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Introduction

These notes collect a series of solved exercises for the course of Algebraic Geometry.Most
of them from the book Algebraic Geometry by R. Hartshorne [Har]. Many others from the
notes by Ph. Ellia [PhE]. I am very thankful to Alex Massarenti for providing most of the
resolutions presented in here.
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CHAPTER 1

Affine varieties

Exercise 1. [Har, Exercise 1.1]
(a) The coordinate ring of the curve C = {y− x2 = 0} ⊂ A2 is given by

A(C) = k[x, y]/(y− x2) ∼= k[x, x2] ∼= k[x].

(b) A(Z) = k[x, y]/(xy − 1) is isomorphic to the localization of k[x] at x. Let f :
A(Z) → k[x] be a morphism of k-algebras. Since x ∈ A(Z) is invertible f (x) ∈ k.
Therefore, f can not be an isomorphism.

Exercise 2. [Har, Exercise 1.3] Consider Y = {x2 − yz = xz− x = 0} ⊂ A3. Then

Y = {x2 − y = z− 1 = 0} ∪ {x = y = 0} ∪ {x = z = 0},

and Y is the union of two lines and a plane irreducible curve of degree two. In order to
show that each component is irreducible, one shows that k[x, y, z]/equations is an integral
domain, i.e. has no zero divisor.

In particular, the coordinate ring of each irreducible component is isomorphic to k[t].

Exercise 3. [Har, Exercise 1.5] Let B be a finitely generated k-algebra. Then we may
write B = k[x1, ..., xn]/I for some ideal I = ( f1, ..., fr) in k[x1, ..., xn]. Let X = { f1 = ... =
fr = 0} ⊆ An. Let f ∈ I(X) then, by the Nullstellensatz we have f k ∈ I for some k > 0.
Now, B does not have nilpotents, so f ∈ I. Clearly I ⊆ I(X). This yields I = I(X) and
B ∼= A(X).
Conversely, assume to have B = A(X) for some algebraic set X ⊂ An. Let I(X) be the
ideal of X. Then B ∼= k[x1, ..., xn]/I(X) is a finitely generated k-algebra. Let f ∈ B be a
nilpotent element. Then f k = 0 for some k, that is f k ∈ I. Since I is radical we get f ∈ I,
that is f = 0 in B.

Exercise 4. [Har, Exercise 1.8] Let Y ⊂ An be an affine variety of dimension r. Let
H ⊂ An be an hypersurface such that Y is not contained in H and Y ∩ H 6= ∅. Since Y
is not contained in H we have I(H) * I(Y). Let f be the polynomial defining H. Then,
the irreducible components of Y ∩ H corresponds to the minimal prime ideals of A(Y)
containing f . Note that Y * H implies that f is not a zero-divisor in A(Y). By the Haup-
tidealsatz any minimal prime ideal containing f has height one. Finally, by [Har, Theorem
1.8A] we get that the any irreducible component of Y ∩ H has dimension dim(Y)− 1.

Exercise 5. [Har, Exercise 1.9] Let a ⊆ k[x1, ..., xn] be an ideal that can be generated by
r elements f1, ..., fr. Note that { fi = 0} defines an hypersurface for any i = 1, ..., r. We
apply r times Exercise 1.8 and we distinguish two cases:
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6 1. AFFINE VARIETIES

- at any step the variety Hk = { f1 = ... fk = 0} is not contained in the hypersurface
{ fk+1 = 0}. Then at each step the dimension of the intersection drops by one. We
get that the dimension of each irreducible component of Y is n− r,

- if Hk is contained in { fk+1 = 0} for some k, then the intersection with { fk+1 = 0}
will not drop the dimension. Then each irreducible component of Y has dimen-
sion greater than n− r.

In any case we have that the dimension of each irreducible component of Y is greater or
equal than n− r.

Exercise 6. [Har, Exercise 1.11] The curve Y is the image of the morphism

φ : A1 −→ A3

t 7−→ (t3, t4, t5)

Note that since A1 is irreducible Y is irreducible as well. Therefore I = I(Y) is prime. Fur-
thermore dim(Y) = dim(A(Y)) = 1 and by [Har, Theorem 1.8A] we get height(I(Y)) = 2.
Note that the three polynomials z2 − x2y, xz− y2 and yz− x3 are in I(Y) and they are in-
dependent.
Let J = (z2 − x2y, xz− y2, yz− x3) ⊆ I(Y). By [Ku, Page 138] we have that I(Y) = J and
that we need three elements to generate I(Y).

Exercise 7. [Har, Exercise 1.12] Consider the polynomial

f = (x2 − 1 + iy)(x2 − 1− iy) = x4 − 2x2 + y2 + 1.

Since R[x, y] ⊂ C[x, y] are unique factorization domains and f splits in C[x, y] as a product
of two irreducible polynomials of degree two, we conclude that f is irreducible in R[x, y].
On the other hand, Z( f ) = {(1, 0), (−1, 0)} is the union of two points. Therefore f ∈
R[x, y] is irreducible but Z( f ) ⊂ A2 is reducible.

Exercise 8. [Har, Exercise 2.1]
a is homogeneous and hence defines a cone in An+1. The polynomial f vanishes on all

the elements of this cone (including 0 since f has positive degree) so f t ∈ a for some t > 0
by the usual Nullstellensatz.

Exercise 9. [Har, Exercise 2.2]
(iii) implies (i) is trivial because all monomials xd

i belong to Sd. (i) implies (ii): If Z(a)
is empty, then in An+1, Z(a) is either empty or (0, . . . , 0), so

√
a must be S or the irrelevant

ideal. (ii) implies (iii):
√

a contains xi, so there is some m s.t. xm
i ∈ a for all i, so a contains

Sm(n+1) as any monomial of degree m(n + 1) must have xm
i as a factor for some i.

Exercise 10. [Har, Exercise 2.3] (a),(b),(c),(e) are clear. For (d), clearly I(Z(a)) contains√
a. Since Z(a) is nonempty, any nonzero homogeneous polynomial vanishing on it must

have positive degree. By 2.1, this implies that f t ∈ a. Therefore I(Z(a)) is contained in
√

a
as it is a homogeneous ideal.
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Exercise 11. [Har, Exercise 2.4] (a) Follows from 2.3d,e, and 2.2.
(b) If Y = Y1 ∪ Y2, then I(Y) = I(Y1) ∩ I(Y2) ⊃ I(Y1)I(Y2). Therefore if I(Y) is prime,
I(Y) must be either I(Y1) or I(Y2), so Y is Y1 or Y2. On the other hand if Y is not prime,
then ab ∈ I(Y), with a 6∈ I(Y), b 6∈ I(Y). Therefore Y is the union of the proper subsets
Y ∩ Z(a), Y ∩ Z(b) and is therefore not irreducible.
(c) I(Pn) = 0 which is a prime ideal.

Exercise 12. [Har, Exercise 2.9] Let Y ⊆ An be an affine variety. Consider the homeo-
morphism

φ0 : U0 = Pn \ {x0 = 0} −→ An

[x0 : ... : xn] 7−→ ( x1
x0

, ..., xn
x0
)

Finally, let Y be the projective closure of Y.
Let F ∈ I(Y), then f (y1, ..., yn) = F(1, x0, ..., xn) where yi =

xi
x0

vanishes on Y = Y ∩U0.
We get that f ∈ I(Y) and xs

0β( f ) = F for some s. Therefore, F ∈ (β(I(Y))), where β is the
homogeneization with respect to x0.
Now let F ∈ β(I(Y)), then F = g1β( f1) + ... + grβ( fr) for some f1, ..., fr ∈ I(Y), that is
F = g1xs1

0 f1(
x1
x0

, ..., xn
x0
) + ... + grxsr

0 fr(
x1
x0

, ..., xn
x0
). Hence F ∈ I(Y).

Let Y ⊂ A3 be the affine twisted cubic. Then I(Y) = (x3 − z, x2 − y) while I(Y) = (xz−
y2, yw− z2, xw− yz). Note that I(Y) can not be generated by two elements because Y ⊂ P3

is not a scheme-theoretic complete intersection.

Exercise 13. [Har, Exercise 2.10]
(a) Obvious.

(b) They have the same ideal, which is prime if and only if they are irreducible.
(c) By ex. 2.6 of [Har], we have S(Y)) = dim(Y) + 1, and dim(Y) = dim(S(Y)), hence the
claim.

Exercise 14. [Har, Exercise 2.13]
We assume that P2 is isomorphic to its image which is easy to check, so that curves in

the image of P2 correspond to curves in P2.
The map is given by

(x0 : x1 : x2)→ (x2
0 : x2

1 : x2
2 : x0x1 : x1x2 : x2x0).

Any curve in P2 is defined by some polynomial f (x0 : x1 : x2) = 0, f homogeneous,
and therefore also by the polynomial f (x0; x1; x2)2 = g(x2

0 : x2
1 : x2

2 : x0x1 : x1x2 : x2x0) for
some polynomial g. Then some factor of this polynomial g defines a suitable hypersurface
containing the image of the curve Z.

Exercise 15. [Har, Exercise 2.14]
The image of ψ is the set Y defined by the equations of the form xabxcd = xacxbd. Proof:

the image is clearly contained in Y . Conversely if (x00 : x10 : · · · : xrs) ∈ Y then we may
assume that x00 is nonzero. But then the point is the image of (x00 : x10 : · · · : xr0)× (x00 :
x01 : · · · : x0s) ∈ Pr ×Ps.
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Exercise 15. [Har, Exercise 2.15]
a) (a0 : a1)× (b0 : b1) = (a0b0 : a0b1 : a1b0 : a1b1) = (w : x : y : z), and the image of

P1 ×P1 is then the subvariety xy− zw = 0 as in Ex. 15.
b) Q is isomorphic to P1×P1, so we can take the two families of lines to correspond to

point× line and line× point. We check that these are lines inside Q ⊂ P3; for example the
image of (a0 : a1)×P1 is the set of points (w : x : y : z) ∈ P3 with a1w = a0y, a1x = a0z.
THis is the intersection of two projective planes in P3, that is a line.

c) For example, the closed subset x = y of Q is not one of these lines, and it is closed
in the Zariski topology of Q, hence Q is not homemorphic to P1 × P1 with the product
topology.

Exercise 16. [Har, Exercise 2.17]
a) By Ex. 1.8 of [Har], the intersection of q hypersurfaces has dimension at least n− q. If

a is generated by q elements then Z(Y) is the intersection of q hypersurfaces and therefore,
by Ex. 2.8 of [Har], has dimension at least n− q.

b) If I(Y) can be generated by r elements then Y is the intersection of their hypersur-
faces.

c) Y can be seen as the intersection of H1 = Z(x2 − wy) and H2 = Z(y3 + wz2 −
2xyz) as one can obtain powers of the three quadrics that generate I(Y) by combining H1
and H2. For example (xy− wz)2 = w(y3 + wz2 − 2xyz) + y2(x2 − wy) and (y2 − xz)2 =
y(y3 + wz2 − 2xyz) + z2(x2 − wy), and similarly for the third. By the way, I(Y) has no
homogeneous elements of degree 0 or 1 and we know the space of homogeneous elements
of degree 2 is 3 dimensional, so any set of generators must have at least 3 elements.

d)I think that this is still unknown.
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