
Aiguille du Midi

Departure: 12h55 at the Amis de la Nature

Consequently: please be ready to pick your lunch bag at the
restaurant at 12h30

VERY COLD!!!

Sun glasses...

Pay individually in Chamonix for the lift (around 42 euros)

The bus is paid by the conference
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What does Kazhdan-Lusztig theory do for you?

(W , S) finite Coxeter system

c : S → R such that cs = cs ′ is s and s ′ are W -conjugate

Hecke algebra H (W , c) over Z[qR]

Kazhdan-Lusztig basis (1979, 1984, 1999)

=⇒ Partition of W into c-KL-cells (left, right, two-sided) + partial
order

=⇒ W → Z Irr(W ) (cell module)

=⇒ If Γ is a c-KL-two-sided cell, IrrKL
Γ (W ) ⊂ Irr(W ) (c-KL-family)

=⇒ Irr(W ) =
⋃̇
Γ

IrrKL
Γ (W )
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Interests

Links with the geometry of flag varieties (singularities of Schubert
cells)

Representations of complex Lie algebras, of reductive groups in
positive characteristic...

Representations of finite reductive groups

Unipotent classes

Decomposition numbers of Hecke algebras at root of unity...
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W complex reflection group?

Difficulty. Kazhdan-Lusztig basis highly depends on the choice of S .

Strategy. Use rational Cherednik algebras at t = 0 to construct partitions
of W (resp. Irr(W )) into Calogero-Moser cells (resp. families), a map
W → Z Irr(W ) and attach to a cell Γ a subset IrrCM

Γ (W ) of Irr(W )
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Weakness.

Our construction depends on an “uncontrolable” choice

We don’t get the partial order

Hard to compute (one month for completing B2)

Strengths.

shares many properties with KL-two-sided cells

The semicontinuity is trivial

Coincide with KL two-sided cells for A2, B2, G2

Very flexible (tons of notions of cells)

Geometric methods
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Set-up

dimC V <∞
W ⊂ GLC(V )

|W | <∞
W = 〈Réf(W )〉, where
Réf(W ) = {s ∈W | codimC Ker(s − IdV ) = 1}.

C = {c : Réf(W )/∼ −→ C}

Cs : C → C, c 7→ cs

C[C ] = S(C ∗) = C[(Cs)s∈Réf(W )/∼]

if s ∈ Réf(W ), let αs ∈ V ∗ and α∨
s ∈ V be such that

Ker(s − IdV ) = Ker(αs) and Im(s − IdV ) = Cα∨
s .

ε : W → C×, w 7→ det(w).
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Rational Cherednik algebra

• H is the C[C ]-algebra such that

H =︸︷︷︸
vector space

C[C ]⊗ C[V ]⊗ CW ⊗ C[V ∗]

[x , y ] =
∑

s∈Réf(W )

(1 − ε(s)) Cs
〈x , αs〉 · 〈α∨

s , y〉
〈αs , α∨

s 〉
s.

• Specialisation at c ∈ C

Hc =︸︷︷︸
vector space

C[V ]⊗ CW ⊗ C[V ∗]

[x , y ] =
∑

s∈Réf(W )

(1 − ε(s)) cs
〈x , αs〉 · 〈α∨

s , y〉
〈αs , α∨

s 〉
s.

Hc = Cc ⊗C[C ] H.
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s∈Réf(W )

(1 − ε(s)) Cs
〈x , αs〉 · 〈α∨

s , y〉
〈αs , α∨

s 〉
s.

• Specialisation at c ∈ C

Hc =︸︷︷︸
vector space

C[V ]⊗ CW ⊗ C[V ∗]

[x , y ] =
∑
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Rational Cherednik algebra at t = 0
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Some features (Etingof-Ginzburg 2002)

Freeness

P = C[C ]⊗ C[V ]W ⊗ C[V ∗]W ⊂ Z(H) =: Q

H is a free P-module of rank |W |3

Q is a free P-module of rank |W | (in particular, Q is
Cohen-Macaulay)

Satake isomorphism: the natural map Q → EndH(He) = (eHe)op

is an isomorphism (with e = 1
|W |

∑
w∈W w)

H ' EndQ(He)

Graduation(s)

N× N-graduation : degN×N(V ) = (1, 0), degN×N(V ∗) = (0, 1),
degN×N(W ) = (0, 0), degN×N(C ) = (1, 1).

Specialisation

Hc is not N× N-graded

Q and Qc are normal integral domains
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The P = C[C × V /W × V ∗/W ]-algebra H

Relatively classical: take a point
p = (c , v , v∗) ∈P = C × V /W × V ∗/W and view C = Cc,v ,v∗ as a
P-algebra via evaluation at p =⇒ Hc,v ,v∗ = Cc,v ,v∗ ⊗P H.

Restricted Cherednik algebra

Take v = 0 and v∗ = 0. You get

Hc =︸︷︷︸
vector space

C[V ]co(W ) ⊗ CW ⊗ C[V ∗]co(W ).

This will lead to Calogero-Moser families (Gordon).

New (!): take K = Frac(P)

This will lead to Calogero-Moser cells (B.-Rouquier)
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Restricted Cherednik algebra (Gordon, 2003)

Take c ∈ C and let

H
−
c = CW ⊗ C[V ∗]co(W ) = W n C[V ∗]co(W ) ⊂ Hc .

Si χ ∈ Irr(W ), let Mc(χ) = Hc ⊗H
−
c

Ṽχ. Then (Gordon):

Mc(χ) is indecomposable with a unique simple quotient Lc(χ).

Irr(W ) −→ Irr(Hc), χ 7→ Lc(χ) is a bijection.

K0(Hc) ' Z Irr(W ).

Calogero-Moser families

The c-Calogero-Moser families are the subsets of Irr(W ) corresponding to
the blocks of Hc .
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Ṽχ. Then (Gordon):

Mc(χ) is indecomposable with a unique simple quotient Lc(χ).

Irr(W ) −→ Irr(Hc), χ 7→ Lc(χ) is a bijection.

K0(Hc) ' Z Irr(W ).

Calogero-Moser families

The c-Calogero-Moser families are the subsets of Irr(W ) corresponding to
the blocks of Hc .



Restricted Cherednik algebra (Gordon, 2003)

Take c ∈ C and let

H
−
c = CW ⊗ C[V ∗]co(W ) = W n C[V ∗]co(W ) ⊂ Hc .

Si χ ∈ Irr(W ), let Mc(χ) = Hc ⊗H
−
c
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Restricted Cherednik algebra (continued)

Let Q̄c = Cc,0,0 ⊗P Q. Then

Q̄c ⊆ Z(Hc)

but, in general, the inclusion is strict. However (Müller)

Idempr(Q̄c) = Idempr(Z(Hc)).

Theorem (B.-Rouquier 2010)

If F is a Calogero-Moser family corresponding to a primitive idempotent
b ∈ Idempr(Q̄c), then

dimC Q̄cb =
∑

χ∈Irr(W )

χ(1)2.
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KH?

Recall that
H ' EndQ(He).

So
KH ' EndKQ(KHe).

But Q is an integral domain (and normal) so

KQ = Frac(Q) =: L.

Moreover,
[L : K] = |W | and dimK(KHe) = |W |2.

So dimL(KHe) = |W | and

KH ' Mat|W |(L).

NOT SPLIT
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How to split KH 'Mat|W |(L)?

Let M be the Galois closure of the extension L/K and let

G = Gal(M/K) and H = Gal(M/L).

Then, as [L : K] = |W |, one gets

|G/H | = |W |.

Then
M⊗K L −→ ⊕gH∈G/HM
m ⊗K l 7−→ ⊕gH∈G/Hmg(l).

So
MH ' ⊕gH∈G/HMat|W |(M)

and
Irr(MH)

∼←→ G/H.

| Irr(MH)| = |G/H | = |W |
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G/H and W ?

Let p0 = Ker(P → C[V /W × V ∗/W ]) ! evaluation at c = 0.
Recall that Q0 = Q/p0Q ' C[(V × V ∗)/W ]. So

q0 = p0Q ∈ Spec(Q)

and we fix a prime ideal r0 of R lying above q0.
D0 = Gdec

r0
= {g ∈ G | g(r0) = r0}

I0 = G in
r0

= {g ∈ G | ∀ r ∈ R, g(r) ≡ r mod r0}

Then
Gal(kR(r0)/kP(p0)) ' D0/I0.

But, since p0Q ∈ Spec(Q), we also have:

G = D0 · H = H · D0

I0 = 1

kR(r0)/kP(p0) is the Galois closure of kQ(q0)/kP(p0).

But

kP(p0) ' C(V × V ∗)W×W ⊂ kQ(q0) = C(V × V ∗)∆W ⊂ C(V × V ∗).
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G/H and W ? (continued)

So
D0 ' (W ×W )/∆Z(W )

D0 ∩ H ' ∆W /∆Z(W )

and so
W

∼←→ (W ×W )/∆W
∼←→ D0/(D0 ∩ H)

∼←→ G/H
∼←→ Irr(MH).

K0(MH) ' ZW

and the decomposition map (modulo r̄c) gives a map

K0(MH) // K0(Hc)

ZW
decc // Z Irr W
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Calogero-Moser cells

Let p̄c = Ker(P → Cc,0,0), so that

Hc = H/p̄cH.

Let r̄c be a prime ideal of R lying above p̄c . Then P/p̄c ' Cc,0,0 ' R/r̄c .
So

RH/r̄cH ' Hc .

Calogero-Moser cells (first definition)

A c-Calogero-Moser two-sided cell is a subset of W associated with a
block of Rr̄c H.

If Γ is a c-Calogero-Moser cell, we denote by IrrCM
Γ (W ) the subset of

Irr(W )
∼↔ Irr(Hc) associated with the corresponding block of Hc .
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Conjecture (Gordon-Martino 2006, almost true)

If (W , S) is a Coxeter system and if c is real-valued, then the
c-Calogero-Moser families coincide with the c-Kazhdan-Lusztig families.

True in types A, D, dihedral; type B and some c’s, type F4 for generic c ′s
(Gordon-Martino, Bellamy,...)

Conjecture (B.-Rouquier 2010)

If (W , S) is a Coxeter system and if c is real-valued, then there exists a
prime ideal r̄c lying above p̄c such that the c-Calogero-Moser cells coincide
with the c-Kazhdan-Lusztig two-sided cells. Moreover, if Γ is a
CM/KL-cell, then

IrrCM
Γ (W ) = IrrKL

Γ (W ).
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Properties

B.-Rouquier (2010): |Γ | =
∑
χ∈IrrCM

Γ (W ) χ(1)2

Assume that all reflections in W have order 2. Then:
I If F is a CM-family, then Fε is a CM-family (ε = det)
I If moreover −1 ∈W (write w0 = −1) and if Γ is a CM-cell, then

w0Γ = Γw0 are CM-cells and IrrCM
w0Γ (W ) = IrrCM

Γ (W )ε

Generic, left, right cells...

Part of the semicontinuity properties are trivial.
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Aiguille du Midi

Departure: 12h55 at the Amis de la Nature

Consequently: please be ready to pick your lunch bag at the
restaurant at 12h30

VERY COLD!!!

Sun glasses...

Pay individually in Chamonix for the lift (around 42 euros)

The bus is paid by the conference
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