Introduction to Deligne-Lusztig Theory

Cédric Bonnafé

CNRS (UMR 6623) - Université de Franche-Comté (Besançon)

Berkeley (MSRI), Feb. 2008
Eigenvalues of F
Eigenvalues of F

- $F(H_c^1(Y)_\theta) = H_c^1(Y)_{\theta^{-1}}$
Eigenvalues of F

- $F(H_c^1(Y)_\theta) = H_c^1(Y)_{\theta^{-1}}$
- F stabilizes $H_c^1(Y)_1$ and $H_c^1(Y)_{\theta_0}$
Eigenvalues of F

- $F(H^1_c(Y)_\theta) = H^1_c(Y)_{\theta^{-1}}$
- F stabilizes $H^1_c(Y)_1$ and $H^1_c(Y)_{\theta_0}$
- By Schur’s lemma, only one eigenvalue on $H^1_c(Y)_1$: ρ_1
Eigenvalues of F

- $F(H^1_c(Y)_\theta) = H^1_c(Y)_{\theta^{-1}}$
- F stabilizes $H^1_c(Y)_1$ and $H^1_c(Y)_{\theta_0}$
- By Schur’s lemma, only one eigenvalue on $H^1_c(Y)_1$: ρ_1?
 - Let $X = Y/\mu_{q+1}$
Eigenvalues of F

- $F(H_c^1(Y)_\theta) = H_c^1(Y)_{\theta^{-1}}$
- F stabilizes $H_c^1(Y)_1$ and $H_c^1(Y)_{\theta_0}$
- By Schur’s lemma, only one eigenvalue on $H_c^1(Y)_1$: ρ_1?
 - Let $X = Y/\mu_{q+1} = P^1 \setminus P^1(\mathbb{F}_q)$
Eigenvalues of F

- $F(H^1_c(Y)_\theta) = H^1_c(Y)_{\theta^{-1}}$
- F stabilizes $H^1_c(Y)_1$ and $H^1_c(Y)_{\theta_0}$
- By Schur’s lemma, only one eigenvalue on $H^1_c(Y)_1$: ρ_1?
 - Let $X = Y/\mu_{q+1} = P^1 \setminus P^1(F_q)$
 - $H^1_c(X) = H^1_c(Y)_1$
Eigenvalues of F

- $F(H^1_c(Y)_\theta) = H^1_c(Y)_{\theta^{-1}}$
- F stabilizes $H^1_c(Y)_1$ and $H^1_c(Y)_{\theta_0}$
- By Schur’s lemma, only one eigenvalue on $H^1_c(Y)_1$: ρ_1
 - Let $X = Y/\mu_{q+1} = \mathbb{P}^1 \setminus \mathbb{P}^1(\mathbb{F}_q)$
 - $H^1_c(X) = H^1_c(Y)_1$
 - $0 = |X^F|$
Eigenvalues of \mathbf{F}

- $F(H^1_c(Y)_\theta) = H^1_c(Y)_{\theta^{-1}}$
- F stabilizes $H^1_c(Y)_1$ and $H^1_c(Y)_{\theta_0}$
- By Schur’s lemma, only one eigenvalue on $H^1_c(Y)_1$: ρ_1

 - Let $X = Y/\mu_{q+1} = P^1 \setminus P^1(F_q)$
 - $H^1_c(X) = H^1_c(Y)_1$
 - $0 = |X^F| = q - \text{Tr}(F, H^1_c(Y)_1)$.
 - Lefschetz $\underline{\text{dim.}}$ q
Eigenvalues of F

- $F(H^1_c(Y)_\theta) = H^1_c(Y)_{\theta^{-1}}$
- F stabilizes $H^1_c(Y)_1$ and $H^1_c(Y)_{\theta_0}$
- By Schur’s lemma, only one eigenvalue on $H^1_c(Y)_1$: ρ_1?
 - Let $X = Y/\mu_{q+1} = P^1 \setminus P^1(F_q)$
 - $H^1_c(X) = H^1_c(Y)_1$
 - $0 = |X^F| = q - \text{Tr}(F, H^1_c(Y)_1)$.

$\Rightarrow \rho_1 = 1.$
Eigenvalues of F

- $F(H^1_c(Y)_\theta) = H^1_c(Y)_{\theta^{-1}}$
- F stabilizes $H^1_c(Y)_1$ and $H^1_c(Y)_{\theta_0}$
- By Schur's lemma, only one eigenvalue on $H^1_c(Y)_1$: ρ_1?
- Let $X = Y/\mu_{q+1} = P^1 \backslash P^1(\mathbb{F}_q)$
- $H^1_c(X) = H^1_c(Y)_1$
- $0 = |X^F| = q - \text{Tr}(F, H^1_c(Y)_1)$.

\[\therefore \rho_1 = 1. \]

- By Schur's lemma, two eigenvalues on $H^1_c(Y)_{\theta_0}$: ρ_+, ρ_-
Eigenvalues of F

- $F(H^1_\mathcal{C}(Y)_\theta) = H^1_\mathcal{C}(Y)_{\theta^{-1}}$
- F stabilizes $H^1_\mathcal{C}(Y)_1$ and $H^1_\mathcal{C}(Y)_{\theta_0}$
- By Schur’s lemma, only one eigenvalue on $H^1_\mathcal{C}(Y)_1$: ρ_1?
 - Let $X = Y/\mu_{q+1} = \mathbb{P}^1 \setminus \mathbb{P}^1(\mathbb{F}_q)$
 - $H^1_\mathcal{C}(X) = H^1_\mathcal{C}(Y)_1$
 - $0 = |X^F| = q - \text{Tr}(F, H^1_\mathcal{C}(Y)_1)$.

$\Rightarrow \rho_1 = 1.$

- By Schur’s lemma, two eigenvalues on $H^1_\mathcal{C}(Y)_{\theta_0}$: $\rho_+, \rho_-\text{ with multiplicities } (q - 1)/2$
 - $0 = |Y^F|$
Eigenvalues of F

- $F(\text{H}^1_c(Y)\theta) = \text{H}^1_c(Y)\theta^{-1}$
- F stabilizes $\text{H}^1_c(Y)_1$ and $\text{H}^1_c(Y)\theta_0$
- By Schur’s lemma, only one eigenvalue on $\text{H}^1_c(Y)_1$: ρ_1?
 - Let $X = Y/\mu_{q+1} = \mathbb{P}^1 \setminus \mathbb{P}^1(\mathbb{F}_q)$
 - $\text{H}^1_c(X) = \text{H}^1_c(Y)_1$
 - $0 = |X^F| = q - \text{Tr}(F, \text{H}^1_c(Y)_1)$
 - $\Rightarrow \rho_1 = 1$.

- By Schur’s lemma, two eigenvalues on $\text{H}^1_c(Y)\theta_0$: ρ_+, ρ_- with multiplicities $(q - 1)/2$
 - $0 = |Y^F| = q - \text{Tr}(F, \text{H}^1_c(Y))$
Eigenvalues of F

- $F(H^1_c(Y)_\theta) = H^1_c(Y)_{\theta^{-1}}$
- F stabilizes $H^1_c(Y)_1$ and $H^1_c(Y)_{\theta_0}$
- By Schur's lemma, only one eigenvalue on $H^1_c(Y)_1$: ρ_1?
 - Let $X = Y/\mu_{q+1} = P^1 \setminus P^1(\mathbb{F}_q)$
 - $H^1_c(X) = H^1_c(Y)_1$
 - $0 = |X^F| = q - \text{Tr}(F, H^1_c(Y)_1)$.
 - By Lefschetz, $\rho_1 = 1$.

- By Schur's lemma, two eigenvalues on $H^1_c(Y)_{\theta_0}$: ρ_+, ρ_- with multiplicities $(q - 1)/2$
 - $0 = |Y^F| = q - \text{Tr}(F, H^1_c(Y)) = q - \text{Tr}(F, H^1_c(Y)_1) - \text{Tr}(F, H^1_c(Y)_{\theta_0})$
Eigenvalues of F

- $F(H^1_c(Y)\theta) = H^1_c(Y)\theta^{-1}$
- F stabilizes $H^1_c(Y)_1$ and $H^1_c(Y)\theta_0$
- By Schur’s lemma, only one eigenvalue on $H^1_c(Y)_1$: ρ_1
 - Let $X = Y/\mu_{q+1} = \mathbb{P}^1 \setminus \mathbb{P}^1(\mathbb{F}_q)$
 - $H^1_c(X) = H^1_c(Y)_1$
 - $0 = |X^F| = q - \text{Tr}(F, H^1_c(Y)_1)$. Lefschetz

$\Rightarrow \rho_1 = 1$.

- By Schur’s lemma, two eigenvalues on $H^1_c(Y)\theta_0$: ρ_+, ρ_- with multiplicities $(q-1)/2$
 - $0 = |Y^F| = q - \text{Tr}(F, H^1_c(Y)) = q - \text{Tr}(F, H^1_c(Y)_1) - \text{Tr}(F, H^1_c(Y)\theta_0)$

$\Rightarrow \rho_+ = -\rho_-$.
Eigenvalues of F^2

...
Eigenvalues of F^2

- F^2 stabilizes $H^i_c(Y)_\theta$ and its action commutes with G
Eigenvalues of F^2

- F^2 stabilizes $H^i_c(Y)_\theta$ and its action commutes with G
- Schur's lemma \Rightarrow F^2 acts by scalar mult. by λ_θ on $H^1_c(Y)_\theta$
Eigenvalues of F^2

- F^2 stabilizes $H^i_c(Y)_\theta$ and its action commutes with G
- Schur’s lemma $\Rightarrow F^2$ acts by scalar mult. by λ_θ on $H^1_c(Y)_\theta$
 (well..., except for θ_0 where an extra-argument is needed)
Eigenvalues of F^2

- F^2 stabilizes $H^i_c(Y)_\theta$ and its action commutes with G

- Schur's lemma $\Rightarrow F^2$ acts by scalar mult. by λ_θ on $H^1_c(Y)_\theta$
 (well..., except for θ_0 where an extra-argument is needed)

Note that $\lambda_1 = 1$
Eigenvalues of F^2

- F^2 stabilizes $H^i_c(Y)_\theta$ and its action commutes with G

- Schur’s lemma $\Rightarrow F^2$ acts by scalar mult. by λ_θ on $H^1_c(Y)_\theta$
 (well..., except for θ_0 where an extra-argument is needed)

 Note that $\lambda_1 = 1$

- By Lefschetz Formula, we have, for all $\xi \in \mu_{q+1}$,

 $$|Y^{\xi F^2}|$$
Eigenvalues of F^2

- F^2 stabilizes $H_c^i(Y)_\theta$ and its action commutes with G

- Schur’s lemma $\Rightarrow F^2$ acts by scalar mult. by λ_θ on $H_c^1(Y)_\theta$
 (well..., except for θ_0 where an extra-argument is needed)
 Note that $\lambda_1 = 1$

- By Lefschetz Formula, we have, for all $\xi \in \mu_{q+1}$,
 \[
 |Y^\xi F^2| = q^2 - q\lambda_1 - \sum_{\theta \neq 1} \text{action on } H_c^2
 \]
Eigenvalues of F^2

- F^2 stabilizes $H^i_c(Y)_\theta$ and its action commutes with G

- Schur’s lemma $\Rightarrow F^2$ acts by scalar mult. by λ_θ on $H^1_c(Y)_\theta$
 (well..., except for θ_0 where an extra-argument is needed)
 Note that $\lambda_1 = 1$

- By Lefschetz Formula, we have, for all $\xi \in \mu_{q+1}$,

$$|Y^{\xi F^2}| = \begin{cases} q^2 & \text{action on } H^2_c \\ -q\lambda_1 - \sum_{\theta \neq 1} \theta(\xi) & \end{cases}$$
Eigenvalues of F^2

- F^2 stabilizes $H^i_c(Y)_\theta$ and its action commutes with G
- Schur's lemma \Rightarrow F^2 acts by scalar mult. by λ_θ on $H^1_c(Y)_\theta$
 (well..., except for θ_0 where an extra-argument is needed)
 Note that $\lambda_1 = 1$

- By Lefschetz Formula, we have, for all $\xi \in \mu_{q+1}$,

 $$|Y^\xi F^2| = q^2 \begin{cases} q^2 & \text{action on } H^2_c \\ -q\lambda_1 - \sum_{\theta \neq 1} \theta(\xi)\lambda_\theta & \end{cases}$$
Eigenvalues of F^2

- F^2 stabilizes $H^i_c(Y)_\theta$ and its action commutes with G

- Schur’s lemma \Rightarrow F^2 acts by scalar mult. by λ_θ on $H^1_c(Y)_\theta$
 (well..., except for θ_0 where an extra-argument is needed)
 Note that $\lambda_1 = 1$

- By Lefschetz Formula, we have, for all $\xi \in \mu_{q+1}$,
 $$|Y^{\xi F^2}| = q^2 - q\lambda_1 - \sum_{\theta \neq 1} \theta(\xi)\lambda_\theta(q - 1)$$
 action on H^2_c
Eigenvalues of F^2

- F^2 stabilizes $H_c^i(Y)_\theta$ and its action commutes with G

- Schur's lemma $\Rightarrow F^2$ acts by scalar mult. by λ_θ on $H^1_c(Y)_\theta$
 (well..., except for θ_0 where an extra-argument is needed)
 Note that $\lambda_1 = 1$

- By Lefschetz Formula, we have, for all $\xi \in \mu_{q+1},$

$$|Y^{\xi F^2}| = \begin{cases} q^2 & \text{action on } H^2_c \\ -q\lambda_1 - \sum_{\theta \neq 1} \theta(\xi)\lambda_\theta(q-1) & \end{cases}$$

$$= q^2 - 1 - (q - 1) \sum_{\theta} \theta(\xi)\lambda_\theta.$$
Eigenvalues of F^2

- F^2 stabilizes $H^i_c(Y)_\theta$ and its action commutes with G
- Schur’s lemma \Rightarrow F^2 acts by scalar mult. by λ_θ on $H^1_c(Y)_\theta$
 (well..., except for θ_0 where an extra-argument is needed)
 Note that $\lambda_1 = 1$

- By Lefschetz Formula, we have, for all $\xi \in \mu_{q+1}$,
 \[
 |Y^{\xi F^2}| = \begin{cases}
 q^2 & \text{if } \xi = -1 \\
 -q\lambda_1 - \sum_{\theta \neq 1} \theta(\xi)\lambda_\theta(q - 1) & \text{action on } H^2_c \\
 q^2 - 1 - (q - 1) \sum_\theta \theta(\xi)\lambda_\theta.
 \end{cases}
 \]

- On the other hand, $|Y^{\xi F^2}| = \begin{cases}
 q^3 - q & \text{if } \xi = -1 \\
 0 & \text{otherwise}
 \end{cases}$
Eigenvalues of F^2

- F^2 stabilizes $H^i_c(Y)_\theta$ and its action commutes with G
- Schur's lemma $\Rightarrow F^2$ acts by scalar mult. by λ_θ on $H^1_c(Y)_\theta$
 (well..., except for θ_0 where an extra-argument is needed)
 Note that $\lambda_1 = 1$

- By Lefschetz Formula, we have, for all $\xi \in \mu_{q+1}$,

 $$\left| Y^{\xi F^2} \right| = \begin{cases}
 q^2 & \text{action on } H^2_c \\
 \quad -q\lambda_1 - \sum_{\theta \neq 1} \theta(\xi)\lambda_\theta(q - 1) \\
 \quad = q^2 - 1 - (q - 1) \sum_{\theta} \theta(\xi)\lambda_\theta.
 \end{cases}$$

- On the other hand, $\left| Y^{\xi F^2} \right| = \begin{cases}
 q^3 - q & \text{if } \xi = -1 \\
 0 & \text{otherwise}
 \end{cases}$

\Rightarrow So $\lambda_\theta = -\theta(-1)q$ if $\theta \neq 1$
Modular representations

Let S be the Sylow subgroup of μ_{q+1}. We identify $S \wedge$ and $(\mu_{q+1}) \wedge \ell$.

If $\alpha^2 \neq 1$, then $\{R_{\alpha}\}$ is a block of defect zero $\{R_{\alpha^0}\}$ and $\{R_{-\alpha^0}\}$ are two blocks of defect zero.

If θ is an ℓ-regular linear character of μ_{q+1} such that $\theta^2 \neq 1$, then $\{R'_{\theta\eta}| \eta \in S \wedge\}$ is a block of defect S.

$\{1_G, St_G\} \cup \{R'_{\eta}| \eta \in S \wedge, \eta \neq 1\}$ is a principal block (defect S).
Modular representations

From now on, $\ell | q + 1$, ℓ odd
From now on, $\ell|q + 1$, ℓ odd

Let S be the Sylow subgroup of μ_{q+1}.
From now on, $\ell | q + 1$, ℓ odd

Let S be the Sylow subgroup of μ_{q+1}.

We identify S^\wedge and $(\mu_{q+1})^\wedge$.
From now on, \(\ell | q + 1, \ \ell \) odd

Let \(S \) be the Sylow subgroup of \(\mu_{q+1} \).

We identify \(S^\wedge \) and \((\mu_{q+1})^\wedge _\ell \).

Blocks?
Modular representations

From now on, $\ell|q + 1$, ℓ odd

Let S be the Sylow subgroup of μ_{q+1}.

We identify S^\wedge and $(\mu_{q+1})^\wedge$.

Blocks?

- If $\alpha^2 \neq 1$, then $\{R_\alpha\}$ is a block of defect zero
Modular representations

From now on, $\ell | q + 1$, ℓ odd

Let S be the Sylow subgroup of μ_{q+1}.

We identify S^\wedge and $(\mu_{q+1})_\ell^\wedge$.

Blocks?

- If $\alpha^2 \neq 1$, then $\{R_\alpha\}$ is a block of defect zero
- $\{R^+_\alpha\}$ and $\{R^-_{\alpha_0}\}$ are two blocks of defect zero
Modular representations

From now on, $\ell | q + 1$, ℓ odd

Let S be the Sylow subgroup of μ_{q+1}.

We identify S^\wedge and $(\mu_{q+1})_\ell^\wedge$.

Blocks?

- If $\alpha^2 \neq 1$, then $\{R_\alpha\}$ is a block of defect zero
- $\{R^+_\alpha\}$ and $\{R^-_{\alpha_0}\}$ are two blocks of defect zero

(1) If θ is an ℓ-regular linear character of μ_{q+1} such that $\theta^2 \neq 1$, then $\{R'_\theta \eta \mid \eta \in S^\wedge\}$ is a block of defect S.
Modular representations

From now on, $\ell | q + 1$, ℓ odd

Let S be the Sylow subgroup of μ_{q+1}.

We identify S^\wedge and $(\mu_{q+1})_\ell^\wedge$.

Blocks?

- If $\alpha^2 \neq 1$, then $\{R_{\alpha}\}$ is a block of defect zero
- $\{R_{\alpha_0}^+\}$ and $\{R_{\alpha_0}^-\}$ are two blocks of defect zero

(1) If θ is an ℓ-regular linear character of μ_{q+1} such that $\theta^2 \neq 1$, then $\{R_{\theta^\eta}^+ | \eta \in S^\wedge\}$ is a block of defect S.

(2) $\{R_{\theta_0}^{+}, R_{\theta_0}^{-}\} \cup \{R_{\theta_0^\eta}^+ | \eta \in S^\wedge, \eta \neq 1\}$ is a block of defect S
Modular representations

From now on, \(\ell | q + 1, \ell \) odd

Let \(S \) be the Sylow subgroup of \(\mu_{q+1} \).

We identify \(S^\wedge \) and \((\mu_{q+1})^\wedge_\ell \).

Blocks?

- If \(\alpha^2 \neq 1 \), then \(\{ R_\alpha \} \) is a block of defect zero
- \(\{ R^+_\alpha \} \) and \(\{ R^-_\alpha \} \) are two blocks of defect zero

1. If \(\theta \) is an \(\ell \)-regular linear character of \(\mu_{q+1} \) such that \(\theta^2 \neq 1 \), then \(\{ R'_{\theta\eta} \mid \eta \in S^\wedge \} \) is a block of defect \(S \).
2. \(\{ R'_{\theta_0}^+, R'_{\theta_0}^- \} \cup \{ R'_{\theta_0\eta} \mid \eta \in S^\wedge, \eta \neq 1 \} \) is a block of defect \(S \)
3. \(\{ 1_G, St_G \} \cup \{ R'_\eta \mid \eta \in S^\wedge, \eta \neq 1 \} \): principal block (defect \(S \)).
What has been illustrated?
What has been illustrated?

- Blocks are parametrized using the ℓ'-part of linear characters of tori (in general, see Broué-Michel)
What has been illustrated?

- Blocks are parametrized using the ℓ'-part of linear characters of tori (in general, see Broué-Michel)
- Some Morita equivalences: “Jordan decomposition” (in general, see Broué for tori and B.-Rouquier for a more general situation)
What has been illustrated?

- Blocks are parametrized using the ℓ'-part of linear characters of tori (in general, see Broué-Michel)

- Some Morita equivalences: “Jordan decomposition” (in general, see Broué for tori and B.-Rouquier for a more general situation)

- Derived equivalences: Broué’s abelian defect conjecture admits a “geometric version” (proved only for the “Coxeter” torus of $GL_n(\mathbb{F}_q)$ by B.-Rouquier: cyclic defect...)

What has been omitted?

- Non-abelian defect (for $\ell = 2$ in G, see Gonard’s thesis)
- Decomposition matrices, Schur algebras...
What has been illustrated?

- Blocks are parametrized using the ℓ'-part of linear characters of tori (in general, see Broué-Michel)
- Some Morita equivalences: “Jordan decomposition” (in general, see Broué for tori and B.-Rouquier for a more general situation)
- Derived equivalences: Broué’s abelian defect conjecture admits a “geometric version” (proved only for the “Coxeter” torus of $\text{GL}_n(\mathbb{F}_q)$ by B.-Rouquier: cyclic defect...)
- Role of the Frobenius

What has been omitted:
- Non-abelian defect (for $\ell = 2$ in G, see Gonard’s thesis)
- Decomposition matrices, Schur algebras...
What has been illustrated?

- Blocks are parametrized using the ℓ'-part of linear characters of tori (in general, see Broué-Michel)
- Some Morita equivalences: “Jordan decomposition” (in general, see Broué for tori and B.-Rouquier for a more general situation)
- Derived equivalences: Broué’s abelian defect conjecture admits a “geometric version” (proved only for the “Coxeter” torus of $GL_n(\mathbb{F}_q)$ by B.-Rouquier: cyclic defect...)
- Role of the Frobenius

What has been omitted?

- Non-abelian defect (for $\ell=2$ in G, see Gonard’s thesis)
- Decomposition matrices, Schur algebras...
What has been illustrated?

- Blocks are parametrized using the ℓ'-part of linear characters of tori (in general, see Broué-Michel)
- Some Morita equivalences: “Jordan decomposition” (in general, see Broué for tori and B.-Rouquier for a more general situation)
- Derived equivalences: Broué’s abelian defect conjecture admits a “geometric version” (proved only for the “Coxeter” torus of $\text{GL}_n(\mathbb{F}_q)$ by B.-Rouquier: cyclic defect...)
- Role of the Frobenius

What has been omitted?

- Non-abelian defect (for $\ell = 2$ in G, see Gonard’s thesis)
What has been illustrated?

- Blocks are parametrized using the ℓ'-part of linear characters of tori (in general, see Broué-Michel)

- Some Morita equivalences: “Jordan decomposition” (in general, see Broué for tori and B.-Rouquier for a more general situation)

- Derived equivalences: Broué’s abelian defect conjecture admits a “geometric version” (proved only for the “Coxeter” torus of $\text{GL}_n(\mathbb{F}_q)$ by B.-Rouquier: cyclic defect...)

- Role of the Frobenius

What has been omitted?

- Non-abelian defect (for $\ell = 2$ in G, see Gonard’s thesis)
- Decomposition matrices, Schur algebras
- ...
Curiosities

Abhyankar's conjecture (Raynaud's Theorem):
A finite group Γ is the Galois group of a Galois étale covering of $\mathbb{A}^1(F)$ if and only if it is generated by its Sylow p-subgroups.

Example: $\Gamma = \text{SL}_2(F_q)$, $Y \rightarrow \mathbb{A}^1(F)$ $(x, y) \mapsto -\rightarrow xy^{q^2} - yx^{q^2}$ $q = 7$, $Y/\{\pm 1\}$ is acted on by $\text{PSL}_2(F_7) \cong \text{GL}_3(F_2)$: it is the reduction modulo 7 of the Klein's quartic (whose group of automorphism is exactly $\text{PSL}_2(F_7)$, reaching Hurwitz' bound).
Curiosities

- **Abhyankar’s conjecture (Raynaud’s Theorem):** A finite group Γ is the Galois group of a Galois étale covering of $\mathbb{A}^1(\mathbb{F})$ if and only if it is generated by its Sylow p-subgroups.

 Example: $\Gamma = \text{SL}_2(\mathbb{F}_q)$, \(\mathcal{Y} \rightarrow \mathbb{A}^1(\mathbb{F}) \) with \((x, y) \mapsto -yx^q - xy^q \). $\mathcal{Y}/\{\pm1\}$ is acted on by $\text{PSL}_2(\mathbb{F}_7) \cong \text{GL}_3(\mathbb{F}_2)$: it is the reduction modulo 7 of the Klein’s quartic (whose group of automorphism is exactly $\text{PSL}_2(\mathbb{F}_7)$, reaching Hurwitz’ bound).
Curiosities

- **Abhyankar’s conjecture (Raynaud’s Theorem):** A finite group Γ is the Galois group of a Galois étale covering of $\mathbb{A}^1(F)$ if and only if it is generated by its Sylow p-subgroups.

Example: $\Gamma = \text{SL}_2(\mathbb{F}_q)$,
Abhyankar’s conjecture (Raynaud’s Theorem): A finite group Γ is the Galois group of a Galois étale covering of $\mathbb{A}^1(\mathbb{F})$ if and only if it is generated by its Sylow p-subgroups.

Example: $\Gamma = \text{SL}_2(\mathbb{F}_q)$,

$$
\begin{align*}
Y & \longrightarrow \mathbb{A}^1(\mathbb{F}) \\
(x, y) & \longmapsto xy^{q^2} - yx^{q^2}
\end{align*}
$$
Curiosities

- **Abhyankar’s conjecture (Raynaud’s Theorem):** A finite group Γ is the Galois group of a Galois étale covering of $\mathbb{A}^1(\mathbb{F})$ if and only if it is generated by its Sylow p-subgroups.

Example: $\Gamma = \text{SL}_2(\mathbb{F}_q)$,

\[
\begin{align*}
\mathbb{Y} & \longrightarrow \mathbb{A}^1(\mathbb{F}) \\
(x, y) & \longmapsto xy^{q^2} - yx^{q^2}
\end{align*}
\]

- $q = 7$, $\mathbb{Y}/\{\pm 1\}$ is acted on by $\text{PSL}_2(\mathbb{F}_7)$
Curiosities

- **Abhyankar’s conjecture (Raynaud’s Theorem):** A finite group Γ is the Galois group of a Galois étale covering of $\mathbb{A}^1(\mathbb{F})$ if and only if it is generated by its Sylow p-subgroups.

Example: $\Gamma = \text{SL}_2(\mathbb{F}_q)$,

\[
\begin{align*}
\mathbf{Y} & \longrightarrow \mathbb{A}^1(\mathbb{F}) \\
(x, y) & \longmapsto xy^{q^2} - yx^{q^2}
\end{align*}
\]

- $q = 7$, $\mathbf{Y}/\{\pm 1\}$ is acted on by $\text{PSL}_2(\mathbb{F}_7) \simeq \text{GL}_3(\mathbb{F}_2)$:
Curiosities

- **Abhyankar’s conjecture (Raynaud’s Theorem):** A finite group Γ is the Galois group of a Galois étale covering of $\mathbb{A}^1(\mathbb{F})$ if and only if it is generated by its Sylow p-subgroups.

 Example: $\Gamma = \text{SL}_2(\mathbb{F}_q)$,

 \[
 \begin{align*}
 \mathbf{Y} & \longrightarrow \mathbf{A}^1(\mathbb{F}) \\
 (x, y) & \longmapsto xy^q - yx^q
 \end{align*}
 \]

- $q = 7$, $\mathbf{Y}/\{\pm 1\}$ is acted on by $\text{PSL}_2(\mathbb{F}_7) \simeq \text{GL}_3(\mathbb{F}_2)$: it is the reduction modulo 7 of the Klein’s quartic.
Curiosities

- **Abhyankar’s conjecture (Raynaud’s Theorem):** A finite group \(\Gamma \) is the Galois group of a Galois étale covering of \(\mathbb{A}^1(\mathbb{F}) \) if and only if it is generated by its Sylow \(p \)-subgroups.

Example: \(\Gamma = \text{SL}_2(\mathbb{F}_q) \),

\[
\begin{align*}
Y & \longrightarrow \mathbb{A}^1(\mathbb{F}) \\
(x, y) & \longmapsto xy^{q^2} - yx^{q^2}
\end{align*}
\]

- \(q = 7 \), \(Y/\{\pm 1\} \) is acted on by \(\text{PSL}_2(\mathbb{F}_7) \cong \text{GL}_3(\mathbb{F}_2) \): it is the reduction modulo 7 of the Klein’s quartic (whose group of automorphism is exactly \(\text{PSL}_2(\mathbb{F}_7) \), reaching Hurwitz’ bound).