Cellules de Calogero-Moser : le cas lisse (travail en commun avec R. Rouquier)

Cédric Bonnafé

CNRS - I3M (UMR 5149) - Université de Montpellier 2

Chevaleret - Janvier 2013

Principe. — Faire avec les groupes de réflexions de complexes tout ce que l'on fait avec les groupes de Weyl/Coxeter

Principe. — Faire avec les groupes de réflexions de complexes tout ce que l'on fait avec les groupes de Weyl/Coxeter

Objectif. — Reconstruire autant que possible la théorie des représentations des groupes réductifs finis en partant simplement de la donnée (V, W)

Principe. — Faire avec les groupes de réflexions de complexes tout ce que l'on fait avec les groupes de Weyl/Coxeter

Objectif. — Reconstruire autant que possible la théorie des représentations des groupes réductifs finis en partant simplement de la donnée (V, W)

But de l'exposé. — Généraliser la théorie de Kazhdan-Lusztig

Principe. — Faire avec les groupes de réflexions de complexes tout ce que l'on fait avec les groupes de Weyl/Coxeter

Objectif. — Reconstruire autant que possible la théorie des représentations des groupes réductifs finis en partant simplement de la donnée (V, W)

But de l'exposé. — Généraliser la théorie de Kazhdan-Lusztig

Point négatif. — Cette généralisation est conjecturale...

Principe. — Faire avec les groupes de réflexions de complexes tout ce que l'on fait avec les groupes de Weyl/Coxeter

Objectif. — Reconstruire autant que possible la théorie des représentations des groupes réductifs finis en partant simplement de la donnée (V, W)

But de l'exposé. — Généraliser la théorie de Kazhdan-Lusztig

Point négatif. — Cette généralisation est conjecturale...

Point positif. — Cette généralisation est conjecturale (!)...

Principe. — Faire avec les groupes de réflexions de complexes tout ce que l'on fait avec les groupes de Weyl/Coxeter

Objectif. — Reconstruire autant que possible la théorie des représentations des groupes réductifs finis en partant simplement de la donnée (V, W)

But de l'exposé. — Généraliser la théorie de Kazhdan-Lusztig

Point négatif. — Cette généralisation est conjecturale...

Point positif. — Cette généralisation est conjecturale (!)... et se base sur la théorie des algèbres de Cherednik

Principe. — Faire avec les groupes de réflexions de complexes tout ce que l'on fait avec les groupes de Weyl/Coxeter

Objectif. — Reconstruire autant que possible la théorie des représentations des groupes réductifs finis en partant simplement de la donnée (V, W)

But de l'exposé. — Généraliser la théorie de Kazhdan-Lusztig

Point négatif. — Cette généralisation est conjecturale...

Point positif. — Cette généralisation est conjecturale (!)... et se base sur la théorie des algèbres de Cherednik ($\stackrel{?}{\Longrightarrow}$ nouvelle interprétation des cellules de Kazhdan-Lusztig)

On suppose pour l'instant que W est un groupe de Coxeter

ullet On choisit un ensemble de réflexions simples $S,\ \ell:W o\mathbb{N}$ longueur

- ullet On choisit un ensemble de réflexions simples $S,\ \ell:W o\mathbb{N}$ longueur
- On fixe $c: \mathsf{R\'ef}(W) \to \mathbb{R}_{>0}$ telle que $c_s = c_t$ si s et t sont W-conjugués

- ullet On choisit un ensemble de réflexions simples $S,\ \ell:W o\mathbb{N}$ longueur
- On fixe $c: \mathsf{R\'ef}(W) \to \mathbb{R}_{>0}$ telle que $c_s = c_t$ si s et t sont W-conjugués
- ullet On note $\mathbb{C}[q^{\mathbb{R}}]=igoplus_{r\in\mathbb{R}}\mathbb{C}\ q^r$

- On choisit un ensemble de réflexions simples $S, \ell: W \to \mathbb{N}$ longueur
- On fixe $c: Réf(W) \to \mathbb{R}_{>0}$ telle que $c_s = c_t$ si s et t sont W-conjugués
- $\begin{array}{l} \bullet \ \ \text{On note} \ \mathbb{C}[q^{\mathbb{R}}] = \bigoplus_{r \in \mathbb{R}} \mathbb{C} \ q^r \\ \bullet \ \ \mathscr{H}_c = \bigoplus_{w \in \mathcal{W}} \mathbb{C}[q^{\mathbb{R}}] \ T_w, \quad \mathscr{H}_c^{>0} = \bigoplus_{w \in \mathcal{W}} \mathbb{C}[q^{\mathbb{R}_{>0}}] \ T_w \ \text{avec} \end{array}$

$$\begin{cases} T_x T_y = T_{xy} & \text{si } \ell(xy) = \ell(x) + \ell(y) \\ (T_s - q^{c_s})(T_s + q^{-c_s}) = 0 & \text{si } s \in S \end{cases}$$

On suppose pour l'instant que W est un groupe de Coxeter

- ullet On choisit un ensemble de réflexions simples $S,\ \ell:W o\mathbb{N}$ longueur
- On fixe $c: \mathsf{R\'ef}(W) \to \mathbb{R}_{>0}$ telle que $c_s = c_t$ si s et t sont W-conjugués
- ullet On note $\mathbb{C}[q^{\mathbb{R}}] = igoplus_{r \in \mathbb{R}} \mathbb{C} \ q^r$
- $\mathscr{H}_c = \bigoplus_{w \in W} \mathbb{C}[q^{\mathbb{R}}] \ T_w$, $\mathscr{H}_c^{>0} = \bigoplus_{w \in W} \mathbb{C}[q^{\mathbb{R}_{>0}}] \ T_w$ avec

$$\begin{cases} T_x T_y = T_{xy} & \text{si } \ell(xy) = \ell(x) + \ell(y) \\ (T_s - q^{c_s})(T_s + q^{-c_s}) = 0 & \text{si } s \in S \end{cases}$$

ullet Involution anti-linéaire : $\overline{q^r}=q^{-r}$ et $\overline{T}_w=T_{w^{-1}}^{-1}$

On suppose pour l'instant que W est un groupe de Coxeter

- ullet On choisit un ensemble de réflexions simples $S,\ \ell:W o\mathbb{N}$ longueur
- On fixe $c: \mathsf{R\'ef}(W) \to \mathbb{R}_{>0}$ telle que $c_s = c_t$ si s et t sont W-conjugués
- ullet On note $\mathbb{C}[q^{\mathbb{R}}] = igoplus_{r \in \mathbb{R}} \mathbb{C} \ q^r$
- $\mathscr{H}_c = \bigoplus_{w \in W} \mathbb{C}[q^{\mathbb{R}}] T_w$, $\mathscr{H}_c^{>0} = \bigoplus_{w \in W} \mathbb{C}[q^{\mathbb{R}_{>0}}] T_w$ avec

$$\begin{cases} T_x T_y = T_{xy} & \text{si } \ell(xy) = \ell(x) + \ell(y) \\ (T_s - q^{c_s})(T_s + q^{-c_s}) = 0 & \text{si } s \in S \end{cases}$$

ullet Involution anti-linéaire : $\overline{q^r}=q^{-r}$ et $\overline{T}_w=T_{w^{-1}}^{-1}$

Kazhdan-Lusztig (1979), Lusztig (1983)

Il existe un unique $C_w \in \mathcal{H}_c$ tel que $\begin{cases} \overline{C}_w = C_w \\ C_w \equiv T_w \mod \mathcal{H}_c^{>0} \end{cases}$

• \leq_L plus petit préordre tel que, pour tout $x \in W$, $\bigoplus_{w \leq_L x} \mathbb{C}[q^{\mathbb{R}}]$ C_w soit un *idéal à gauche*

- \leqslant_L plus petit préordre tel que, pour tout $x \in W$, $\bigoplus_{w \leqslant_L x} \mathbb{C}[q^{\mathbb{R}}]$ C_w soit un *idéal à gauche*
- $x \sim_L y$ si et seulement si $x \leqslant_L y$ et $y \leqslant_L x$.

- \leqslant_L plus petit préordre tel que, pour tout $x \in W$, $\bigoplus_{w \leqslant_L x} \mathbb{C}[q^{\mathbb{R}}]$ C_w soit un *idéal* à gauche
- $x \sim_L y$ si et seulement si $x \leqslant_L y$ et $y \leqslant_L x$.

Définition

On appelle c-cellule de Kazhdan-Lusztig à gauche toute classe d'équivalence pour \sim_L (l'ensemble de ces cellules est noté $^{\text{KL}}\text{Cell}_L^c(W)$).

- \leqslant_L plus petit préordre tel que, pour tout $x \in W$, $\bigoplus_{w \leqslant_L x} \mathbb{C}[q^{\mathbb{R}}]$ C_w soit un *idéal* à gauche
- $x \sim_L y$ si et seulement si $x \leqslant_L y$ et $y \leqslant_L x$.

Définition

On appelle c-cellule de Kazhdan-Lusztig à gauche toute classe d'équivalence pour \sim_L (l'ensemble de ces cellules est noté $^{\text{KL}}\text{Cell}_l^c(W)$).

- $\bullet \ \ \text{On d\'efinit de m\'eme} \leqslant_R, \, \sim_R, \, {^{\text{KL}}\mathrm{Cell}^c_R(W)}, \, \leqslant_{LR}, \, \sim_{LR}, \, {^{\text{KL}}\mathrm{Cell}^c_{LR}(W)}...$
- On parle de c-cellules de Kazhdan-Lusztig à droite ou de c-cellules de Kazhdan-Lusztig bilatère.

Si Γ est une c-cellule de Kazhdan-Lusztig bilatère, on note $\operatorname{Irr}^{\mathsf{KL}}_{\Gamma}(W)$ l'ensemble des caractères irréductibles χ de W apparaissant dans le

$$(\mathbb{C}W,\mathbb{C}W)\text{-bimodule}\left(\frac{\bigoplus\limits_{w\leqslant_{LR}\Gamma}\mathbb{C}[q^{\mathbb{R}}]\ C_w}{\bigoplus\limits_{w<_{LR}\Gamma}\mathbb{C}[q^{\mathbb{R}}]\ C_w}\right)_{q^r\mapsto 1}.$$

Si Γ est une c-cellule de Kazhdan-Lusztig bilatère, on note $\operatorname{Irr}_{\Gamma}^{\mathsf{KL}}(W)$ l'ensemble des caractères irréductibles χ de W apparaissant dans le

I'ensemble des caractères irréductibles
$$\chi$$
 de W apparaissant dans le
$$\left(\mathbb{C}W,\mathbb{C}W\right)\text{-bimodule}\left(\frac{\bigoplus\limits_{w\leqslant_{LR}\Gamma}\mathbb{C}[q^{\mathbb{R}}]\ C_w}{\bigoplus\limits_{w\leqslant_{LR}\Gamma}\mathbb{C}[q^{\mathbb{R}}]\ C_w}\right) \text{. On dit que }\operatorname{Irr}^{\mathsf{KL}}_{\Gamma}(W) \text{ est}$$
 une(la) C -famille de Kazhdan-lusztig (associée à Γ)

une(la) c-famille de Kazhdan-Lusztig (associée à Γ).

Si Γ est une c-cellule de Kazhdan-Lusztig bilatère, on note $\operatorname{Irr}_{\Gamma}^{\mathsf{KL}}(W)$ l'ensemble des caractères irréductibles χ de W apparaissant dans le

I'ensemble des caractères irréductibles
$$\chi$$
 de W apparaissant dans le $(\mathbb{C}W,\mathbb{C}W)$ -bimodule $\left(\begin{array}{c} \bigoplus_{w\leqslant_{LR}\Gamma}\mathbb{C}[q^{\mathbb{R}}]\ C_w \end{array}\right)$. On dit que $\mathrm{Irr}^{\mathsf{KL}}_\Gamma(W)$ est une(la) c -famille de Kazhdan-Lusztig (associée à Γ).

Définition (Caractères c-cellulaires)

Si C est une c-cellule de Kazhdan-Lusztig à gauche, on note $[C]_{KI}$ le

caractère du
$$\mathbb{C}W$$
-module

caractère du
$$\mathbb{C}W$$
-module $\left(igoplus_{w <_L C} \mathbb{C}[q^\mathbb{R}] \ C_w \atop \bigoplus_{w <_L C} \mathbb{C}[q^\mathbb{R}] \ C_w \right)_{q^r \mapsto 1}$.

Si Γ est une c-cellule de Kazhdan-Lusztig bilatère, on note $\operatorname{Irr}_{\Gamma}^{\mathsf{KL}}(W)$ l'ensemble des caractères irréductibles χ de W apparaissant dans le

l'ensemble des caractères irréductibles
$$\chi$$
 de W apparaissant dans le
$$\left(\mathbb{C}W,\mathbb{C}W\right)\text{-bimodule}\left(\frac{\bigoplus\limits_{w\leqslant_{LR}\Gamma}\mathbb{C}[q^{\mathbb{R}}]\ C_w}{\bigoplus\limits_{w<_{LR}\Gamma}\mathbb{C}[q^{\mathbb{R}}]\ C_w}\right) \text{. On dit que } \mathrm{Irr}^{\mathsf{KL}}_{\Gamma}(W) \text{ est une(la) } c\text{-famille de Kazhdan-Lusztig (associée à Γ).}$$

Définition (Caractères *c*-cellulaires)

Si C est une c-cellule de Kazhdan-Lusztig à gauche, on note $[C]_{KL}$ le

caractère du
$$\mathbb{C}W$$
-module

caractère du
$$\mathbb{C}W$$
-module $\left(igoplus_{w \leqslant_L C} \mathbb{C}[q^{\mathbb{R}}] \ C_w \atop w \leqslant_L C} \right)_{q^r \mapsto 1}$. On dit que $[C]_{\mathsf{KL}}$ est

un(le) KL-caractère c-cellulaire (associé à C).

$$(\operatorname{LR1})\ \operatorname{Irr}(W) = \coprod_{\Gamma} \operatorname{Irr}^{\mathsf{KL}}_{\Gamma}(W).$$

$$\begin{split} &(\text{LR1}) \ \, \text{Irr}(W) = \coprod_{\Gamma} \text{Irr}_{\Gamma}^{\mathsf{KL}}(W). \\ &(\text{LR2}) \ \, |\Gamma| = \sum_{\chi \in \text{Irr}_{\Gamma}^{\mathsf{KL}}(W)} \chi(1)^2. \end{split}$$

(LR2)
$$|\Gamma| = \sum_{\chi \in \operatorname{Irr}_{\Gamma}^{\mathsf{KL}}(W)} \chi(1)^2$$
.

(LR1)
$$\operatorname{Irr}(W) = \coprod_{\Gamma} \operatorname{Irr}_{\Gamma}^{\mathsf{KL}}(W).$$

(LR2)
$$|\Gamma| = \sum_{\chi \in \operatorname{Irr}_{\Gamma}^{\mathsf{KL}}(W)} \chi(1)^{2}$$
.

(LR3) $w_0\Gamma$, Γw_0 sont des c-cellules de Kazhdan-Lusztig bilatères et $\operatorname{Irr}_{w_0\Gamma}^{\mathsf{KL}}(W) = \operatorname{Irr}_{\Gamma w_0}^{\mathsf{KL}}(W) = \operatorname{Irr}_{\Gamma}^{\mathsf{KL}}(W) \cdot \epsilon$ (et donc $w_0\Gamma = \Gamma w_0$).

$$(\operatorname{LR1}) \ \operatorname{Irr}(W) = \coprod_{\Gamma} \operatorname{Irr}_{\Gamma}^{\mathsf{KL}}(W).$$

(LR2)
$$|\Gamma| = \sum_{\chi \in \operatorname{Irr}_{\Gamma}^{\mathsf{KL}}(W)} \chi(1)^2$$
.

- (LR3) $w_0\Gamma$, Γw_0 sont des c-cellules de Kazhdan-Lusztig bilatères et $\operatorname{Irr}_{w_0\Gamma}^{\mathsf{KL}}(W) = \operatorname{Irr}_{\Gamma w_0}^{\mathsf{KL}}(W) = \operatorname{Irr}_{\Gamma}^{\mathsf{KL}}(W) \cdot \varepsilon$ (et donc $w_0\Gamma = \Gamma w_0$).
- (LR4?) La fonction $\chi \mapsto \frac{1}{\chi(1)} \sum_{s \in \mathsf{R\'ef}(W)} c_s \chi(s)$ est constante sur les familles.

$$(\operatorname{LR1}) \ \operatorname{Irr}(W) = \coprod_{\Gamma} \operatorname{Irr}_{\Gamma}^{\mathsf{KL}}(W).$$

(LR2)
$$|\Gamma| = \sum_{\chi \in \operatorname{Irr}_{\Gamma}^{\mathsf{KL}}(W)} \chi(1)^2$$
.

- (LR3) $w_0\Gamma$, Γw_0 sont des c-cellules de Kazhdan-Lusztig bilatères et $\operatorname{Irr}_{w_0\Gamma}^{\mathsf{KL}}(W) = \operatorname{Irr}_{\Gamma w_0}^{\mathsf{KL}}(W) = \operatorname{Irr}_{\Gamma}^{\mathsf{KL}}(W) \cdot \epsilon$ (et donc $w_0\Gamma = \Gamma w_0$).
- (LR4?) La fonction $\chi \mapsto \frac{1}{\chi(1)} \sum_{s \in \mathsf{R\'ef}(W)} c_s \chi(s)$ est constante sur les familles.

$$(\operatorname{LR1})\ \operatorname{Irr}(W) = \coprod_{\Gamma} \operatorname{Irr}^{\mathsf{KL}}_{\Gamma}(W).$$

(LR2)
$$|\Gamma| = \sum_{\chi \in \operatorname{Irr}_{\Gamma}^{\mathsf{KL}}(W)} \chi(1)^2$$
.

- (LR3) $w_0\Gamma$, Γw_0 sont des c-cellules de Kazhdan-Lusztig bilatères et $\operatorname{Irr}_{w_0\Gamma}^{\mathsf{KL}}(W) = \operatorname{Irr}_{\Gamma w_0}^{\mathsf{KL}}(W) = \operatorname{Irr}_{\Gamma}^{\mathsf{KL}}(W) \cdot \varepsilon$ (et donc $w_0\Gamma = \Gamma w_0$).
- (LR4?) La fonction $\chi \mapsto \frac{1}{\chi(1)} \sum_{s \in \mathsf{R\'ef}(W)} c_s \chi(s)$ est constante sur les familles.

$$(\mathrm{L}1) \ \sum_{C} [C]_{\mathsf{KL}} = \sum_{\chi \in \mathrm{Irr}(\mathit{W})} \chi(1) \chi.$$

$$(\operatorname{LR1}) \ \operatorname{Irr}(W) = \coprod_{\Gamma} \operatorname{Irr}_{\Gamma}^{\mathsf{KL}}(W).$$

(LR2)
$$|\Gamma| = \sum_{\chi \in \operatorname{Irr}_{\Gamma}^{\mathsf{KL}}(W)} \chi(1)^2$$
.

- (LR3) $w_0\Gamma$, Γw_0 sont des c-cellules de Kazhdan-Lusztig bilatères et $\operatorname{Irr}_{w_0\Gamma}^{\mathsf{KL}}(W) = \operatorname{Irr}_{\Gamma w_0}^{\mathsf{KL}}(W) = \operatorname{Irr}_{\Gamma}^{\mathsf{KL}}(W) \cdot \varepsilon$ (et donc $w_0\Gamma = \Gamma w_0$).
- (LR4?) La fonction $\chi \mapsto \frac{1}{\chi(1)} \sum_{s \in \mathsf{R\'ef}(W)} c_s \chi(s)$ est constante sur les familles.

$$(\mathbf{L}\mathbf{1}) \ \sum_{C} [C]_{\mathsf{KL}} = \sum_{\chi \in \mathrm{Irr}(\mathit{W})} \chi(1) \chi.$$

(L2)
$$|C| = \dim[C]_{KL}$$
.

$$(\operatorname{LR1}) \ \operatorname{Irr}(W) = \coprod_{\Gamma} \operatorname{Irr}_{\Gamma}^{\mathsf{KL}}(W).$$

(LR2)
$$|\Gamma| = \sum_{\chi \in \operatorname{Irr}_{\Gamma}^{\mathsf{KL}}(W)} \chi(1)^2$$
.

- (LR3) $w_0\Gamma$, Γw_0 sont des c-cellules de Kazhdan-Lusztig bilatères et $\operatorname{Irr}_{w_0\Gamma}^{\mathsf{KL}}(W) = \operatorname{Irr}_{\Gamma w_0}^{\mathsf{KL}}(W) = \operatorname{Irr}_{\Gamma}^{\mathsf{KL}}(W) \cdot \varepsilon$ (et donc $w_0\Gamma = \Gamma w_0$).
- (LR4?) La fonction $\chi \mapsto \frac{1}{\chi(1)} \sum_{s \in \mathsf{R\'ef}(W)} c_s \chi(s)$ est constante sur les familles.

$$(\mathrm{L}1) \ \sum_{C} [C]_{\mathsf{KL}} = \sum_{\chi \in \mathrm{Irr}(\mathit{W})} \chi(1) \chi.$$

- (L2) $|C| = \dim[C]_{KL}$.
- (L3) w_0C , Cw_0 sont des c-cellules de Kazhdan-Lusztig à gauche et $[w_0C]_{\rm KL}=[Cw_0]_{\rm KL}=[C]_{\rm KL}\cdot\varepsilon$

$$(\operatorname{LR1}) \ \operatorname{Irr}(W) = \coprod_{\Gamma} \operatorname{Irr}_{\Gamma}^{\mathsf{KL}}(W).$$

(LR2)
$$|\Gamma| = \sum_{\chi \in \operatorname{Irr}_{\Gamma}^{\mathsf{KL}}(W)} \chi(1)^2$$
.

- (LR3) $w_0\Gamma$, Γw_0 sont des c-cellules de Kazhdan-Lusztig bilatères et $\operatorname{Irr}_{w_0\Gamma}^{\mathsf{KL}}(W) = \operatorname{Irr}_{\Gamma w_0}^{\mathsf{KL}}(W) = \operatorname{Irr}_{\Gamma}^{\mathsf{KL}}(W) \cdot \varepsilon$ (et donc $w_0\Gamma = \Gamma w_0$).
- (LR4?) La fonction $\chi \mapsto \frac{1}{\chi(1)} \sum_{s \in \mathsf{R\'ef}(W)} c_s \chi(s)$ est constante sur les familles.

$$(\text{L1}) \ \sum_{C} [C]_{\mathsf{KL}} = \sum_{\chi \in \operatorname{Irr}(W)} \chi(1) \chi.$$

- (L2) $|C| = \dim[C]_{KL}$.
- (L3) w_0C , Cw_0 sont des c-cellules de Kazhdan-Lusztig à gauche et $[w_0C]_{KL} = [Cw_0]_{KL} = [C]_{KL} \cdot \varepsilon$
- (L4) Fait qualitatif. L'application $C\mapsto [C]_{\mathsf{KL}}$ est loin d'être injective.

(1) La partition en cellules dépend fortement du choix de S.

- (1) La partition en cellules dépend fortement du choix de S.
- (2) En revanche, l'ensemble des familles et l'ensemble des caractères cellulaires n'en dépendent pas !

- (1) La partition en cellules dépend fortement du choix de S.
- (2) En revanche, l'ensemble des familles et l'ensemble des caractères cellulaires n'en dépendent pas !

Définition (Cellules lisses)

On dit que Γ est lisse si $|\operatorname{Irr}_{\Gamma}^{\mathsf{KL}}(W)| = 1$.

- (1) La partition en cellules dépend fortement du choix de S.
- (2) En revanche, l'ensemble des familles et l'ensemble des caractères cellulaires n'en dépendent pas !

Définition (Cellules lisses)

On dit que Γ est lisse si $|\operatorname{Irr}_{\Gamma}^{\mathsf{KL}}(W)| = 1$.

Théorème?

Si Γ est lisse et si $C \subset \Gamma$, alors $[C]_{KL} \in Irr(W)$.

- (1) La partition en cellules dépend fortement du choix de S.
- (2) En revanche, l'ensemble des familles et l'ensemble des caractères cellulaires n'en dépendent pas !

Définition (Cellules lisses)

On dit que Γ est lisse si $|\operatorname{Irr}_{\Gamma}^{\mathsf{KL}}(W)| = 1$.

Théorème?

Si Γ est lisse et si $C \subset \Gamma$, alors $[C]_{KI} \in Irr(W)$.

Exemples - (1) Dans \mathfrak{S}_n , toutes les cellules sont lisses.

- (1) La partition en cellules dépend fortement du choix de S.
- (2) En revanche, l'ensemble des familles et l'ensemble des caractères cellulaires n'en dépendent pas !

Définition (Cellules lisses)

On dit que Γ est lisse si $|\operatorname{Irr}_{\Gamma}^{\mathsf{KL}}(W)| = 1$.

Théorème?

Si Γ est lisse et si $C \subset \Gamma$, alors $[C]_{KL} \in Irr(W)$.

Exemples - (1) Dans \mathfrak{S}_n , toutes les cellules sont lisses.

(2) Dans E_8 , il y a 46 cellules bilatères, dont 23 lisses.

Donnée

 $c: \mathsf{R\'ef}(W) \longrightarrow \mathbb{C}$ telle que $c_s = c_t$ si s et t sont W-conjugués.

- \leqslant_L plus petit préordre tel que, pour tout $x \in W$, $\bigoplus_{w \leqslant_L x} \mathbb{C}[q^{\mathbb{R}}]$ C_w soit un *idéal* à gauche
- $x \sim_L y$ si et seulement si $x \leqslant_L y$ et $y \leqslant_L x$.

Définition

On appelle c-cellule de Kazhdan-Lusztig à gauche toute classe d'équivalence pour \sim_L (l'ensemble de ces cellules est noté $^{\mathsf{KL}}\mathrm{Cell}^c_L(W)$).

- On définit de même \leq_R , \sim_R , ${}^{\mathsf{KL}}\mathrm{Cell}_R^{\mathsf{c}}(W)$, \leq_{LR} , \sim_{LR} , ${}^{\mathsf{KL}}\mathrm{Cell}_{\mathsf{LR}}^{\mathsf{c}}(W)$...
- On parle de *c*-cellules de Kazhdan-Lusztig à droite ou de *c*-cellules de Kazhdan-Lusztig bilatère.

Si Γ est une c-cellule de Kazhdan-Lusztig bilatère, on note $\operatorname{Irr}_{\Gamma}^{\mathsf{KL}}(W)$ l'ensemble des caractères irréductibles χ de W apparaissant dans le

l'ensemble des caractères irréductibles
$$\chi$$
 de W apparaissant dans le
$$\left(\mathbb{C}W,\mathbb{C}W\right)\text{-bimodule}\left(\frac{\bigoplus\limits_{w\leqslant_{LR}\Gamma}\mathbb{C}[q^{\mathbb{R}}]\ C_w}{\bigoplus\limits_{w<_{LR}\Gamma}\mathbb{C}[q^{\mathbb{R}}]\ C_w}\right) \text{. On dit que } \mathrm{Irr}^{\mathsf{KL}}_{\Gamma}(W) \text{ est une(la) } c\text{-famille de Kazhdan-Lusztig (associée à Γ).}$$

Définition (Caractères *c*-cellulaires)

Si C est une c-cellule de Kazhdan-Lusztig à gauche, on note $[C]_{KL}$ le

caractère du
$$\mathbb{C}W$$
-module

caractère du
$$\mathbb{C}W$$
-module $\left(\frac{\displaystyle\bigoplus_{w\leqslant_L C} \mathbb{C}[q^{\mathbb{R}}] \ C_w}{\displaystyle\bigoplus_{w\leqslant_L C} \mathbb{C}[q^{\mathbb{R}}] \ C_w} \right)_{q^r\mapsto 1}$. On dit que $[C]_{\mathsf{KL}}$ est

un(le) KL-caractère c-cellulaire (associé à C).

$$(\operatorname{LR1}) \ \operatorname{Irr}(W) = \coprod_{\Gamma} \operatorname{Irr}^{\mathsf{KL}}_{\Gamma}(W).$$

(LR2)
$$|\Gamma| = \sum_{\chi \in \operatorname{Irr}_{\Gamma}^{K} L_{(W)}} \chi(1)^{2}$$
.

- (LR3) $w_0\Gamma$, Γw_0 sont des c-cellules de Kazhdan-Lusztig bilatères et $\operatorname{Irr}_{W_0\Gamma}^{\mathsf{KL}}(W) = \operatorname{Irr}_{\Gamma w_0}^{\mathsf{KL}}(W) = \operatorname{Irr}_{\Gamma}^{\mathsf{KL}}(W) \cdot \varepsilon$ (et donc $w_0\Gamma = \Gamma w_0$).
- (LR4?) La fonction $\chi \mapsto \frac{1}{\chi(1)} \sum_{s \in \mathsf{R\'ef}(W)} c_s \chi(s)$ est constante sur les familles.

$$(\text{L1}) \ \sum_{C} [C]_{\mathsf{KL}} = \sum_{\chi \in \operatorname{Irr}(W)} \chi(1) \chi.$$

- (L2) $|C| = \dim[C]_{KL}$.
- (L3) w_0C , Cw_0 sont des c-cellules de Kazhdan-Lusztig à gauche et $[w_0C]_{KI} = [Cw_0]_{KI} = [C]_{KI} \cdot \varepsilon$
- (L4) Fait qualitatif. L'application $C \mapsto [C]_{KL}$ est loin d'être injective.

- (1) La partition en cellules dépend fortement du choix de S.
- (2) En revanche, l'ensemble des familles et l'ensemble des caractères cellulaires n'en dépendent pas !

Définition (Cellules lisses)

On dit que Γ est lisse si $|\operatorname{Irr}_{\Gamma}^{\mathsf{KL}}(W)| = 1$.

Théorème?

Si Γ est lisse et si $C \subset \Gamma$, alors $[C]_{KL} \in Irr(W)$.

Exemples - (1) Dans \mathfrak{S}_n , toutes les cellules sont lisses.

(2) Dans E_8 , il y a 46 cellules bilatères, dont 23 lisses.

