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@ dimcV =n< o0
o W < GL¢(V), IW| < o0.
@ Ref(W) ={s € W | codimcV* =1}

Hypothesis. W = (Ref(W))
(i.e. V/W ~C")

o C ={c:Ref(W)/~ — C}
@ WefixcelC
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Cherednik algebra at t =0

H.=C[V] CW @ C[V*] (as a vector space)

Vy e V, Vx e V¥ ly,x] = Z cs(y,s(x) — x)s
seRef(W)

Let
Zc = Z(Hc)
Easy fact.
C[VIY, C[V*]V ¢ ZC.J
Let

P=C[VI" @ C[VIW c Z
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Definition
The Calogero-Moser space associated with the datum (W, ¢) is the

affine variety
Z. = Spec(Z.).

It is endowed with a morphism
@c: Z. — Spec(P) = V/W x V*/W ~ C?".

Theorem (Etingof-Ginzburg, 2002)

Z. is an integrally closed domain, and is a free P-module of rank |W/].

Example (the case where ¢ =0). Then
Hy =C[V x V*] x W,
Zy =ClV x VW,
Zo=(VxV9/W.
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Two extra-structures

@ There is a C*-action on H, (i.e. a Z-grading):

» deg(V)=-1
» deg(V*) =1
» deg(W)=0

So there is a C*-action on Z. and on Z..

@ Poisson bracket:

{3}: ZCXZC — ZC

/
. z,7
(z,z") +— I|mH0¥—[’ t]H“
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Conjecture (Broué-Malle-Michel, 1993)

If v is a d-core and n = |y| + dr, then there exists a Deligne-Lusztig
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o Z,(6,), smooth, C*-action, { € C*
@ Gordon (2003):
{partitions of n} —— Z,(&,)¢
A — 2
@ Hypothesis: order(() = d
@ Fact (Haiman, 2000):
7, and z, are in the same irr. comp. of Z1(6,)¢

(3
Qa(A) = Qg (1)

X

Theorem (Haiman, ~ 2000)

If v is a d-core and n = |y| + dr, then there exists an irreducible
component Zl(Gn)g, of Z1(6,)¢ such that:

9 2\ € Zl(Gn)§ — Q4(A) =v.

° Z,(6,)S is diffeo. (conj. isom.) to Zparams(G(d,1,r)).
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Symplectic singularities

Theorem (Brown-Gordon, 2003)

(a) The symplectic leaves are obtained as follows

(Z)smooth s a symplectic leaf:
((Zc)sing)smooth is a symplectic leaf;
(((Zc)sing)sing)smooth is a symplectic leaf;

(b) Z. is a symplectic singularity (as defined by Beauville).
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Symplectic resolutions

Theorem (Ginzburg-Kaledin 2004, Namikawa 2007)

Zo=(V x V*)/W admits a symplectic resolution if and only if
there exists ¢ € C such that Z. is smooth.

Theorem (Brown-Gordon, 2003)

Z . is smooth if and only if all the simple H.-modules have
dimension |W/|.

Corollary (G.-K., B.-G., Bellamy 2008)

Assume that W is irreducible.
Then Zy = (V x V*)/W admits a symplectic resolution if and only
if W=G(d,1,n) =6, x (uy)" C GL,(C) or W = G, C GL,(C).

v
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Theorem (Ginzburg-Kaledin, 2004)
Assume that 20 — Z¢ Is a symplectic resolution.
(1) H2i+1(zo) —0:

(2) H?*(Z,) ~ gr-(Z(CW)).

Conjecture EC (Ginzburg-Kaledin, 2004)
Assume that 20 — Zg is a symplectic resolution.
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Theorem (Ginzburg-Kaledin, 2004)
Assume that Z. is smooth.

(1) H**(Z.) =0;

(2) H*(Z.) ~ grz(Z(CW)).

Conjecture EC (Ginzburg-Kaledin, 2004)
Assume that Z. is smooth.

(EC1) HZH(Z,) =0;

(EC2) HZ(Z.) ~ Reesz(Z(CW)).
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Conjecture C (Rouquier-B.)
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Conjecture EC (Rouquier-B.)
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Cohomology (general case)

Conjecture C (Rouquier-B.)
(C1) H2*H(Z.) =0;
(C2) H?*(Z.) ~ gr-(ImQ,).

Conjecture EC (Rouquier-B.)
(EC1) HIIY(Z.) =0;
(EC2) HZ (Z2.) ~ Reesz(ImQ,).

Example (B.). (C) and (EC) are true if dim¢(V) = 1.
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W =W(B,) = (s, t[s*> = t? = (st)* = 1)
Let a = ¢, and b = ¢;.
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(]

Minimal presentation of Z.: 8 generators, 9 equations
Z.—5C%,  dmZ.—4
Easy fact: Z. is smooth if and only if ab(a?> — b?) # 0.

The interesting case: assume from now on that a = b # 0.
= Z . has only one singular point, named 0

Easy fact: dimc To(Z.) = 8.
Let my denote the maximal ideal of Z. corresponding to 0. Then

{mg, mg} C my because {0} is a symplectic leaf.
= To(Z.)* = mg/m3 inherits from {, } a structure of Lie algebra!
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Example (continued)

o W=W(By) = (s tls> =t = (st)* =1)
@ a=c =c,

0 2. C8 = Ty(Z.)

o = To(Z.)* is a Lie algebra for {, }

@ Computation (thanks to MAGMA): To(Z.)* ~ sl3(C) (1)
@ So Z. — sl3(C)* ~ sl3(C) (trace form).

°

Computation (MAGMA): B
TCO(ZC) = {M S 5[3((:) | M? = O} = Omin.



Example (continued)

o W=W(By) = (s tls> =t = (st)* =1)

@ a=c =c,

0 2. C8 = Ty(Z.)

o = To(Z.)* is a Lie algebra for {, }

@ Computation (thanks to MAGMA): To(Z.)* ~ sl3(C) (1)
@ So Z. — sl3(C)* ~ sl3(C) (trace form).

@ Computation (MAGMA):

TC(Z.) ={M e sl3(C) | M? =0} = Opin.

So PTGy (Z:) = Omin/C* is smooth

(]



Example (continued)

o W=W(By) = (s tls> =t = (st)* =1)

a=~_C = G,

Z.—C=Ty(Z,)

= To(Z.)* is a Lie algebra for {, }

Computation (thanks to MAGMA): To(Z.)* ~ sl3(C) (!)

So Z. — sl3(C)* ~ sl3(C) (trace form).

Computation (MAGMA):

TG(Z.) ={M e sl3(C) | M? =0} = Opmin.

So PTCy(Z.) = Opmin/C* is smooth so Beauville classification
theorem applies:

o
o
o
o
o
o

(]



Example (continued)

o W=W(By) = (s tls> =t = (st)* =1)

a=~_C = G,

Z.—C=Ty(Z,)

= To(Z.)* is a Lie algebra for {, }

Computation (thanks to MAGMA): To(Z.)* ~ sl3(C) (!)

So Z. — sl3(C)* ~ sl3(C) (trace form).

Computation (MAGMA):

TG(Z.) ={M e sl3(C) | M? =0} = Opmin.

So PTCy(Z.) = Opmin/C* is smooth so Beauville classification
theorem applies:

o
o
o
o
o
o

(]

Conclusion (Juteau-B.)

The symplectic singularities (Z.,0) and (Onin, 0) are equivalent.



Example (continued)

o W=W(By) = (s tls> =t = (st)* =1)

a=~_C = G,

Z.—C=Ty(Z,)

= To(Z.)* is a Lie algebra for {, }

Computation (thanks to MAGMA): To(Z.)* ~ sl3(C) (!)

So Z. — sl3(C)* ~ sl3(C) (trace form).

Computation (MAGMA):

TG(Z.) ={M e sl3(C) | M? =0} = Opmin.

So PTCy(Z.) = Opmin/C* is smooth so Beauville classification
theorem applies:

o
o
o
o
o
o

(]

Conclusion (Juteau-B.)

The symplectic singularities (Z.,0) and (Onin, 0) are equivalent. In
particular, Z_ is not rationally smooth.



