Geometry of Calogero-Moser spaces

Cédric Bonnafé

CNRS (UMR 5149) - Université de Montpellier

Poitiers, November 2016
Set-up
Set-up

- $\dim_{\mathbb{C}} V = n < \infty$
- $W < \text{GL}_{\mathbb{C}}(V)$, $|W| < \infty$.
- $\text{Ref}(W) = \{ s \in W \mid \text{codim}_{\mathbb{C}} V^s = 1 \}$
Set-up

- $\dim_{\mathbb{C}} V = n < \infty$
- $W < \text{GL}_{\mathbb{C}}(V), \quad |W| < \infty.$
- $\text{Ref}(W) = \{s \in W \mid \text{codim}_{\mathbb{C}} V^s = 1\}$

Hypothesis. $W = \langle \text{Ref}(W) \rangle$
Set-up

- \(\dim_{\mathbb{C}} V = n < \infty \)
- \(W < \text{GL}_{\mathbb{C}}(V), \quad |W| < \infty. \)
- \(\text{Ref}(W) = \{ s \in W \mid \text{codim}_{\mathbb{C}} V^s = 1 \} \)

Hypothesis. \(W = \langle \text{Ref}(W) \rangle \)

(i.e. \(V/W \simeq \mathbb{C}^n \))
Set-up

- $\dim_{\mathbb{C}} V = n < \infty$

- $W < \text{GL}_{\mathbb{C}}(V), \quad |W| < \infty.$

- $\text{Ref}(W) = \{ s \in W \mid \text{codim}_{\mathbb{C}} V^s = 1 \}$

Hypothesis. $W = \langle \text{Ref}(W) \rangle$

(i.e. $V/W \simeq \mathbb{C}^n$)

- $\mathcal{C} = \{ c : \text{Ref}(W)/\sim \rightarrow \mathbb{C}\}$

- We fix $c \in \mathcal{C}$
Cherednik algebra at $t = 0$
Cherednik algebra at $t = 0$

$$H_c = \mathbb{C}[V] \otimes \mathbb{C}W \otimes \mathbb{C}[V^*] \quad \text{(as a vector space)}$$

$$\forall y \in V, \ \forall x \in V^*, \ [y, x] = \sum_{s \in \text{Ref}(W)} c_s \langle y, s(x) - x \rangle s$$
Cherednik algebra at $t = 0$

$$H_c = \mathbb{C}[V] \otimes \mathbb{C}W \otimes \mathbb{C}[V^*] \quad \text{(as a vector space)}$$

$$\forall y \in V, \forall x \in V^*, \quad [y, x] = \sum_{s \in \text{Ref}(W)} c_s \langle y, s(x) - x \rangle s$$
Cherednik algebra at \(t = 0 \)

\[
H_c = \mathbb{C}[V] \otimes \mathbb{C}W \otimes \mathbb{C}[V^*] \quad \text{(as a vector space)}
\]

\[
\forall y \in V, \; \forall x \in V^*, \; [y, x] = \sum_{s \in \text{Ref}(W)} c_s \langle y, s(x) - x \rangle s
\]

Let

\[
Z_c = Z(H_c)
\]
Cherednik algebra at $t = 0$

\[\mathcal{H}_c = \mathbb{C}[V] \otimes \mathbb{C}W \otimes \mathbb{C}[V^*] \quad \text{ (as a vector space)} \]

\[\forall y \in V, \forall x \in V^*, \ [y, x] = \sum_{s \in \text{Ref}(W)} c_s \langle y, s(x) - x \rangle s \]

Let

\[Z_c = Z(\mathcal{H}_c) \]

Easy fact.

\[\mathbb{C}[V]^W, \mathbb{C}[V^*]^W \subset Z_c. \]

Let

\[P = \mathbb{C}[V]^W \otimes \mathbb{C}[V^*]^W \subset Z_c \]
Definition

The **Calogero-Moser space** associated with the datum \((W, c)\) is the affine variety

\[\mathcal{Z}_c = \text{Spec}(Z_c). \]
The **Calogero-Moser space** associated with the datum \((W, c)\) is the affine variety

\[\mathcal{Z}_c = \text{Spec}(\mathcal{Z}_c). \]

It is endowed with a morphism

\[\varphi_c : \mathcal{Z}_c \longrightarrow \text{Spec}(P) = V/W \times V^*/W \]
Definition

The Calogero-Moser space associated with the datum \((W, c)\) is the affine variety

\[Z_c = \text{Spec}(Z_c). \]

It is endowed with a morphism

\[\varphi_c : Z_c \to \text{Spec}(P) = V/W \times V^*/W \cong \mathbb{C}^{2n}. \]
Definition
The Calogero-Moser space associated with the datum \((W, c)\) is the affine variety

\[\mathcal{Z}_c = \text{Spec}(\mathcal{Z}_c). \]

It is endowed with a morphism

\[\varphi_c : \mathcal{Z}_c \longrightarrow \text{Spec}(P) = V/W \times V^*/W \cong \mathbb{C}^{2n}. \]

Theorem (Etingof-Ginzburg, 2002)
\(Z_c\) is an integrally closed domain, and is a free \(P\)-module of rank \(|W|\).
Definition

The **Calogero-Moser space** associated with the datum \((W, c)\) is the affine variety

\[Z_c = \text{Spec}(Z_c). \]

It is endowed with a morphism

\[\varphi_c : Z_c \longrightarrow \text{Spec}(P) = V/W \times V^*/W \cong \mathbb{C}^{2n}. \]

Theorem (Etingof-Ginzburg, 2002)

\(Z_c\) is an integrally closed domain, and is a free \(P\)-module of rank \(|W|\).

Example (the case where \(c = 0\)).
Definition

The **Calogero-Moser space** associated with the datum \((W, c)\) is the affine variety

\[Z_c = \text{Spec}(Z_c). \]

It is endowed with a morphism

\[\varphi_c : Z_c \longrightarrow \text{Spec}(P) = V/W \times V^*/W \cong \mathbb{C}^{2n}. \]

Theorem (Etingof-Ginzburg, 2002)

\(Z_c\) is an integrally closed domain, and is a free \(P\)-module of rank \(|W|\).

Example (the case where \(c = 0\)). Then

\[H_0 = \mathbb{C}[V \times V^*] \rtimes W, \]
Definition

The Calogero-Moser space associated with the datum \((W, c)\) is the affine variety

\[
\mathcal{Z}_c = \text{Spec}(Z_c).
\]

It is endowed with a morphism

\[
\varphi_c : \mathcal{Z}_c \longrightarrow \text{Spec}(P) = V/W \times V^*/W \cong \mathbb{C}^{2n}.
\]

Theorem (Etingof-Ginzburg, 2002)

\(Z_c\) is an integrally closed domain, and is a free \(P\)-module of rank \(|W|\).

Example (the case where \(c = 0\)). Then

\[
H_0 = \mathbb{C}[V \times V^*] \ltimes W,
\]

\[
Z_0 = \mathbb{C}[V \times V^*]^W,
\]
Definition

The **Calogero-Moser space** associated with the datum (W, c) is the affine variety

$$\mathcal{Z}_c = \text{Spec}(\mathcal{Z}_c).$$

It is endowed with a morphism

$$\varphi_c : \mathcal{Z}_c \rightarrow \text{Spec}(P) = V/W \times V^*/W \cong \mathbb{C}^{2n}.$$

Theorem (Etingof-Ginzburg, 2002)

\mathcal{Z}_c is an integrally closed domain, and is a free P-module of rank $|W|$.

Example (the case where $c = 0$). Then

$$H_0 = \mathbb{C}[V \times V^*] \rtimes W,$$

$$Z_0 = \mathbb{C}[V \times V^*]^W,$$

$$\mathcal{Z}_0 = (V \times V^*)/W.$$
Two extra-structures
Two extra-structures

- There is a \mathbb{C}^\times-action on H_c (i.e. a \mathbb{Z}-grading):
Two extra-structures

There is a \mathbb{C}^\times-action on H_c (i.e. a \mathbb{Z}-grading):

- $\deg(V) = -1$
- $\deg(V^*) = 1$
- $\deg(W) = 0$
Two extra-structures

There is a \mathbb{C}^\times-action on H_c (i.e. a \mathbb{Z}-grading):

- $\deg(V) = -1$
- $\deg(V^*) = 1$
- $\deg(W) = 0$

So there is a \mathbb{C}^\times-action on Z_c and on Z_c.
Two extra-structures

There is a \mathbb{C}^\times-action on H_c (i.e. a \mathbb{Z}-grading):

- $\deg(V) = -1$
- $\deg(V^*) = 1$
- $\deg(W) = 0$

So there is a \mathbb{C}^\times-action on Z_c and on \mathcal{Z}_c.

Poisson bracket:

$$\{,\}: \quad Z_c \times Z_c \quad \longrightarrow \quad Z_c$$

$$\quad (z, z') \quad \longmapsto \quad \lim_{t \to 0} \frac{[z, z']_{H_{t,c}}}{t}$$
\[\text{GL}_n(\mathbb{F}_q), \quad q = p^2, \ l \neq p. \]
- $\text{GL}_n(\mathbb{F}_q)$, $q = p^2$, $\ell \neq p$.
- Steinberg (1952), Lusztig (1976):
\(\text{GL}_n(\mathbb{F}_q), \ q = p^2, \ l \neq p. \)

Steinberg (1952), Lusztig (1976):

\[
\{ \text{partitions of } n \} \leftrightarrow \{ \text{Unip. char. of } \text{GL}_n(\mathbb{F}_q) \}
\]
\[\text{GL}_n(\mathbb{F}_q), \; q = p^2, \; \ell \neq p. \]

Steinberg (1952), Lusztig (1976):

\[
\{ \text{partitions of } n \} \leftrightarrow \{ \text{Unip. char. of } \text{GL}_n(\mathbb{F}_q) \}
\]

\[\lambda \mapsto \rho_\lambda \]
GL_n(\mathbb{F}_q), \ q = p^2, \ l \neq p.

Steinberg (1952), Lusztig (1976):
\{\text{partitions of } n\} \sim \leftrightarrow \{\text{Unip. char. of } \text{GL}_n(\mathbb{F}_q)\} \\
\lambda \quad \leftrightarrow \quad \rho_\lambda

Hypothesis: order(q \mod l) = d
- \(\text{GL}_n(\mathbb{F}_q), \; q = p^2, \; \ell \neq p. \)
- Steinberg (1952), Lusztig (1976):
 \[
 \{\text{partitions of } n\} \overset{\sim}{\longleftrightarrow} \{\text{Unip. char. of } \text{GL}_n(\mathbb{F}_q)\}\]
 \[
 \lambda \quad \longleftrightarrow \quad \rho_\lambda
 \]
- \text{Hypothesis: } \text{order}(q \mod \ell) = d
- \text{Fact (Fong-Srinivasan, 1980’s):}
\begin{itemize}
 \item $\text{GL}_n(\mathbb{F}_q)$, $q = p^2$, $\ell \neq p$.
 \item Steinberg (1952), Lusztig (1976):
 \[
 \{\text{partitions of } n\} \leftrightarrow \{\text{Unip. char. of } \text{GL}_n(\mathbb{F}_q)\} \\
 \lambda \mapsto \rho_\lambda
 \]
 \item Hypothesis: $\text{order}(q \mod \ell) = d$
 \item Fact (Fong-Srinivasan, 1980’s):
 ρ_λ and ρ_μ are in the same ℓ-block
 \[
 \uparrow \\
 \bigvee d(\lambda) = \bigvee d(\mu)
 \]
\end{itemize}
• \(\text{GL}_n(\mathbb{F}_q) \), \(q = p^2 \), \(\ell \neq p \).

• Steinberg (1952), Lusztig (1976):
 \[
 \{\text{partitions of } n\} \leftrightarrow \{\text{Unip. char. of } \text{GL}_n(\mathbb{F}_q)\} \\
 \lambda \quad \mapsto \quad \rho_\lambda
 \]

• Hypothesis: \(\text{order}(q \mod \ell) = d \)

• Fact (Fong-Srinivasan, 1980’s):
 \(\rho_\lambda \) and \(\rho_\mu \) are in the same \(\ell \)-block
 \[
 \uparrow \\
 \heartsuit_d(\lambda) = \heartsuit_d(\mu)
 \]

Conjecture (Broué-Malle-Michel, 1993)

If \(\gamma \) is a \(d \)-core and \(n = |\gamma| + dr \), then there exists a Deligne-Lusztig variety \(X_\gamma(r) \) for \(G \) such that:

• \(\rho_\lambda \mid H^*_c(X_\heartsuit(r), \overline{Q}_\ell) \iff \heartsuit_d(\lambda) = \gamma \).

• \(\text{End}_{\overline{Q}_\ell \text{GL}_n(\mathbb{F}_q)}(H^*_c(X_\gamma(r))) \cong \text{Hecke}_{\text{params}}(G(d, 1, r)) \)
\begin{itemize}
 \item $\text{GL}_n(\mathbb{F}_q)$, $q = p^2$, $\ell \neq p$.
 \item Steinberg (1952), Lusztig (1976):
 \[\{\text{partitions of } n\} \sim \{\text{Unip. char. of } \text{GL}_n(\mathbb{F}_q)\}\]
 \[\lambda \mapsto \rho_\lambda\]
 \item Hypothesis: $\text{order}(q \mod \ell) = d$
 \item Fact (Fong-Srinivasan, 1980’s):
 \[\rho_\lambda \text{ and } \rho_\mu \text{ are in the same } \ell\text{-block}\]
 \[\uparrow\]
 \[\heartsuit_d(\lambda) = \heartsuit_d(\mu)\]
\end{itemize}

Conjecture (Broué-Malle-Michel, 1993)

If γ is a d-core and $n = |\gamma| + dr$, then there exists a Deligne-Lusztig variety $X_{\gamma}(r)$ for G such that:
\begin{itemize}
 \item $\rho_\lambda \mid \mathcal{H}_c^\bullet(X_{\heartsuit}(r), \mathcal{Q}_\ell) \iff \heartsuit_d(\lambda) = \gamma$.
 \item $\text{End}_{\mathcal{Q}_\ell \text{GL}_n(\mathbb{F}_q)}(\mathcal{H}_c^\bullet(X_{\gamma}(r))) \simeq \text{Hecke}_{\text{params}}(G(d, 1, r))$
\end{itemize}
- $\mathcal{Z}_1(\mathcal{G}_n)$, smooth, \mathbb{C}^\times-action, $\zeta \in \mathbb{C}^\times$
- Steinberg (1952), Lusztig (1976):
 \[
 \{\text{partitions of } n\} \xleftrightarrow{\sim} \{\text{Unip. char. of } \mathbf{GL}_n(\mathbb{F}_q)\}
 \]
 \[\lambda \mapsto \rho_\lambda\]

- Hypothesis: $\text{order}(q \mod \ell) = d$

- Fact (Fong-Srinivasan, 1980’s):
 ρ_λ and ρ_μ are in the same ℓ-block
 \[\uparrow\]
 \[\heartsuit_d(\lambda) = \heartsuit_d(\mu)\]

Conjecture (Broué-Malle-Michel, 1993)

If γ is a d-core and $n = |\gamma| + dr$, then there exists a Deligne-Lusztig variety $X_{\gamma}(r)$ for G such that:

- $\rho_\lambda \mid H^\bullet_c(\mathbf{X}_{\heartsuit}(r), \overline{Q}_\ell) \iff \heartsuit_d(\lambda) = \gamma$.
- $\text{End}_{\overline{Q}_\ell \mathbf{GL}_n(\mathbb{F}_q)}(H^\bullet_c(\mathbf{X}_{\gamma}(r))) \simeq \text{Hecke}_{\text{params}}(G(d, 1, r))$
• $\mathcal{Z}_1(\mathcal{G}_n)$, smooth, \mathbb{C}^\times-action, $\zeta \in \mathbb{C}^\times$

• Gordon (2003):
 \[
 \{\text{partitions of } n\} \sim \{\text{Unip. char. of } \text{GL}_n(\mathbb{F}_q)\}
 \]
 \[
 \lambda \mapsto \rho_\lambda
 \]

• Hypothesis: $\text{order}(q \mod \ell) = d$

• Fact (Fong-Srinivasan, 1980’s):
 \[
 \rho_\lambda \text{ and } \rho_\mu \text{ are in the same } \ell\text{-block}
 \]
 \[
 \heartsuit_d(\lambda) = \heartsuit_d(\mu)
 \]

Conjecture (Broué-Malle-Michel, 1993)

If γ is a d-core and $n = |\gamma| + dr$, then there exists a Deligne-Lusztig variety $X_\gamma(r)$ for G such that:

• $\rho_\lambda \mid H_c^\bullet(X_\heartsuit(r), \overline{Q}_\ell) \iff \heartsuit_d(\lambda) = \gamma$.

• $\text{End}_{\overline{Q}_\ell \text{GL}_n(\mathbb{F}_q)}(H_c^\bullet(X_\gamma(r))) \simeq \text{Hecke}_{\text{params}}(G(d, 1, r))$
- $\mathcal{Z}_1(\mathfrak{S}_n)$, smooth, \mathbb{C}^\times-action, $\zeta \in \mathbb{C}^\times$

- Gordon (2003):
 \[
 \begin{align*}
 \{\text{partitions of } n\} & \sim \mathcal{Z}_1(\mathfrak{S}_n)^{\mathbb{C}^\times} \\
 \lambda & \mapsto \rho_\lambda
 \end{align*}
 \]

- Hypothesis: order($q \mod \ell$) = d

- Fact (Fong-Srinivasan, 1980’s):
 ρ_λ and ρ_μ are in the same ℓ-block

\begin{align*}
\updownarrow \\
\heartsuit_d(\lambda) = \heartsuit_d(\mu)
\end{align*}

Conjecture (Broué-Malle-Michel, 1993)

If γ is a d-core and $n = |\gamma| + dr$, then there exists a Deligne-Lusztig variety $X_\gamma(r)$ for G such that:

- $\rho_\lambda \mid H_c^\bullet(X_\heartsuit(r), \overline{Q}_\ell) \iff \heartsuit_d(\lambda) = \gamma$.

- $\text{End}_{\overline{Q}_\ell \mathbf{GL}_n(\mathbb{F}_q)}(H_c^\bullet(X_\gamma(r))) \simeq \text{Hecke}_{\text{params}}(G(d, 1, r))$
- $\mathcal{Z}_1(\mathfrak{S}_n)$, smooth, \mathbb{C}^\times-action, $\zeta \in \mathbb{C}^\times$

- Gordon (2003):

 \[
 \{\text{partitions of } n\} \overset{\sim}{\to} \mathcal{Z}_1(\mathfrak{S}_n)^{\mathbb{C}^\times} \\
 \lambda \overset{\sim}{\mapsto} z_\lambda
 \]

- Hypothesis: $\text{order}(q \mod \ell) = d$

- Fact (Fong-Srinivasan, 1980’s):

 ρ_λ and ρ_μ are in the same ℓ-block

 \[
 \diamondsuit_d(\lambda) = \diamondsuit_d(\mu)
 \]

Conjecture (Broué-Malle-Michel, 1993)

If γ is a d-core and $n = |\gamma| + dr$, then there exists a Deligne-Lusztig variety $X_{\gamma}(r)$ for G such that:

- $\rho_\lambda \mid H_c^\bullet(X_{\diamondsuit}(r), \overline{Q_\ell}) \iff \diamondsuit_d(\lambda) = \gamma$.

- $\text{End}_{\overline{Q_\ell}GL_n(\mathbb{F}_q)}(H_c^\bullet(X_{\gamma}(r))) \simeq \text{Hecke}_{\text{params}}(G(d,1,r))$
\[Z_1(\mathcal{G}_n), \text{ smooth, } C^\times\text{-action, } \zeta \in C^\times \]

Gordon (2003):

\[
\{\text{partitions of } n\} \overset{\sim}{\longleftrightarrow} Z_1(\mathcal{G}_n)^{C^\times} \\
\lambda \quad \overset{\sim}{\longleftrightarrow} \quad Z_\lambda
\]

Hypothesis: order(\zeta) = d

Fact (Fong-Srinivasan, 1980's):

\[\rho_\lambda \text{ and } \rho_\mu \text{ are in the same } \ell\text{-block} \]

\[\Leftrightarrow \]

\[\heartsuit_d(\lambda) = \heartsuit_d(\mu) \]

Conjecture (Broué-Malle-Michel, 1993)

If \(\gamma \) is a \(d \)-core and \(n = |\gamma| + dr \), then there exists a Deligne-Lusztig variety \(X_\gamma(r) \) for \(G \) such that:

\[\rho_\lambda \mid H_c^\bullet(X_\heartsuit(r), \overline{Q}_\ell) \iff \heartsuit_d(\lambda) = \gamma. \]

\[\text{End}_{\overline{Q}_\ell GL_n(F_q)}(H_c^\bullet(X_\gamma(r))) \simeq \text{Hecke}_{\text{params}}(G(d, 1, r)) \]
- \(\mathcal{Z}_1(\mathfrak{S}_n) \), smooth, \(\mathbb{C}^\times \)-action, \(\zeta \in \mathbb{C}^\times \)
- Gordon (2003):
 \[
 \{ \text{partitions of } n \} \xleftrightarrow{\sim} \mathcal{Z}_1(\mathfrak{S}_n)^{\mathbb{C}^\times} \\
 \lambda \quad \mapsto \quad z_\lambda
 \]
- Hypothesis: \(\text{order}(\zeta) = d \)
- Fact (Haiman, 2000):
 \[
 \rho_\lambda \text{ and } \rho_\mu \text{ are in the same } \ell\text{-block} \\
 \Leftrightarrow \\
 \heartsuit_d(\lambda) = \heartsuit_d(\mu)
 \]

Conjecture (Broué-Malle-Michel, 1993)

If \(\gamma \) is a \(d \)-core and \(n = |\gamma| + dr \), then there exists a Deligne-Lusztig variety \(X_\gamma(r) \) for \(G \) such that:

- \(\rho_\lambda \mid H^\bullet_c(X_\heartsuit(r), \overline{\mathbb{Q}_\ell}) \Leftrightarrow \heartsuit_d(\lambda) = \gamma. \)
- \(\text{End}_{\mathbb{Q}_\ell \mathbf{GL}_n(\mathbb{F}_q)}(H^\bullet_c(X_\gamma(r))) \cong \text{Hecke}_{\text{params}}(G(d, 1, r)) \)
• $\mathcal{Z}_1(\mathfrak{S}_n)$, smooth, \mathbb{C}^\times-action, $\zeta \in \mathbb{C}^\times$

• Gordon (2003):
 \[
 \{\text{partitions of } n\} \xleftrightarrow{\sim} \mathcal{Z}_1(\mathfrak{S}_n)^{\mathbb{C}^\times}
 \]
 \[
 \lambda \mapsto z_\lambda
 \]

• Hypothesis: $\text{order}(\zeta) = d$

• Fact (Haiman, 2000):
 z_λ and z_μ are in the same irr. comp. of $\mathcal{Z}_1(\mathfrak{S}_n)^\zeta$
 \[
 \uparrow
 \]
 \[
 \heartsuit_d(\lambda) = \heartsuit_d(\mu)
 \]

Conjecture (Broué-Malle-Michel, 1993)

If γ is a d-core and $n = |\gamma| + dr$, then there exists a Deligne-Lusztig variety $X_\gamma(r)$ for G such that:

• $\rho_\lambda \mid H^\bullet_c(X_{\heartsuit}(r), \overline{\mathbb{Q}_\ell}) \iff \heartsuit_d(\lambda) = \gamma$.

• $\text{End}_{\mathbb{Q}_\ell \mathbf{GL}_n(\mathbb{F}_q)}(H^\bullet_c(X_{\gamma}(r))) \simeq \text{Hecke}_{\text{params}}(G(d, 1, r))$
• $\mathcal{Z}_1(\mathfrak{S}_n)$, smooth, \mathbb{C}^\times-action, $\zeta \in \mathbb{C}^\times$

• Gordon (2003):
 \[
 \{\text{partitions of } n\} \overset{\sim}{\longrightarrow} \mathcal{Z}_1(\mathfrak{S}_n)^{\mathbb{C}^\times}
 \lambda \quad \longmapsto \quad z_\lambda
 \]

• Hypothesis: $\text{order}(\zeta) = d$

• Fact (Haiman, 2000):
 z_λ and z_μ are in the same irr. comp. of $\mathcal{Z}_1(\mathfrak{S}_n)^{\zeta}$
 \[
 \upuparrows
 \bigodot_d(\lambda) = \bigodot_d(\mu)
 \]

Theorem (Haiman, \sim 2000)

If γ is a d-core and $n = |\gamma| + dr$, then there exists an irreducible component $\mathcal{Z}_1(\mathfrak{S}_n)^{\zeta}_\gamma$ of $\mathcal{Z}_1(\mathfrak{S}_n)^{\zeta}$ such that:

• $z_\lambda \in \mathcal{Z}_1(\mathfrak{S}_n)^{\zeta}_\gamma \iff \bigodot_d(\lambda) = \gamma$.

• $\mathcal{Z}_1(\mathfrak{S}_n)^{\zeta}_\gamma$ is diffeo. (conj. isom.) to $\mathcal{Z}_{\text{params}}(G(d, 1, r))$.
Symplectic singularities
Symplectic singularities

Theorem (Brown-Gordon, 2003)

(a) The symplectic leaves are obtained as follows
Symplectic singularities

Theorem (Brown-Gordon, 2003)

(a) *The symplectic leaves are obtained as follows*

- $(\mathcal{Z}_c)_{\text{smooth}}$ is a symplectic leaf;
Symplectic singularities

Theorem (Brown-Gordon, 2003)

(a) The symplectic leaves are obtained as follows

- \((Z_c)_{\text{smooth}}\) is a symplectic leaf;
- \(((Z_c)_{\text{sing}})\)
Theorem (Brown-Gordon, 2003)

(a) The symplectic leaves are obtained as follows

- $(\mathcal{Z}_c)_{\text{smooth}}$ is a symplectic leaf;
- $((\mathcal{Z}_c)_{\text{sing}})_{\text{smooth}}$
Theorem (Brown-Gordon, 2003)

(a) The symplectic leaves are obtained as follows

- \((\mathcal{Z}_c)_{\text{smooth}}\) is a symplectic leaf;
- \(((\mathcal{Z}_c)_{\text{sing}})_{\text{smooth}}\) is a symplectic leaf;
Theorem (Brown-Gordon, 2003)

(a) The symplectic leaves are obtained as follows

- $(\mathcal{Z}_c)_{\text{smooth}}$ is a symplectic leaf;
- $((\mathcal{Z}_c)_{\text{sing}})_{\text{smooth}}$ is a symplectic leaf;
- $(((\mathcal{Z}_c)_{\text{sing}})_{\text{sing}})_{\text{smooth}}$ is a symplectic leaf;
- ...
Theorem (Brown-Gordon, 2003)

(a) The symplectic leaves are obtained as follows

- \((Z_c)_{\text{smooth}}\) is a symplectic leaf;
- \(((Z_c)_{\text{sing}})_{\text{smooth}}\) is a symplectic leaf;
- \(((Z_c)_{\text{sing}})_{\text{sing}})_{\text{smooth}}\) is a symplectic leaf;
- ...

(b) \(Z_c\) is a symplectic singularity (as defined by Beauville).
Symplectic resolutions
Symplectic resolutions

Theorem (Ginzburg-Kaledin 2004, Namikawa 2007)

\[Z_0 = \left(V \times V^* \right) / W \] admits a *symplectic resolution* if and only if there exists \(c \in \mathcal{C} \) such that \(Z_c \) is smooth.
Symplectic resolutions

Theorem (Ginzburg-Kaledin 2004, Namikawa 2007)

$Z_0 = (V \times V^*)/W$ admits a symplectic resolution if and only if there exists $c \in \mathcal{C}$ such that Z_c is smooth.

Theorem (Brown-Gordon, 2003)

Z_c is smooth if and only if all the simple H_c-modules have dimension $|W|$.
Symplectic resolutions

Theorem (Ginzburg-Kaledin 2004, Namikawa 2007)

\[\mathcal{Z}_0 = (V \times V^*)/W \] admits a **symplectic resolution** if and only if there exists \(c \in \mathcal{C} \) such that \(\mathcal{Z}_c \) is smooth.

Theorem (Brown-Gordon, 2003)

\(\mathcal{Z}_c \) is smooth if and only if all the simple \(\mathbf{H}_c \)-modules have dimension \(|W| \).

Corollary (G.-K., B.-G., Bellamy 2008)

Assume that \(W \) is irreducible.

Then \(\mathcal{Z}_0 = (V \times V^*)/W \) admits a **symplectic resolution** if and only if \(W = G(d, 1, n) = \mathfrak{S}_n \rtimes (\mu_d)^n \subset \text{GL}_n(\mathbb{C}) \) or \(W = G_4 \subset \text{GL}_2(\mathbb{C}) \).
Theorem (Ginzburg-Kaledin, 2004)

Assume that \(\tilde{Z}_0 \rightarrow Z_0 \) is a symplectic resolution.
Cohomology

Theorem (Ginzburg-Kaledin, 2004)

Assume that \(\tilde{Z}_0 \to Z_0 \) is a symplectic resolution.

(1) \(H^{2i+1}(\tilde{Z}_0, \mathbb{C}) = 0 \)
Theorem (Ginzburg-Kaledin, 2004)

Assume that \(\tilde{Z}_0 \to Z_0 \) is a symplectic resolution.

(1) \(H^{2i+1}(\tilde{Z}_0) = 0; \)
Assume that $\tilde{Z}_0 \to Z_0$ is a symplectic resolution.

1. $H^{2i+1}(\tilde{Z}_0) = 0$;
2. $H^{2\bullet}(\tilde{Z}_0) \simeq \text{gr}_F(Z(CW))$.
Theorem (Ginzburg-Kaledin, 2004)

Assume that $\tilde{Z}_0 \to Z_0$ is a symplectic resolution.

1. $H^{2i+1}(\tilde{Z}_0) = 0$;
2. $H^{2\cdot}(\tilde{Z}_0) \cong \text{gr}_F(Z(CW))$.

Conjecture EC (Ginzburg-Kaledin, 2004)

Assume that $\tilde{Z}_0 \to Z_0$ is a symplectic resolution.
Cohomology

Theorem (Ginzburg-Kaledin, 2004)

Assume that $\tilde{Z}_0 \rightarrow Z_0$ is a symplectic resolution.

1. $H^{2i+1}(\tilde{Z}_0) = 0$;
2. $H^{2\cdot}(\tilde{Z}_0) \simeq \text{gr}_F(Z(CW))$.

Conjecture EC (Ginzburg-Kaledin, 2004)

Assume that $\tilde{Z}_0 \rightarrow Z_0$ is a symplectic resolution.

(EC1) $H^{2i+1}_{\mathbb{C}^\times}(\tilde{Z}_0) = 0$;
Cohomology

Theorem (Ginzburg-Kaledin, 2004)

Assume that $\tilde{Z}_0 \to Z_0$ is a symplectic resolution.

1. $H^{2i+1}(\tilde{Z}_0) = 0$;
2. $H^{2\bullet}(\tilde{Z}_0) \cong \text{gr}_F(Z(CW))$.

Conjecture EC (Ginzburg-Kaledin, 2004)

Assume that $\tilde{Z}_0 \to Z_0$ is a symplectic resolution.

(1) $H^{2i+1}Z_0(\tilde{Z}_0) = 0$;
(2) $H^{2\bullet}(\tilde{Z}_0) \cong \text{Rees}_F(Z(CW))$.
Theorem (Ginzburg-Kaledin, 2004)

Assume that $\tilde{Z}_0 \to Z_0$ is a symplectic resolution.

1. $H^{2i+1}(\tilde{Z}_0) = 0$;
2. $H^{2\bullet}(\tilde{Z}_0) \simeq \text{gr}_F(Z(CW))$.

Conjecture EC (Ginzburg-Kaledin, 2004)

Assume that $\tilde{Z}_0 \to Z_0$ is a symplectic resolution.

(EC1) $H^{2i+1}_{\mathbb{C}^\times}(\tilde{Z}_0) = 0$;
(EC2) $H^{2\bullet}_{\mathbb{C}^\times}(\tilde{Z}_0) \simeq \text{Rees}_F(Z(CW))$.
Theorem (Vasserot, 2001)

(EC) holds if $W = \mathfrak{S}_n$ ($\tilde{Z}_0 = \text{Hilb}_n(\mathbb{C}^2)$).
Theorem (Vasserot, 2001)

(EC) holds if $W = \mathfrak{S}_n \ (\tilde{Z}_0 = \text{Hilb}_n(\mathbb{C}^2))$.

Other cases. $W = W(B_2)$ or G_4 (Shan-B. 2016).
Theorem (Vasserot, 2001)

(EC) holds if $W = S_n (\tilde{Z}_0 = \text{Hilb}_n (\mathbb{C}^2))$.

Other cases. $W = W(B_2)$ or G_4 (Shan-B. 2016).

Question. What about the general case?
Cohomology

Theorem (Ginzburg-Kaledin, 2004)

Assume that $\tilde{Z}_0 \to Z_0$ is a symplectic resolution.

1. $H^{2i+1}(\tilde{Z}_0) = 0$;
2. $H^{2\bullet}(\tilde{Z}_0) \simeq \text{gr}_F(Z(CW))$.

Conjecture EC (Ginzburg-Kaledin, 2004)

Assume that $\tilde{Z}_0 \to Z_0$ is a symplectic resolution.

1. $H^{2i+1}_{C^\times}(\tilde{Z}_0) = 0$;
2. $H^{2\bullet}_{C^\times}(\tilde{Z}_0) \simeq \text{Rees}_F(Z(CW))$.
Cohomology (smooth case)

Theorem (Ginzburg-Kaledin, 2004)

Assume that \mathcal{Z}_c is smooth.

1. $H^{2i+1}(\mathcal{Z}_c) = 0$;
2. $H^{2\bullet}(\mathcal{Z}_c) \simeq \text{gr}_F(Z(CW))$.

Conjecture EC (Ginzburg-Kaledin, 2004)

Assume that \mathcal{Z}_c is smooth.

1. $H^{2i+1}_{C^\times}(\mathcal{Z}_c) = 0$;
2. $H^{2\bullet}_{C^\times}(\mathcal{Z}_c) \simeq \text{Rees}_F(Z(CW))$.
Conjecture C (Rouquier-B.)

(C1) \(H^{2i+1}(\mathcal{Z}_c) = 0; \)

(C2) \(H^{2\bullet}(\mathcal{Z}_c) \simeq \text{gr}_\mathcal{F}(\text{Im } \Omega_c). \)

Conjecture EC (Rouquier-B.)

(EC1) \(H^{2i+1}_{C\times}(\mathcal{Z}_c) = 0; \)

(EC2) \(H^{2\bullet}_{C\times}(\mathcal{Z}_c) \simeq \text{Rees}_\mathcal{F}(\text{Im } \Omega_c). \)
Cohomology (general case)

Conjecture C (Rouquier-B.)

(C1) $H^{2i+1}(\mathcal{Z}_c) = 0$
(C2) $H^{2\cdot}(\mathcal{Z}_c) \simeq \text{gr}_F(\text{Im } \Omega_c)$.

Conjecture EC (Rouquier-B.)

(EC1) $H^{2i+1}_{\mathbb{C} \times}(\mathcal{Z}_c) = 0$
(EC2) $H^{2\cdot}_{\mathbb{C} \times}(\mathcal{Z}_c) \simeq \text{Rees}_F(\text{Im } \Omega_c)$.

Example (B.). (C) and (EC) are true if $\dim_{\mathbb{C}}(V) = 1$.
Example of a symplectic singularity
Example of a symplectic singularity

- \(W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle \)
Example of a symplectic singularity

- $W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle$
- Let $a = c_s$ and $b = c_t$.
Example of a symplectic singularity

- \(W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle \)
- Let \(a = c_s \) and \(b = c_t \).
- Minimal presentation of \(\mathcal{Z}_c \): 8 generators, 9 equations
Example of a symplectic singularity

- $W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle$
- Let $a = c_s$ and $b = c_t$.
- Minimal presentation of \mathbb{Z}_c: 8 generators, 9 equations
 \[\mathbb{Z}_c \hookrightarrow \mathbb{C}^8, \quad \dim \mathbb{Z}_c = 4 \]
Example of a symplectic singularity

- \(W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle \)
- Let \(a = c_s \) and \(b = c_t \).
- Minimal presentation of \(\mathcal{Z}_c \): 8 generators, 9 equations
 \[\mathcal{Z}_c \hookrightarrow \mathbb{C}^8, \quad \dim \mathcal{Z}_c = 4 \]
- Easy fact: \(\mathcal{Z}_c \) is smooth if and only if \(ab(a^2 - b^2) \neq 0 \).
Example of a symplectic singularity

- \(W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle \)
- Let \(a = c_s \) and \(b = c_t \).
- Minimal presentation of \(\mathcal{Z}_c \): 8 generators, 9 equations
 \[\mathcal{Z}_c \hookrightarrow \mathbb{C}^8, \quad \dim \mathcal{Z}_c = 4 \]
- Easy fact: \(\mathcal{Z}_c \) is smooth if and only if \(ab(a^2 - b^2) \neq 0 \).
- The interesting case: assume from now on that \(a = b \neq 0 \).
Example of a symplectic singularity

- \(W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle \)
- Let \(a = c_s \) and \(b = c_t \).
- Minimal presentation of \(\mathcal{Z}_c \): 8 generators, 9 equations
 \[\mathcal{Z}_c \hookrightarrow \mathbb{C}^8, \quad \dim \mathcal{Z}_c = 4 \]
- Easy fact: \(\mathcal{Z}_c \) is smooth if and only if \(ab(a^2 - b^2) \neq 0 \).
- The interesting case: assume from now on that \(a = b \neq 0 \).
 \[\Rightarrow \mathcal{Z}_c \) has only one singular point, named 0 \]
Example of a symplectic singularity

- $W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle$
- Let $a = c_s$ and $b = c_t$.
- Minimal presentation of \mathcal{Z}_c: 8 generators, 9 equations
 $$\mathcal{Z}_c \hookrightarrow \mathbb{C}^8, \quad \dim \mathcal{Z}_c = 4$$
- Easy fact: \mathcal{Z}_c is smooth if and only if $ab(a^2 - b^2) \neq 0$.
- The interesting case: assume from now on that $a = b \neq 0$.
 $$\Rightarrow \mathcal{Z}_c \text{ has only one singular point, named } 0$$
- Easy fact: $\dim_{\mathbb{C}} T_0(\mathcal{Z}_c) = 8$.
Example of a symplectic singularity

- \(W = W(B_2) = \langle s, t \mid s^2 = t^2 = (st)^4 = 1 \rangle \)
- Let \(a = c_s \) and \(b = c_t \).
- Minimal presentation of \(\mathcal{Z}_c \): 8 generators, 9 equations
 \(\mathcal{Z}_c \hookrightarrow \mathbb{C}^8, \quad \dim \mathcal{Z}_c = 4 \)
- Easy fact: \(\mathcal{Z}_c \) is smooth if and only if \(ab(a^2 - b^2) \neq 0 \).
- The interesting case: assume from now on that \(a = b \neq 0 \).
 \(\Rightarrow \) \(\mathcal{Z}_c \) has only one singular point, named 0
- Easy fact: \(\dim_{\mathbb{C}} T_0(\mathcal{Z}_c) = 8. \)
- Let \(m_0 \) denote the maximal ideal of \(\mathcal{Z}_c \) corresponding to 0.
Example of a symplectic singularity

- \(W = \mathcal{W}(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle \)
- Let \(a = c_s \) and \(b = c_t \).
- Minimal presentation of \(\mathcal{Z}_c \): 8 generators, 9 equations
 \[\mathcal{Z}_c \hookrightarrow \mathbb{C}^8, \quad \dim \mathcal{Z}_c = 4 \]
- Easy fact: \(\mathcal{Z}_c \) is smooth if and only if \(ab(a^2 - b^2) \neq 0 \).
- The interesting case: assume from now on that \(a = b \neq 0 \).
 \[\Rightarrow \mathcal{Z}_c \text{ has only one singular point, named } 0 \]
- Easy fact: \(\dim_{\mathbb{C}} T_0(\mathcal{Z}_c) = 8 \).
- Let \(m_0 \) denote the maximal ideal of \(Z_c \) corresponding to 0. Then \(\{m_0, m_0\} \subset m_0 \) because \(\{0\} \) is a symplectic leaf.
Example of a symplectic singularity

- \(W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle \)
- Let \(a = c_s \) and \(b = c_t \).
- Minimal presentation of \(\mathcal{Z}_c \): 8 generators, 9 equations
 \[\mathcal{Z}_c \hookrightarrow \mathbb{C}^8, \quad \dim \mathcal{Z}_c = 4 \]
- Easy fact: \(\mathcal{Z}_c \) is smooth if and only if \(ab(a^2 - b^2) \neq 0 \).
- The interesting case: assume from now on that \(a = b \neq 0 \).
 \[\Rightarrow \mathcal{Z}_c \text{ has only one singular point, named } 0 \]
- Easy fact: \(\dim_{\mathbb{C}} T_0(\mathcal{Z}_c) = 8 \).
- Let \(m_0 \) denote the maximal ideal of \(\mathcal{Z}_c \) corresponding to 0. Then
 \(\{ m_0, m_0 \} \subset m_0 \) because \(\{0\} \) is a symplectic leaf.
 \[\Rightarrow T_0(\mathcal{Z}_c)^* = m_0/m_0^2 \text{ inherits from } \{,\} \text{ a structure of Lie algebra!} \]
Example (continued)

- $W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle$
- $a = c_s = c_t$,
- $\mathcal{Z}_c \hookrightarrow \mathbb{C}^8 = T_0(\mathcal{Z}_c)$
- $\Rightarrow T_0(\mathcal{Z}_c)^* \text{ is a Lie algebra for } \{, \}$
Example (continued)

- \(W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle \)
- \(a = c_s = c_t \),
- \(\mathcal{Z}_c \hookrightarrow \mathbb{C}^8 = T_0(\mathcal{Z}_c) \)
- \(\Rightarrow T_0(\mathcal{Z}_c)^* \) is a Lie algebra for \(\{,\} \)
- Computation (thanks to MAGMA): \(T_0(\mathcal{Z}_c)^* \simeq \mathfrak{sl}_3(\mathbb{C}) \) (!)
Example (continued)

- $W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle$
- $a = c_s = c_t$,
- $\mathcal{Z}_c \hookrightarrow \mathbb{C}^8 = T_0(\mathcal{Z}_c)$
- $\Rightarrow T_0(\mathcal{Z}_c)^* \text{ is a Lie algebra for } \{, \}$
- Computation (thanks to MAGMA): $T_0(\mathcal{Z}_c)^* \simeq \mathfrak{sl}_3(\mathbb{C})$ (!)
- So $\mathcal{Z}_c \hookrightarrow \mathfrak{sl}_3(\mathbb{C})^* \simeq \mathfrak{sl}_3(\mathbb{C})$ (trace form).
Example (continued)

- \(W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle \)
- \(a = c_s = c_t \),
- \(\mathcal{Z}_c \hookrightarrow \mathbb{C}^8 = T_0(\mathcal{Z}_c) \)
- \(\Rightarrow T_0(\mathcal{Z}_c)^* \) is a Lie algebra for \(\{ , \} \)
- Computation (thanks to MAGMA): \(T_0(\mathcal{Z}_c)^* \cong \mathfrak{sl}_3(\mathbb{C}) \) (!)
- So \(\mathcal{Z}_c \hookrightarrow \mathfrak{sl}_3(\mathbb{C})^* \cong \mathfrak{sl}_3(\mathbb{C}) \) (trace form).
- Computation (MAGMA):
 \[TC_0(\mathcal{Z}_c) = \{ M \in \mathfrak{sl}_3(\mathbb{C}) | M^2 = 0 \} \]
Example (continued)

- $W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle$
- $a = c_s = c_t$,
- $\mathcal{Z}_c \hookrightarrow \mathbb{C}^8 = T_0(\mathcal{Z}_c)$
- $\Rightarrow T_0(\mathcal{Z}_c)^\ast$ is a Lie algebra for $\{,\}$
- Computation (thanks to MAGMA): $T_0(\mathcal{Z}_c)^\ast \simeq \mathfrak{sl}_3(\mathbb{C})$ (!)
- So $\mathcal{Z}_c \hookrightarrow \mathfrak{sl}_3(\mathbb{C})^\ast \simeq \mathfrak{sl}_3(\mathbb{C})$ (trace form).
- Computation (MAGMA):
 $TC_0(\mathcal{Z}_c) = \{ M \in \mathfrak{sl}_3(\mathbb{C}) \mid M^2 = 0 \} = \overline{O}_{min}$.
Example (continued)

- \(W = W(B_2) = \langle s, t \mid s^2 = t^2 = (st)^4 = 1 \rangle \)
- \(a = c_s = c_t, \)
- \(\mathcal{Z}_c \hookrightarrow \mathbb{C}^8 = T_0(\mathcal{Z}_c) \)
- \(\Rightarrow T_0(\mathcal{Z}_c)^* \) is a Lie algebra for \(\{, \} \)
- Computation (thanks to MAGMA): \(T_0(\mathcal{Z}_c)^* \cong \mathfrak{sl}_3(\mathbb{C}) \) (!)
- So \(\mathcal{Z}_c \hookrightarrow \mathfrak{sl}_3(\mathbb{C})^* \cong \mathfrak{sl}_3(\mathbb{C}) \) (trace form).
- Computation (MAGMA):
 \[TC_0(\mathcal{Z}_c) = \{ M \in \mathfrak{sl}_3(\mathbb{C}) \mid M^2 = 0 \} = \overline{\mathcal{O}}_{\text{min}}. \]
- So \(PTC_0(\mathcal{Z}_c) = \mathcal{O}_{\text{min}}/\mathbb{C}^\times \) is smooth
Example (continued)

- \(W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle \)
- \(a = c_s = c_t, \)
- \(\mathcal{Z}_c \hookrightarrow \mathbb{C}^8 = T_0(\mathcal{Z}_c) \)
- \(\Rightarrow T_0(\mathcal{Z}_c)^* \text{ is a Lie algebra for } \{, \} \)
- Computation (thanks to MAGMA): \(T_0(\mathcal{Z}_c)^* \simeq \mathfrak{sl}_3(\mathbb{C}) \) (!)
- So \(\mathcal{Z}_c \hookrightarrow \mathfrak{sl}_3(\mathbb{C})^* \simeq \mathfrak{sl}_3(\mathbb{C}) \) (trace form).
- Computation (MAGMA):
 \[TC_0(\mathcal{Z}_c) = \{ M \in \mathfrak{sl}_3(\mathbb{C}) \mid M^2 = 0 \} = \mathcal{O}_{\text{min}}. \]
- So \(PTC_0(\mathcal{Z}_c) = \mathcal{O}_{\text{min}}/\mathbb{C}^\times \) is smooth so Beauville classification theorem applies:
Example (continued)

- \(W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle \)
- \(a = c_s = c_t, \)
- \(\mathcal{Z}_c \hookrightarrow \mathbb{C}^8 = T_0(\mathcal{Z}_c) \)
- \(\Rightarrow T_0(\mathcal{Z}_c)^* \) is a Lie algebra for \(\{ , \} \)
- Computation (thanks to MAGMA): \(T_0(\mathcal{Z}_c)^* \simeq \mathfrak{sl}_3(\mathbb{C}) \)
- So \(\mathcal{Z}_c \hookrightarrow \mathfrak{sl}_3(\mathbb{C})^* \simeq \mathfrak{sl}_3(\mathbb{C}) \) (trace form).
- Computation (MAGMA):
 \(TC_0(\mathcal{Z}_c) = \{ M \in \mathfrak{sl}_3(\mathbb{C}) | M^2 = 0 \} = \mathcal{O}_{\text{min}}. \)
- So \(PTC_0(\mathcal{Z}_c) = \mathcal{O}_{\text{min}}/\mathbb{C}^\times \) is smooth so Beauville classification theorem applies:

Conclusion (Juteau-B.)

The symplectic singularities \((\mathcal{Z}_c, 0)\) and \((\mathcal{O}_{\text{min}}, 0)\) are equivalent.
Example (continued)

- $W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle$
- $a = c_s = c_t$,
- $\mathcal{Z}_c \hookrightarrow \mathbb{C}^8 = T_0(\mathcal{Z}_c)$
- $\Rightarrow T_0(\mathcal{Z}_c)^* \text{ is a Lie algebra for } \{, \}$
- Computation (thanks to MAGMA): $T_0(\mathcal{Z}_c)^* \simeq \mathfrak{sI}_3(\mathbb{C})$ (!)
- So $\mathcal{Z}_c \hookrightarrow \mathfrak{sI}_3(\mathbb{C})^* \simeq \mathfrak{sI}_3(\mathbb{C})$ (trace form).
- Computation (MAGMA): $TC_0(\mathcal{Z}_c) = \{ M \in \mathfrak{sI}_3(\mathbb{C}) | M^2 = 0 \} = \overline{O}_{\text{min}}$.
- So $PTC_0(\mathcal{Z}_c) = \mathcal{O}_{\text{min}}/\mathbb{C}^\times$ is smooth so Beauville classification theorem applies:

Conclusion (Juteau-B.)

The symplectic singularities $(\mathcal{Z}_c, 0)$ and $(\overline{O}_{\text{min}}, 0)$ are equivalent. In particular, \mathcal{Z}_c is not rationally smooth.