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@ Conjectures for general Coxeter groups (finite or not)
o F4 (Geck)
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Notation
o A=7Z[R] = @® ZvY, K = Frac(A)
YER
(] A<0 = Z[R<0] = D ZvY
v<0
o Hecke algebra: H = & AT,
weW
T.T,=T, if £(xy) =L(x)+ L(y)
(Te—veE) (T, +v ) =0 ifseS

where £: W — N ={0,1,2,3,...}is the length function
o Ho= & AxTw
weW

o Involution: v¥ =vY, T, = T‘;}l
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@ Let ~; be the equivalence relation associated to <, (i.e. x ~, y
if and only if x <, y and y < x)

Definition
A left cell is an equivalence class for the relation ~.

l<,c = @ AC
x< C

o If C is a left cell, we set l.c= & AC
X<LC

Ve =lIgc/l<c
@ By construction, /<, and I ¢ are left ideals of H and V is a
left H-module: V¢ is called the left cell representation
associated to C.
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(“Cx occurs in some hC, h"™")

@ This leads to <g, </gr, ~r and ~ g, right/two-sided cells.

» The anti-automorphism T, — T,-1 sends C, to C,-1, so
x< yéessxt<py?

» Lusztig conjectures that ~; g is generated by ~; and ~g.

Remark

The relations ~; can be computed in some cases (for instance in the
symmetric group using the Robinson-Schensted correspondence:
Kazhdan-Lusztig 1979).

However, the preorder <, or <g is in general unknown (even in the
symmetric group). The preorder <,z seems to be easier (for
instance, it is given by the dominance order on partitions through the
Robinson-Schensted correspondence).
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An “easy” remark

Let S ={s € S| @(s) =0} and W, = (S). . .
Let I =S\ Sy, | ={wtw™ |we W, tel}, and W= (I).

Theorem (Dyer)
(W, 1) is a Coxeter group and W = W, x w.

Corollary

H(W,S, @) = W, x H(W,I,§), where §(wtw ™) = ¢(t)
(we Wy, tel).

Corollary

Since C; = T, and Cy,, = GC,, for alls € S, and w € W, the left
cells of (W, S, @) are of the form W, - C, where C is a left cell of
(W, 1, ).
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We identify W,, with the group of permutations w of
I, ={£1,+2,...,+n} such that w(—/) = —w(i) through

t— (—1,1) and si— (ii+1)(—i,—i—1)
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o, =(r,r—1,...,1)

SDT,(n) = {standard domino tableaux with 2-core &, and n
dominoes} (filled with 1, 2,..., n)

P.(n) = {partitions with 2-core &, and 2-weight n}

sh: SDT,(n) — P,(n)

SDT,(ZJ(n) = {pairs of standard domino tableaux of the same
shape}
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Assume a, b > 0 and assume that 0 < r < b/a< r+ 1. Then:
o w~; wifandonly if D,(w™)=D,(w™)
o w~g w'ifandonly if D, (w) = D,(w’)
e w~.g w'if and only if sh(D,(w)) = sh(D,(w’)) (Lusztig)
o w < g w'if and only if sh(D,(w)) < sh(D,(w’))

Conjecture B (Geck-lancu-Lam-B. 2003)
Let r > 1 and assume that b = ra. Then the left (resp. right,
two-sided) cells are the minimal subsets X of W, such that:
@ X is a union of left (resp. right, two-sided) combinatorials
r-cells;
@ X is a union of left (resp. right, two-sided) combinatorials
(r —1)-cells.
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The general case

Let V be the R-vector space of functions ¢ : S/~ — R.
fweS/~ let H, ={p € V| ¢(w) =0}

Conjecture C (maybe only for finite or affine Weyl groups)

Assume that S is finite. There exists a finite set of (linear) rational
hyperplanes A in V' (containing all H,, w € S/~) such that:
o If @ and @’ belong to the same A-facet, then the left (right,
two-sided) cells for (W, S, @) and (W, S, @’) coincide.
o If @ € V, then a left (resp. right, two-sided) cell is a minimal
subset X of W such that:
e For each A-chamber C such that ¢ € C, X is a union of left
(resp. right, two-sided) cells for (W, S,C).
e X is stable by left (resp. right, two-sided) translation by W,.
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