \end{array}}$ $S_{14} & 4 & 10 \end{array}$

47 ▶ ∢ ∃

Examples

• $C_{14} \leftrightarrow$ cubic fourfolds containing a quartic scroll S_{14} : $K_{14} := \frac{\begin{vmatrix} h^2 & S_{14} \\ \hline{h^2} & 3 & 4 \\ \hline{S_{14}} & 4 & 10 \end{vmatrix}$ • $C_8 \leftrightarrow$ cubic fourfolds containing a plane P: $K_8 := \frac{\begin{vmatrix} h^2 & P \\ \hline{h^2} & 3 & 1 \\ \hline{P} & 1 & 3 \end{vmatrix}$

Examples

• $C_{14} \leftrightarrow$ cubic fourfolds containing a quartic scroll S_{14} : $K_{14} := \frac{\begin{vmatrix} h^2 & S_{14} \\ \hline h^2 & 3 & 4 \\ \hline S_{14} & 4 & 10 \end{vmatrix}$ • $C_8 \leftrightarrow$ cubic fourfolds containing a plane P: $K_8 := \frac{\begin{vmatrix} h^2 & P \\ \hline h^2 & 3 & 1 \\ \hline P & 1 & 3 \end{vmatrix}$ • ...

Recall that a K3 surface is a simply connected compact complex manifold of dimension 2 with a nowhere-vanishing holomorphic 2-form.

Recall that a K3 surface is a simply connected compact complex manifold of dimension 2 with a nowhere-vanishing holomorphic 2-form. That is $K_S \cong \mathcal{O}_S$.

Recall that a K3 surface is a simply connected compact complex manifold of dimension 2 with a nowhere-vanishing holomorphic 2-form. That is $K_S \cong \mathcal{O}_S$.

Definition

A polarized K3 surface of degree d is a pair (S, H) where S is a K3 surface and $H \longrightarrow S$ an ample line bundle with H.H = d

Recall that a K3 surface is a simply connected compact complex manifold of dimension 2 with a nowhere-vanishing holomorphic 2-form. That is $K_S \cong \mathcal{O}_S$.

Definition

A polarized K3 surface of degree d is a pair (S, H) where S is a K3 surface and $H \longrightarrow S$ an ample line bundle with H.H = d

- Primitive cohomology of X: $H^4_{prim}(X) := \langle h^2 \rangle^{\perp}$
 - 0 1 20 1 0 of signature (20,2).

Recall that a K3 surface is a simply connected compact complex manifold of dimension 2 with a nowhere-vanishing holomorphic 2-form. That is $K_S \cong \mathcal{O}_S$.

Definition

A polarized K3 surface of degree d is a pair (S, H) where S is a K3 surface and $H \longrightarrow S$ an ample line bundle with H.H = d

- Primitive cohomology of X: $H^4_{prim}(X) := \langle h^2 \rangle^{\perp}$
 - 0 1 20 1 0 of signature (20,2).
- Second cohomology group $H^2(S)$ of a K3 surface
 - 1 20 1 of signature (3,19).

Recall that a K3 surface is a simply connected compact complex manifold of dimension 2 with a nowhere-vanishing holomorphic 2-form. That is $K_S \cong \mathcal{O}_S$.

Definition

A polarized K3 surface of degree d is a pair (S, H) where S is a K3 surface and $H \longrightarrow S$ an ample line bundle with H.H = d

- Primitive cohomology of X: $H^4_{prim}(X) := < h^2 >^{\perp}$
 - 0 1 20 1 0 of signature (20,2).
- Second cohomology group $H^2(S)$ of a K3 surface

It is the same if we pass to codimension 1 sub-Hodge structure of signature (2,19) (up to a Tate twist for $H^2(S)$, that changes weight of the HS and sign of the intersection form).

Proposition (H)

For a special cubic fourfold $X \in C_d$, there exists a polarized K3 surface S of degree d such that there is a Hodge-isometry

$$H^4(X,\mathbb{Z})\supset K_d^\perp\cong H^2_{prim}(S,\mathbb{Z})(-1)$$

iff

d is not divisible by 4, 9, or any odd prime number $p \equiv 2$ [3] (**).

Proposition (H)

For a special cubic fourfold $X \in C_d$, there exists a polarized K3 surface S of degree d such that there is a Hodge-isometry

$$H^4(X,\mathbb{Z})\supset K_d^\perp\cong H^2_{prim}(S,\mathbb{Z})(-1)$$

iff

d is not divisible by 4, 9, or any odd prime number $p \equiv 2$ [3] (**).

Conjecture (HHK)

 $X \in C_d$ is rational iff d satisfies (**).

Proposition (H)

For a special cubic fourfold $X \in C_d$, there exists a polarized K3 surface S of degree d such that there is a Hodge-isometry

$$H^4(X,\mathbb{Z})\supset K_d^\perp\cong H^2_{prim}(S,\mathbb{Z})(-1)$$

iff

d is not divisible by 4, 9, or any odd prime number $p \equiv 2$ [3] (**).

Conjecture (HHK)

 $X \in C_d$ is rational iff d satisfies (**).

• 8, 12, 14, 18, 20, 24, 26,..., 38, 42,...

Proposition (H)

For a special cubic fourfold $X \in C_d$, there exists a polarized K3 surface S of degree d such that there is a Hodge-isometry

$$H^4(X,\mathbb{Z})\supset K_d^\perp\cong H^2_{prim}(S,\mathbb{Z})(-1)$$

iff

d is not divisible by 4, 9, or any odd prime number $p \equiv 2$ [3] (**).

Conjecture (HHK)

 $X \in C_d$ is rational iff d satisfies (**).

• 8, 12, 14, 18, 20, 24, 26,..., 38, 42,...

• K_d^{\perp} is often called non-special cohomology.

$$\mathrm{D}^{\mathbf{b}}(X) = \langle \mathcal{K}u(X), \mathcal{O}(-2), \mathcal{O}(-1), \mathcal{O} \rangle;$$

$$D^{\mathbf{b}}(X) = \langle \mathcal{K}u(X), \mathcal{O}(-2), \mathcal{O}(-1), \mathcal{O} \rangle;$$
$$D^{\mathbf{b}}(X) = \langle D^{\mathbf{b}}(S), \mathcal{O}(-2), \mathcal{O}(-1), \mathcal{O} \rangle.$$

$$D^{\mathbf{b}}(X) = \langle \mathcal{K}u(X), \mathcal{O}(-2), \mathcal{O}(-1), \mathcal{O} \rangle;$$

$$D^{\mathbf{b}}(X) = \langle D^{\mathbf{b}}(S), \mathcal{O}(-2), \mathcal{O}(-1), \mathcal{O} \rangle.$$

Work of Kuznetsov, Macrí and others about this.

Associated HyperKähler varieties

The Fano variety of lines contained in X

$$F(X) = \{I \in G(1,5) | I \subseteq X\}$$

The Fano variety of lines contained in X

$$F(X) = \{ l \in G(1,5) | l \subseteq X \}$$

is a four-dimensional smooth projective variety. It is an Hyperkähler variety, *i.e* F(X) is simply connected, Kähler and $H^0(F(X), \Omega^2_{F(X)})$ is spanned by an everywhere non-degenerate form.

The Fano variety of lines contained in X

$$F(X) = \{ l \in G(1,5) | l \subseteq X \}$$

is a four-dimensional smooth projective variety. It is an Hyperkähler variety, *i.e* F(X) is simply connected, Kähler and $H^0(F(X), \Omega^2_{F(X)})$ is spanned by an everywhere non-degenerate form. HK varieties are somehow generalizations of K3 surfaces.

The Fano variety of lines contained in X

$$F(X) = \{ l \in G(1,5) | l \subseteq X \}$$

is a four-dimensional smooth projective variety. It is an Hyperkähler variety, *i.e* F(X) is simply connected, Kähler and $H^0(F(X), \Omega^2_{F(X)})$ is spanned by an everywhere non-degenerate form. HK varieties are somehow generalizations of K3 surfaces.

For (infinitely many) values of d such that $d = 2(n^2 + n + 1)$ for an integer $n \ge 2$, there is an isomorphism

$$F(X) \cong S^{[2]} \tag{1}$$

between F(X) and the Hilbert scheme of length two subschemes $S^{[2]}$ of the associated K3 surface.

Let X be a cubic fourfold not containing a plane. Let $\mathcal{M}_3(X)$ be the 10-dimensional moduli space of twisted cubics (constructed via GIT) on X.

Let X be a cubic fourfold not containing a plane. Let $\mathcal{M}_3(X)$ be the 10-dimensional moduli space of twisted cubics (constructed via GIT) on X. There is an (explicitly described) contraction

 $\mathcal{M}_3(X) \to L(X)$

onto a 8-dimensional HK variety, called the LLSvS 8-fold [LLSvS].

Let X be a cubic fourfold not containing a plane. Let $\mathcal{M}_3(X)$ be the 10-dimensional moduli space of twisted cubics (constructed via GIT) on X. There is an (explicitly described) contraction

 $\mathcal{M}_3(X) \to L(X)$

onto a 8-dimensional HK variety, called the LLSvS 8-fold [LLSvS]. For infinitely many values of d (see later) there is a birational map

 $L(X) \sim S^{[4]}.$

Consider \mathbb{P}^{5*} the dual projective space parametrizing hyperplanes in $\mathbb{P}^5.$

Consider \mathbb{P}^{5*} the dual projective space parametrizing hyperplanes in \mathbb{P}^5 . The generic hyperplane section of X is a cubic 3fold. Consider \mathbb{P}^{5*} the dual projective space parametrizing hyperplanes in \mathbb{P}^5 . The generic hyperplane section of X is a cubic 3fold.

[LSV] constructed a HK 10-fold $\mathcal{J}(X)$,

$$\varphi: \mathcal{J}(X) \to \mathbb{P}^{5*},$$

dominating \mathbb{P}^{5*} , such the generic fiber of φ is the intermediate jacobian of the corresponding hyperplane section.

Consider \mathbb{P}^{5*} the dual projective space parametrizing hyperplanes in \mathbb{P}^5 . The generic hyperplane section of X is a cubic 3fold.

[LSV] constructed a HK 10-fold $\mathcal{J}(X)$,

$$\varphi: \mathcal{J}(X) \to \mathbb{P}^{5*},$$

dominating \mathbb{P}^{5*} , such the generic fiber of φ is the intermediate jacobian of the corresponding hyperplane section.

This has a relation with rational normal quartics similar to that of L(X) with twisted cubics.

Condition on d	Comments for $X \in C_d$
$d \ge 8$ and $d \equiv 0$ or 2 (mod 6)	\mathcal{C}_d non empty
d ∦ 4, 9, or any odd prime	$H^2(S,\mathbb{Z})_{prim}(-1)\simeq K_d^\perp$
number $p \equiv 2 \pmod{3}$	(Hodge isom.); $Ku(X) \cong D^b(S)$
$d=rac{2n^2+2n+2}{a^2}$, for some $n,\;a\in\mathbb{Z}$	$F(X)\sim S^{[2]}$
$d = 2n^2 + 2n + 2$, for some $n, a \in \mathbb{Z}$	$F(X)\cong S^{[2]}$
$d=rac{6n^2+6n+2}{a^2}, \ \ n,a\in\mathbb{Z}$	$L(X) \sim S^{[4]}$

Image: Image:

2

Cubic 4folds

Intersection of Hassett divisors

4 Cubic fourfolds with finite-dimensional Chow motive of abelian type

Michele Bolognesi

< □ > < ^[] >

2

Proposition (Yang-Yu)

Any two Hassett divisors intersect i.e. $C_{d_1} \cap C_{d_2} \neq \emptyset$ for any integers d_1 and d_2 such that the C_{d_i} are not empty.

Proposition (Yang-Yu)

Any two Hassett divisors intersect i.e. $C_{d_1} \cap C_{d_2} \neq \emptyset$ for any integers d_1 and d_2 such that the C_{d_i} are not empty.

Theorem (ABP)

For $3 \leq n \leq 20$,

$$\bigcap_{k=1}^{n} \mathcal{C}_{d_{k}} \neq \emptyset,$$

for $d_k > 6$, $d_k \equiv 0, 2[6]$ and $d_3, ..., d_n = 6 \prod_i p_i^2$ or $6 \prod_i p_i^2 + 2$ with p_i a prime number.

orime number.

Lemma

Let N be a positive definite lattice of rank $r(N) \ge 2$, that admits a saturated embedding

$$h^2 \in N \subset H^4(X,\mathbb{Z}),$$

Let $C_N \subset C$ the locus of cubic fourfolds X having algebraic classes with lattice structure $N \subset A(X)$. If C_N is non-empty, then it has codimension r(N) - 1 and there exists $X \in C_N$ with A(X) = N.
Lemma

Let N be a positive definite lattice of rank $r(N) \ge 2$, that admits a saturated embedding

$$h^2 \in N \subset H^4(X,\mathbb{Z}),$$

Let $C_N \subset C$ the locus of cubic fourfolds X having algebraic classes with lattice structure $N \subset A(X)$. If C_N is non-empty, then it has codimension r(N) - 1 and there exists $X \in C_N$ with A(X) = N.

Nonempty if there exists no sublattice $h^2 \in K_j \subset N$, with j = 2, 6.

Lemma

Let N be a positive definite lattice of rank $r(N) \ge 2$, that admits a saturated embedding

$$h^2 \in N \subset H^4(X,\mathbb{Z}),$$

Let $C_N \subset C$ the locus of cubic fourfolds X having algebraic classes with lattice structure $N \subset A(X)$. If C_N is non-empty, then it has codimension r(N) - 1 and there exists $X \in C_N$ with A(X) = N.

Nonempty if there exists no sublattice $h^2 \in K_j \subset N$, with j = 2, 6. Rephrasing the Theorem: given d_1, \ldots, d_r , we have an "algorithm"to construct a lattice M_{d_1,\ldots,d_r} of rank r + 1 s.t. $\mathcal{C}_{M_{d_1,\ldots,d_r}} \neq \emptyset$ is contained in $\bigcap_{i=1}^r \mathcal{C}_{d_i}$, and is of codimension r in the moduli space.

3

• C_M is non-empty, and of codimension r in C;

- C_M is non-empty, and of codimension r in C;
- there are rank 2 sublattices K_{d_i} of M;

- C_M is non-empty, and of codimension r in C;
- there are rank 2 sublattices K_{d_i} of M;
- this gives conditions on the d_i .

- C_M is non-empty, and of codimension r in C;
- there are rank 2 sublattices K_{d_i} of M;
- this gives conditions on the d_i.

The generic cubic in C_M has rk(A(X)) = r + 1 and if one of the C_{d_i} parametrizes cubics X with associated K3 S_X , then (generically) $rk(NS(S_X)) = r$.

- C_M is non-empty, and of codimension r in C;
- there are rank 2 sublattices K_{d_i} of M;
- this gives conditions on the d_i.

The generic cubic in C_M has rk(A(X)) = r + 1 and if one of the C_{d_i} parametrizes cubics X with associated K3 S_X , then (generically) $rk(NS(S_X)) = r$.

Hodge isometry

$$K_d^{\perp} \simeq H_{prim}^2(S, \mathbb{Z})(-1)$$

- C_M is non-empty, and of codimension r;
- there are rank 2 sublattices K_{d_i} of M;
- this gives conditions on the d_i.

The generic cubic in C_M has rk(A(X)) = r + 1 and if one of the C_{d_i} parametrizes cubics X with associated K3 S_X , then (generically) $rk(NS(S_X)) = r$.

Hodge isometry
$$K_d^{\perp} \simeq H_{prim}^2(S, \mathbb{Z})(-1)$$

Consequences

Idea: construct lattices M of rank (r + 1) such that

- C_M is non-empty, and of codimension r;
- there are rank 2 sublattices K_{d_i} of M;
- this gives conditions on the d_i.

The generic cubic in C_M has rk(A(X)) = r + 1 and if one of the C_{d_i} parametrizes cubics X with associated K3 S_X , then (generically) $rk(NS(S_X)) = r$.

Hodge isometry $K_d^{\perp} \simeq H_{prim}^2(S, \mathbb{Z})(-1)$

Consequences

Idea: construct lattices M of rank (r + 1) such that

- C_M is non-empty, and of codimension r;
- there are rank 2 sublattices K_{d_i} of M;
- this gives conditions on the d_i.

The generic cubic in C_M has rk(A(X)) = r + 1 and if one of the C_{d_i} parametrizes cubics X with associated K3 S_X , then (generically) $rk(NS(S_X)) = r$.

Hodge isometry

$$K_d^{\perp} \simeq H_{prim}^2(S, \mathbb{Z})(-1)$$
+1

• One can find loci, of dimension 20 - n, parametrizing cubic fourfolds with associated K3 surfaces of Néron-Severi rank n, with $1 \le n \le 20$, inside any divisor C_d .

Corollary

Call $\mathcal{F} = \mathcal{C}_{M_{d_1,...,d_{19}}} \subset \bigcap_{k=1}^{19} \mathcal{C}_{d_k} \neq \emptyset$ the family constructed this way, and s.t. at least one \mathcal{C}_{d_k} has associated K3s. Then cubic fourfolds in \mathcal{F} have associated K3 surface S s.t. $rk(NS(S)) \geq 19$. These are called singular K3 surfaces.

Definition

The category of Chow motives $\mathcal{M}_{rat}(\mathbb{C})$ consists of triples (X, p, m) with X a projective smooth variety over \mathbb{C} , $p \in Corr^0_{rat}(X, X)$ is a projector and m an integer. The morphisms are as follows:

 $Hom_{\mathcal{M}_{rat}(\mathbb{C})}((X, p, m_1), (Y, q, m_2)) = q \circ Corr_{rat}^{m_2 - m_1}(X, Y) \circ p$

Reminder: $Corr_{rat}^r(X_d, Y) := Z_{rat}^{d+r}(X \times Y, \mathbb{Q}).$

Definition

The category of Chow motives $\mathcal{M}_{rat}(\mathbb{C})$ consists of triples (X, p, m) with X a projective smooth variety over \mathbb{C} , $p \in Corr^0_{rat}(X, X)$ is a projector and m an integer. The morphisms are as follows:

$$\mathsf{Hom}_{\mathcal{M}_{rat}(\mathbb{C})}((X,p,m_1),(Y,q,m_2)) = q \circ \mathsf{Corr}_{rat}^{m_2-m_1}(X,Y) \circ p$$

Reminder: $Corr_{rat}^{r}(X_d, Y) := Z_{rat}^{d+r}(X \times Y, \mathbb{Q}).$

$$\begin{split} h\colon SmProj_{/\mathbb{C}} &\to \mathcal{M}_{rat}(\mathbb{C}) \\ X &\mapsto h(X) = (X, \Delta_X, 0) \\ f \colon X \to Y \mapsto h(f) = \Gamma_f^T \colon h(Y) \to h(X), \end{split}$$

with Δ_X the diagonal embedding $X \hookrightarrow X \times X$.

M_{rat}(C) is an additive, Q-linear, pseudo-abelian category; there is a notion of tensor product and the category is rigid;

- *M_{rat}*(C) is an additive, Q-linear, pseudo-abelian category; there is a notion of tensor product and the category is rigid;
- *M_{rat}*(C) has good properties with respect to Weil cohomological theories (e.g. Betti cohomology).

- *M_{rat}*(C) is an additive, Q-linear, pseudo-abelian category; there is a notion of tensor product and the category is rigid;
- *M_{rat}*(C) has good properties with respect to Weil cohomological theories (e.g. Betti cohomology). There is a realization functor *H*^{*}:

through which every "good" cohomology theory factors.

• the unit motive $1 = h(point) := (Spec(\mathbb{C}), Id, 0)$, which is the identity for the tensor product;

- the unit motive $1 = h(point) := (Spec(\mathbb{C}), Id, 0)$, which is the identity for the tensor product;
- the Lefschetz motive L := (Spec(C), Id, −1), which is important in order for the category to admit duals (to be rigid).

- the unit motive $1 = h(point) := (Spec(\mathbb{C}), Id, 0)$, which is the identity for the tensor product;
- the Lefschetz motive L := (Spec(C), Id, −1), which is important in order for the category to admit duals (to be rigid).

$$h(\mathbb{P}^1) = \mathbb{1} \oplus \mathbb{L}$$

- the unit motive $1 = h(point) := (Spec(\mathbb{C}), Id, 0)$, which is the identity for the tensor product;
- the Lefschetz motive L := (Spec(C), Id, −1), which is important in order for the category to admit duals (to be *rigid*).

$$h(\mathbb{P}^1)=\mathbb{1}\oplus\mathbb{L}$$

and the dual of h(X) is $h(X) \otimes \mathbb{L}^{\otimes -dim(X)}$.

Chow-Künneth decomposition

We say that the motive of X smooth, projective of dimension d, $h(X) \in \mathcal{M}_{rat}(\mathbb{C})$ has a Chow-Künneth decomposition if there exist orthogonal projectors $\pi_i = \pi_i(X) \in Corr_{rat}^0(X, X)$ for $0 \le i \le 2n$, s.t. $\pi_1 + \cdots + \pi_{2d} = \Delta_X$ and there is a direct sum decomposition

$$h(X) = h^0(X) \oplus \cdots \oplus h^{2d}(X),$$

with $h^i(X) = (X, \pi_i, 0)$, such that for any $0 \le i \le 2d$, the Betti realization $H^*(h^i(X)) = H^i(X)$.

Let Σ_m be the symmetric group of order *m*. For an object *M* in $\mathcal{M}_{rat}(\mathbb{C})$, we denote by $\bigwedge^m M$ the m^{th} -exterior power of *M* which is the image of the following projector:

$$\frac{1}{m!} \Sigma_{\sigma \in \Sigma_m} sign(\sigma)[\Gamma_{\sigma}] : M^{\bigotimes m} \to M^{\bigotimes m},$$

Where Γ_{σ} is the natural endomorphism induced by σ on $M^{\bigotimes m}$.

Let Σ_m be the symmetric group of order *m*. For an object *M* in $\mathcal{M}_{rat}(\mathbb{C})$, we denote by $\bigwedge^m M$ the m^{th} -exterior power of *M* which is the image of the following projector:

$$\frac{1}{m!} \Sigma_{\sigma \in \Sigma_m} sign(\sigma)[\Gamma_{\sigma}] : M^{\bigotimes m} \to M^{\bigotimes m},$$

Where Γ_{σ} is the natural endomorphism induced by σ on $M^{\bigotimes m}$. Similarly, the m^{th} -symmetric power $S^m M$ is defined as the image of the projector

$$\frac{1}{m!} \Sigma_{\sigma \in \Sigma_m} [\Gamma_\sigma]$$

Let Σ_m be the symmetric group of order *m*. For an object *M* in $\mathcal{M}_{rat}(\mathbb{C})$, we denote by $\bigwedge^m M$ the m^{th} -exterior power of *M* which is the image of the following projector:

$$\frac{1}{m!} \Sigma_{\sigma \in \Sigma_m} sign(\sigma)[\Gamma_{\sigma}] : M^{\bigotimes m} \to M^{\bigotimes m},$$

Where Γ_{σ} is the natural endomorphism induced by σ on $M^{\bigotimes m}$. Similarly, the m^{th} -symmetric power $S^m M$ is defined as the image of the projector

$$\frac{1}{m!} \Sigma_{\sigma \in \Sigma_m} [\Gamma_{\sigma}]$$

A motive M is evenly (respectively oddly) of finite dimension if there exists an $m \in \mathbb{N}$ such that $\bigwedge^m M = 0$ (respectively $S^m M = 0$).

Let Σ_m be the symmetric group of order *m*. For an object *M* in $\mathcal{M}_{rat}(\mathbb{C})$, we denote by $\bigwedge^m M$ the m^{th} -exterior power of *M* which is the image of the following projector:

$$\frac{1}{m!} \Sigma_{\sigma \in \Sigma_m} sign(\sigma)[\Gamma_{\sigma}] : M^{\bigotimes m} \to M^{\bigotimes m},$$

Where Γ_{σ} is the natural endomorphism induced by σ on $M^{\bigotimes m}$. Similarly, the m^{th} -symmetric power $S^m M$ is defined as the image of the projector

$$\frac{1}{m!} \Sigma_{\sigma \in \Sigma_m} [\Gamma_{\sigma}]$$

A motive M is evenly (respectively oddly) of finite dimension if there exists an $m \in \mathbb{N}$ such that $\bigwedge^m M = 0$ (respectively $S^m M = 0$). M is finite-dimensional if $M = M_+ \bigoplus M_-$, with M_+ evenly of finite dimension and M_- oddly of finite dimension.

Let Σ_m be the symmetric group of order *m*. For an object *M* in $\mathcal{M}_{rat}(\mathbb{C})$, we denote by $\bigwedge^m M$ the m^{th} -exterior power of *M* which is the image of the following projector:

$$\frac{1}{m!} \Sigma_{\sigma \in \Sigma_m} sign(\sigma)[\Gamma_{\sigma}] : M^{\bigotimes m} \to M^{\bigotimes m},$$

Where Γ_{σ} is the natural endomorphism induced by σ on $M^{\bigotimes m}$. Similarly, the m^{th} -symmetric power $S^m M$ is defined as the image of the projector

$$\frac{1}{m!} \Sigma_{\sigma \in \Sigma_m} [\Gamma_\sigma]$$

A motive M is evenly (respectively oddly) of finite dimension if there exists an $m \in \mathbb{N}$ such that $\bigwedge^m M = 0$ (respectively $S^m M = 0$). M is finite-dimensional if $M = M_+ \bigoplus M_-$, with M_+ evenly of finite dimension and M_- oddly of finite dimension.

Conjecture (Kimura and O'Sullivan)

Every Chow motive is finite dimensional.

What is finite dimensionality for?

Michele Bolognesi

23 Mars 2021 33 / 47

3

Image: A matrix

$$\gamma_X(\Delta_i) = \Delta_i^{top} \in H^{2d-i}(X) \otimes H^i(X).$$

$$\gamma_X(\Delta_i) = \Delta_i^{top} \in H^{2d-i}(X) \otimes H^i(X).$$

Conj. CK (Murre): Every smooth proj. variety admits a C-K decomposition;

$$\gamma_X(\Delta_i) = \Delta_i^{top} \in H^{2d-i}(X) \otimes H^i(X).$$

 Conj. CK (Murre): Every smooth proj. variety admits a C-K decomposition; CK implies C;

$$\gamma_X(\Delta_i) = \Delta_i^{top} \in H^{2d-i}(X) \otimes H^i(X).$$

- Conj. CK (Murre): Every smooth proj. variety admits a C-K decomposition; CK implies C;
- if X has finite dim. Chow motive, then C implies CK as well;

$$\gamma_X(\Delta_i) = \Delta_i^{top} \in H^{2d-i}(X) \otimes H^i(X).$$

- Conj. CK (Murre): Every smooth proj. variety admits a C-K decomposition; CK implies C;
- if X has finite dim. Chow motive, then C implies CK as well;
- not surprisingly $1\!\!1$ and $\mathbb L$ are finite dimensional.

Let $\mathcal{M}_{rat}^{Ab}(\mathbb{C})$ be the full, rigid, tensor subcategory of $\mathcal{M}_{rat}(\mathbb{C})$ generated by the motives of Abelian varieties. All the examples of motives that have been proven to be finite-dimensional belong to the category $\mathcal{M}_{rat}^{Ab}(\mathbb{C})$

Examples

- projective spaces, Grassmannian varieties, projective homogeneous varieties, toric varieties;
- smooth projective curves;
- Summer K3 surfaces;
- K3 surfaces with Picard numbers at least 19;
- Ilibert schemes of points on abelian surfaces;
- **o** Fermat hypersurfaces ;
- Oubic 3-folds and their Fano surfaces of lines.

Theorem (ABP)

Every Hassett divisor C_d contains a one dimensional family of cubic fourfolds, whose Chow motive is finite dimensional and Abelian.
Theorem (ABP)

Every Hassett divisor C_d contains a one dimensional family of cubic fourfolds, whose Chow motive is finite dimensional and Abelian.

Proof:

Theorem (ABP)

Every Hassett divisor C_d contains a one dimensional family of cubic fourfolds, whose Chow motive is finite dimensional and Abelian.

Proof: The motive of a cubic fourfold has a Chow-Künneth decomposition

$$h(X) = \mathbb{1} \oplus \mathbb{L} \oplus \mathbb{L}^{\rho_2(X)} \oplus t(X) \oplus \mathbb{L}^3 \oplus \mathbb{L}^4,$$

where $\rho_2(X) = rk(CH^2(X))$ and t(X) is the transcendental motive of X, i.e. $H^*(t(X)) = H^4_{tr}(X, \mathbb{Q})$, [BP].

Cubic fourfolds with Chow motives of abelian type

If $X \in \mathcal{C}_d$ and

$$\exists f, g \in \mathbb{Z} \text{ s.t. } g | (2n^2 + 2n + 2), n \in \mathbb{N} \text{ and } d = f^2g,$$

then [BP,Bü] there exists a K3 surface S s.t.

$$t(X)\cong t_2(S)(-1),$$

where $t_2(S)$ is the transcendental motive of S.

Cubic fourfolds with Chow motives of abelian type

If $X \in \mathcal{C}_d$ and

$$\exists f,g \in \mathbb{Z} \text{ s.t. } g | (2n^2 + 2n + 2), n \in \mathbb{N} \text{ and } d = f^2g,$$

then [BP,Bü] there exists a K3 surface S s.t.

 $t(X)\cong t_2(S)(-1),$

where $t_2(S)$ is the transcendental motive of S. That is

$$h(S) = \mathbb{1} \oplus \mathbb{L}^{\rho(S)} \oplus t_2(S) \oplus \mathbb{L}^2$$

with $\rho(S) = rk(NS(S)).$

Cubic fourfolds with Chow motives of abelian type

If $X \in \mathcal{C}_d$ and

$$\exists f,g \in \mathbb{Z} \text{ s.t. } g | (2n^2 + 2n + 2), n \in \mathbb{N} \text{ and } d = f^2g,$$

then [BP,Bü] there exists a K3 surface S s.t.

 $t(X)\cong t_2(S)(-1),$

where $t_2(S)$ is the transcendental motive of S. That is

$$h(S) = \mathbb{1} \oplus \mathbb{L}^{\rho(S)} \oplus t_2(S) \oplus \mathbb{L}^2,$$

with $\rho(S) = rk(NS(S))$. Both 1 and L are finite dimensional.

If $X \in \mathcal{C}_d$ and

$$\exists f,g \in \mathbb{Z} \text{ s.t. } g | (2n^2 + 2n + 2), n \in \mathbb{N} \text{ and } d = f^2g,$$

then [BP,Bü] there exists a K3 surface S s.t.

 $t(X)\cong t_2(S)(-1),$

where $t_2(S)$ is the transcendental motive of S. That is

$$h(S) = \mathbb{1} \oplus \mathbb{L}^{\rho(S)} \oplus t_2(S) \oplus \mathbb{L}^2,$$

with $\rho(S) = rk(NS(S))$. Both 1 and L are finite dimensional. This means that h(X) is finite dimensional and Abelian IFF h(S) is.

$$h(X) = \mathbb{1} \oplus \mathbb{L} \oplus \mathbb{L}^{\rho_2(X)} \oplus t_2(S)(-1) \oplus \mathbb{L}^3 \oplus \mathbb{L}^4,$$

Proposition (P)

Let S be a smooth complex projective K3 surface with $\rho(S) = 19, 20$. Then the motive $h(S) \in \mathcal{M}_{rat}(\mathbb{C})$ is finite dimensional and of Abelian type.

Choose C_d any divisor of special cubic fourfolds.

Proposition (P)

Let S be a smooth complex projective K3 surface with $\rho(S) = 19, 20$. Then the motive $h(S) \in \mathcal{M}_{rat}(\mathbb{C})$ is finite dimensional and of Abelian type.

Choose C_d any divisor of special cubic fourfolds. We can choose appropriately 17 divisors $C_{d_1}, \ldots, C_{d_{17}}$ such that the family

$$\mathcal{F} = \mathcal{C}_{M_{d,14,d_1,\ldots,d_{17}}} \subset \mathcal{C}_d \cap \mathcal{C}_{14} \cap (\bigcap_{k=1}^{17}) \mathcal{C}_{d_k}$$

is non-empty, one-dimensional and contained - by definition - in C_{14} .

Call S_X the associated K3.

Image: A mathematical states and a mathem

2

Call S_X the associated K3. Cubic fourfolds in \mathcal{F} have associated K3 surfaces with Néron-Severi rank $\rho(S_X) = 19$ (i.e. $rk \ A^2(X) = 20$)

47 ▶ ◀

The divisor C_{14} is among those (actually the first) whose cubic fourfolds verify the isomorphism $t(X) \cong t_2(S)(-1)$, for S a K3 surface.

The divisor C_{14} is among those (actually the first) whose cubic fourfolds verify the isomorphism $t(X) \cong t_2(S)(-1)$, for S a K3 surface. If X has an associated K3 S_X , then $S = S_X$.

The divisor C_{14} is among those (actually the first) whose cubic fourfolds verify the isomorphism $t(X) \cong t_2(S)(-1)$, for S a K3 surface. If X has an associated K3 S_X , then $S = S_X$. But we have just seen that the associated K3 surfaces have $\rho(S_X) \ge 19$.

The divisor C_{14} is among those (actually the first) whose cubic fourfolds verify the isomorphism $t(X) \cong t_2(S)(-1)$, for S a K3 surface. If X has an associated K3 S_X , then $S = S_X$. But we have just seen that the associated K3 surfaces have $\rho(S_X) \ge 19$.

$$h(X) = \mathbb{1} \oplus \mathbb{L} \oplus \mathbb{L}^{\rho_2(X)} \oplus t_2(S_X)(-1) \oplus \mathbb{L}^3 \oplus \mathbb{L}^4,$$

The divisor C_{14} is among those (actually the first) whose cubic fourfolds verify the isomorphism $t(X) \cong t_2(S)(-1)$, for S a K3 surface. If X has an associated K3 S_X , then $S = S_X$. But we have just seen that the associated K3 surfaces have $\rho(S_X) \ge 19$.

$$h(X) = \mathbb{1} \oplus \mathbb{L} \oplus \mathbb{L}^{\rho_2(X)} \oplus t_2(S_X)(-1) \oplus \mathbb{L}^3 \oplus \mathbb{L}^4,$$

Hence all the cubics in ${\mathcal F}$ have finite dimensional and Abelian Chow motive. $\hfill\blacksquare$

The divisor C_{14} is among those (actually the first) whose cubic fourfolds verify the isomorphism $t(X) \cong t_2(S)(-1)$, for S a K3 surface. If X has an associated K3 S_X , then $S = S_X$. But we have just seen that the associated K3 surfaces have $\rho(S_X) \ge 19$.

$$h(X) = \mathbb{1} \oplus \mathbb{L} \oplus \mathbb{L}^{\rho_2(X)} \oplus t_2(S_X)(-1) \oplus \mathbb{L}^3 \oplus \mathbb{L}^4,$$

Hence all the cubics in ${\mathcal F}$ have finite dimensional and Abelian Chow motive. $\hfill\blacksquare$

A countable infinity of families like \mathcal{F} ?

A first easy consequence of these facts is the following

A first easy consequence of these facts is the following

Corollary

If d $\not|$ 4, 9, or any odd prime $p \equiv 2 \pmod{3}$, cubic fourfolds with Abelian motive are dense (in the complex topology) inside the divisors C_d .

If $X \in C_d$ and $\exists f, g \in \mathbb{Z}$ s.t. $g|(2n^2 + 2n + 2), n \in \mathbb{N}$ and $d = f^2g$, then there exists a K3 surface S s.t. $t(X) \cong t_2(S)(-1)$.

If $X \in C_d$ and $\exists f, g \in \mathbb{Z}$ s.t. $g|(2n^2 + 2n + 2), n \in \mathbb{N}$ and $d = f^2g$, then there exists a K3 surface S s.t. $t(X) \cong t_2(S)(-1)$. This is similar to Hassett and Kuznetsov's condition for rationality, and holds for:

If $X \in C_d$ and $\exists f, g \in \mathbb{Z}$ s.t. $g|(2n^2 + 2n + 2), n \in \mathbb{N}$ and $d = f^2g$, then there exists a K3 surface S s.t. $t(X) \cong t_2(S)(-1)$. This is similar to Hassett and Kuznetsov's condition for rationality, and holds for:

8, 14, 18, 24, 26, ...

(H-K condition does not hold for the red values)

If $X \in C_d$ and $\exists f, g \in \mathbb{Z}$ s.t. $g|(2n^2 + 2n + 2), n \in \mathbb{N}$ and $d = f^2g$, then there exists a K3 surface S s.t. $t(X) \cong t_2(S)(-1)$. This is similar to Hassett and Kuznetsov's condition for rationality, and holds for:

8, 14, 18, 24, 26, ...

(H-K condition does not hold for the red values)

Heuristically: for d = 8, $H^4(X, \mathbb{Z}) \supset K_8^{\perp}$ is an index two sublattice of $H^2_{prim}(S, \mathbb{Z})$ [vG], where S is a degree 2 K3 surface related to the Hilbert scheme of lines in X.

If $X \in C_d$ and $\exists f, g \in \mathbb{Z}$ s.t. $g|(2n^2 + 2n + 2), n \in \mathbb{N}$ and $d = f^2g$, then there exists a K3 surface S s.t. $t(X) \cong t_2(S)(-1)$. This is similar to Hassett and Kuznetsov's condition for rationality, and holds for:

8, 14, 18, 24, 26, ...

(H-K condition does not hold for the red values)

Heuristically: for d = 8, $H^4(X, \mathbb{Z}) \supset K_8^{\perp}$ is an index two sublattice of $H^2_{prim}(S, \mathbb{Z})$ [vG], where S is a degree 2 K3 surface related to the Hilbert scheme of lines in X. In the category of Chow motives we work with coefficients in \mathbb{Q} , hence the index two morally "disappears"

If $X \in C_d$ and $\exists f, g \in \mathbb{Z}$ s.t. $g|(2n^2 + 2n + 2), n \in \mathbb{N}$ and $d = f^2g$, then there exists a K3 surface S s.t. $t(X) \cong t_2(S)(-1)$. This is similar to Hassett and Kuznetsov's condition for rationality, and holds for:

8, 14, 18, 24, 26, ...

(H-K condition does not hold for the red values)

Heuristically: for d = 8, $H^4(X, \mathbb{Z}) \supset K_8^{\perp}$ is an index two sublattice of $H^2_{prim}(S,\mathbb{Z})$ [vG], where S is a degree 2 K3 surface related to the Hilbert scheme of lines in X. In the category of Chow motives we work with coefficients in \mathbb{Q} , hence the index two morally "disappears" and we have anyway an isomorphism $t(X) \cong t_2(S)(-1)$,

If $X \in C_d$ and $\exists f, g \in \mathbb{Z}$ s.t. $g|(2n^2 + 2n + 2), n \in \mathbb{N}$ and $d = f^2g$, then there exists a K3 surface S s.t. $t(X) \cong t_2(S)(-1)$. This is similar to Hassett and Kuznetsov's condition for rationality, and holds for:

8, 14, 18, 24, 26, ...

(H-K condition does not hold for the red values)

Heuristically: for d = 8, $H^4(X, \mathbb{Z}) \supset K_8^{\perp}$ is an index two sublattice of $H^2_{prim}(S, \mathbb{Z})$ [vG], where S is a degree 2 K3 surface related to the Hilbert scheme of lines in X. In the category of Chow motives we work with coefficients in \mathbb{Q} , hence the index two morally "disappears" and we have anyway an isomorphism $t(X) \cong t_2(S)(-1)$, though probably the generic $X \in C_8$ is non-rational.

If $X \in C_d$ and $\exists f, g \in \mathbb{Z}$ s.t. $g|(2n^2 + 2n + 2), n \in \mathbb{N}$ and $d = f^2g$, then there exists a K3 surface S s.t. $t(X) \cong t_2(S)(-1)$. This is similar to Hassett and Kuznetsov's condition for rationality, and holds for:

8, 14, 18, 24, 26, ...

(H-K condition does not hold for the red values)

Heuristically: for d = 8, $H^4(X, \mathbb{Z}) \supset K_8^{\perp}$ is an index two sublattice of $H^2_{prim}(S, \mathbb{Z})$ [vG], where S is a degree 2 K3 surface related to the Hilbert scheme of lines in X. In the category of Chow motives we work with coefficients in \mathbb{Q} , hence the index two morally "disappears" and we have anyway an isomorphism $t(X) \cong t_2(S)(-1)$, though probably the generic $X \in C_8$ is non-rational.

The condition $t(X) \cong t_2(S)(-1)$ is likely to be necessary for rationality, but not sufficient (motives with \mathbb{Z} -coefficients for a proper criterion?).

Corollary (ABP)

All Hyperkähler 4folds F(X) and Hyperkähler 8folds L(X), $X \in \mathcal{F}$, have finitely generated and Abelian Chow motive.

Corollary (ABP)

All Hyperkähler 4folds F(X) and Hyperkähler 8folds L(X), $X \in \mathcal{F}$, have finitely generated and Abelian Chow motive.

Sketch of a proof: We have $\mathcal{F} \subset \mathcal{C}_{14}$.

Corollary (ABP)

All Hyperkähler 4folds F(X) and Hyperkähler 8folds L(X), $X \in \mathcal{F}$, have finitely generated and Abelian Chow motive.

Sketch of a proof: We have $\mathcal{F} \subset C_{14}$. For d = 14 we have the following arithmetic identities

$$14 = 2 \cdot 2^2 + 2 \cdot 2 + 2 \text{ and } 14 = \frac{6 \cdot 1^2 + 6 \cdot 1 + 2}{1^2}$$

Corollary (ABP)

All Hyperkähler 4folds F(X) and Hyperkähler 8folds L(X), $X \in \mathcal{F}$, have finitely generated and Abelian Chow motive.

Sketch of a proof: We have $\mathcal{F} \subset C_{14}$. For d = 14 we have the following arithmetic identities

~

Michele Bolognesi

Hence we have an isomorphism $F(X) \cong S^{[2]}$ and a birational equivalence $L(X) \simeq S^{[4]}$.

Hence we have an isomorphism $F(X) \cong S^{[2]}$ and a birational equivalence $L(X) \simeq S^{[4]}$. By [dCM] and invariance of Chow motives of HK varieties under birational transformations we conclude.

A Pfaffian cubic fourfold is the zero locus of the Pfaffian of a 6×6 anti-symmetric matrix of linear forms on \mathbb{P}^5 .

A Pfaffian cubic fourfold is the zero locus of the Pfaffian of a 6×6 anti-symmetric matrix of linear forms on \mathbb{P}^5 .

Smooth Pfaffian cubic fourfolds make up a constructible subset [BRS] in C_{14} , and a smooth cubic fourfold is Pfaffian IFF it contains a del Pezzo quintic surface [B].

A Pfaffian cubic fourfold is the zero locus of the Pfaffian of a 6×6 anti-symmetric matrix of linear forms on \mathbb{P}^5 .

Smooth Pfaffian cubic fourfolds make up a constructible subset [BRS] in C_{14} , and a smooth cubic fourfold is Pfaffian IFF it contains a del Pezzo quintic surface [B].

 $\mathcal{C}_{14} := \{ \overline{\textit{cubics containing a del Pezzo quintic}} \} \subset \mathcal{C}.$
There exist an infinity of Pfaffian cubic fourfolds $X \in C_{14}$ such that the motive $h(\mathcal{J}(X))$ of the associated LSV 10-fold is finite dimensional and Abelian. These cubics are dense in C_{14} .

Proof:

There exist an infinity of Pfaffian cubic fourfolds $X \in C_{14}$ such that the motive $h(\mathcal{J}(X))$ of the associated LSV 10-fold is finite dimensional and Abelian. These cubics are dense in C_{14} .

Proof: Since *Pf* is constructible, it contains a Zariski open, dense subset $U \subset C_{14}$.

There exist an infinity of Pfaffian cubic fourfolds $X \in C_{14}$ such that the motive $h(\mathcal{J}(X))$ of the associated LSV 10-fold is finite dimensional and Abelian. These cubics are dense in C_{14} .

Proof: Since Pf is constructible, it contains a Zariski open, dense subset $U \subset C_{14}$. The map

$$k: \mathcal{C}_{14} \dashrightarrow \mathcal{G}_8;$$

 $X \mapsto S_X;$

is birational,

There exist an infinity of Pfaffian cubic fourfolds $X \in C_{14}$ such that the motive $h(\mathcal{J}(X))$ of the associated LSV 10-fold is finite dimensional and Abelian. These cubics are dense in C_{14} .

Proof: Since Pf is constructible, it contains a Zariski open, dense subset $U \subset C_{14}$. The map

$$k: \mathcal{C}_{14} \dashrightarrow \mathcal{G}_8;$$

 $X \mapsto S_X;$

is birational, and K3 surfaces with $rk(NS(S)) \ge 19$ are dense inside \mathcal{G}_8 .

There exist an infinity of Pfaffian cubic fourfolds $X \in C_{14}$ such that the motive $h(\mathcal{J}(X))$ of the associated LSV 10-fold is finite dimensional and Abelian. These cubics are dense in C_{14} .

Proof: Since Pf is constructible, it contains a Zariski open, dense subset $U \subset C_{14}$. The map

$$\begin{array}{rccc} k:\mathcal{C}_{14} & \dashrightarrow & \mathcal{G}_8;\\ X & \mapsto & \mathcal{S}_X; \end{array}$$

is birational, and K3 surfaces with $rk(NS(S)) \ge 19$ are dense inside \mathcal{G}_8 . Hence there are infinitely many Pfaffian 4folds with finite dimensional, Abelian motive, since the associated K3 has this property.

If X is a smooth Pfaffian cubic fourfold, then $\mathcal{J}(X)$ is birational to the moduli space $\mathcal{M}_{2,0,4}(S_X)$ parameterizing rank-2 semi-stable sheaves on S_X with $c_1 = 0$ and $c_2 = 4$.

For S a K3 surface, the HK 10-fold OG10(S) is a birational desingularization of $\mathcal{M}_{2,0,4}(S)$ (and deformation equivalent to $\mathcal{J}(X)$).

If X is a smooth Pfaffian cubic fourfold, then $\mathcal{J}(X)$ is birational to the moduli space $\mathcal{M}_{2,0,4}(S_X)$ parameterizing rank-2 semi-stable sheaves on S_X with $c_1 = 0$ and $c_2 = 4$.

For S a K3 surface, the HK 10-fold OG10(S) is a birational desingularization of $\mathcal{M}_{2,0,4}(S)$ (and deformation equivalent to $\mathcal{J}(X)$). By [FFZ], h(OG10(S)) is finite dimensional and Abelian whenever h(S) is.

If X is a smooth Pfaffian cubic fourfold, then $\mathcal{J}(X)$ is birational to the moduli space $\mathcal{M}_{2,0,4}(S_X)$ parameterizing rank-2 semi-stable sheaves on S_X with $c_1 = 0$ and $c_2 = 4$.

For S a K3 surface, the HK 10-fold OG10(S) is a birational desingularization of $\mathcal{M}_{2,0,4}(S)$ (and deformation equivalent to $\mathcal{J}(X)$). By [FFZ], h(OG10(S)) is finite dimensional and Abelian whenever h(S) is. By Thm. above, if X is Pfaffian $\mathcal{J}(X)$ is birational to the OG10 HK obtained from its associated K3, $OG10(S_X)$.

If X is a smooth Pfaffian cubic fourfold, then $\mathcal{J}(X)$ is birational to the moduli space $\mathcal{M}_{2,0,4}(S_X)$ parameterizing rank-2 semi-stable sheaves on S_X with $c_1 = 0$ and $c_2 = 4$.

For S a K3 surface, the HK 10-fold OG10(S) is a birational desingularization of $\mathcal{M}_{2,0,4}(S)$ (and deformation equivalent to $\mathcal{J}(X)$). By [FFZ], h(OG10(S)) is finite dimensional and Abelian whenever h(S) is. By Thm. above, if X is Pfaffian $\mathcal{J}(X)$ is birational to the OG10 HK obtained from its associated K3, $OG10(S_X)$. Hence we have an infinity of $\mathcal{J}(X)$ that, due to their birationality to $OG10(S_X)$, have finite dimensional and abelian Chow motive.

If X is a smooth Pfaffian cubic fourfold, then $\mathcal{J}(X)$ is birational to the moduli space $\mathcal{M}_{2,0,4}(S_X)$ parameterizing rank-2 semi-stable sheaves on S_X with $c_1 = 0$ and $c_2 = 4$.

For S a K3 surface, the HK 10-fold OG10(S) is a birational desingularization of $\mathcal{M}_{2,0,4}(S)$ (and deformation equivalent to $\mathcal{J}(X)$). By [FFZ], h(OG10(S)) is finite dimensional and Abelian whenever h(S) is. By Thm. above, if X is Pfaffian $\mathcal{J}(X)$ is birational to the OG10 HK obtained from its associated K3, $OG10(S_X)$. Hence we have an infinity of $\mathcal{J}(X)$ that, due to their birationality to $OG10(S_X)$, have finite dimensional and abelian Chow motive. Cubics s.t. $h(\mathcal{J}(X))$ is finite dimensional are dense in \mathcal{C}_{14} .

Thanks for your patience...

Precise definition: X smooth projective variety, an algebraic cycle $Z \in Z^i(X)$ is rationally equivalent to zero if there exist $W \in Z^i(X \times \mathbb{P}^1)$, flat over \mathbb{P}^1 , $a, b \in \mathbb{P}^1$ s.t. if $W(t) := (pr_X)_*(W \cdot (X \times t))$, we have

$$W(a) = 0$$
 and $W(b) = Z$.

Precise definition: X smooth projective variety, an algebraic cycle $Z \in Z^i(X)$ is rationally equivalent to zero if there exist $W \in Z^i(X \times \mathbb{P}^1)$, flat over \mathbb{P}^1 , $a, b \in \mathbb{P}^1$ s.t. if $W(t) := (pr_X)_*(W \cdot (X \times t))$, we have

$$W(a) = 0$$
 and $W(b) = Z$.

Handy but not precise definition: two algebraic cycles are rat. equiv. if (roughly) they are fibers of the same flat family of cycles over \mathbb{P}^1 .

Precise definition: X smooth projective variety, an algebraic cycle $Z \in Z^i(X)$ is rationally equivalent to zero if there exist $W \in Z^i(X \times \mathbb{P}^1)$, flat over \mathbb{P}^1 , $a, b \in \mathbb{P}^1$ s.t. if $W(t) := (pr_X)_*(W \cdot (X \times t))$, we have

$$W(a) = 0$$
 and $W(b) = Z$.

Handy but not precise definition: two algebraic cycles are rat. equiv. if (roughly) they are fibers of the same flat family of cycles over \mathbb{P}^1 .