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C. BONNAFÉ

The author recently noticed two errors in his paper [B3] (from which we keep all the

notation). They concern Theorem 4.1.1 and Formulas 5.1.7 and 5.1.8 : however, they do
not affect the validity of all other results in [B3] as is explained in this note.

1. About Formulas 5.1.7 and 5.1.8 in [B3].

The sign “+” in these formulas must be changed in “−”. This has no consequence

concerning the results of [B3] since both formulas are used for the induction argument :

in each case where they are used, all the terms involved are equal to 0. Because of these
errors, we provide here a complete proof for both formulas.

Proposition 1. Let P, P′, Q and Q′ be four parabolic subgroups of G and let L, L′,
M and M′ be F -stable Levi subgroups of P, P′, Q and Q′ respectively. We assume that

P⊂P′, L⊂L′, Q⊂Q′ and M⊂M′. Then

(a) ∆G
L⊂P,M⊂Q = ∆G

L⊂P,M′ ⊂Q′ ◦RM′

M⊂Q∩M′

+
∑

x∈LF \SG(L,M′)F /M′F

RL
L∩xM′ ⊂L∩xQ′ ◦ ∆

xM′

L∩xM′ ⊂P∩xM′,xM⊂ x(Q∩M′) ◦ (adx)M.

(b) ∆G
L⊂P,M⊂Q = ∗RL′

L⊂P∩L′ ◦ ∆G
L′ ⊂P′,M⊂Q

+
∑

x∈L′F \SG(L′,M)F /MF

∆L′

L⊂P∩L′,L′∩xM⊂L′∩xQ ◦ ∗R
xM
L′∩xM⊂P′∩xM ◦ (ad x)M.

(c) ∆G
L⊂P,M⊂Q = ∗RL′

L⊂P∩L′ ◦ ∆G
L′ ⊂P′,M′ ⊂Q′ ◦RM′

M⊂Q∩M′

+
∑

x∈L′F \SG(L′,M′)F /M′F

∗RL′

L⊂P∩L′ ◦RL′

L′∩xM′ ⊂L′∩xQ′ ◦∆
xM′

L′∩xM′ ⊂P′∩xM′,xM⊂ x(Q∩M′) ◦ (adx)M

+
∑

x∈L′F \SG(L′,M)F /MF

∆L′

L⊂P∩L′,L′∩xM⊂L′∩xQ ◦ ∗R
xM
L′∩xM⊂P′∩xM ◦ (ad x)M.
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Proof - Note that (b) follows from (a) by adjunction and that (c) follows by applying
(a) and (b) successively. Now, let us prove (a). Let ∆0 denote the right-hand side of the

equality (a). By definition of the ∆-maps, we easily get

∆0 = ∗RG
L⊂P ◦RG

M⊂Q

+
∑

g∈LF \SG(L,M′)F /M′F

(

−RL
L∩gM′ ⊂L∩gQ′ ◦ ∗R

gM′

L∩gM′ ⊂P∩gM′ ◦ (ad g)M′ ◦RM′

M⊂Q∩M′

+RL
L∩gM′ ⊂L∩gQ′ ◦ ∗R

gM′

L∩gM′ ⊂P∩gM′ ◦ (ad g)M′ ◦RM′

M⊂Q∩M′

−
∑

y∈LF∩gM′F \SgM′ (L∩gM′,gM)F /gMF

RL
L∩ygM⊂L∩ygQ ◦R

ygM
L∩ygM⊂P∩ygM

)

.

Therefore,

∆0 = ∗RG
L⊂P ◦RG

M⊂Q

−
∑

g∈LF \SG(L,M′)F /M′F

(

∑

y∈LF∩gM′F \SgM′ (L∩gM′,gM)F /gMF

RL
L∩ygM⊂L∩ygQ ◦R

ygM
L∩ygM⊂P∩ygM

)

.

The argument at the end of the proof of [B1, Lemma 3.2.1] completes the proof of (a). �

2. About Theorem 4.1.1 in [B3].

The second error is much more serious : Theorem 4.1.1 is false ! However, its corollary
4.1.2 is still correct ; it follows from Theorem 3 below. Fortunately, we use only Corollary

4.1.2 in the rest of [B3] (and not Theorem 4.1.1). This means that all the other results
in [B3] are valid.

Our mistake in the proof of [B3, Theorem 4.1.1] is the following (here we keep the

notation of this “theorem”) : it may happen that ω stabilizes a cuspidal local system but
that it acts on the characteristic function by multiplication by a scalar different from 1.

Let us first introduce some notation. If ι = (C,L) ∈ U(G)F , we fix once and for
all an isomorphism ϕι : F ∗L

∼
→L and we denote by Yι (or YG

ι if we need to make the

ambient group precise) the characteristic function associated to this isomorphism. Let
CUSuni(G

F ) denote the Q`-vector subspace of Classuni(G
F ) generated by the functions Yι

(ι ∈ U(G)Fcus). Let Aut(G, F ) denote the group of automorphisms of G commuting with
F . The group Inn(GF ) of inner automorphisms of GF is a normal subgroup of Aut(G, F ).

We set Out(G, F ) = Aut(GF )/ Inn(GF ). It is clear that Aut(G, F ) (or Out(G, F )) acts
on the vector spaces Classuni(G

F ), Cusuni(G
F ) and CUSuni(G

F ).

We fix an F -stable Borel subgroup B of G and an F -stable maximal torus T of B. Let

W denote the Weyl group of G relative to T and let S be the set of simple reflections in W
corresponding to the choice of B. If I⊂S, we denote by WI the subgroup of W generated

by I and we set PI = BWIB. We denote by LI the Levi subgroup of PI containing T.
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If I is a subset of S, we denote by AI the stabilizer of (B ∩ LI ,T) in the group
Aut(LI , F ). We have Aut(G, F ) = Inn(GF ).AS. So studying the action of Aut(G, F ) on

Classuni(G
F ), Cusuni(G

F ) or CUSuni(G
F ) is equivalent to studying the action of AS.

2.A. Generalized Springer correspondence. We denote by P(S) the set of subsets

of S and by P(S)cus the set of subsets I of S such that U(LI)cus 6= ∅. Note that F and
AS act on W , S, P(S) and P(S)cus and that these two actions commute.

Let U ′(G) denote the set of triples (I, ι, ρ) where I⊂S, ι ∈ U(LI)cus and ρ ∈ IrrWG(LI).
The generalized Springer correspondence [L, Theorems 6.5 and 9.2] is a well-defined bi-

jection ψ : U ′(G) → U(G). This bijection commutes with the actions of F and AS.

2.B. Action of automorphisms on characteristic functions of local systems.

The vector space Classuni(G
F ) admits (Yι)ι∈U(GF ) as a basis. With respect to this basis,

the action of an element of Aut(G, F ) is monomial. We are interested here in the way

to determine the non-zero coefficients of this monomial matrix. Since the characteristic
function Yι (for ι = (C,L) ∈ U(G)F ) depends on the choice of the isomorphism ϕι :

F ∗L → L that we have fixed once and for all, the interesting question is the following :
if σ ∈ Aut(G, F ) and if ι ∈ U(G)F are such that σ(ι) = ι, then what is the root of unity

ξι,σ (or ξGι,σ if we want to emphasize the ambient group) such that σYι = ξι,σYι,σ ?

2.B.1. Permutation of unipotent classes in GF . Let σ ∈ Aut(G, F ) and let ι = (C,L) ∈

U(G)F be such that σ(ι) = ι. We fix u ∈ CF such that Yι(u) 6= 0 and we denote by ζ

the irreducible character of AG(u) defined by L. Let ζ̃ denote the extension of ζ to the

semi-direct product AG(u)o < F > (here, < F > is viewed as an infinite cyclic group)
associated to the isomorphism ϕι.

If a ∈ H1(F,AG(u)), we denote by ga an element of G such that g−1
a F (ga) ∈ CG(u)

and such that the image ȧ of g−1
a F (ga) in AG(u) belongs to the class a. We set ua =

gaug
−1
a ∈ CF . Then {ua | a ∈ H1(F,AG(u))} is a set of representatives of GF -conjugacy

classes in CF and

(2) Yι(ua) = ζ̃(ȧF ).

Therefore, if aσ denotes the unique element of H1(F,AG(u)) such that σ−1(u) is GF -

conjugate to uaσ
, we have

(3) ξι,σ =
ζ̃(ȧσF )

ζ̃(F )
.
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2.B.2. Going down to cuspidal local systems. Let ι ∈ U(G)F . We denote by AS,ι the

stabilizer of ι in AS and we set ξι = ξGι : AS,ι → Q`
×
, σ 7→ ξι,σ. It is clear that ξι is a

linear character. Now, let (I, ι0, ρ) = ψ−1(ι). Then AS,ι stabilizes LI , B ∩ LI , T, ι0 and
ρ. Therefore, we get a morphism AS,ι → AI,ι0.

Lemma 4. With the above notation, we have ξGι = Res
AI,ι0

AS,ι
ξLI
ι0

.

Proof - Let XG
I,ι0

denote the characteristic function of the restriction to the unipotent
elements of the F -stable perverse sheaf defined by induction from the datum (I, ι0). Then

σ ∈ AS,ι acts on XG
I,ι0

by multiplication ξLI
ι0 (σ). Moreover,

XG
I,ι0 =

∑

ρ∈(IrrWG(LI))F

nρX
G
I,ι0,ρ

where XI,ι0,ρ is the characteristic function of the F -stable perverse sheaf associated to

(I, ι0, ρ) via the generalized Springer correspondence and nρ ∈ Q`
×
. Therefore, if ρ

is σ-invariant, then σ acts on XG
I,ι0,ρ

by multiplication by ξLI
ι0

(σ) (indeed, the family

(XI,ι0,ρ)ρ∈(IrrWG(LI ))F is linearly independent).

But XG
I,ι0,ρ

and λYG
ψ(I,ι0,ρ)

coincide on CF where (C,L) = ψ(I, ι0, ρ) for some λ ∈ Q`
×
.

So σ acts on YG
ψ(I,ι0,ρ)

by multiplication by ξLI
ι0 (σ). �

2.B.3. About cuspidal local systems. Lemma 4 shows that, in order to determine the linear

characters ξι, we can restrict our attention to the case of cuspidal local systems. The first
result in this direction is the following.

Lemma 5. If L is a rational Levi subgroup of a parabolic subgroup of G, then NGF (L)
acts trivially on CUSuni(L

F ).

Proof - Let n ∈ NGF (L), let ι = (C,L) ∈ U(L)Fcus and let v ∈ CF . Then, by [B4,

Proposition I.8.3], nvn−1 and v are LF -conjugate. This proves Lemma 5. �

We close this section with a result concerning geometrically conjugate F -stable Levi

subgroups. We need some further notation. Let A denote a set of representatives of
GF -conjugacy classes of F -stable Levi subgroups L of proper parabolic subgroups of G

such that U(L)Fcus 6= ∅. By [L, Theorem 9.2], we have :

Lemma 6. (a) If I, J ∈ P(S)cus and if there exists w ∈W such that wI = J , then I = J .

(b) Every L ∈ A is geometrically conjugate to a unique LI with I ∈ P(S)Fcus.
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If I ∈ P(S)Fcus, then the set of GF -conjugacy classes of F -stable Levi subgroups (of par-
abolic subgroups of G) geometrically conjugate to LI are parametrized by H1(F,WG(LI))

where WG(LI) = NG(LI)/LI . Let C be the set of pairs (I, w) such that I ∈ P(S)Fcus, I 6= S
and w ∈ H1(F,WG(LI)). We then have a bijection C → A denoted by (I, w) 7→ LI,w.

We now fix in this subsection, and only in this subsection, an element σ ∈ A, a subset
I of S and an element w ∈ H1(F,WG(LI)) such that σ(I, w) = (I, w). Let g ∈ G be such

that LI,w = gLI . We set ẇ = g−1F (g) ∈ NG(LI) (ẇ is a representative in NG(LI) of w).
Then, conjugacy by g induces a bijection U(LI)

ẇF ∼
→U(LI,w)F , ι 7→ gι.

Since the groupNG(LI) acts trivially on U(LI)cus by [L, Theorem 9.2], we get a bijection
U(LI)

F
cus

∼
→U(LI,w)Fcus, ι 7→

gι.

Since σ stabilizes w, there exists x ∈ GF such that σLI,w = xLI,w. We then set
σ′ = Inn(x−1) ◦ σ so that σ′LI,w = LI,w.

Lemma 7. Let ι ∈ U(LI)
F
cus. Then :

(a) σ(ι) = ι if and only if σ′(gι) = gι.

(b) If σ(ι) = ι, then ξLI
ι,σ = ξ

LI,w
gι,σ′ .

Proof - Let τ = Inn(g−1) ◦ σ′ ◦ Inn(g). Then τ ∈ Aut(LI , Inn(ẇ) ◦ F ). Moreover, σ′

stabilizes gι if and only if τ stabilizes ι. But τ = Inn(g−1x−1 σg) ◦ σ, so g−1x−1 σg ∈
NG(LI) : this proves that g−1x−1 σg acts trivially on U(LI)cus by [L, Theorem 9.2].

Therefore, τ stabilizes ι if and only if σ stabilizes ι. This proves (a).

Let us now prove (b). Let ι = (C,L) ∈ U(LI)
F
cus be such that σ(ι) = ι. We fix an

element v ∈ CF such that YLI
ι (v) 6= 0.

We write n = g−1x−1 σg ∈ NG(LI). Then τ = Inn(n) ◦ σ commutes with Inn(ẇ) ◦ F .
Since NG(LI) stabilizes C and since ALI

(v) = AG(v) (see [B2, Corollary to Proposition

1.1]), we may (and we will) assume that ẇ ∈ NG(LI) ∩ C◦
G(v). Now, σ and n stabilize

C. So there exists l and m in LI such that σ(v) = lvl−1 and nvn−1 = mvm−1. So
m−1n ∈ CG(v). Since ALI

(v) = AG(v), we may (and we will) choose m in such a way

that m−1n ∈ C◦
G(v).

We have

l−1F (l) ∈ CLI
(v), τ(v) = Inn(nln−1m)(v)

and (nln−1m)−1ẇF (nln−1m)ẇ−1 ∈ CLI
(v).

According to Formula 3, and since ẇ acts trivially on ALI
(v) (see [B4, Lemma I.3.12]),

it is sufficient to prove that l−1F (l) and (nln−1m)−1ẇF (nln−1m)ẇ−1 represent the same

element of ALI
(v). Since ALI

(v) = AG(v), we need to determine the class in AG(v) of
µ = (nln−1m)−1ẇF (nln−1m)ẇ−1. But,

µ = (m−1n)l−1n−1ẇF (nl)ẇ−1(ẇF (n−1m)ẇ−1),
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m−1n ∈ C◦
G(v) and ẇF (n−1m)ẇ−1 ∈ C◦

G(v) because Inn(ẇ) ◦ F stabilizes v. Therefore,
the class of µ in AG(v) is equal to the class of µ′ = l−1n−1ẇF (nl)ẇ−1. It is also easily

checked that ẇF (n) = n σẇ. Therefore,

µ′ = l−1n−1n σẇF (l)ẇ−1 = l−1 σẇll−1F (l)ẇ−1.

But, l−1 σẇl ∈ C◦
G(v) because l−1σ(v)l = v and ẇ ∈ C◦

G(v). So the class of µ′ in AG(v)

is equal to the class of l−1F (l), which is the desired result. �

2.C. The main result. We recall (see for example [B3, Conjecture C]) that it is con-

jectured that Cusuni(G
F ) = CUSuni(G

F ) whenever p is almost good for G. The next
theorem goes in this direction.

Theorem 8. If the Mackey formula holds in G (in the sense of [B3, Definition 1.4.2]),
then Cusuni(G

F ) and CUSuni(G
F ) are isomorphic as Q` Out(G, F )-modules.

Proof - We proceed as for the proof of [B3, Theorem 4.1.1]. But we avoid the mistake

mentioned above ! So we assume that the Mackey formula holds in G. Note that this
implies that the Lusztig induction and restriction maps do not depend on the choice of the

parabolic subgroup. Therefore, if L is an F -stable Levi subgroup of a parabolic subgroup
P of G, we will denote by RG

L and ∗RG
L the maps RG

L⊂P and ∗RG
L⊂P.

We argue by induction on dimG. The result is obvious if G is a torus. Therefore, we

may assume that Theorem 8 holds for every F -stable Levi subgroup of a proper parabolic
subgroup of G. Since Out(G, F ) acts on Cusuni(G

F ) and CUSuni(G
F ) through a finite

quotient (namely its image in Out(GF )), it is sufficient to prove the following : if σ ∈ AS,
then

(∗) Tr(σ,Cusuni(G
F )) = Tr(σ, CUSuni(G

F )).

First step. Let us first evaluate the right-hand side of (∗). Let U ′(G)∗ denote the set

of (I, ι, ρ) ∈ U ′(G) such that I 6= S. Then, since (Yψ(I,ι,ρ))(I,ι,ρ)∈U ′(G)F is a basis of

Classuni(G
F ), we have

Tr(σ,Classuni(G
F )) = Tr(σ, CUSuni(G

F )) +
∑

(I,ι,ρ)∈U ′(G)F
∗

σ(I,ι,ρ)=(I,ι,ρ)

ξGψ(I,ι,ρ)(σ).

If we denote by E the set of pair (I, ι) such that I ∈ P(S)Fcus, I 6= S and ι ∈ U(LI)
F
cus,

and if we use Lemma 4, we get :

(A)
Tr(σ, CUSuni(G

F )) = Tr(σ,Classuni(G
F ))

−
∑

(I,ι)∈E
σ(I,ι)=(I,ι)

ξLI
ι,σ.|{ρ ∈ (IrrWG(LI))

F | σ(ρ) = ρ}|.
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Second step. We now evaluate the left-hand side of (∗). If L ∈ A, then NGF (L) acts
trivially on CUSuni(L

F ) by Lemma 5, so it acts trivially on Cusuni(G
F ) by the induction

hypothesis. So, since Mackey formula holds in G, we have :

Classuni(G
F ) = Cusuni(G

F ) ⊕
(

⊕
(I,w)∈C

RG
LI,w

(Cusuni(L
F
I,w))

)

,

and the map RG
LI,w

: Cusuni(L
F
I,w) → RG

LI,w
(Cusuni(L

F
I,w)) is an isomorphism. Note that

this isomorphism commutes with every element of Aut(G, F ) stabilizing LI,w. Therefore,

(B) Tr(σ,Cusuni(G
F )) = Tr(σ,Classuni(G

F )) −
∑

(I,w)∈C
σ(I,w)=(I,w)

Tr(σ,RG
LI,w

(Cusuni(L
F
I,w))).

Let (I, w) ∈ C be such that σ(I, w) = (I, w). Then there exists x ∈ GF such that
σLI,w = xLI,w. We set σ′ = Inn(x)−1 ◦ σ. Then σ′ stabilizes LI,w and

Tr(σ,RG
LI,w

(Cusuni(L
F
I,w))) = Tr(σ′, RG

LI,w
(Cusuni(L

F
I,w))),

so Tr(σ,RG
LI,w

(Cusuni(L
F
I,w))) = Tr(σ′,Cusuni(L

F
I,w)). But, by the induction hypothesis,

we get that Tr(σ′,Cusuni(L
F
I,w)) = Tr(σ′, CUSuni(L

F
I,w)). Moreover, by Lemma 7, we have

Tr(σ′, CUSuni(L
F
I,w)) = Tr(σ, CUSuni(L

F
I )). So we deduce from (B) that

Tr(σ,Cusuni(G
F )) = Tr(σ,Classuni(G

F )) −
∑

(I,w)∈C
σ(I,w)=(I,w)

Tr(σ, CUSuni(L
F
I )).

In other words,

Tr(σ,Cusuni(G
F )) = Tr(σ,Classuni(G

F ))

−
∑

I∈P(S)F
cus, I 6=S

σ(I)=I

Tr(σ, CUSuni(L
F
I )).|{w ∈ H1(F,WG(LI)) | σ(w) = w}|.

Finally, we get

(C)
Tr(σ,Cusuni(G

F )) = Tr(σ,Classuni(G
F ))

−
∑

(I,ι)∈E
σ(I,ι)=(I,ι)

ξLI
ι,σ.|{w ∈ H1(F,WG(LI)) | σ(w) = w}|.

Third step. Let I ∈ P(S)F be such that σ(I) = I. Then σ acts on WG(LI) and this
action commutes with the action of F . Therefore,

(D) |{w ∈ H1(F,WG(LI)) | σ(w) = w}| = |{ρ ∈ (IrrWG(LI))
F | σ(ρ) = ρ}|.

The proof of (D) is similar to the proof of the well-known theorem of Brauer [I, Theorem

6.32]. By applying (A), (C) and (D), we get (∗). �
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2.D. Some consequences of Theorem 8. In [B3, §1.8], we defined a morphism of
groups H1(F,Z) → Out(G, F ). So Theorem 8 immediately implies the following result :

Corollary 9. Let ζ ∈ H1(F,Z)∧. If the Mackey formula holds in G, then

dim Cusuni(G
F )ζ = dim CUSuni(G

F )ζ.

The last result says that [B3, Corollary 4.1.2] is correct. It is just a straightforward
consequence of Theorem 8 and Lemma 5. Note that in [B3, Corollary 4.1.2 (b)], the term

“cuspidal function” must be replaced by “absolutely cuspidal function”.

Corollary 10. If the Mackey formula holds in G, then

(a) dim Cusuni(G
F ) = |U(G)Fcus|.

(b) If G is a rational Levi subgroup of a parabolic subgroup of a connected reductive

group H (endowed with a Frobenius endomorphism also denoted by F ) then all abso-
lutely cuspidal functions on GF with unipotent support are invariant under the action of

NHF (G).
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