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F(H:(Y)e) = H (Y )o
F stabilizes H:(Y); and H}(Y)s,
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» 0=I|XF]| = g—Tr(F, HX(Y)1).
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= p1 =1L

By Schur’s lemma, two eigenvalues on H(Y)g,: py, p_ with
multiplicities (g — 1)/2
» 0=1YF|=q—Te(F,H(Y)) =
q—Tr(F,HX(Y)1) — Tr(F, H:(Y)e,)
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@ F?2 stabilizes H:(Y)g and its action commutes with G

@ Schur's lemma = F? acts by scalar mult. by Ag on H}(Y),
(well..., except for 8y where an extra-argument is needed)
Note that A; =1

@ By Lefschetz Formula, we have, for all & € pgyq,
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~— el

action on H2

= @ —1—(q—1)) 6(&)Ae.
0

¢ —q if&E=-1

@ On the other hand, IYEFZI = .
0 otherwise

= SoAg=-0(—1)qif0#£1



Modular representations



Modular representations

From now on, ¢/q+ 1, ¢ odd



Modular representations

From now on, ¢/q+ 1, ¢ odd
Let S be the Sylow subgroup of g1.



Modular representations

From now on, ¢/q+ 1, ¢ odd
Let S be the Sylow subgroup of g1.
We identify S and (pg11)7



Modular representations

From now on, ¢/q+ 1, ¢ odd
Let S be the Sylow subgroup of g1.
We identify S and (pg11)7

Blocks?



Modular representations

From now on, (/g + 1, ¢ odd

Let S be the Sylow subgroup of g1.
We identify S and (pg11)7
Blocks?

o If a® #1, then {R,] is a block of defect zero



Modular representations

From now on, (/g + 1, ¢ odd

Let S be the Sylow subgroup of g1.
We identify S and (pg11)7
Blocks?

o If a® #1, then {R,] is a block of defect zero
o {R;,}and {R;,} are two blocks of defect zero



Modular representations

From now on, (/g + 1, ¢ odd

Let S be the Sylow subgroup of g1.
We identify S and (pg11)7
Blocks?

o If a® #1, then {R,] is a block of defect zero
o {R;,}and {R;,} are two blocks of defect zero

(1) If 6 is an L-regular linear character of py41 such that 62 # 1,
then {Ry, |1 € 5"} is a block of defect S.



Modular representations

From now on, (/g + 1, ¢ odd
Let S be the Sylow subgroup of g1.
We identify S and (pg11)7
Blocks?
o If a® #1, then {R,] is a block of defect zero

o {R;,}and {R;,} are two blocks of defect zero

(1) If 6 is an L-regular linear character of py41 such that 62 # 1,
then {Ry, |1 € 5"} is a block of defect S.

(2) {Ré;r, Rg, } U{Rgm I M € S\\m # 1} is a block of defect S



Modular representations

From now on, (/g + 1, ¢ odd
Let S be the Sylow subgroup of g1.
We identify S and (pg11)7
Blocks?
o If a® #1, then {R,] is a block of defect zero

o {R;,}and {R;,} are two blocks of defect zero

(1) If 6 is an L-regular linear character of py41 such that 62 # 1,
then {Ry, |1 € 5"} is a block of defect S.

(2) {Ré;r, Rg, } U{Rgm I M € S\\m # 1} is a block of defect S
(3) {16,Stc}U{R: I € S\ m # 1}: principal block (defect S).



What has been illustrated?



What has been illustrated?

@ Blocks are parametrized using the {’-part of linear characters of
tori (in general, see Broué-Michel)



What has been illustrated?

@ Blocks are parametrized using the {’-part of linear characters of
tori (in general, see Broué-Michel)

@ Some Morita equivalences: “Jordan decomposition” (in general,
see Broué for tori and B.-Rouquier for a more general situation)



What has been illustrated?

@ Blocks are parametrized using the {’-part of linear characters of
tori (in general, see Broué-Michel)

@ Some Morita equivalences: “Jordan decomposition” (in general,
see Broué for tori and B.-Rouquier for a more general situation)

@ Derived equivalences: Broué's abelian defect conjecture admits a
“geometric version” (proved only for the “Coxeter” torus of
GL,(F,) by B.-Rouquier: cyclic defect...)



What has been illustrated?

@ Blocks are parametrized using the {’-part of linear characters of
tori (in general, see Broué-Michel)

@ Some Morita equivalences: “Jordan decomposition” (in general,
see Broué for tori and B.-Rouquier for a more general situation)

@ Derived equivalences: Broué's abelian defect conjecture admits a
“geometric version” (proved only for the “Coxeter” torus of
GL,(F,) by B.-Rouquier: cyclic defect...)

@ Role of the Frobenius



What has been illustrated?

@ Blocks are parametrized using the {’-part of linear characters of
tori (in general, see Broué-Michel)

@ Some Morita equivalences: “Jordan decomposition” (in general,
see Broué for tori and B.-Rouquier for a more general situation)

@ Derived equivalences: Broué's abelian defect conjecture admits a
“geometric version” (proved only for the “Coxeter” torus of
GL,(F,) by B.-Rouquier: cyclic defect...)

@ Role of the Frobenius

What has been omitted?



What has been illustrated?

@ Blocks are parametrized using the {’-part of linear characters of
tori (in general, see Broué-Michel)

@ Some Morita equivalences: “Jordan decomposition” (in general,
see Broué for tori and B.-Rouquier for a more general situation)

@ Derived equivalences: Broué's abelian defect conjecture admits a
“geometric version” (proved only for the “Coxeter” torus of
GL,(F,) by B.-Rouquier: cyclic defect...)

@ Role of the Frobenius
What has been omitted?

@ Non-abelian defect (for £ =2 in G, see Gonard's thesis)



What has been illustrated?

@ Blocks are parametrized using the {’-part of linear characters of
tori (in general, see Broué-Michel)

@ Some Morita equivalences: “Jordan decomposition” (in general,
see Broué for tori and B.-Rouquier for a more general situation)

@ Derived equivalences: Broué's abelian defect conjecture admits a
“geometric version” (proved only for the “Coxeter” torus of
GL,(F,) by B.-Rouquier: cyclic defect...)

@ Role of the Frobenius

What has been omitted?

@ Non-abelian defect (for £ =2 in G, see Gonard's thesis)
@ Decomposition matrices, Schur algebras

o ...
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e Abhyankar’s conjecture (Raynaud’s Theorem): A finite
group T is the Galois group of a Galois étale covering of A*(IF)
if and only if it is generated by its Sylow p-subgroups.

Example: ' = SL,(FF,),

Y —  AYF)
(x,y) > xyT —yx@

@ g=17, Y/{£1}is acted on by PSL,(IF;) ~ GL3([F;): it is the
reduction modulo 7 of the Klein's quartic (whose group of
automorphism is exactly PSL,(F7), reaching Hurwitz' bound).



