CORRIGENDA : "MACKEY FORMULA IN TYPE A"

C. BONNAFÉ

The author recently noticed two errors in his paper [B3] (from which we keep all the notation). They concern Theorem 4.1.1 and Formulas 5.1.7 and 5.1.8 : however, they do not affect the validity of all other results in [B3] as is explained in this note.

1. About Formulas 5.1.7 and 5.1.8 in [B3].

The sign "+" in these formulas must be changed in "-". This has no consequence concerning the results of [B3] since both formulas are used for the induction argument : in each case where they are used, all the terms involved are equal to 0. Because of these errors, we provide here a complete proof for both formulas.

Proposition 1. Let \mathbf{P} , \mathbf{P}' , \mathbf{Q} and \mathbf{Q}' be four parabolic subgroups of \mathbf{G} and let \mathbf{L} , \mathbf{L}' , \mathbf{M} and \mathbf{M}' be F-stable Levi subgroups of \mathbf{P} , \mathbf{P}' , \mathbf{Q} and \mathbf{Q}' respectively. We assume that $\mathbf{P} \subset \mathbf{P}'$, $\mathbf{L} \subset \mathbf{L}'$, $\mathbf{Q} \subset \mathbf{Q}'$ and $\mathbf{M} \subset \mathbf{M}'$. Then

(a)
$$\Delta_{\mathbf{L}\subset\mathbf{P},\mathbf{M}\subset\mathbf{Q}}^{\mathbf{G}} = \Delta_{\mathbf{L}\subset\mathbf{P},\mathbf{M}'\subset\mathbf{Q}'}^{\mathbf{G}} \circ R_{\mathbf{M}\subset\mathbf{Q}\cap\mathbf{M}'}^{\mathbf{M}'}$$

 $+ \sum_{x \in \mathbf{L}^F \setminus \mathcal{S}_{\mathbf{G}}(\mathbf{L}, \mathbf{M}')^F / \mathbf{M}'^F} R^{\mathbf{L}}_{\mathbf{L} \cap {^x}\mathbf{M}' \subset \mathbf{L} \cap {^x}\mathbf{Q}'} \circ \Delta^{{^x}\mathbf{M}'}_{\mathbf{L} \cap {^x}\mathbf{M}' \subset \mathbf{P} \cap {^x}\mathbf{M}', {^x}\mathbf{M} \subset {^x}(\mathbf{Q} \cap \mathbf{M}')} \circ (\mathrm{ad}\, x)_{\mathbf{M}}.$

(b)
$$\Delta_{\mathbf{L}\subset\mathbf{P},\mathbf{M}\subset\mathbf{Q}}^{\mathbf{G}} = {}^{*}R_{\mathbf{L}\subset\mathbf{P}\cap\mathbf{L}'}^{\mathbf{L}'} \circ \Delta_{\mathbf{L}'\subset\mathbf{P}',\mathbf{M}\subset\mathbf{Q}}^{\mathbf{G}}$$

$$+ \sum_{x \in \mathbf{L}'^F \setminus \mathcal{S}_{\mathbf{G}}(\mathbf{L}', \mathbf{M})^F / \mathbf{M}^F} \Delta^{\mathbf{L}}_{\mathbf{L} \subset \mathbf{P} \cap \mathbf{L}', \mathbf{L}' \cap x \mathbf{M} \subset \mathbf{L}' \cap x \mathbf{Q}} \circ {}^*R^{-\mathbf{M}}_{\mathbf{L}' \cap x \mathbf{M} \subset \mathbf{P}' \cap x \mathbf{M}} \circ (\mathrm{ad}\, x)_{\mathbf{M}}$$

(c)
$$\Delta_{\mathbf{L}\subset\mathbf{P},\mathbf{M}\subset\mathbf{Q}}^{\mathbf{G}} = {}^{*}R_{\mathbf{L}\subset\mathbf{P}\cap\mathbf{L}'}^{\mathbf{L}'} \circ \Delta_{\mathbf{L}'\subset\mathbf{P}',\mathbf{M}'\subset\mathbf{Q}'}^{\mathbf{G}} \circ R_{\mathbf{M}\subset\mathbf{Q}\cap\mathbf{M}}^{\mathbf{M}'}$$

 $+\sum_{x\in\mathbf{L}'^{F}\backslash\mathcal{S}_{\mathbf{G}}(\mathbf{L}',\mathbf{M}')^{F}/\mathbf{M}'^{F}} {}^{*}R_{\mathbf{L}\,\subset\,\mathbf{P}\cap\mathbf{L}'}^{\mathbf{L}'} \circ R_{\mathbf{L}'\cap^{x}\mathbf{M}'\subset\mathbf{L}'\cap^{x}\mathbf{Q}'}^{\mathbf{L}'} \circ \Delta_{\mathbf{L}'\cap^{x}\mathbf{M}'\subset\mathbf{P}'\cap^{x}\mathbf{M}',x\mathbf{M}\,\subset\,x(\mathbf{Q}\cap\mathbf{M}')}^{x\mathbf{M}'} \circ (\mathrm{ad}\,x)_{\mathbf{M}}$

$$+\sum_{x\in\mathbf{L}'^F\backslash\mathcal{S}_{\mathbf{G}}(\mathbf{L}',\mathbf{M})^F/\mathbf{M}^F}\Delta^{\mathbf{L}'}_{\mathbf{L}_{\subset}\mathbf{P}\cap\mathbf{L}',\mathbf{L}'\cap^{x}\mathbf{M}_{\subset}\mathbf{L}'\cap^{x}\mathbf{Q}}\circ^{*}R^{^{x}\mathbf{M}}_{\mathbf{L}'\cap^{x}\mathbf{M}_{\subset}\mathbf{P}'\cap^{x}\mathbf{M}}\circ(\mathrm{ad}\,x)_{\mathbf{M}}.$$

Date: November 2002.

PROOF - Note that (b) follows from (a) by adjunction and that (c) follows by applying (a) and (b) successively. Now, let us prove (a). Let Δ_0 denote the right-hand side of the equality (a). By definition of the Δ -maps, we easily get

$$\Delta_{0} = {}^{*}R_{\mathbf{L}\subset\mathbf{P}}^{\mathbf{G}} \circ R_{\mathbf{M}\subset\mathbf{Q}}^{\mathbf{G}}$$

$$+ \sum_{g\in\mathbf{L}^{F}\setminus\mathcal{S}_{\mathbf{G}}(\mathbf{L},\mathbf{M}')^{F}/\mathbf{M}'^{F}} \left(-R_{\mathbf{L}\cap^{g}\mathbf{M}'\subset\mathbf{L}\cap^{g}\mathbf{Q}'}^{\mathbf{L}} \circ {}^{*}R_{\mathbf{L}\cap^{g}\mathbf{M}'\subset\mathbf{P}\cap^{g}\mathbf{M}'}^{g\mathbf{M}'} \circ (\mathrm{ad}\,g)_{\mathbf{M}'} \circ R_{\mathbf{M}\subset\mathbf{Q}\cap\mathbf{M}'}^{\mathbf{M}'} \right.$$

$$+ R_{\mathbf{L}\cap^{g}\mathbf{M}'\subset\mathbf{L}\cap^{g}\mathbf{Q}'}^{\mathbf{L}} \circ {}^{*}R_{\mathbf{L}\cap^{g}\mathbf{M}'\subset\mathbf{P}\cap^{g}\mathbf{M}'}^{g\mathbf{M}'} \circ (\mathrm{ad}\,g)_{\mathbf{M}'} \circ R_{\mathbf{M}\subset\mathbf{Q}\cap\mathbf{M}'}^{\mathbf{M}'}$$

$$- \sum_{g\in\mathbf{L}^{F}\cap^{g}\mathbf{M}'^{F}\setminus\mathcal{S}_{g\mathbf{M}'}(\mathbf{L}\cap^{g}\mathbf{M}',g\mathbf{M})^{F}/g\mathbf{M}^{F}} R_{\mathbf{L}\cap^{yg}\mathbf{M}\subset\mathbf{L}\cap^{yg}\mathbf{Q}}^{\mathbf{L}} \circ R_{\mathbf{L}\cap^{yg}\mathbf{M}\subset\mathbf{P}\cap^{yg}\mathbf{M}}^{yg\mathbf{M}}$$

Therefore,

$$\Delta_{0} = {}^{*}R_{\mathbf{L}\subset\mathbf{P}}^{\mathbf{G}} \circ R_{\mathbf{M}\subset\mathbf{Q}}^{\mathbf{G}}$$
$$- \sum_{g\in\mathbf{L}^{F}\setminus\mathcal{S}_{\mathbf{G}}(\mathbf{L},\mathbf{M}')^{F}/\mathbf{M}'^{F}} \left(\sum_{g\in\mathbf{L}^{F}\cap {}^{g}\mathbf{M}'^{F}\setminus\mathcal{S}_{g_{\mathbf{M}'}}(\mathbf{L}\cap {}^{g}\mathbf{M}',{}^{g}\mathbf{M})^{F}/{}^{g}\mathbf{M}^{F}} R_{\mathbf{L}\cap {}^{yg}\mathbf{M}\subset\mathbf{L}\cap {}^{yg}\mathbf{Q}}^{\mathbf{L}} \circ R_{\mathbf{L}\cap {}^{yg}\mathbf{M}\subset\mathbf{P}\cap {}^{yg}\mathbf{M}}^{g}\right).$$

* DC

ъC

The argument at the end of the proof of [B1, Lemma 3.2.1] completes the proof of (a). ■

2. About Theorem 4.1.1 in [B3].

The second error is much more serious : Theorem 4.1.1 is false ! However, its corollary 4.1.2 is still correct ; it follows from Theorem 3 below. Fortunately, we use only Corollary 4.1.2 in the rest of [B3] (and not Theorem 4.1.1). This means that all the other results in [B3] are valid.

Our mistake in the proof of [B3, Theorem 4.1.1] is the following (here we keep the notation of this "theorem") : it may happen that ω stabilizes a cuspidal local system but that it acts on the characteristic function by multiplication by a scalar different from 1.

Let us first introduce some notation. If $\iota = (C, \mathcal{L}) \in \mathcal{U}(\mathbf{G})^F$, we fix once and for all an isomorphism $\varphi_{\iota} : F^*\mathcal{L} \xrightarrow{\sim} \mathcal{L}$ and we denote by \mathfrak{Y}_{ι} (or $\mathfrak{Y}_{\iota}^{\mathbf{G}}$ if we need to make the ambient group precise) the characteristic function associated to this isomorphism. Let $\mathcal{CUS}_{uni}(\mathbf{G}^F)$ denote the $\overline{\mathbb{Q}}_{\ell}$ -vector subspace of $\operatorname{Class}_{uni}(\mathbf{G}^F)$ generated by the functions \mathfrak{Y}_{ι} $(\iota \in \mathcal{U}(\mathbf{G})_{cus}^F)$. Let $\operatorname{Aut}(\mathbf{G}, F)$ denote the group of automorphisms of \mathbf{G} commuting with F. The group $\operatorname{Inn}(\mathbf{G}^F)$ of inner automorphisms of \mathbf{G}^F is a normal subgroup of $\operatorname{Aut}(\mathbf{G}, F)$. We set $\operatorname{Out}(\mathbf{G}, F) = \operatorname{Aut}(\mathbf{G}^F) / \operatorname{Inn}(\mathbf{G}^F)$. It is clear that $\operatorname{Aut}(\mathbf{G}, F)$ (or $\operatorname{Out}(\mathbf{G}, F)$) acts on the vector spaces $\operatorname{Class}_{uni}(\mathbf{G}^F)$, $\operatorname{Cus}_{uni}(\mathbf{G}^F)$ and $\mathcal{CUS}_{uni}(\mathbf{G}^F)$.

We fix an *F*-stable Borel subgroup **B** of **G** and an *F*-stable maximal torus **T** of **B**. Let W denote the Weyl group of **G** relative to **T** and let S be the set of simple reflections in W corresponding to the choice of **B**. If $I \subset S$, we denote by W_I the subgroup of W generated by I and we set $\mathbf{P}_I = \mathbf{B}W_I\mathbf{B}$. We denote by \mathbf{L}_I the Levi subgroup of \mathbf{P}_I containing **T**.

If I is a subset of S, we denote by A_I the stabilizer of $(\mathbf{B} \cap \mathbf{L}_I, \mathbf{T})$ in the group $\operatorname{Aut}(\mathbf{L}_I, F)$. We have $\operatorname{Aut}(\mathbf{G}, F) = \operatorname{Inn}(\mathbf{G}^F) \cdot A_S$. So studying the action of $\operatorname{Aut}(\mathbf{G}, F)$ on $\operatorname{Class}_{\operatorname{uni}}(\mathbf{G}^F)$, $\operatorname{Cus}_{\operatorname{uni}}(\mathbf{G}^F)$ or $\mathcal{CUS}_{\operatorname{uni}}(\mathbf{G}^F)$ is equivalent to studying the action of A_S .

2.A. Generalized Springer correspondence. We denote by $\mathcal{P}(S)$ the set of subsets of S and by $\mathcal{P}(S)_{\text{cus}}$ the set of subsets I of S such that $\mathcal{U}(\mathbf{L}_I)_{\text{cus}} \neq \emptyset$. Note that F and A_S act on W, S, $\mathcal{P}(S)$ and $\mathcal{P}(S)_{\text{cus}}$ and that these two actions commute.

Let $\mathcal{U}'(\mathbf{G})$ denote the set of triples (I, ι, ρ) where $I \subset S$, $\iota \in \mathcal{U}(\mathbf{L}_I)_{\text{cus}}$ and $\rho \in \text{Irr } W_{\mathbf{G}}(\mathbf{L}_I)$. The generalized Springer correspondence [L, Theorems 6.5 and 9.2] is a well-defined bijection $\psi : \mathcal{U}'(\mathbf{G}) \to \mathcal{U}(\mathbf{G})$. This bijection commutes with the actions of F and A_S .

2.B. Action of automorphisms on characteristic functions of local systems. The vector space $\operatorname{Class}_{\operatorname{uni}}(\mathbf{G}^F)$ admits $(\mathfrak{Y}_{\iota})_{\iota \in \mathcal{U}(\mathbf{G}^F)}$ as a basis. With respect to this basis, the action of an element of $\operatorname{Aut}(\mathbf{G}, F)$ is monomial. We are interested here in the way to determine the non-zero coefficients of this monomial matrix. Since the characteristic function \mathfrak{Y}_{ι} (for $\iota = (C, \mathcal{L}) \in \mathcal{U}(\mathbf{G})^F$) depends on the choice of the isomorphism $\varphi_{\iota} : F^*\mathcal{L} \to \mathcal{L}$ that we have fixed once and for all, the interesting question is the following : if $\sigma \in \operatorname{Aut}(\mathbf{G}, F)$ and if $\iota \in \mathcal{U}(\mathbf{G})^F$ are such that $\sigma(\iota) = \iota$, then what is the root of unity $\xi_{\iota,\sigma}$ (or $\xi^{\mathbf{G}}_{\iota,\sigma}$ if we want to emphasize the ambient group) such that ${}^{\sigma}\mathfrak{Y}_{\iota} = \xi_{\iota,\sigma}\mathfrak{Y}_{\iota,\sigma}$?

2.B.1. Permutation of unipotent classes in \mathbf{G}^F . Let $\sigma \in \operatorname{Aut}(\mathbf{G}, F)$ and let $\iota = (C, \mathcal{L}) \in \mathcal{U}(\mathbf{G})^F$ be such that $\sigma(\iota) = \iota$. We fix $u \in C^F$ such that $\mathfrak{Y}_{\iota}(u) \neq 0$ and we denote by ζ the irreducible character of $A_{\mathbf{G}}(u)$ defined by \mathcal{L} . Let $\tilde{\zeta}$ denote the extension of ζ to the semi-direct product $A_{\mathbf{G}}(u) \rtimes \langle F \rangle$ (here, $\langle F \rangle$ is viewed as an infinite cyclic group) associated to the isomorphism φ_{ι} .

If $a \in H^1(F, A_{\mathbf{G}}(u))$, we denote by g_a an element of \mathbf{G} such that $g_a^{-1}F(g_a) \in C_{\mathbf{G}}(u)$ and such that the image \dot{a} of $g_a^{-1}F(g_a)$ in $A_{\mathbf{G}}(u)$ belongs to the class a. We set $u_a = g_a u g_a^{-1} \in C^F$. Then $\{u_a \mid a \in H^1(F, A_{\mathbf{G}}(u))\}$ is a set of representatives of \mathbf{G}^F -conjugacy classes in C^F and

(2)
$$\mathfrak{Y}_{\iota}(u_a) = \tilde{\zeta}(\dot{a}F).$$

Therefore, if a_{σ} denotes the unique element of $H^1(F, A_{\mathbf{G}}(u))$ such that $\sigma^{-1}(u)$ is \mathbf{G}^F conjugate to $u_{a_{\sigma}}$, we have

(3)
$$\xi_{\iota,\sigma} = \frac{\zeta(\dot{a}_{\sigma}F)}{\tilde{\zeta}(F)}$$

2.B.2. Going down to cuspidal local systems. Let $\iota \in \mathcal{U}(\mathbf{G})^F$. We denote by $A_{S,\iota}$ the stabilizer of ι in A_S and we set $\xi_{\iota} = \xi_{\iota}^{\mathbf{G}} : A_{S,\iota} \to \overline{\mathbb{Q}}_{\ell}^{\times}$, $\sigma \mapsto \xi_{\iota,\sigma}$. It is clear that ξ_{ι} is a linear character. Now, let $(I, \iota_0, \rho) = \psi^{-1}(\iota)$. Then $A_{S,\iota}$ stabilizes $\mathbf{L}_I, \mathbf{B} \cap \mathbf{L}_I, \mathbf{T}, \iota_0$ and ρ . Therefore, we get a morphism $A_{S,\iota} \to A_{I,\iota_0}$.

Lemma 4. With the above notation, we have $\xi_{\iota}^{\mathbf{G}} = \operatorname{Res}_{A_{S_{\iota}}}^{A_{I,\iota_0}} \xi_{\iota_0}^{\mathbf{L}_I}$.

PROOF - Let $\mathfrak{X}_{I,\iota_0}^{\mathbf{G}}$ denote the characteristic function of the restriction to the unipotent elements of the *F*-stable perverse sheaf defined by induction from the datum (I, ι_0) . Then $\sigma \in A_{S,\iota}$ acts on $\mathfrak{X}_{I,\iota_0}^{\mathbf{G}}$ by multiplication $\xi_{\iota_0}^{\mathbf{L}_I}(\sigma)$. Moreover,

$$\mathfrak{X}_{I,\iota_0}^{\mathbf{G}} = \sum_{\rho \in (\operatorname{Irr} W_{\mathbf{G}}(\mathbf{L}_I))^F} n_{\rho} \mathfrak{X}_{I,\iota_0,\rho}^{\mathbf{G}}$$

where $\mathfrak{X}_{I,\iota_0,\rho}$ is the characteristic function of the *F*-stable perverse sheaf associated to (I,ι_0,ρ) via the generalized Springer correspondence and $n_{\rho} \in \overline{\mathbb{Q}}_{\ell}^{\times}$. Therefore, if ρ is σ -invariant, then σ acts on $\mathfrak{X}_{I,\iota_0,\rho}^{\mathbf{G}}$ by multiplication by $\xi_{\iota_0}^{\mathbf{L}_I}(\sigma)$ (indeed, the family $(\mathfrak{X}_{I,\iota_0,\rho})_{\rho \in (\operatorname{Irr} W_{\mathbf{G}}(\mathbf{L}_I))^F}$ is linearly independent).

But $\mathfrak{X}_{I,\iota_0,\rho}^{\mathbf{G}}$ and $\lambda \mathfrak{Y}_{\psi(I,\iota_0,\rho)}^{\mathbf{G}}$ coincide on C^F where $(C, \mathcal{L}) = \psi(I,\iota_0,\rho)$ for some $\lambda \in \overline{\mathbb{Q}}_{\ell}^{\times}$. So σ acts on $\mathfrak{Y}_{\psi(I,\iota_0,\rho)}^{\mathbf{G}}$ by multiplication by $\xi_{\iota_0}^{\mathbf{L}_I}(\sigma)$. \Box

2.B.3. About cuspidal local systems. Lemma 4 shows that, in order to determine the linear characters ξ_{ι} , we can restrict our attention to the case of cuspidal local systems. The first result in this direction is the following.

Lemma 5. If **L** is a rational Levi subgroup of a parabolic subgroup of **G**, then $N_{\mathbf{G}^F}(\mathbf{L})$ acts trivially on $\mathcal{CUS}_{uni}(\mathbf{L}^F)$.

PROOF - Let $n \in N_{\mathbf{G}^F}(\mathbf{L})$, let $\iota = (C, \mathcal{L}) \in \mathcal{U}(\mathbf{L})^F_{\text{cus}}$ and let $v \in C^F$. Then, by [B4, Proposition I.8.3], nvn^{-1} and v are \mathbf{L}^F -conjugate. This proves Lemma 5.

We close this section with a result concerning geometrically conjugate F-stable Levi subgroups. We need some further notation. Let \mathcal{A} denote a set of representatives of \mathbf{G}^{F} -conjugacy classes of F-stable Levi subgroups \mathbf{L} of proper parabolic subgroups of \mathbf{G} such that $\mathcal{U}(\mathbf{L})_{cus}^{F} \neq \emptyset$. By [L, Theorem 9.2], we have :

Lemma 6. (a) If $I, J \in \mathcal{P}(S)_{\text{cus}}$ and if there exists $w \in W$ such that ${}^{w}I = J$, then I = J. (b) Every $\mathbf{L} \in \mathcal{A}$ is geometrically conjugate to a unique \mathbf{L}_{I} with $I \in \mathcal{P}(S)_{\text{cus}}^{F}$. If $I \in \mathcal{P}(S)_{\text{cus}}^F$, then the set of \mathbf{G}^F -conjugacy classes of F-stable Levi subgroups (of parabolic subgroups of \mathbf{G}) geometrically conjugate to \mathbf{L}_I are parametrized by $H^1(F, W_{\mathbf{G}}(\mathbf{L}_I))$ where $W_{\mathbf{G}}(\mathbf{L}_I) = N_{\mathbf{G}}(\mathbf{L}_I)/\mathbf{L}_I$. Let \mathcal{C} be the set of pairs (I, w) such that $I \in \mathcal{P}(S)_{\text{cus}}^F$, $I \neq S$ and $w \in H^1(F, W_{\mathbf{G}}(\mathbf{L}_I))$. We then have a bijection $\mathcal{C} \to \mathcal{A}$ denoted by $(I, w) \mapsto \mathbf{L}_{I,w}$.

We now fix in this subsection, and only in this subsection, an element $\sigma \in A$, a subset I of S and an element $w \in H^1(F, W_{\mathbf{G}}(\mathbf{L}_I))$ such that $\sigma(I, w) = (I, w)$. Let $g \in \mathbf{G}$ be such that $\mathbf{L}_{I,w} = {}^{g}\mathbf{L}_{I}$. We set $\dot{w} = g^{-1}F(g) \in N_{\mathbf{G}}(\mathbf{L}_{I})$ (\dot{w} is a representative in $N_{\mathbf{G}}(\mathbf{L}_{I})$ of w). Then, conjugacy by g induces a bijection $\mathcal{U}(\mathbf{L}_{I})^{\dot{w}F} \xrightarrow{\sim} \mathcal{U}(\mathbf{L}_{I,w})^{F}$, $\iota \mapsto {}^{g}\iota$.

Since the group $N_{\mathbf{G}}(\mathbf{L}_I)$ acts trivially on $\mathcal{U}(\mathbf{L}_I)_{\text{cus}}$ by [L, Theorem 9.2], we get a bijection $\mathcal{U}(\mathbf{L}_I)_{\text{cus}}^F \xrightarrow{\sim} \mathcal{U}(\mathbf{L}_{I,w})_{\text{cus}}^F, \iota \mapsto {}^g\iota.$

Since σ stabilizes w, there exists $x \in \mathbf{G}^F$ such that ${}^{\sigma}\mathbf{L}_{I,w} = {}^{x}\mathbf{L}_{I,w}$. We then set $\sigma' = \operatorname{Inn}(x^{-1}) \circ \sigma$ so that ${}^{\sigma'}\mathbf{L}_{I,w} = \mathbf{L}_{I,w}$.

Lemma 7. Let $\iota \in \mathcal{U}(\mathbf{L}_I)^F_{\text{cus.}}$. Then : (a) $\sigma(\iota) = \iota$ if and only if $\sigma'({}^g\iota) = {}^g\iota$. (b) If $\sigma(\iota) = \iota$, then $\xi^{\mathbf{L}_I}_{\iota,\sigma} = \xi^{\mathbf{L}_{I,w}}_{g_{\iota,\sigma'}}$.

PROOF - Let $\tau = \text{Inn}(g^{-1}) \circ \sigma' \circ \text{Inn}(g)$. Then $\tau \in \text{Aut}(\mathbf{L}_I, \text{Inn}(\dot{w}) \circ F)$. Moreover, σ' stabilizes ${}^{g_{\iota}}$ if and only if τ stabilizes ι . But $\tau = \text{Inn}(g^{-1}x^{-1} \ {}^{\sigma}g) \circ \sigma$, so $g^{-1}x^{-1} \ {}^{\sigma}g \in N_{\mathbf{G}}(\mathbf{L}_I)$: this proves that $g^{-1}x^{-1} \ {}^{\sigma}g$ acts trivially on $\mathcal{U}(\mathbf{L}_I)_{\text{cus}}$ by [L, Theorem 9.2]. Therefore, τ stabilizes ι if and only if σ stabilizes ι . This proves (a).

Let us now prove (b). Let $\iota = (C, \mathcal{L}) \in \mathcal{U}(\mathbf{L}_I)_{\text{cus}}^F$ be such that $\sigma(\iota) = \iota$. We fix an element $v \in C^F$ such that $\mathfrak{Y}_{\iota}^{\mathbf{L}_I}(v) \neq 0$.

We write $n = g^{-1}x^{-1} \sigma g \in N_{\mathbf{G}}(\mathbf{L}_{I})$. Then $\tau = \operatorname{Inn}(n) \circ \sigma$ commutes with $\operatorname{Inn}(\dot{w}) \circ F$. Since $N_{\mathbf{G}}(\mathbf{L}_{I})$ stabilizes C and since $A_{\mathbf{L}_{I}}(v) = A_{\mathbf{G}}(v)$ (see [B2, Corollary to Proposition 1.1]), we may (and we will) assume that $\dot{w} \in N_{\mathbf{G}}(\mathbf{L}_{I}) \cap C^{\circ}_{\mathbf{G}}(v)$. Now, σ and n stabilize C. So there exists l and m in \mathbf{L}_{I} such that $\sigma(v) = lvl^{-1}$ and $nvn^{-1} = mvm^{-1}$. So $m^{-1}n \in C_{\mathbf{G}}(v)$. Since $A_{\mathbf{L}_{I}}(v) = A_{\mathbf{G}}(v)$, we may (and we will) choose m in such a way that $m^{-1}n \in C^{\circ}_{\mathbf{G}}(v)$.

We have

and

$$l^{-1}F(l) \in C_{\mathbf{L}_{I}}(v), \qquad \tau(v) = \operatorname{Inn}(nln^{-1}m)(v)$$
$$(nln^{-1}m)^{-1}\dot{w}F(nln^{-1}m)\dot{w}^{-1} \in C_{\mathbf{L}_{I}}(v).$$

According to Formula 3, and since \dot{w} acts trivially on $A_{\mathbf{L}_{I}}(v)$ (see [B4, Lemma I.3.12]), it is sufficient to prove that $l^{-1}F(l)$ and $(nln^{-1}m)^{-1}\dot{w}F(nln^{-1}m)\dot{w}^{-1}$ represent the same element of $A_{\mathbf{L}_{I}}(v)$. Since $A_{\mathbf{L}_{I}}(v) = A_{\mathbf{G}}(v)$, we need to determine the class in $A_{\mathbf{G}}(v)$ of $\mu = (nln^{-1}m)^{-1}\dot{w}F(nln^{-1}m)\dot{w}^{-1}$. But,

$$\mu = (m^{-1}n)l^{-1}n^{-1}\dot{w}F(nl)\dot{w}^{-1}(\dot{w}F(n^{-1}m)\dot{w}^{-1}),$$

 $m^{-1}n \in C^{\circ}_{\mathbf{G}}(v)$ and $\dot{w}F(n^{-1}m)\dot{w}^{-1} \in C^{\circ}_{\mathbf{G}}(v)$ because $\operatorname{Inn}(\dot{w}) \circ F$ stabilizes v. Therefore, the class of μ in $A_{\mathbf{G}}(v)$ is equal to the class of $\mu' = l^{-1}n^{-1}\dot{w}F(nl)\dot{w}^{-1}$. It is also easily checked that $\dot{w}F(n) = n \sigma \dot{w}$. Therefore,

$$\mu' = l^{-1} n^{-1} n^{\sigma} \dot{w} F(l) \dot{w}^{-1} = l^{-1} {}^{\sigma} \dot{w} l l^{-1} F(l) \dot{w}^{-1}.$$

But, $l^{-1} \sigma \dot{w} l \in C^{\circ}_{\mathbf{G}}(v)$ because $l^{-1}\sigma(v)l = v$ and $\dot{w} \in C^{\circ}_{\mathbf{G}}(v)$. So the class of μ' in $A_{\mathbf{G}}(v)$ is equal to the class of $l^{-1}F(l)$, which is the desired result.

2.C. The main result. We recall (see for example [B3, Conjecture C]) that it is conjectured that $\operatorname{Cus}_{\operatorname{uni}}(\mathbf{G}^F) = \mathcal{CUS}_{\operatorname{uni}}(\mathbf{G}^F)$ whenever p is almost good for \mathbf{G} . The next theorem goes in this direction.

Theorem 8. If the Mackey formula holds in **G** (in the sense of [B3, Definition 1.4.2]), then $\operatorname{Cus}_{\operatorname{uni}}(\mathbf{G}^F)$ and $\mathcal{CUS}_{\operatorname{uni}}(\mathbf{G}^F)$ are isomorphic as $\overline{\mathbb{Q}}_{\ell} \operatorname{Out}(\mathbf{G}, F)$ -modules.

PROOF - We proceed as for the proof of [B3, Theorem 4.1.1]. But we avoid the mistake mentioned above ! So we assume that the Mackey formula holds in **G**. Note that this implies that the Lusztig induction and restriction maps do not depend on the choice of the parabolic subgroup. Therefore, if **L** is an *F*-stable Levi subgroup of a parabolic subgroup **P** of **G**, we will denote by $R_{\mathbf{L}}^{\mathbf{G}}$ and $*R_{\mathbf{L}}^{\mathbf{G}}$ the maps $R_{\mathbf{L}\subset\mathbf{P}}^{\mathbf{G}}$ and $*R_{\mathbf{L}\subset\mathbf{P}}^{\mathbf{G}}$.

We argue by induction on dim **G**. The result is obvious if **G** is a torus. Therefore, we may assume that Theorem 8 holds for every *F*-stable Levi subgroup of a proper parabolic subgroup of **G**. Since $Out(\mathbf{G}, F)$ acts on $Cus_{uni}(\mathbf{G}^F)$ and $\mathcal{CUS}_{uni}(\mathbf{G}^F)$ through a finite quotient (namely its image in $Out(\mathbf{G}^F)$), it is sufficient to prove the following : if $\sigma \in A_S$, then

(*)
$$\operatorname{Tr}(\sigma, \operatorname{Cus}_{\operatorname{uni}}(\mathbf{G}^F)) = \operatorname{Tr}(\sigma, \mathcal{CUS}_{\operatorname{uni}}(\mathbf{G}^F)).$$

First step. Let us first evaluate the right-hand side of (*). Let $\mathcal{U}'(\mathbf{G})_*$ denote the set of $(I, \iota, \rho) \in \mathcal{U}'(\mathbf{G})$ such that $I \neq S$. Then, since $(\mathfrak{Y}_{\psi(I,\iota,\rho)})_{(I,\iota,\rho)\in\mathcal{U}'(\mathbf{G})^F}$ is a basis of Class_{uni}(\mathbf{G}^F), we have

$$\operatorname{Tr}(\sigma, \operatorname{Class}_{\operatorname{uni}}(\mathbf{G}^F)) = \operatorname{Tr}(\sigma, \mathcal{CUS}_{\operatorname{uni}}(\mathbf{G}^F)) + \sum_{\substack{(I,\iota,\rho) \in \mathcal{U}'(\mathbf{G})^F_*\\\sigma(I,\iota,\rho) = (I,\iota,\rho)}} \xi^{\mathbf{G}}_{\psi(I,\iota,\rho)}(\sigma).$$

If we denote by \mathcal{E} the set of pair (I, ι) such that $I \in \mathcal{P}(S)^F_{\text{cus}}$, $I \neq S$ and $\iota \in \mathcal{U}(\mathbf{L}_I)^F_{\text{cus}}$, and if we use Lemma 4, we get :

(A)
$$\operatorname{Tr}(\sigma, \mathcal{CUS}_{\mathrm{uni}}(\mathbf{G}^F)) = \operatorname{Tr}(\sigma, \operatorname{Class}_{\mathrm{uni}}(\mathbf{G}^F)) \\ - \sum_{\substack{(I,\iota) \in \mathcal{E} \\ \sigma(I,\iota) = (I,\iota)}} \xi_{\iota,\sigma}^{\mathbf{L}_I} |\{\rho \in (\operatorname{Irr} W_{\mathbf{G}}(\mathbf{L}_I))^F \mid \sigma(\rho) = \rho\}|$$

Second step. We now evaluate the left-hand side of (*). If $\mathbf{L} \in \mathcal{A}$, then $N_{\mathbf{G}^F}(\mathbf{L})$ acts trivially on $\mathcal{CUS}_{uni}(\mathbf{L}^F)$ by Lemma 5, so it acts trivially on $\operatorname{Cus}_{uni}(\mathbf{G}^F)$ by the induction hypothesis. So, since Mackey formula holds in \mathbf{G} , we have :

$$\operatorname{Class}_{\operatorname{uni}}(\mathbf{G}^F) = \operatorname{Cus}_{\operatorname{uni}}(\mathbf{G}^F) \oplus \big(\bigoplus_{(I,w) \in \mathcal{C}} R^{\mathbf{G}}_{\mathbf{L}_{I,w}}(\operatorname{Cus}_{\operatorname{uni}}(\mathbf{L}^F_{I,w})) \big),$$

and the map $R_{\mathbf{L}_{I,w}}^{\mathbf{G}}$: $\operatorname{Cus}_{\operatorname{uni}}(\mathbf{L}_{I,w}^{F}) \to R_{\mathbf{L}_{I,w}}^{\mathbf{G}}(\operatorname{Cus}_{\operatorname{uni}}(\mathbf{L}_{I,w}^{F}))$ is an isomorphism. Note that this isomorphism commutes with every element of $\operatorname{Aut}(\mathbf{G}, F)$ stabilizing $\mathbf{L}_{I,w}$. Therefore,

(B)
$$\operatorname{Tr}(\sigma, \operatorname{Cus}_{\operatorname{uni}}(\mathbf{G}^F)) = \operatorname{Tr}(\sigma, \operatorname{Class}_{\operatorname{uni}}(\mathbf{G}^F)) - \sum_{\substack{(I,w) \in \mathcal{C} \\ \sigma(I,w) = (I,w)}} \operatorname{Tr}(\sigma, R^{\mathbf{G}}_{\mathbf{L}_{I,w}}(\operatorname{Cus}_{\operatorname{uni}}(\mathbf{L}^F_{I,w}))).$$

Let $(I, w) \in \mathcal{C}$ be such that $\sigma(I, w) = (I, w)$. Then there exists $x \in \mathbf{G}^F$ such that ${}^{\sigma}\mathbf{L}_{I,w} = {}^{x}\mathbf{L}_{I,w}$. We set $\sigma' = \operatorname{Inn}(x)^{-1} \circ \sigma$. Then σ' stabilizes $\mathbf{L}_{I,w}$ and

$$\operatorname{Tr}(\sigma, R_{\mathbf{L}_{I,w}}^{\mathbf{G}}(\operatorname{Cus}_{\operatorname{uni}}(\mathbf{L}_{I,w}^{F}))) = \operatorname{Tr}(\sigma', R_{\mathbf{L}_{I,w}}^{\mathbf{G}}(\operatorname{Cus}_{\operatorname{uni}}(\mathbf{L}_{I,w}^{F}))),$$

so $\operatorname{Tr}(\sigma, R_{\mathbf{L}_{I,w}}^{\mathbf{G}}(\operatorname{Cus}_{\operatorname{uni}}(\mathbf{L}_{I,w}^{F}))) = \operatorname{Tr}(\sigma', \operatorname{Cus}_{\operatorname{uni}}(\mathbf{L}_{I,w}^{F}))$. But, by the induction hypothesis, we get that $\operatorname{Tr}(\sigma', \operatorname{Cus}_{\operatorname{uni}}(\mathbf{L}_{I,w}^{F})) = \operatorname{Tr}(\sigma', \mathcal{CUS}_{\operatorname{uni}}(\mathbf{L}_{I,w}^{F}))$. Moreover, by Lemma 7, we have $\operatorname{Tr}(\sigma', \mathcal{CUS}_{\operatorname{uni}}(\mathbf{L}_{I,w}^{F})) = \operatorname{Tr}(\sigma, \mathcal{CUS}_{\operatorname{uni}}(\mathbf{L}_{I}^{F}))$. So we deduce from (B) that

$$\operatorname{Tr}(\sigma, \operatorname{Cus}_{\operatorname{uni}}(\mathbf{G}^F)) = \operatorname{Tr}(\sigma, \operatorname{Class}_{\operatorname{uni}}(\mathbf{G}^F)) - \sum_{\substack{(I,w) \in \mathcal{C} \\ \sigma(I,w) = (I,w)}} \operatorname{Tr}(\sigma, \mathcal{CUS}_{\operatorname{uni}}(\mathbf{L}_I^F)).$$

In other words,

$$\operatorname{Tr}(\sigma, \operatorname{Cus}_{\operatorname{uni}}(\mathbf{G}^{F})) = \operatorname{Tr}(\sigma, \operatorname{Class}_{\operatorname{uni}}(\mathbf{G}^{F})) - \sum_{\substack{I \in \mathcal{P}(S)_{\operatorname{cus}}^{F}, \ I \neq S \\ \sigma(I) = I}} \operatorname{Tr}(\sigma, \mathcal{CUS}_{\operatorname{uni}}(\mathbf{L}_{I}^{F})).|\{w \in H^{1}(F, W_{\mathbf{G}}(\mathbf{L}_{I})) \mid \sigma(w) = w\}|.$$

Finally, we get

(C)
$$\operatorname{Tr}(\sigma, \operatorname{Cus}_{\operatorname{uni}}(\mathbf{G}^F)) = \operatorname{Tr}(\sigma, \operatorname{Class}_{\operatorname{uni}}(\mathbf{G}^F)) \\ - \sum_{\substack{(I,\iota) \in \mathcal{E} \\ \sigma(I,\iota) = (I,\iota)}} \xi_{\iota,\sigma}^{\mathbf{L}_I} \cdot |\{w \in H^1(F, W_{\mathbf{G}}(\mathbf{L}_I)) \mid \sigma(w) = w\}|.$$

Third step. Let $I \in \mathcal{P}(S)^F$ be such that $\sigma(I) = I$. Then σ acts on $W_{\mathbf{G}}(\mathbf{L}_I)$ and this action commutes with the action of F. Therefore,

(D)
$$|\{w \in H^1(F, W_{\mathbf{G}}(\mathbf{L}_I)) \mid \sigma(w) = w\}| = |\{\rho \in (\operatorname{Irr} W_{\mathbf{G}}(\mathbf{L}_I))^F \mid \sigma(\rho) = \rho\}|.$$

The proof of (D) is similar to the proof of the well-known theorem of Brauer [I, Theorem 6.32]. By applying (A), (C) and (D), we get (*).

2.D. Some consequences of Theorem 8. In [B3, §1.8], we defined a morphism of groups $H^1(F, \mathbb{Z}) \to \text{Out}(\mathbb{G}, F)$. So Theorem 8 immediately implies the following result :

Corollary 9. Let $\zeta \in H^1(F, \mathbb{Z})^{\wedge}$. If the Mackey formula holds in \mathbb{G} , then dim $\operatorname{Cus}_{\operatorname{uni}}(\mathbb{G}^F)_{\zeta} = \dim \mathcal{CUS}_{\operatorname{uni}}(\mathbb{G}^F)_{\zeta}$.

The last result says that [B3, Corollary 4.1.2] is correct. It is just a straightforward consequence of Theorem 8 and Lemma 5. Note that in [B3, Corollary 4.1.2 (b)], the term "cuspidal function" must be replaced by "absolutely cuspidal function".

Corollary 10. If the Mackey formula holds in G, then

(a) dim Cus_{uni}(\mathbf{G}^F) = $|\mathcal{U}(\mathbf{G})^F_{cus}|$.

(b) If **G** is a rational Levi subgroup of a parabolic subgroup of a connected reductive group **H** (endowed with a Frobenius endomorphism also denoted by F) then all absolutely cuspidal functions on \mathbf{G}^F with unipotent support are invariant under the action of $N_{\mathbf{H}^F}(\mathbf{G})$.

References

- [B1] C. BONNAFÉ, Formule de Mackey pour q grand, J. Algebra 201 (1998), 207-232.
- [B2] C. BONNAFÉ, Regular unipotent elements, C. R. Acad. Sci. Paris 328 (1999), 275-280.
- [B3] C. BONNAFÉ, Mackey formula in type A, Proc. London Math. Soc. 80 (2000), 545-574.
- [B4] C. BONNAFÉ, Actions of relative Weyl groups I, preprint.
- [I] I.M. ISAACS, *Character theory of finite groups*, Pure and Applied Mathematics **69** (1976), Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 303 pages.
- [L] G. LUSZTIG, Intersection cohomology complexes on a reductive group, Invent. Math. **75** (1984), 205-272.

CÉDRIC BONNAFÉ CNRS - UMR 6623 Laboratoire de Mathématiques de Besançon 16 Route de Gray 25000 BESANÇON - FRANCE. bonnafe@math.univ-fcomte.fr