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(Wn, Sn) Weyl group of type Bn

Sn = {t, s1, s2, . . . , sn−1}

i i i · · · it s1 s2 sn−1

` : Wn → N = {0, 1, 2, . . . } length function

R = Z[Q,Q−1, q, q−1], Q, q indeterminates

Hn = HR(Wn, Sn,Q, q): Hecke algebra of type Bn with
parameters Q and q. Hn = ⊕w∈WnRTw

TxTy = Txy if `(xy) = `(x) + `(y)

(Tt − Q)(Tt + Q−1) = 0

(Tsi − q)(Tsi + q−1) = 0 if 1 6 i 6 n − 1
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K = Frac(R), KHn = K ⊗R Hn split semisimple

Irr KHn = {Vλ | λ ∈ Bip(n)},

where Bip(n) = {bipartitions of n}.

Q0, q0 ∈ C×, specialization −→ CHn = C⊗R Hn

R0(CHn) := Grothendieck group of CHn ' Z Irr CHn

decomposition map dn : R0(KHn) −→ R0(CHn)

Hypothesis and notation

Q2
0 = −q2d

0 , d ∈ Z
e = order of q2

0 , e > 2.
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Fock space:

Bip =
∐
n > 0

Bip(n), r > 0, v indeterminate

Fock space: Fr := ⊕
λ∈Bip

C(v) |λ, r〉

Fr is endowed with an action of Uv(ŝle) depending on r

Uglov has constructed an involution ¯ : Fr → Fr and there exists a
unique G (λ, r) ∈ Fr such that{

G (λ, r) = G (λ, r)

G (λ, r) ≡ |λ, r〉 mod vC[v ]

Write G (µ, r) =
∑
λ∈Bip

d r
λµ(v) |λ, r〉 (note that d r

λλ(v) = 1).

(|λ, r〉)λ∈Bip is called the standard basis
(G (λ, r))λ∈Bip is called the Kashiwara-Lusztig canonical basis
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Uglov has constructed an involution ¯ : Fr → Fr and there exists a
unique G (λ, r) ∈ Fr such that{

G (λ, r) = G (λ, r)

G (λ, r) ≡ |λ, r〉 mod vC[v ]

Write G (µ, r) =
∑
λ∈Bip

d r
λµ(v) |λ, r〉 (note that d r

λλ(v) = 1).

(|λ, r〉)λ∈Bip is called the standard basis
(G (λ, r))λ∈Bip is called the Kashiwara-Lusztig canonical basis



Fock space:

Bip =
∐
n > 0

Bip(n), r > 0, v indeterminate

Fock space: Fr := ⊕
λ∈Bip

C(v) |λ, r〉

Fr is endowed with an action of Uv(ŝle) depending on r
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Ariki’s Theorem (Ariki, Uglov, Geck-Jacon). Assume that
r ≡ d mod e. There exists a subset Bipe,r(n) of Bip(n) and a
bijection

Bipe,r(n) −→ Irr CHn

λ 7−→ De,r
λ

such that

Uv(ŝle) |∅, r〉 = ⊕
λ∈Bipe,r

C(v) G (λ, r), where

Bipe,r =
∐
n > 0

Bipe,r(n)

If λ ∈ Bip(n), then dn[Vλ] =
∑

µ∈Bipe,r (n)

d r
λµ(1) [De,r

µ ]

Remark - d r
λµ(v) is “computable”
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Comments:

| Bipe,r(n)| = | Bipe,r+ke(n)| if k ∈ Z (for a bijection, see Jacon,
Jacon-Lecouvey)

If r > n − 1, Bipe,r(n) = {Kleshchev bipartitions} (see Ariki: it is
related to the Dipper-James-Mathas or to the Graham-Lehrer
cellular structure).

Bipd0,e(n) = {FLOTW bipartitions} (Jacon). Here, d0 ≡ d
mod e and d0 ∈ {0, 1, 2, . . . , e − 1}.
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R = Z[Z2]

= ⊕
γ∈Z2

Zeγ.

Q = e(1,0), q = e(0,1).

For Kazhdan-Lusztig theory (with unequal parameters) you need
another ingredient: a total order on Z2 (compatible with addition).

Fix θ ∈ R+, irrational (!): let 6θ be the total order on Z2

defined by

(m, n) 6θ (m ′, n ′)⇐⇒ mθ+ n 6 m ′θ+ n ′

(roughly speaking, “Q = qθ”...)

Let ¯ : Hn → Hn, Tw 7→ T−1
w−1 , Q 7→ Q−1, q 7→ q−1 (i.e.

eγ 7→ e−γ) antilinear involution.

R<θ0 = ⊕
γ∈Z2

<θ0

Zeγ, H<θ0
n = ⊕

w∈Wn

R<θ0Tw .
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Theorem (Kazhdan-Lusztig, 1979). For each w ∈ Wn, there
exists a unique C θw ∈ Hn such that{

C
θ

w = C θw
C θw ≡ Tw mod H<θ0

n



Case n = 2 (write s = s1)

Cθ1 = 1, Cθt = Tt + Q−1, Cθs = Ts + q−1

Cθst = Tst + Q−1Ts + q−1Tt + Q−1q−1

Cθts = Tts + Q−1Ts + q−1Tt + Q−1q−1

Cθsts = Tsts + q−1(Tst + Tts) +{
q−2Tt + Q−1q−1(1 + q2)(Ts + q−1) if θ > 1

Q−1q−1Ts + Q−1q−1(1 − Q2)(Tt + Q−1) if 0 < θ < 1

Cθtst = Ttst + Q−1(Tst + Tts) +{
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C θx occurs in hC θy

Let 6θ
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Let ∼θL be the equivalence relation associated to 6θ
L (i.e. x ∼θL y

if and only if x 6L y and y 6θ
L x)

Definition
A θ-left cell is an equivalence class for the relation ∼θL.

If C is a θ-left cell, we set
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I6θL C = ⊕

x6θL C
RC θx

I<θL C = ⊕
x<θL C

RC θx

V θ
C = I6θL C/I<θL C

By construction, I6θL C and I<θL C are left ideals of Hn and V θ
C is a

left Hn-module: V θ
C is called the left cell representation

associated to C.
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Theorem (B., Geck, Iancu, Jacon, Lam, Lusztig, Pietraho,
Taskin)

Assume that Lusztig’s conjectures P1, P2,..., P15 hold. Then :

If C is a θ-left cell of Wn, then KV θ
C ∈ Irr KHn. We denove by

λ(C) the bipartition such that KV θ
C ' Vλ(C).

If KV θ
C ' KV θ

C ′ , then V θ
C ' V θ

C ′ . We write Sθλ = V θ
C is λ(C) = λ.

Sθλ is endowed with an “Hn-invariant” bilinear form φθλ. We set
Dθ
λ = CSθλ/Ker Cφθλ.

Let Bipθ(n) = {λ ∈ Bip(n) | Dθ
λ 6= 0}. Then

Irr CHn = {Dθ
λ | λ ∈ Bipθ(n)}.



Theorem (B., Geck, Iancu, Jacon, Lam, Lusztig, Pietraho,
Taskin)

Assume that Lusztig’s conjectures P1, P2,..., P15 hold. Then :

If C is a θ-left cell of Wn, then KV θ
C ∈ Irr KHn.

We denove by
λ(C) the bipartition such that KV θ

C ' Vλ(C).

If KV θ
C ' KV θ

C ′ , then V θ
C ' V θ

C ′ . We write Sθλ = V θ
C is λ(C) = λ.

Sθλ is endowed with an “Hn-invariant” bilinear form φθλ. We set
Dθ
λ = CSθλ/Ker Cφθλ.

Let Bipθ(n) = {λ ∈ Bip(n) | Dθ
λ 6= 0}. Then

Irr CHn = {Dθ
λ | λ ∈ Bipθ(n)}.



Theorem (B., Geck, Iancu, Jacon, Lam, Lusztig, Pietraho,
Taskin)

Assume that Lusztig’s conjectures P1, P2,..., P15 hold. Then :

If C is a θ-left cell of Wn, then KV θ
C ∈ Irr KHn. We denove by

λ(C) the bipartition such that KV θ
C ' Vλ(C).

If KV θ
C ' KV θ

C ′ , then V θ
C ' V θ

C ′ . We write Sθλ = V θ
C is λ(C) = λ.

Sθλ is endowed with an “Hn-invariant” bilinear form φθλ. We set
Dθ
λ = CSθλ/Ker Cφθλ.

Let Bipθ(n) = {λ ∈ Bip(n) | Dθ
λ 6= 0}. Then

Irr CHn = {Dθ
λ | λ ∈ Bipθ(n)}.



Theorem (B., Geck, Iancu, Jacon, Lam, Lusztig, Pietraho,
Taskin)

Assume that Lusztig’s conjectures P1, P2,..., P15 hold. Then :

If C is a θ-left cell of Wn, then KV θ
C ∈ Irr KHn. We denove by

λ(C) the bipartition such that KV θ
C ' Vλ(C).

If KV θ
C ' KV θ

C ′ , then V θ
C ' V θ

C ′ .

We write Sθλ = V θ
C is λ(C) = λ.

Sθλ is endowed with an “Hn-invariant” bilinear form φθλ. We set
Dθ
λ = CSθλ/Ker Cφθλ.

Let Bipθ(n) = {λ ∈ Bip(n) | Dθ
λ 6= 0}. Then

Irr CHn = {Dθ
λ | λ ∈ Bipθ(n)}.



Theorem (B., Geck, Iancu, Jacon, Lam, Lusztig, Pietraho,
Taskin)

Assume that Lusztig’s conjectures P1, P2,..., P15 hold. Then :

If C is a θ-left cell of Wn, then KV θ
C ∈ Irr KHn. We denove by

λ(C) the bipartition such that KV θ
C ' Vλ(C).

If KV θ
C ' KV θ

C ′ , then V θ
C ' V θ

C ′ . We write Sθλ = V θ
C is λ(C) = λ.

Sθλ is endowed with an “Hn-invariant” bilinear form φθλ. We set
Dθ
λ = CSθλ/Ker Cφθλ.

Let Bipθ(n) = {λ ∈ Bip(n) | Dθ
λ 6= 0}. Then

Irr CHn = {Dθ
λ | λ ∈ Bipθ(n)}.



Theorem (B., Geck, Iancu, Jacon, Lam, Lusztig, Pietraho,
Taskin)

Assume that Lusztig’s conjectures P1, P2,..., P15 hold. Then :

If C is a θ-left cell of Wn, then KV θ
C ∈ Irr KHn. We denove by

λ(C) the bipartition such that KV θ
C ' Vλ(C).

If KV θ
C ' KV θ

C ′ , then V θ
C ' V θ

C ′ . We write Sθλ = V θ
C is λ(C) = λ.

Sθλ is endowed with an “Hn-invariant” bilinear form φθλ.

We set
Dθ
λ = CSθλ/Ker Cφθλ.

Let Bipθ(n) = {λ ∈ Bip(n) | Dθ
λ 6= 0}. Then

Irr CHn = {Dθ
λ | λ ∈ Bipθ(n)}.



Theorem (B., Geck, Iancu, Jacon, Lam, Lusztig, Pietraho,
Taskin)

Assume that Lusztig’s conjectures P1, P2,..., P15 hold. Then :

If C is a θ-left cell of Wn, then KV θ
C ∈ Irr KHn. We denove by

λ(C) the bipartition such that KV θ
C ' Vλ(C).

If KV θ
C ' KV θ

C ′ , then V θ
C ' V θ

C ′ . We write Sθλ = V θ
C is λ(C) = λ.

Sθλ is endowed with an “Hn-invariant” bilinear form φθλ. We set
Dθ
λ = CSθλ/Ker Cφθλ.

Let Bipθ(n) = {λ ∈ Bip(n) | Dθ
λ 6= 0}. Then

Irr CHn = {Dθ
λ | λ ∈ Bipθ(n)}.



Theorem (B., Geck, Iancu, Jacon, Lam, Lusztig, Pietraho,
Taskin)

Assume that Lusztig’s conjectures P1, P2,..., P15 hold. Then :

If C is a θ-left cell of Wn, then KV θ
C ∈ Irr KHn. We denove by

λ(C) the bipartition such that KV θ
C ' Vλ(C).

If KV θ
C ' KV θ

C ′ , then V θ
C ' V θ

C ′ . We write Sθλ = V θ
C is λ(C) = λ.

Sθλ is endowed with an “Hn-invariant” bilinear form φθλ. We set
Dθ
λ = CSθλ/Ker Cφθλ.

Let Bipθ(n) = {λ ∈ Bip(n) | Dθ
λ 6= 0}.

Then
Irr CHn = {Dθ

λ | λ ∈ Bipθ(n)}.



Theorem (B., Geck, Iancu, Jacon, Lam, Lusztig, Pietraho,
Taskin)

Assume that Lusztig’s conjectures P1, P2,..., P15 hold. Then :

If C is a θ-left cell of Wn, then KV θ
C ∈ Irr KHn. We denove by

λ(C) the bipartition such that KV θ
C ' Vλ(C).

If KV θ
C ' KV θ

C ′ , then V θ
C ' V θ

C ′ . We write Sθλ = V θ
C is λ(C) = λ.

Sθλ is endowed with an “Hn-invariant” bilinear form φθλ. We set
Dθ
λ = CSθλ/Ker Cφθλ.

Let Bipθ(n) = {λ ∈ Bip(n) | Dθ
λ 6= 0}. Then

Irr CHn = {Dθ
λ | λ ∈ Bipθ(n)}.



Theorem (B., Geck, Iancu, Jacon, Lam, Lusztig, Pietraho,
Taskin)

Assume that Lusztig’s conjectures P1, P2,..., P15 hold. Then :

If C is a θ-left cell of Wn, then KV θ
C ∈ Irr KHn. We denove by

λ(C) the bipartition such that KV θ
C ' Vλ(C).

If KV θ
C ' KV θ

C ′ , then V θ
C ' V θ

C ′ . We write Sθλ = V θ
C is λ(C) = λ.

Sθλ is endowed with an “Hn-invariant” bilinear form φθλ. We set
Dθ
λ = CSθλ/Ker Cφθλ.

Let Bipθ(n) = {λ ∈ Bip(n) | Dθ
λ 6= 0}. Then

Irr CHn = {Dθ
λ | λ ∈ Bipθ(n)}.



Theorem (Ariki, BGIJLLPT, Uglov)

Assume that Lusztig’s conjectures P1, P2,..., P15 hold. If r ≡ d
mod e and r < θ < r + e, then Dθ

λ 6= 0 if and only if λ ∈ Bipe,r(n).
So the map

Bipe,r(n) −→ Irr CHn

λ 7−→ Dθ
λ

is bijective and coincides with the map in Ariki’s Theorem.

Moreover,
the decomposition map is given by

dn[KSθλ ] =
∑

µ∈Bipe,r (n)

d r
λµ(1)[Dθ

µ].
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Comments -

Lusztig’s conjectures P1, P2,..., P15 hold if θ > n − 1 (B.,
Geck, Iancu).

In this case, the Sθλ are the Specht modules of
Dipper-James-Murphy (Geck-Iancu-Pallikaros 2008).

They also hold if θ ∈ {1/2, 1, 3/2} (Lusztig).

They will be true for θ ∈ N/2 (Lusztig 201?)

The modules Sθλ and Dθ
λ should depend more on [θ] than on θ.

Question - It seems reasonable to expect that, if C 6L C ′,
then λ(C ′) Er λ(C).
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Jantzen’s filtration

O ⊂ K discrete valuation ring containing R such that, if we
denote by p the maximal ideal of O, then p ∩ R = Ker(R → C).

OSθλ (i) = {x ∈ OSθλ | ∀ y ∈ OSθλ , Oφθλ(x , y) ∈ pi }.

O/p ⊆ C, CSθλ (i) = C⊗O/p
(
OSθλ (i) + pSθλ

)
/pSθλ .

Then, for some m0 >> 0,

0 = CSθλ (m0) ⊆ CSθλ (m0−1) ⊆ · · · ⊆ CSθλ (1) ⊆ CSθλ (0) = CSθλ .

Question: If r < θ < r + e and r ≡ d mod e, then

d r
λ,µ(v)

?
=
∑
i > 0

[CSθλ (i)/kS
θ
λ (i + 1) : Dθ

µ] v i .
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