Cédric Bonnafé

CNRS - Institut Montpelliérain Alexander Grothendieck

Montpellier, Octobre 2019

Points

P.

Q

Points

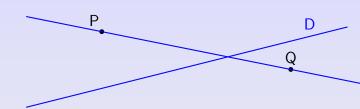
Ρ.

Q

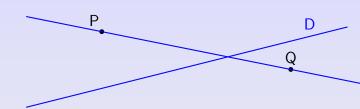
- Points
- Droites

- Points
- Droites

- Points
- Droites
- Par deux points il passe une et une seule droite



- Points
- Droites
- Par deux points il passe une et une seule droite



- Points
- Droites
- Par deux points il passe une et une seule droite

But: respecter l'alignement

But: respecter l'alignement

But: respecter l'alignement

o •

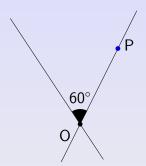
But: respecter l'alignement

• P

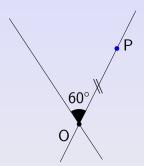
0

But: respecter l'alignement

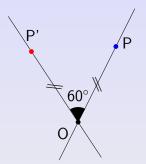
But: respecter l'alignement



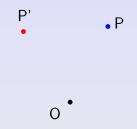
But: respecter l'alignement



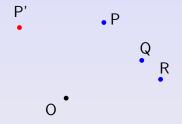
But: respecter l'alignement



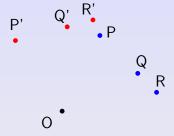
But: respecter l'alignement



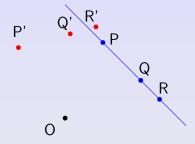
But: respecter l'alignement



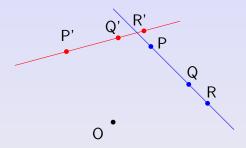
But: respecter l'alignement



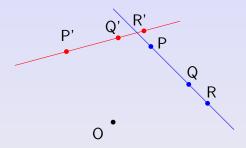
But: respecter l'alignement



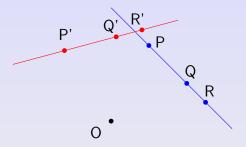
But: respecter l'alignement



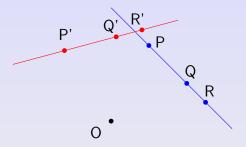
But: respecter l'alignement



But: respecter l'alignement



But: respecter l'alignement



- 57 figurines
- 55 cartes

- 57 figurines
- 55 cartes (bug? Il pourrait y en avoir 57)

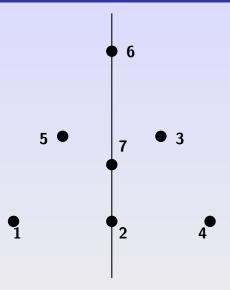
- 57 figurines **57 points**
- 55 cartes (bug? Il pourrait y en avoir 57)

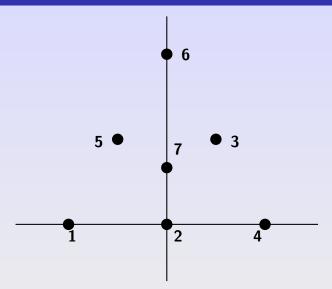
- 57 figurines **57 points**
- 55 cartes (bug? Il pourrait y en avoir 57) → **57 droites**

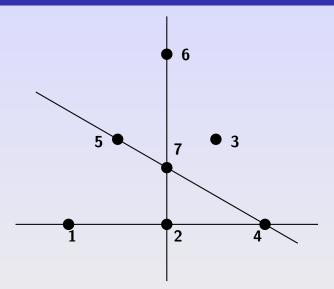
- 57 figurines **57 points**
- 55 cartes (bug ? Il pourrait y en avoir 57) → 57 droites
- $57 = 8^2 8 + 1$

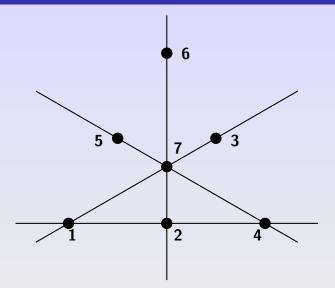
Une géométrie discrète

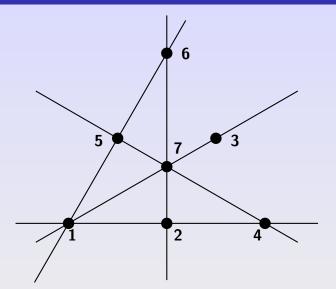


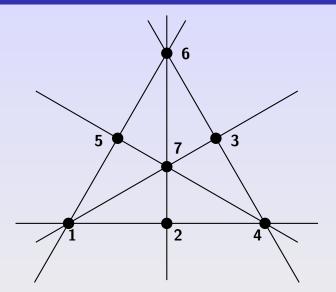


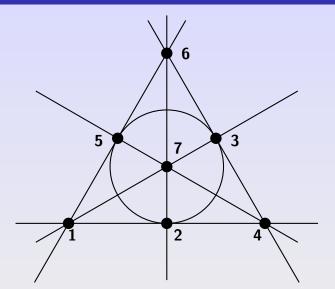


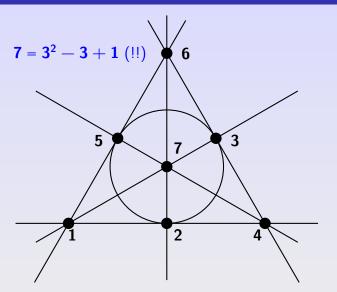


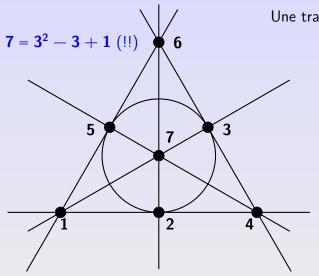










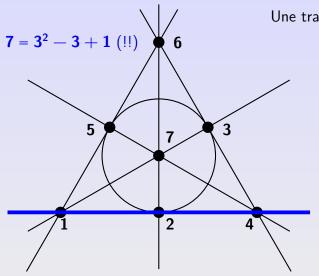


$$3 \longmapsto 4$$

$$4 \longmapsto 5$$

$$6 \longrightarrow 7$$

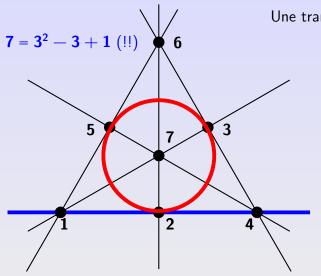
$$7 \longrightarrow 1$$



$$3{\longmapsto}4$$

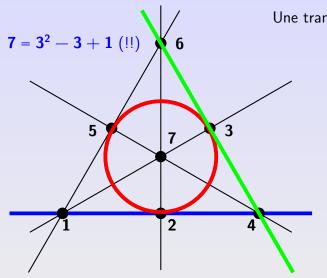
$$6 \longrightarrow 7$$

$$7 \longrightarrow 1$$

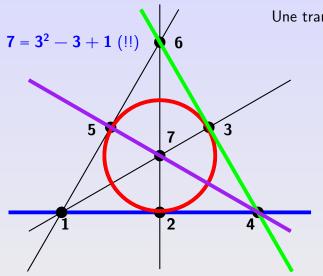


- 1-----2
 - 2----3
 - $3 \longmapsto 4$
 - 4-----5
 - 5-----6

 - $7 \longrightarrow 1$



- 1-----2
 - 2----3
 - $3{\longmapsto}4$
 - 4-----5
 - 5-----6
 - 6------7
 - 7-------1

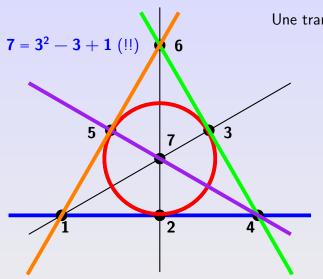


$$3{\longmapsto}4$$

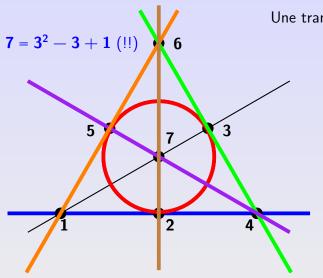
$$5 {\longmapsto} 6$$

$$6 \longrightarrow 7$$

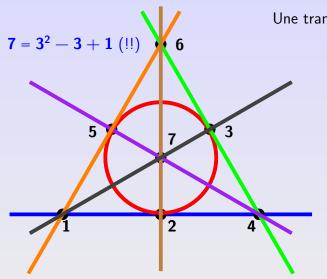
$$7 \longrightarrow 1$$



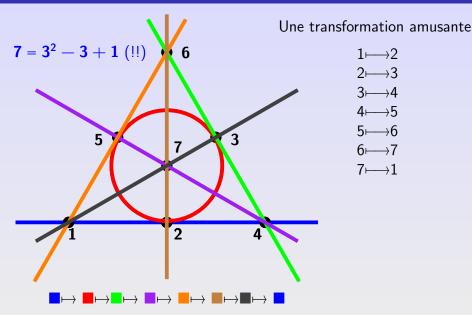
- 1-----2
 - 2----3
 - $3{\longmapsto}4$
 - $4{\longmapsto}5$
 - 5-----6
 - 6-------------------------7

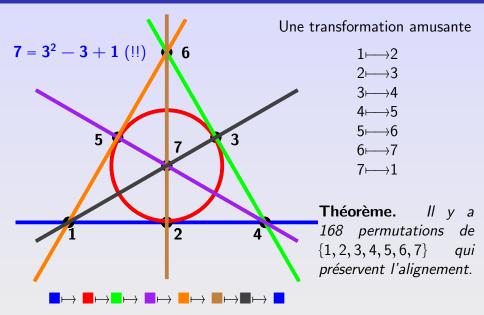


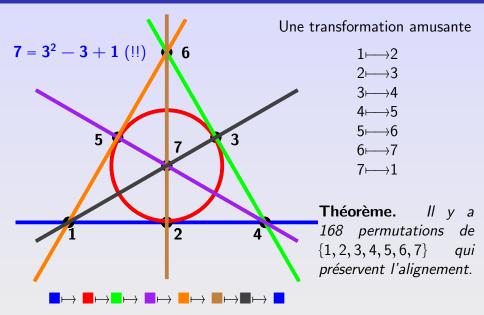
- $1 \longrightarrow 2$
 - 2----3
 - $3 \longmapsto 4$
 - $4{\longmapsto}5$
 - 5-----6
 - 6------7
 - 7-------1

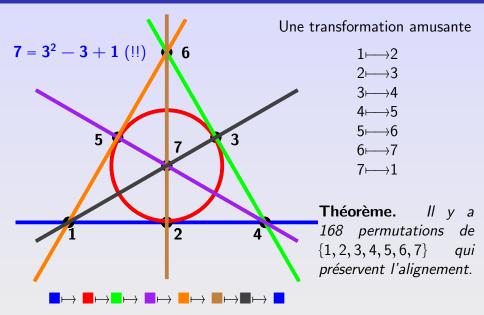


- 1-----2
 - 2----3
 - $3 \longmapsto 4$
 - 4------5
 - $5 \longrightarrow 6$
 - 6------7

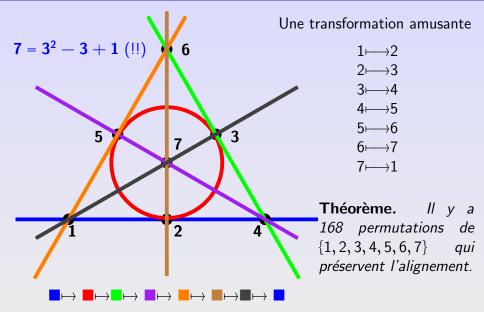








Une géométrie discrète (Plan de Fano)



But : On se donne un entier n et on veut fabriquer un "Dobble" tel que :

- Chaque droite contienne *n* points
- Chaque point appartient à *n* droites

But : On se donne un entier n et on veut fabriquer un "Dobble" tel que :

- Chaque droite contienne *n* points
- Chaque point appartient à *n* droites

Exemples

• $n = 3 \longrightarrow \text{voir la figure précédente}$

But : On se donne un entier n et on veut fabriquer un "Dobble" tel que :

- Chaque droite contienne *n* points
- Chaque point appartient à *n* droites

Exemples

- $n = 3 \longrightarrow \text{voir la figure précédente}$
- $n = 8 \longrightarrow Dobble standard$

But : On se donne un entier n et on veut fabriquer un "Dobble" tel que :

- Chaque droite contienne *n* points
- Chaque point appartient à *n* droites

Exemples

- $n = 3 \longrightarrow \text{voir la figure précédente}$
- $n = 8 \longrightarrow \text{Dobble standard}$

• $n = 6 \longrightarrow \text{Dobble junior}$

But : On se donne un entier n et on veut fabriquer un "Dobble" tel que :

- Chaque droite contienne *n* points
- Chaque point appartient à *n* droites

Exemples

- $n = 3 \longrightarrow \text{voir la figure précédente}$
- $n = 8 \longrightarrow Dobble standard$

• $n = 6 \longrightarrow \text{Dobble junior}$

Contre-exemple (Brook & Ryser, 1949) : Il n'existe pas de Dobble avec n = 7.

Théorème

S'il existe un Dobble pour l'entier n, alors :

- If y a $n^2 n + 1$ figurines (points)
- If y a $n^2 n + 1$ cartes (droites)

Théorème

S'il existe un Dobble pour l'entier n, alors :

- If y a $n^2 n + 1$ figurines (points)
- If y a $n^2 n + 1$ cartes (droites)

Théorème

Si n-1 est une puissance d'un nombre premier (par exemple n=3, 4, 5, 6, 8, 9, 10, 12...), alors il existe un "Dobble" pour l'entier n.

Théorème

S'il existe un Dobble pour l'entier n, alors :

- If y a $n^2 n + 1$ figurines (points)
- If y a $n^2 n + 1$ cartes (droites)

Théorème

Si n-1 est une puissance d'un nombre premier (par exemple n=3, 4, 5, 6, 8, 9, 10, 12...), alors il existe un "Dobble" pour l'entier n.

Remarque. Si q = n - 1, alors il y a $q^3(q^2 - 1)(q^3 - 1)$ permutations des figurines qui permutent aussi les cartes.

Théorème

S'il existe un Dobble pour l'entier n, alors :

- If y a $n^2 n + 1$ figurines (points)
- If y a $n^2 n + 1$ cartes (droites)

Théorème

Si n-1 est une puissance d'un nombre premier (par exemple n=3, 4, 5, 6, 8, 9, 10, 12...), alors il existe un "Dobble" pour l'entier n.

Remarque. Si q = n - 1, alors il y a $q^3(q^2 - 1)(q^3 - 1)$ permutations des figurines qui permutent aussi les cartes.

Exemple. Si n = 8, alors q = 7 et il y a donc 5 630 688 permutations des 57 figurines qui permutent les cartes (sur 57!

Théorème

S'il existe un Dobble pour l'entier n, alors :

- If y a $n^2 n + 1$ figurines (points)
- If y a $n^2 n + 1$ cartes (droites)

Théorème

Si n-1 est une puissance d'un nombre premier (par exemple n=3, 4, 5, 6, 8, 9, 10, 12...), alors il existe un "Dobble" pour l'entier n.

Remarque. Si q = n - 1, alors il y a $q^3(q^2 - 1)(q^3 - 1)$ permutations des figurines qui permutent aussi les cartes.

Exemple. Si n = 8, alors q = 7 et il y a donc 5 630 688 permutations des 57 figurines qui permutent les cartes (sur 57! =

Théorème

S'il existe un Dobble pour l'entier n, alors :

- If y a $n^2 n + 1$ figurines (points)
- If y a $n^2 n + 1$ cartes (droites)

Théorème

Si n-1 est une puissance d'un nombre premier (par exemple n=3, 4, 5, 6, 8, 9, 10, 12...), alors il existe un "Dobble" pour l'entier n.

Remarque. Si q = n - 1, alors il y a $q^3(q^2 - 1)(q^3 - 1)$ permutations des figurines qui permutent aussi les cartes.

Non existence ?

Non existence?

Théorème

• Si n = 7 ou 15, alors il n'existe pas de "Dobble" avec ces propriétés (Brook & Ryser, 1949)

Non existence ?

Théorème

- Si n = 7 ou 15, alors il n'existe pas de "Dobble" avec ces propriétés (Brook & Ryser, 1949)
- Si n = 11, alors il n'existe pas de "Dobble" avec ces propriétés (Lam, 1989)

Non existence ?

Théorème

- Si n = 7 ou 15, alors il n'existe pas de "Dobble" avec ces propriétés (Brook & Ryser, 1949)
- Si n = 11, alors il n'existe pas de "Dobble" avec ces propriétés (Lam, 1989)

Remarque : pour n=13, on ne sait toujours pas, même si on pense fortement que c'est impossible !

•
$$\mathbb{F}_p = \{\bar{0}, \bar{1}, \ldots, \overline{p-1}\},\$$

• $\mathbb{F}_p = \{\overline{0}, \overline{1}, \dots, \overline{p-1}\}$, muni de l'addition et la multiplication modulo p

• $\mathbb{F}_p = \{\bar{0}, \bar{1}, \dots, \overline{p-1}\}$, muni de l'addition et la multiplication modulo pExemple : Dans \mathbb{F}_5 , $\bar{2} + \bar{3} = \bar{0}$, $\bar{2} \times \bar{3} = \bar{1}$.

- $\mathbb{F}_p = \{\bar{0}, \bar{1}, \dots, \overline{p-1}\}$, muni de l'addition et la multiplication modulo pExemple : Dans \mathbb{F}_5 , $\bar{2} + \bar{3} = \bar{0}$, $\bar{2} \times \bar{3} = \bar{1}$.
- $P = \mathbb{F}_p \times \mathbb{F}_p$

- $\mathbb{F}_p = \{\bar{0}, \bar{1}, \dots, \overline{p-1}\}$, muni de l'addition et la multiplication modulo pExemple : Dans \mathbb{F}_5 , $\bar{2} + \bar{3} = \bar{0}$, $\bar{2} \times \bar{3} = \bar{1}$.
- $P = \mathbb{F}_p \times \mathbb{F}_p$ (p^2 points)

- $\mathbb{F}_p = \{\bar{0}, \bar{1}, \dots, \overline{p-1}\}$, muni de l'addition et la multiplication modulo pExemple : Dans \mathbb{F}_5 , $\bar{2} + \bar{3} = \bar{0}$, $\bar{2} \times \bar{3} = \bar{1}$.
- $P = \mathbb{F}_p \times \mathbb{F}_p$ (p^2 points)
- Dans le "plan" P, il y a des "droites" :

- $\mathbb{F}_p = \{\bar{0}, \bar{1}, \dots, \overline{p-1}\}$, muni de l'addition et la multiplication modulo pExemple : Dans \mathbb{F}_5 , $\bar{2} + \bar{3} = \bar{0}$, $\bar{2} \times \bar{3} = \bar{1}$.
- $P = \mathbb{F}_p \times \mathbb{F}_p$ (p^2 points)
- Dans le "plan" P, il y a des "droites" :
 - d'équation y=ax+b, avec $a,\ b\in\mathbb{F}_p$

- $\mathbb{F}_p = \{\bar{0}, \bar{1}, \dots, \overline{p-1}\}$, muni de l'addition et la multiplication modulo pExemple : Dans \mathbb{F}_5 , $\bar{2} + \bar{3} = \bar{0}$, $\bar{2} \times \bar{3} = \bar{1}$.
- $P = \mathbb{F}_p \times \mathbb{F}_p$ (p^2 points)
- Dans le "plan" P, il y a des "droites" :
 - d'équation y=ax+b, avec $a,\ b\in\mathbb{F}_p$
 - d'équation x=a, avec $a\in\mathbb{F}_p$

- $\mathbb{F}_p = \{\bar{0}, \bar{1}, \dots, \overline{p-1}\}$, muni de l'addition et la multiplication modulo pExemple : Dans \mathbb{F}_5 , $\bar{2} + \bar{3} = \bar{0}$, $\bar{2} \times \bar{3} = \bar{1}$.
- $P = \mathbb{F}_p \times \mathbb{F}_p$ (p^2 points)
- Dans le "plan" P, il y a des "droites" :
 - d'équation y=ax+b, avec $a,\ b\in\mathbb{F}_p$
 - d'équation x=a, avec $a\in\mathbb{F}_p$ (droites "verticales")

- $\mathbb{F}_p = \{\bar{0}, \bar{1}, \dots, \overline{p-1}\}$, muni de l'addition et la multiplication modulo pExemple : Dans \mathbb{F}_5 , $\bar{2} + \bar{3} = \bar{0}$, $\bar{2} \times \bar{3} = \bar{1}$.
- $P = \mathbb{F}_p \times \mathbb{F}_p$ (p^2 points)
- Dans le "plan" P, il y a des "droites" :
 - d'équation y=ax+b, avec $a,\ b\in\mathbb{F}_p$
 - d'équation x=a, avec $a\in\mathbb{F}_p$ (droites "verticales")
 - toutes ces droites contiennent p points

- $\mathbb{F}_p = \{\bar{0}, \bar{1}, \dots, \overline{p-1}\}$, muni de l'addition et la multiplication modulo pExemple : Dans \mathbb{F}_5 , $\bar{2} + \bar{3} = \bar{0}$, $\bar{2} \times \bar{3} = \bar{1}$.
- $P = \mathbb{F}_p \times \mathbb{F}_p$ (p^2 points)
- Dans le "plan" P, il y a des "droites" :
 - d'équation y=ax+b, avec $a,\ b\in\mathbb{F}_p$
 - d'équation x=a, avec $a\in\mathbb{F}_p$ (droites "verticales")
 - toutes ces droites contiennent p points
 - cela fait $p^2 + p$ droites

- $\mathbb{F}_p = \{\bar{0}, \bar{1}, \dots, \overline{p-1}\}$, muni de l'addition et la multiplication modulo pExemple : Dans \mathbb{F}_5 , $\bar{2} + \bar{3} = \bar{0}$, $\bar{2} \times \bar{3} = \bar{1}$.
- $P = \mathbb{F}_p \times \mathbb{F}_p$ (p^2 points)
- Dans le "plan" P, il y a des "droites" :
 - d'équation y=ax+b, avec $a,\ b\in\mathbb{F}_p$
 - d'équation x=a, avec $a\in\mathbb{F}_p$ (droites "verticales")
 - toutes ces droites contiennent p points
 - cela fait $p^2 + p$ droites
- On rajoute les points d'intersection à l'infini

- $\mathbb{F}_p = \{\bar{0}, \bar{1}, \dots, \overline{p-1}\}$, muni de l'addition et la multiplication modulo pExemple : Dans \mathbb{F}_5 , $\bar{2} + \bar{3} = \bar{0}$, $\bar{2} \times \bar{3} = \bar{1}$.
- $P = \mathbb{F}_p \times \mathbb{F}_p$ (p^2 points)
- Dans le "plan" P, il y a des "droites" :
 - d'équation y = ax + b, avec $a, b \in \mathbb{F}_p$
 - d'équation x=a, avec $a\in\mathbb{F}_p$ (droites "verticales")
 - toutes ces droites contiennent p points
 - cela fait $p^2 + p$ droites
- ullet On rajoute les points d'intersection à l'infini (il y en a p+1)

- $\mathbb{F}_p = \{\bar{0}, \bar{1}, \dots, \overline{p-1}\}$, muni de l'addition et la multiplication modulo p
 - Exemple : Dans \mathbb{F}_5 , $\bar{2} + \bar{3} = \bar{0}$, $\bar{2} \times \bar{3} = \bar{1}$.
- $P = \mathbb{F}_p \times \mathbb{F}_p$ (p^2 points)
- Dans le "plan" P, il y a des "droites" :
 - d'équation y=ax+b, avec $a,\ b\in\mathbb{F}_p$
 - d'équation x=a, avec $a\in\mathbb{F}_p$ (droites "verticales")
 - toutes ces droites contiennent p points
 - cela fait $p^2 + p$ droites
- On rajoute les points d'intersection à l'infini (il y en a p+1)
- On décrète que tous les points à l'infini sont alignés

- $\mathbb{F}_p = \{\bar{0}, \bar{1}, \dots, \overline{p-1}\}$, muni de l'addition et la multiplication modulo p
 - Exemple : Dans \mathbb{F}_5 , $\bar{2} + \bar{3} = \bar{0}$, $\bar{2} \times \bar{3} = \bar{1}$.
- $P = \mathbb{F}_p \times \mathbb{F}_p$ (p^2 points)
- Dans le "plan" P, il y a des "droites" :
 - d'équation y=ax+b, avec $a,\ b\in\mathbb{F}_p$
 - d'équation x=a, avec $a\in\mathbb{F}_p$ (droites "verticales")
 - toutes ces droites contiennent p points
 - cela fait $p^2 + p$ droites
- On rajoute les points d'intersection à l'infini (il y en a p+1)
- On décrète que tous les points à l'infini sont alignés
- On a $p^2 + p + 1 = n^2 n + 1$ points et $p^2 + p + 1$ droites...

- $\mathbb{F}_p = \{\bar{0}, \bar{1}, \dots, \overline{p-1}\}$, muni de l'addition et la multiplication modulo p
 - Exemple : Dans \mathbb{F}_5 , $\bar{2} + \bar{3} = \bar{0}$, $\bar{2} \times \bar{3} = \bar{1}$.
- $P = \mathbb{F}_p \times \mathbb{F}_p$ (p^2 points)
- Dans le "plan" P, il y a des "droites" :
 - d'équation y=ax+b, avec $a,\ b\in\mathbb{F}_p$
 - d'équation x=a, avec $a\in\mathbb{F}_p$ (droites "verticales")
 - toutes ces droites contiennent p points
 - cela fait $p^2 + p$ droites
- On rajoute les points d'intersection à l'infini (il y en a p+1)
- On décrète que tous les points à l'infini sont alignés
- On a $p^2 + p + 1 = n^2 n + 1$ points et $p^2 + p + 1$ droites...
- ightarrow Conclusion : le Dobble standard est le plan projectif sur \mathbb{F}_7

- $\mathbb{F}_p = \{\overline{0}, \overline{1}, \dots, \overline{p-1}\}$, muni de l'addition et la multiplication modulo p
 - Exemple : Dans \mathbb{F}_5 , $\bar{2} + \bar{3} = \bar{0}$, $\bar{2} \times \bar{3} = \bar{1}$.
- $P = \mathbb{F}_p \times \mathbb{F}_p \ (p^2 \text{ points})$
- Dans le "plan" P, il y a des "droites" :
 - d'équation y=ax+b, avec $a,\ b\in\mathbb{F}_p$
 - d'équation x=a, avec $a\in\mathbb{F}_p$ (droites "verticales")
 - toutes ces droites contiennent p points
 - cela fait $p^2 + p$ droites
- On rajoute les points d'intersection à l'infini (il y en a p+1)
- On décrète que tous les points à l'infini sont alignés
- On a $p^2 + p + 1 = n^2 n + 1$ points et $p^2 + p + 1$ droites...
- ightarrow Conclusion : le Dobble standard est le plan projectif sur \mathbb{F}_7
- ightarrow Conclusion : le Dobble junior est le plan projectif sur \mathbb{F}_5

- $\mathbb{F}_p = \{\overline{0}, \overline{1}, \dots, \overline{p-1}\}$, muni de l'addition et la multiplication modulo p
 - Exemple : Dans \mathbb{F}_5 , $\bar{2}+\bar{3}=\bar{0}$, $\bar{2}\times\bar{3}=\bar{1}$.
- $P = \mathbb{F}_p \times \mathbb{F}_p \ (p^2 \text{ points})$
- Dans le "plan" P, il y a des "droites" :
 - d'équation y=ax+b, avec $a,\ b\in\mathbb{F}_p$
 - d'équation x=a, avec $a\in\mathbb{F}_p$ (droites "verticales")
 - toutes ces droites contiennent p points
 - cela fait $p^2 + p$ droites
- ullet On rajoute les points d'intersection à l'infini (il y en a p+1)
- On décrète que tous les points à l'infini sont alignés
- On a $p^2 + p + 1 = n^2 n + 1$ points et $p^2 + p + 1$ droites...
- ightarrow Conclusion : le Dobble standard est le plan projectif sur \mathbb{F}_7
- ightarrow Conclusion : le Dobble junior est le plan projectif sur \mathbb{F}_{5}
- \rightarrow Conclusion : le plan de Fano est le plan projectif sur $\mathbb{F}_{\!2}$

