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T.T,=T, if {(xy) =L(x)+L(y)
(T:—QT:+Q 1) =0
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Hypothesis and notation
e QR=—¢q¥ deZ

@ e = order of g3, e > 2.
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e Bip = H Bip(n), r > 0, v indeterminate
n>0

@ Fock space: F,:= @& C(v) |\ r)
A€Bip

o F, is endowed with an action of U, (sl,) depending on r

Uglov has constructed an involution ™ : F, — F, and there exists a
unique G(A, r) € F, such that

GA,r)=G(Ar)
G(A,r) =N r) mod vClv]

Write G(u, r Z dx,.(v) A, r) (note that df,(v) = 1).

A€Bip

(IA, r))aesip is called the standard basis
(G(A, r))aeBip is called the Kashiwara-Lusztig canonical basis
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Comments:

e |Bip, . (n)| = |Bip, , s (n)| if k € Z (for a bijection, see Jacon,
Jacon-Lecouvey)

o If r > n—1, Bip, (n) = {Kleshchev bipartitions} (see Ariki: it is
related to the Dipper-James-Mathas or to the Graham-Lehrer
cellular structure).

@ Bipy, .(n) = {FLOTW bipartitions} (Jacon). Here, dy = d
mod e and dy €{0,1,2,...,e —1}.
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another ingredient: a total order on Z? (compatible with addition).

e Fix 0 € R™, irrational (!): let <g be the total order on Z?
defined by

(myn) <o (M',n") &= mO+n<mo0+n’

(roughly speaking, “Q = ¢°"...)

olet :H, > Hn Tur— T4 @ QL g gt (ie
eY +— e~ Y) antilinear involution.
(] R<60 = & Zey, H:eo = & R<90Tw-

2
y€Z<GO weW,
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Case n =2 (write s = s1)

¢ =1 Q=T+Q", C=T.+q"

CY = Ta+QTi+¢ T, +Q ¢!
Cg = Tts+Q T+q th+Qlil
Csets = Tas+q 1(Tst + Tis) +

g 2T+ Qg (1+¢*)(Ts+q 1) ifo>1
Qlg T+ Qg 11—-Q¥)(T,+Q 1) ifo<o<1
Cgt = Ttst+Q (st‘l‘ Tts)
Qlg T, +Qlgi(1—¢®)(T:+ Q1) ifo>1
Qlg T, +Q g (14 ¢?)(Ts+q 1) if0<O<1
CV?/() = TW0+Q_ T5t5+q_ TtSt+Q_1q_1(Tst+ Tts)
+Q 2 s+ Qg T+ Q%q 2
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o If x, y € W, we write x L0 y if there exists h € H,, such that
C? occurs in hC}f9

o Let <? be the transitive closure of ﬁ: it is a preorder
(reflexive and transitive)

o Let ~) be the equivalence relation associated to <} (i.e. x~9y
if and only if x <, y and y <? x)

Definition
0

A O-left cell is an equivalence class for the relation ~7.

X<?C
o If Cis a -left cell, we set ¢ /oo = @ RC?

x<fc
Vce - Ig?c//<fc
@ By construction, /coc and /_o. are left ideals of H, and VPis a
left H,-module: V? is called the left cell representation
associated to C.
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Theorem (Ariki, BGIJLLPT, Uglov)

Assume that Lusztig's conjectures P1, P2,..., P15 hold. If r = d
mod e and r < 0 < r+ e, then DY # 0 if and only if A € Bip, ,(n).
So the map
Bip,,(n) — ©IrCH,
A — Dy

is bijective and coincides with the map in Ariki’s Theorem. Moreover,
the decomposition map is given by

da[KS) = ) (DY)

ueBip, ,(n)
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Comments -

@ Lusztig's conjectures P1, P2,..., P15 hold if ® > n—1 (B.,
Geck, lancu). In this case, the Sf are the Specht modules of
Dipper-James-Murphy (Geck-lancu-Pallikaros 2008).

@ They also hold if 8 € {1/2,1,3/2} (Lusztig).
@ They will be true for 6 € N/2 (Lusztig 2017?)
@ The modules SY and DY should depend more on [6] than on .

@ Question - It seems reasonable to expect that, if C <, C’,
then A(C’) <, A(C).
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Jantzen’s filtration

@ O C K discrete valuation ring containing R such that, if we
denote by p the maximal ideal of O, then p N R = Ker(R — C).

0 OSYi)={xe0SY|VyecOS) Obdx,y)epl
® O/p CC,CSYi) =C®oy (OSi) +pSP)/pSy.

@ Then, for some mg >> 0,

0=CS2(my) C CSP(my—1) C --- C CSP(1) C CSP(0) =CSY.

Question: If r< 8 <r+eand r=d mod e, then

& (V)2 Y TCSS)/KSS(i+1): DY) v/,

i>0
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