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(Smooth) Cubic 4folds

We will work over the complex field C.

Zero locus of homogeneous polynomial of degree 3 in P5.

Probably the simplest algebraic variety whose rationality is not known.

Definition
An algebraic variety X of dimension n is rational if there exists a birational
map X

∼ // Pn i.e there exist U ⊆ X , V ⊆ Pn open subsets, such that U
is isomorphic to V .

Birational invariants: Plurigenera Pd
X = dimH0(X ,Kd

X ), Kodaira
dimension, fundamental group π1(X ), CG-component of intermediate
Jacobian.
Quadrics on C are all rational (by projection)
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Introduction

Rationality of cubic hypersurfaces:

Dim 1: smooth cubic curves (genus 1 curves) are nonrational.

Dim 2: smooth cubic surfaces are rational (as long as they contain 2
disjoint lines, this is the case on C).
Dim 3: cubic threefolds are nonrational (Intermediate Jacobian, ∼
1972).
Dim 4: cubic fourfolds? conjecture: very general cubic fourfolds are
nonrational/ only rational examples.
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Moduli space

Let X ⊂ P5 be a cubic fourfold.

Cubic hypersurfaces in P5 are parametrized by P(H0(P5,O(3))) ∼= P55.
The coarse moduli space is a GIT quotient

C = U//PGL(6,C),

with U ⊂ P55 open subset parametrizing smooth cubic hypersurfaces.

C is a 20-dimensional quasi-projective variety.
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Hodge decomposition

The Hodge theorem holds for cubic fourfolds:

H r (X ,C) =
⊕

p+q=r

Hp,q(X ),

where Hp,q(X ) := Hq(X ,Ωp).
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Hodge diamond

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h4,0 h3,1 h2,2 h1,3 h0,4

hp,q = dim Hq(X ,Ωp
X )
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Lattice theory for cubic fourfolds

The cohomology H•(X ,Z) is well understood and torsion free.

On H4(X ,Z) we have the symmetric intersection form. The cohomology
lattice for cubic fourfolds is diagonalizable:

H4(X ,Z) ∼= (+1)
⊕

21
⊕

(−1)
⊕

2,

and the primitive cohomology lattice:

H4(X ,Z)prim :=< h2 >⊥ ∼= E
⊕

2
8

⊕
U

⊕
2
⊕

A2,

h ∈ H2(X ,Z) is a hyperlane section;
E8 is the positive definite even lattice of rank 8 associated to the
corresponding Dynkin diagram;

U :=

(
0 1
1 0

)
is the hyperbolic plane; and A2 :=

(
2 1
1 2

)
.
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General stuff

The integral Hodge conjecture holds,

and ∼rat=∼alg=∼hom for
codimension 2 cycles on cubic 4folds, hence:

A(X ) = H2(X ,Ω2
X ) ∩ H4(X ,Z) the lattice of algebraic 2-cycles on X

up to rational equivalence.

For a very general cubic fourfold X , any algebraic surface T ⊂ X is
homologous to a multiple of h2, so that rk(A(X )) = 1.
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Special cubic fourfolds

Definitions (H)
X is a special cubic fourfold iff it contains an algebraic surface T not
homologous to a complete intersection.

X is special IFF A(X ) has rank at least 2.

We associate to X special a rank 2 saturated sublattice (labelling)

h2 ∈ Kd ⊆ A(X )

with d the determinant of the intersection form on Kd ;

Kd :=

h2 T

h2 3 dT
T dT (T ,T )

where the self-intersection (T ,T ) = c2(NT/X ) =
6H2 + 3H.KT + K 2

T − χT , H = h|S , χT top. Euler char ;
d = 3(T ,T )− d2

T .
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Special cubic fourfolds

The Noehter-Lefschetz loci Cd ⊂ C parametrizing special cubic
fourfolds with a labelling of discriminant d are divisors, i.e.
codimension one subvarieties. These divisors Cd are called Hassett
divisors.

Proposition (H)
Cd is irreducible and nonempty iff d > 6 and d ≡ 0, 2 (mod 6).
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Examples: special cubic fourfolds

Examples
C14 ↔ cubic fourfolds containing a quartic scroll S14:

K14 :=

h2 S14

h2 3 4
S14 4 10

C8 ↔ cubic fourfolds containing a plane P :

K8 :=

h2 P

h2 3 1
P 1 3

...
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Associated K3 surface

Recall that a K3 surface is a simply connected compact complex manifold
of dimension 2 with a nowhere-vanishing holomorphic 2-form.

That is
KS
∼= OS .

Definition
A polarized K3 surface of degree d is a pair (S ,H) where S is a K3 surface
and H −→ S an ample line bundle with H.H = d

Primitive cohomology of X : H4
prim(X ) :=< h2 >⊥

0 1 20 1 0 of signature (20,2).

Second cohomology group H2(S) of a K3 surface

1 20 1 of signature (3,19).

It is the same if we pass to codimension 1 sub-Hodge structure of
signature (2,19) (up to a Tate twist for H2(S), that changes weight of
the HS and sign of the intersection form).
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Associated K3 surface

Proposition (H)
For a special cubic fourfold X ∈ Cd , there exists a polarized K3 surface S
of degree d such that there is a Hodge-isometry

H4(X ,Z) ⊃ K⊥d
∼= H2

prim(S ,Z)(−1)

iff

d is not divisible by 4, 9, or any odd prime number p ≡ 2 [3] (∗∗).

Conjecture (HHK)
X ∈ Cd is rational iff d satisfies (∗∗).

8, 12, 14, 18, 20, 24, 26, . . . , 38, 42, . . .
K⊥d is often called non-special cohomology.
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Aside on derived categories

For the same values of d , X has an associated K3 in the sense of derived
categories:

Db(X ) = 〈Ku(X ),O(−2),O(−1),O〉;

Db(X ) = 〈Db(S),O(−2),O(−1),O〉.

Work of Kuznetsov, Macrí and others about this.
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Associated HyperKähler varieties

The Fano variety of lines contained in X

F (X ) = {l ∈ G (1, 5)| l ⊆ X}

is a four-dimensional smooth projective variety. It is an Hyperkähler variety,
i.e F (X ) is simply connected, Kähler and H0(F (X ),Ω2

F (X )) is spanned by
an everywhere non-degenerate form. HK varieties are somehow
generalizations of K3 surfaces.

For (infinitely many) values of d such that d = 2(n2 + n + 1) for an integer
n ≥ 2, there is an isomorphism

F (X ) ∼= S [2] (1)

between F (X ) and the Hilbert scheme of length two subschemes S [2] of
the associated K3 surface.
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Associated HyperKähler varieties

Let X be a cubic fourfold not containing a plane. LetM3(X ) be the
10-dimensional moduli space of twisted cubics (constructed via GIT) on X .

There is an (explicitly described) contraction

M3(X )→ L(X )

onto a 8-dimensional HK variety, called the LLSvS 8-fold [LLSvS].

For infinitely many values of d (see later) there is a birational map

L(X ) ∼ S [4].
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Associated HyperKähler varieties

Consider P5∗ the dual projective space parametrizing hyperplanes in P5.

The generic hyperplane section of X is a cubic 3fold.

[LSV] constructed a HK 10-fold J (X ),

ϕ : J (X )→ P5∗,

dominating P5∗, such the generic fiber of ϕ is the intermediate jacobian of
the corresponding hyperplane section.

This has a relation with rational normal quartics similar to that of L(X )
with twisted cubics.
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Recollect some information

Condition on d Comments for X ∈ Cd
d ≥ 8 and d ≡ 0 or 2 (mod 6) Cd non empty

d 6 | 4, 9, or any odd prime H2(S ,Z)prim(−1) ' K⊥d
number p ≡ 2 (mod 3) (Hodge isom.); Ku(X ) ∼= Db(S)

d = 2n2+2n+2
a2 , for some n, a ∈ Z F (X ) ∼ S [2]

d = 2n2 + 2n + 2, for some n, a ∈ Z F (X ) ∼= S [2]

d = 6n2+6n+2
a2 , n, a ∈ Z L(X ) ∼ S [4]
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1 Cubic 4folds

2 General Stuff

3 Intersection of Hassett divisors

4 Cubic fourfolds with finite-dimensional Chow motive of abelian type
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Intersection of Hassett divisors

Proposition (Yang-Yu)
Any two Hassett divisors intersect i.e. Cd1 ∩ Cd2 6= ∅ for any integers d1 and
d2 such that the Cdi are not empty.

Theorem (ABP)
For 3 ≤ n ≤ 20,

n⋂
k=1

Cdk 6= ∅,

for dk > 6, dk ≡ 0, 2[6] and d3, .., dn = 6
∏
i

p2
i or 6

∏
i

p2
i + 2 with pi a

prime number.
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Intersection of Hassett divisors

Lemma
Let N be a positive definite lattice of rank r(N) ≥ 2, that admits a
saturated embedding

h2 ∈ N ⊂ H4(X ,Z),

Let CN ⊂ C the locus of cubic fourfolds X having algebraic classes with
lattice structure N ⊂ A(X ). If CN is non-empty, then it has codimension
r(N)− 1 and there exists X ∈ CN with A(X ) = N.

Nonempty if there exists no sublattice h2 ∈ Kj ⊂ N, with j = 2, 6.
Rephrasing the Theorem: given d1, . . . , dr , we have an "algorithm"to
construct a lattice Md1,...,dr of rank r + 1 s.t. CMd1,...,dr

6= ∅ is contained in⋂r
i=1 Cdi , and is of codimension r in the moduli space.
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Consequences

Idea: construct lattices M of rank (r + 1) such that

CM is non-empty, and of codimension r in C;
there are rank 2 sublattices Kdi of M;
this gives conditions on the di .

The generic cubic in CM has rk(A(X )) = r + 1 and if one of the Cdi
parametrizes cubics X with associated K3 SX , then (generically)
rk(NS(SX )) = r .
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parametrizes cubics X with associated K3 SX , then (generically)
rk(NS(SX )) = r .

One can find loci, of dimension 20− n, parametrizing cubic fourfolds
with associated K3 surfaces of Néron-Severi rank n, with 1 ≤ n ≤ 20,
inside any divisor Cd .
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Consequences

Corollary

Call F = CMd1,...,d19
⊂

19⋂
k=1

Cdk 6= ∅ the family constructed this way, and s.t.

at least one Cdk has associated K3s. Then cubic fourfolds in F have
associated K3 surface S s.t. rk(NS(S)) ≥ 19. These are called singular K3
surfaces.
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Chow motives

Definition
The category of Chow motivesMrat(C) consists of triples (X , p,m) with
X a projective smooth variety over C, p ∈ Corr0

rat(X ,X ) is a projector and
m an integer. The morphisms are as follows:

HomMrat(C)((X , p,m1), (Y , q,m2)) = q ◦ Corrm2−m1
rat (X ,Y ) ◦ p

Reminder: Corr rrat(Xd ,Y ) := Zd+r
rat (X × Y ,Q).

h : SmProj/C →Mrat(C)

X 7→ h(X ) = (X ,∆X , 0)

f : X → Y 7→ h(f ) = ΓT
f : h(Y )→ h(X ),

with ∆X the diagonal embedding X ↪→ X × X .
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A few important properties

Mrat(C) is an additive, Q-linear, pseudo-abelian category; there is a
notion of tensor product and the category is rigid;

Mrat(C) has good properties with respect to Weil cohomological
theories (e.g. Betti cohomology). There is a realization functor H∗:

Mrat(C)

H∗

%%
SmProjopp/C

88

cohomology // GrVectC

through which every "good"cohomology theory factors.
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Standard motives

There are two "standard"motives:

the unit motive 1 = h(point) := (Spec(C), Id , 0), which is the
identity for the tensor product;
the Lefschetz motive L := (Spec(C), Id ,−1), which is important in
order for the category to admit duals (to be rigid).

h(P1) = 1⊕ L

and the dual of h(X ) is h(X )⊗ L⊗−dim(X ).
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Chow motives

Chow-Künneth decomposition
We say that the motive of X smooth, projective of dimension d ,
h(X ) ∈ Mrat(C) has a Chow-Künneth decomposition if there exist
orthogonal projectors πi = πi (X ) ∈ Corr0

rat(X ,X ) for 0 ≤ i ≤ 2n, s.t.
π1 + · · ·+ π2d = ∆X and there is a direct sum decomposition

h(X ) = h0(X )⊕ · · · ⊕ h2d(X ),

with hi (X ) = (X , πi , 0), such that for any 0 ≤ i ≤ 2d , the Betti realization
H∗(hi (X )) = H i (X ).
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Finite-dimensional motives

Let Σm be the symmetric group of order m. For an object M inMrat(C),
we denote by

∧m M the mth−exterior power of M which is the image of
the following projector:

1
m! Σσ∈Σmsign(σ)[Γσ] : M

⊗
m −→ M

⊗
m,

Where Γσ is the natural endomorphism induced by σ on M
⊗

m.

Similarly, the mth−symmetric power SmM is defined as the image of the
projector

1
m! Σσ∈Σm [Γσ]

A motive M is evenly (respectively oddly) of finite dimension if there exists
an m ∈ N such that

∧m M = 0 (respectively SmM = 0). M is
finite-dimensional if M = M+

⊕
M−, with M+ evenly of finite dimension

and M− oddly of finite dimension.

Conjecture (Kimura and O’Sullivan)
Every Chow motive is finite dimensional.
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Finite-dimensional motives

Let Σm be the symmetric group of order m. For an object M inMrat(C),
we denote by

∧m M the mth−exterior power of M which is the image of
the following projector:

1
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What is finite dimensionality for?

Conj. C: the diagonal ∆X has a decomposition in algebraic cycles
∆i ∈ CHd(X × X ,Q) that correspond to the Künneth components in
cohomology:

γX (∆i ) = ∆top
i ∈ H2d−i (X )⊗ H i (X ).

Conj. CK (Murre): Every smooth proj. variety admits a C-K
decomposition; CK implies C;
if X has finite dim. Chow motive, then C implies CK as well;
not surprisingly 1 and L are finite dimensional.
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Abelian Chow motives

LetMAb
rat(C) be the full, rigid, tensor subcategory ofMrat(C) generated

by the motives of Abelian varieties. All the examples of motives that have
been proven to be finite-dimensional belong to the categoryMAb

rat(C)

Examples
1 projective spaces, Grassmannian varieties, projective homogeneous

varieties, toric varieties;
2 smooth projective curves;
3 Kummer K3 surfaces;
4 K3 surfaces with Picard numbers at least 19;
5 Hilbert schemes of points on abelian surfaces;
6 Fermat hypersurfaces ;
7 Cubic 3-folds and their Fano surfaces of lines.
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Cubic fourfolds with Chow motives of abelian type

Theorem (ABP)
Every Hassett divisor Cd contains a one dimensional family of cubic
fourfolds, whose Chow motive is finite dimensional and Abelian.

Proof: The motive of a cubic fourfold has a Chow-Künneth decomposition

h(X ) = 1⊕ L⊕ Lρ2(X ) ⊕ t(X )⊕ L3 ⊕ L4,

where ρ2(X ) = rk(CH2(X )) and t(X ) is the transcendental motive of X ,
i.e. H∗(t(X )) = H4

tr (X ,Q), [BP].
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Cubic fourfolds with Chow motives of abelian type

If X ∈ Cd and

∃f , g ∈ Z s.t. g |(2n2 + 2n + 2), n ∈ N and d = f 2g ,

then [BP,Bü] there exists a K3 surface S s.t.

t(X ) ∼= t2(S)(−1),

where t2(S) is the transcendental motive of S .

That is

h(S) = 1⊕ Lρ(S) ⊕ t2(S)⊕ L2,

with ρ(S) = rk(NS(S)). Both 1 and L are finite dimensional. This means
that h(X ) is finite dimensional and Abelian IFF h(S) is.

h(X ) = 1⊕ L⊕ Lρ2(X ) ⊕ t2(S)(−1)⊕ L3 ⊕ L4,
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Cubic fourfolds with Chow motives of abelian type

Proposition (P)
Let S be a smooth complex projective K3 surface with ρ(S) = 19, 20.
Then the motive h(S) ∈Mrat(C) is finite dimensional and of Abelian type.

Choose Cd any divisor of special cubic fourfolds.

We can choose
appropriately 17 divisors Cd1 , . . . , Cd17 such that the family

F = CMd,14,d1,...,d17
⊂ Cd ∩ C14 ∩ (

17⋂
k=1

)Cdk

is non-empty, one-dimensional and contained - by definition - in C14.
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Call SX the associated K3.

Cubic fourfolds in F have associated K3
surfaces with Néron-Severi rank ρ(SX ) = 19 (i.e. rk A2(X ) = 20) Hence
their motive is finite dimensional and of Abelian type.

The divisor C14 is among those (actually the first) whose cubic fourfolds
verify the isomorphism t(X ) ∼= t2(S)(−1), for S a K3 surface. If X has an
associated K3 SX , then S = SX . But we have just seen that the associated
K3 surfaces have ρ(SX ) ≥ 19.

h(X ) = 1⊕ L⊕ Lρ2(X ) ⊕ t2(SX )(−1)⊕ L3 ⊕ L4,

Hence all the cubics in F have finite dimensional and Abelian Chow
motive. �

A countable infinity of families like F ?
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Density of abelian motives in Cd

A first easy consequence of these facts is the following

Corollary
If d 6 | 4, 9, or any odd prime p ≡ 2 (mod 3), cubic fourfolds with Abelian
motive are dense (in the complex topology) inside the divisors Cd .
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An aside on rationality and the condition t(X ) ∼= t2(S)(−1)

If X ∈ Cd and ∃f , g ∈ Z s.t. g |(2n2 + 2n + 2), n ∈ N and d = f 2g , then
there exists a K3 surface S s.t. t(X ) ∼= t2(S)(−1).

This is similar to
Hassett and Kuznetsov’s condition for rationality, and holds for:

8, 14, 18, 24, 26, ...

(H-K condition does not hold for the red values)

Heuristically: for d = 8, H4(X ,Z) ⊃ K⊥8 is an index two sublattice of
H2
prim(S ,Z) [vG], where S is a degree 2 K3 surface related to the Hilbert

scheme of lines in X . In the category of Chow motives we work with
coefficients in Q, hence the index two morally "disappears"and we have
anyway an isomorphism t(X ) ∼= t2(S)(−1), though probably the generic
X ∈ C8 is non-rational.
The condition t(X ) ∼= t2(S)(−1) is likely to be necessary for rationality,
but not sufficient (motives with Z-coefficients for a proper criterion?).

Michele Bolognesi 23 Mars 2021 40 / 47



An aside on rationality and the condition t(X ) ∼= t2(S)(−1)

If X ∈ Cd and ∃f , g ∈ Z s.t. g |(2n2 + 2n + 2), n ∈ N and d = f 2g , then
there exists a K3 surface S s.t. t(X ) ∼= t2(S)(−1). This is similar to
Hassett and Kuznetsov’s condition for rationality, and holds for:

8, 14, 18, 24, 26, ...

(H-K condition does not hold for the red values)

Heuristically: for d = 8, H4(X ,Z) ⊃ K⊥8 is an index two sublattice of
H2
prim(S ,Z) [vG], where S is a degree 2 K3 surface related to the Hilbert

scheme of lines in X . In the category of Chow motives we work with
coefficients in Q, hence the index two morally "disappears"and we have
anyway an isomorphism t(X ) ∼= t2(S)(−1), though probably the generic
X ∈ C8 is non-rational.
The condition t(X ) ∼= t2(S)(−1) is likely to be necessary for rationality,
but not sufficient (motives with Z-coefficients for a proper criterion?).

Michele Bolognesi 23 Mars 2021 40 / 47



An aside on rationality and the condition t(X ) ∼= t2(S)(−1)

If X ∈ Cd and ∃f , g ∈ Z s.t. g |(2n2 + 2n + 2), n ∈ N and d = f 2g , then
there exists a K3 surface S s.t. t(X ) ∼= t2(S)(−1). This is similar to
Hassett and Kuznetsov’s condition for rationality, and holds for:

8, 14, 18, 24, 26, ...

(H-K condition does not hold for the red values)

Heuristically: for d = 8, H4(X ,Z) ⊃ K⊥8 is an index two sublattice of
H2
prim(S ,Z) [vG], where S is a degree 2 K3 surface related to the Hilbert

scheme of lines in X . In the category of Chow motives we work with
coefficients in Q, hence the index two morally "disappears"and we have
anyway an isomorphism t(X ) ∼= t2(S)(−1), though probably the generic
X ∈ C8 is non-rational.
The condition t(X ) ∼= t2(S)(−1) is likely to be necessary for rationality,
but not sufficient (motives with Z-coefficients for a proper criterion?).

Michele Bolognesi 23 Mars 2021 40 / 47



An aside on rationality and the condition t(X ) ∼= t2(S)(−1)

If X ∈ Cd and ∃f , g ∈ Z s.t. g |(2n2 + 2n + 2), n ∈ N and d = f 2g , then
there exists a K3 surface S s.t. t(X ) ∼= t2(S)(−1). This is similar to
Hassett and Kuznetsov’s condition for rationality, and holds for:

8, 14, 18, 24, 26, ...

(H-K condition does not hold for the red values)

Heuristically: for d = 8, H4(X ,Z) ⊃ K⊥8 is an index two sublattice of
H2
prim(S ,Z) [vG], where S is a degree 2 K3 surface related to the Hilbert

scheme of lines in X .

In the category of Chow motives we work with
coefficients in Q, hence the index two morally "disappears"and we have
anyway an isomorphism t(X ) ∼= t2(S)(−1), though probably the generic
X ∈ C8 is non-rational.
The condition t(X ) ∼= t2(S)(−1) is likely to be necessary for rationality,
but not sufficient (motives with Z-coefficients for a proper criterion?).

Michele Bolognesi 23 Mars 2021 40 / 47



An aside on rationality and the condition t(X ) ∼= t2(S)(−1)

If X ∈ Cd and ∃f , g ∈ Z s.t. g |(2n2 + 2n + 2), n ∈ N and d = f 2g , then
there exists a K3 surface S s.t. t(X ) ∼= t2(S)(−1). This is similar to
Hassett and Kuznetsov’s condition for rationality, and holds for:

8, 14, 18, 24, 26, ...

(H-K condition does not hold for the red values)

Heuristically: for d = 8, H4(X ,Z) ⊃ K⊥8 is an index two sublattice of
H2
prim(S ,Z) [vG], where S is a degree 2 K3 surface related to the Hilbert

scheme of lines in X . In the category of Chow motives we work with
coefficients in Q, hence the index two morally "disappears"

and we have
anyway an isomorphism t(X ) ∼= t2(S)(−1), though probably the generic
X ∈ C8 is non-rational.
The condition t(X ) ∼= t2(S)(−1) is likely to be necessary for rationality,
but not sufficient (motives with Z-coefficients for a proper criterion?).

Michele Bolognesi 23 Mars 2021 40 / 47



An aside on rationality and the condition t(X ) ∼= t2(S)(−1)

If X ∈ Cd and ∃f , g ∈ Z s.t. g |(2n2 + 2n + 2), n ∈ N and d = f 2g , then
there exists a K3 surface S s.t. t(X ) ∼= t2(S)(−1). This is similar to
Hassett and Kuznetsov’s condition for rationality, and holds for:

8, 14, 18, 24, 26, ...

(H-K condition does not hold for the red values)

Heuristically: for d = 8, H4(X ,Z) ⊃ K⊥8 is an index two sublattice of
H2
prim(S ,Z) [vG], where S is a degree 2 K3 surface related to the Hilbert

scheme of lines in X . In the category of Chow motives we work with
coefficients in Q, hence the index two morally "disappears"and we have
anyway an isomorphism t(X ) ∼= t2(S)(−1),

though probably the generic
X ∈ C8 is non-rational.
The condition t(X ) ∼= t2(S)(−1) is likely to be necessary for rationality,
but not sufficient (motives with Z-coefficients for a proper criterion?).

Michele Bolognesi 23 Mars 2021 40 / 47



An aside on rationality and the condition t(X ) ∼= t2(S)(−1)

If X ∈ Cd and ∃f , g ∈ Z s.t. g |(2n2 + 2n + 2), n ∈ N and d = f 2g , then
there exists a K3 surface S s.t. t(X ) ∼= t2(S)(−1). This is similar to
Hassett and Kuznetsov’s condition for rationality, and holds for:

8, 14, 18, 24, 26, ...

(H-K condition does not hold for the red values)

Heuristically: for d = 8, H4(X ,Z) ⊃ K⊥8 is an index two sublattice of
H2
prim(S ,Z) [vG], where S is a degree 2 K3 surface related to the Hilbert

scheme of lines in X . In the category of Chow motives we work with
coefficients in Q, hence the index two morally "disappears"and we have
anyway an isomorphism t(X ) ∼= t2(S)(−1), though probably the generic
X ∈ C8 is non-rational.

The condition t(X ) ∼= t2(S)(−1) is likely to be necessary for rationality,
but not sufficient (motives with Z-coefficients for a proper criterion?).
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Consequences: Motives of associated Hyperkähler varieties

Corollary (ABP)
All Hyperkähler 4folds F (X ) and Hyperkähler 8folds L(X ), X ∈ F , have
finitely generated and Abelian Chow motive.

Sketch of a proof: We have F ⊂ C14. For d = 14 we have the following
arithmetic identities

14 = 2 · 22 + 2 · 2 + 2 and 14 =
6 · 12 + 6 · 1 + 2

12

Condition on d Comments for X ∈ Cd
d ≥ 8 and d ≡ 0 or 2 (mod 6) Cd non empty

d 6 | 4, 9, or any odd prime H2(S ,Z)prim(−1) ' K⊥d
number p ≡ 2 (mod 3) (Hodge isom.); Ku(X ) ∼= Db(S)

d = 2n2+2n+2
a2 , for some n, a ∈ Z F (X ) ∼ S [2]

d = 2n2 + 2n + 2, for some n, a ∈ Z F (X ) ∼= S [2]

d = 6n2+6n+2
a2 , n, a ∈ Z L(X ) ∼ S [4]
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Motives of associated Hyperkähler varieties

Hence we have an isomorphism F (X ) ∼= S [2] and a birational equivalence
L(X ) ' S [4].

By [dCM] and invariance of Chow motives of HK varieties
under birational transformations we conclude. �
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Motives of associated Hyperkähler varieties
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Pfaffian cubic fourfolds.

A Pfaffian cubic fourfold is the zero locus of the Pfaffian of a 6× 6
anti-symmetric matrix of linear forms on P5.

Smooth Pfaffian cubic fourfolds make up a constructible subset [BRS] in
C14, and a smooth cubic fourfold is Pfaffian IFF it contains a del Pezzo
quintic surface [B].

C14 := {cubics containing a del Pezzo quintic} ⊂ C.
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Motives of associated Hyperkähler varieties

Theorem
There exist an infinity of Pfaffian cubic fourfolds X ∈ C14 such that the
motive h(J (X )) of the associated LSV 10-fold is finite dimensional and
Abelian. These cubics are dense in C14.

Proof:

Since Pf is constructible, it contains a Zariski open, dense subset
U ⊂ C14. The map

k : C14 99K G8;

X 7→ SX ;

is birational, and K3 surfaces with rk(NS(S)) ≥ 19 are dense inside G8.
Hence there are infintely many Pfaffian 4folds with finite dimensional,
Abelian motive, since the associated K3 has this property.
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Theorem (LSV)
If X is a smooth Pfaffian cubic fourfold, then J (X ) is birational to the
moduli spaceM2,0,4(SX ) parameterizing rank-2 semi-stable sheaves on SX
with c1 = 0 and c2 = 4.

For S a K3 surface, the HK 10-fold OG10(S) is a birational
desingularization ofM2,0,4(S) (and deformation equivalent to J (X )).

By
[FFZ], h(OG10(S)) is finite dimensional and Abelian whenever h(S) is. By
Thm. above, if X is Pfaffian J (X ) is birational to the OG10 HK obtained
from its associated K3, OG10(SX ). Hence we have an infinity of J (X )
that, due to their birationality to OG10(SX ), have finite dimensional and
abelian Chow motive. Cubics s.t. h(J (X )) is finite dimensional are dense
in C14. �
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Thanks for your patience...
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General stuff

Precise definition: X smooth projective variety, an algebraic cycle
Z ∈ Z i (X ) is rationally equivalent to zero if there exist W ∈ Z i (X × P1),
flat over P1, a, b ∈ P1 s.t. if W (t) := (prX )∗(W · (X × t)), we have

W (a) = 0 and W (b) = Z .

Handy but not precise definition: two algebraic cycles are rat. equiv. if
(roughly) they are fibers of the same flat family of cycles over P1.
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