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Let x be an irreducible character of G, = GL,(F,s) invariant under the
automorphism ¢ of G, induced by the field automorphism F ¢ — F a, x — x, and
let e be a divisor of d. By a theorem of Shintani, there exists an extension ¥, of x
to G; X {¢°) whose Shintani descent to G, is, up to a sign &, an irreducible
character of G,. It is shown in this paper that ¥, may always be chosen such that
& = 1. With this particular choice, Y, is the restriction of y;. Our methods rely on
the work of Digne and Michel on Deligne—-Lusztig theory for nonconnected
reductive groups.  © 1999 Academic Press

Let G° = GL,(F)?, where [ is an algebraic closure of a finite field and
where n and d are natural numbers. The symmetric group &, acts on G°
by permutations of the components of G°. We denote by G the semidirect
product G = G° X & . It is a nonconnected reductive group, with neutral
component G°. We denote by F,: G — G the natural split Frobenius
endomorphism on G (acting trivially on &), and we choose an element
o€ ©,. Let F: G = G denote the Frobenius endomorphism defined by
F(g) ="F,(g).

In this paper we discuss the irreducible characters of G’ (the unipotent
characters of G were described in [B]). We first prove that there exists a
Jordan decomposition of characters (this result is well-known for G°);
moreover, this decomposition commutes with Lusztig generalized induc-
tion (cf. (3.2.1)). We also prove that all the irreducible characters of G* are
linear combinations of generalized Deligne—Lusztig characters (this gener-
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alizes the well-known result of G. Lusztig and B. Srinivasan [LS, Theorem
3.2)] about irreducible characters of the general linear group over a finite
field).

As an application of these results, we obtain new results about Shintani
descent in the case of the general linear group. In [S], Shintani proved that
any irreducible characters of the finite group G, = GLn([qu) stable under
the automorphism ¢ induced by the field automorphism F ¢ — F 4, x — x?
can be extended to G,{¢) in such a way that its Shintani descent is, up to
sign, an irreducible character of G, = GL (F,). In Theorem 4.3.1 we prove
that this sign can always be chosen to be equal to 1 and get precise
formulas for the corresponding extension. As a consequence, we obtain
that the Shintani descent of this particular extension to G, is an irre-
ducible character of G, (where e divides d).

0. NOTATION

0.1. General Notation

Let F be an algebraic closure of a finite field. We denote by p its
characteristic. We also fix a power g of p, and we denote by [, the
subfield of F with g elements. All algebraic varieties and all algebraic
groups will be considered over F. If H is an algebraic group (over F), we
will denote by H° its connected component containing 1. If H is endowed
with an [ -structure, we also define

ey = (_ 1)[Fq-rank(H°).

Let # be a prime number different from p. We denote by @, an
algebraic closure of the /“adic field Q,. If G is a finite group, all
representations and all characters of G will be considered over @Q,. For
instance, a G-module is a @,G-module of finite dimension. We will
denote by Irr G the set of irreducible characters of G.

If n is a positive integer, we denote by GL, the group of invertible
matrices with coefficients in [, and if g € GL,, we will denote by g‘?’ the
matrix obtained from g by raising all coefficients to the gth power. We
will denote by T, the split maximal torus of GL, consisting of diagonal
matrices and by B,, the rational Borel subgroup of GL,, consisting of upper
triangular matrices.

0.2. The Problem

Let r be a positive integer and let d,,...,d, and n,,...,n, also be
positive integers. Throughout this paper G° will denote the following
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connected reductive group:

,
G°=]](GL, X XGL,).
i=1

d; times
We endow G° with the split Frobenius endomorphism
Fy: G° - G°
(gil’ o gidi)lgigr = (gl(]?)’ ot g‘(;][))lgigr '

We will denote by T; and Bj the maximal torus and the Borel subgroup
of G°, defined, respectively, by

To=TI(T, x-x Tn,.)

=1

and d; times
,
B = ]_[1 (B, X+ xXB,).
i=
d; times

The group © = &, X -+ X &, acts on G° in the natural way. More
explicitly, if o= (oy,...,0) € S and if (g;,..., 84 )1<i<, € G°, We put

“(&ir- s gid,)lsis, = (giufl(l)- s giufl(d,))lsis,-

The elements of © induce automorphisms of G°, which stabilize T; and
BY, so they are quasi-semisimple (cf. [DM2, Definition 1.1()]). In fact, they
are all quasi-central (cf. [DM2, Definition-Theorem 1.15] and [B, Lemma
7.1.1).

We extend the Frobenius endomorphism F, to G° X & by letting F,
act trivially on &. We fix once and for all an element o € &, and we
denote by F the Frobenius endomorphism on G° X & given by

F(g) = oFy(g)o ' ="Fy(g)

forall g e G° X G.

We will denote by G an F-stable subgroup of G° X & containing G°.
Hence G is a reductive group with neutral component G°. Moreover, there
exists an F-stable (that is, a o-stable) subgroup 4 of & such that

G =G XA.

Thus we have G¥ = G°F X AF = G°F' X A4°.
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Problem. Parametrize the irreducible characters of G.

For this purpose we can make the following hypothesis without loss of
generality:

HypoTHESIS. The Frobenius endomorphism F acts trivially on G/G°,
that is, A is contained in the centralizer of o in ©. Consequently,

Gfr=GF"xA.

Remark 0. Let N =d,n, + - +d,n,. Then G° is isomorphic to a
rational Levi subgroup H° of a parabolic subgroup of GL ,, (endowed with
the split Frobenius endomorphism g — g?), and G is isomorphic to a
rational subgroup H of the normalizer of H® in GL ,, containing H° and
such that all elements of H/H° are rational. Conversely, if H is such
a rational subgroup of GL,, then there exist positive integers r,
dy,....d, ny,....,n;anelement o of S, X -+ X &,;and a subgroup A
of ©7 such that H is isomorphic to the group G constructed as above. In
particular, if L is an F-stable Levi subgroup of a parabolic subgroup of G
(cf. [B, Definitions 6.1.1 and 6.1.2] for the definitions of parabolic sub-
groups and Levi subgroups of nonconnected reductive groups), then all of
the results proved for G hold in L.

1. JORDAN DECOMPOSITION OF CHARACTERS OF G*

1.1. Dual of G

Let (G°*, Tg*, F*) be a dual triple of (G°, Ty, F). The elements « of &
induce automorphisms «* of G°*. The group ©* of automorphisms of
G°* induced by & is isomorphic to the opposite group of &. We extend
the action of F* to G°* X ©* so that it acts on ©* by conjugation by
o*~1. We denote by G* the semidirect product G°* X 4*, where A* is the
image of A under the preceding anti-isomorphism. In particular, G*° =
G°*l

1.2. Lusztig Series of G*

Let s be a semisimple element of G*°””. We denote by (s) (or (s)g«-
if confusion is pogsible) the G*f"-conjugacy class of s and by (s)° (or
(5)%+#+) the G*°*"-conjugacy class of s.

DerINITION 1.2.1. The Lusztig series £(G*,(s)) of G* associated with s
(or (s)) is the set of irreducible characters of G occurring in some
IndS.»y°, where y° is an element of a usual Lusztig series &£(G°”,(s')°)
with s’ € (s).
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The characters of the Lusztig series £(G”, 1) are called unipotent; this
definition agrees with definitions given in [DM2, Section 5] or [B, Defini-
tion 6.4.1] (cf. [B, Lemma 6.4.2)).

The following lemma follows immediately from the definitions:

LEMMA 1.2.2.  Let s be a semisimple element of fo ™", y° be an element
of £(G°F,(s)), and a € A. Then %° € &(G° Fo(e" gy,

COROLLARY 1.2.3.

IrG" = |J &(G*,(s)),
(s)

F* . . F*
where (s) runs over the set of G*" -classes of semisimple elements of G*°" ",
Moreover, this union is disjoint.

Proof. The equality follows easily from the corresponding fact for G° .
Let us prove now that the union is disjoint. Let s and ¢ be two semisimple
elements of G*° and let v be an irreducible character of G belonging
to both &(G”,(s)) and &(GF,(¢)). Then by definition there exist irre-
ducible characters y; and y5 of G°* occurring in the restriction of y to
G° such that y¢ € £(G°F,(s')) and v§ € £(G°F,(¢')), where s’ € (s)
and ¢’ € ().

But by Clifford theory there exists a € 4 such that y; =“7. It follows
from Lemma 1.2.2 and from the fact that Corollary 1.2.3 holds in G° that

e sy sore(s). |
COROLLARY 1.2.4. Let s be a semisimple element in G*° " and let
y € &(GF, ().

(@) Let y° be an irreducible component of the restriction of y to G°*,
and let t be a semisimple element of G*°*" such that v° € £(G°*, (t)°).
Then t € (s).

(b)  There exists an irreducible component of the restriction of y to G°*
belonging to £(G°",(s)°).

Proof. (a) is a reformulation of Corollary 1.2.3, and (b) is an easy
consequence of (a) and of Lemma 1.2.2. |

1.3. Nice Elements

Let s be a semisimple element of G*°*”. The centralizer of s in G*° is
connected and is a Levi subgroup of a parabolic subgroup of G*°. The
image of C..(s) by the morphism

Cg+(s) —» G* —» 4*
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is denoted by A*(s). Then the G*°-conjugacy class of s is stable under
A*(s). If we denote by G*° 4™ the group of fixed points of 4*(s) on G*°,
then the G*°-conjugacy class of s in G*° meets G*°*"® in a single
G*° 4" ®)_conjugacy class because 4*(s) acts by permutations on the com-
ponents of G*°. This conjugacy class is F*-stable and G*°“" is con-
nected, so there exists an F*-stable element ¢ in the G*°-conjugacy class
of s centralized by A*(s). Moreover, Cg+-(s) is connected, so ¢t € (s)°. It
also implies that 4*(¢) contains A*(s). Because they are conjugate under
A*, they are equal.

DeriNniTION 1.3.1. The element s is said to be nice (or G*-nice) if
A*(s) centralizes s.

The preceding giscussion shows that there exists a nice element i*n every
semisimple G*°* —conjygacy class. If s is a nice element of G*°*" and if
a® € A* is such that “ (s)° = (s)°, then o™ € A*(s).

1.4. The Group G(s)

Until the end of this section, we fix a nice semisimple element s in
G*° . Let A(s) be the subgroup of A corresponding to A4*(s). The group
Cg+o(s) = Cg:(s) if an F*-stable Levi subgroup of a parabolic subgroup
of G*°. Let G°(s) be an F-stable Levi subgroup of a parabolic subgroup of
G° dual to Cg:-(s); we can assume that A(s) normalizes G° (s). We define
G(s) to be the semidirect product

G(s) = G°(s5) X A(s). (1.4.1)

Because A(s) acts on G° by permutations of the components, there exists
a parabolic subgroup of G° that has G°(s) as a Levi subgroup and is stable
under A(s). Hence, G(s) is a Levi subgroup of a parabolic subgroup of G.
Moreover, G(s)° = G°(s).

With the semisimple element s is associated a linear character 5° of
G°(s)¥ (cf. [DM1, Proposition 13.30]). Since s is centralized by A*(s), the
character 5° is invariant by A(s), so it extends to a character 5 of G(s)”,
where 5(a) = 1 for a € A(s).

1.5. A Lemma

Let y°(s) be a unipotent character of G°(s)’. By [B, Theorem 7.3.2 and
Definition 7.3.3], there exists a canonical extension y(s) of y°(s) to
G°(5)F X A(s, y° (s)), where A(s, v°(s)) is the stabilizer of y°(s) in A(s).

LEMMA 15.1. &g (556" RE 53S0 (F(s) ® 5) is an irreducible char-

acter of the group G°* X A(s, y° (s)). Its restriction to G°* is the irreducible
character sg- (8¢ Rgz(s)(y" (s) ® §°) which belongs to £(G°",(s)).
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Remark. By [B, Theorem 7.3.2], the unipotent character Y(s) of G° (s)”
X A(s,v°(s)) is a uniform function, that is, a linear combination of
generalized Deligne-Lusztig characters. Hence the class function
() e RE (a0 91, (¥(s) ® §) is independent of the choice of a
parabolic subgroup of G having G°(s) X A(s, v°(s)) as Levi subgroup.
That is why the Lusztig functor is denoted without reference to the
parabolic subgroup (the notion of a Lusztig functor for disconnected
reductive groups has been defined in [DM2], and slightly generalized for
the purpose of this article in [B]).

Proof of Lemma 1.5.1. To simplify notation, we can assume that A =
A(s, y° (s)). Let

¥ = ear (o 8a Re(¥(5) ®5)
and
Y° = 8G°(S)SG°RgZ(s)(7O (s) ®5").

It follows from [DM2, Corollary 2.4] that the restriction of ¥ to G°” is
equal to y°. Moreover, by [LS, Theorem 3.2], y° is irreducible and lies in
£(G°*,(s)). So we need only prove that J is a character of G”.

Let P(s) be a parabolic subgroup of G(s) that has G(s) as Levi subgroup,
and let U be its unipotent radical. We define

Yy = {g IS GIg_lF(g) IS U}
and
Yy ={g G lg ' F(g) € U).

Let H/(Y,) be the ith cohomology group with compact support with
coefficients in the constant sheaf @/ (where i € N). The group GF
(respectively, G(s)¥) acts on Y, by left (respectively, right) translation.
Hence H/(Y,) inherits the structure of a G*-module-G(s)”. Let V' be an
irreducible G(s)f-module affording (s) as character. Then the virtual
G*f-module

Z (_1)1Hci(Yu) ®@,G(s)F v
ieN

affords 5 as (virtual) character. We have similar results for G°*. We
denote by 17° the restriction of I to G°*.
By [DM1, Theorem 13.25(i)] there exists j in N such that

H;(YG) ®T,6°(s)" Ve=0
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if i # j and such that
Hc](YEJ) ®g,6° () Ve

is irreducible (in [DM1], the statement and the proof of Theorem 13.25 are
not entirely correct; a precise value for j is given, and it is not clear that
this value is correct. However, the existence of j satisfying the above
conditions has been established in a revised version of their book). More-
over, (=1)/ = g5, &¢-. But by [DM2, Proof of Proposition 2.3] we have

Hci(Yu) = @/GF ®@/G°F HC’(YEJ)
as a G"-module. Hence we have
HI(Yy) ®g,cor V° =0
for all i # j. But
Hi(Yy) ®g,00 0y V° = (HI(Yy) ®g,00y Q,6(5)") ®g,60(y V°
= H!(Yy) BT c(s)" (@/G(S)F ®F,c° (5)" VO)
= HI(Yy) ®g,60)r INASELV°.

)1-'

Since V' is a direct summand of the G(s)"-module Indgt};)

that

V°, it follows

Hci(Yu) ®@/G(S)F V=20
if i #j and that y is the character of the module

ch(Yu) ®@,605)" V.

1.6. Clifford Theory

Let y° € £(G°F,(s)’). By [LS, Theorem 3.2] there exists a unique
unipotent character y° (s) of G°(s)” such that

v° = aGo(S)scoRgz(s)( Y (s) ®5). (1.6.1)

Let A(y°) be the stabilizer of y° in A. Its dual A*(vy°) stabilizes the
G*°""-conjugacy class of s and hence is contained in A*(s). By duality
A(y°) is contained in A(s). The uniqueness of y°(s) implies that A(y°) is
the stabilizer A(s, y°(s)) of y°(s) in A(s).



ON A THEOREM OF SHINTANI 237

We denote by 7(s) the canonical extension of y°(s) to G°(s)" X A(y°)
(as defined in [B, Definition 7.3.3]). We put

¥ = eco(ny8e RE 5300 (F(s) ®F). (1.6.2)

Then, by Lemma 1.5.1, 5 is an irreducible character of G°" X A(y°)
extending °.

DerINITION 1.6.3. The irreducible character 5 of G°* X A(y°) will be
called the canonical extension of y°.

If ¢ is an irreducible character of A(y°), then by Clifford theory ¥ ® ¢
is an irreducible character of G°* X A(y°), and Indgf,«XA(yc) F®¢&)is
an irreducible character of G* (where ¢ is lifted to G°* X A(y°) in the
natural way). Moreover,

IndSiry® = Y E)INdSer s (T® E).  (1.6.4)
gelrr A(y®)

1.7. Jordan Decomposition

Let y be an irreducible character in £(G”,(s)). By Corollary 1.2.4 there
exists an irreducible character y° € £(G°*, (s)°) occurring in the restric-
tion of y to G°”. Let J be the canonical extension of y° to G°F X A(y°)
defined in Definition 1.6.3. Then by Clifford theory there exists a unique
irreducible character ¢ of A(y°) such that

Y= Indg:FXlA('y")(:;; ®¢).
Let y° (s) be the unipotent character of G° (s)* satisfying (1.6.1), and let

7(s) be its canonical extension to G° (s) X A(y°) (recall that A(y°) is the
stabilizer of y°(s) in A(s)). Then

y(s) = |ndg@‘gj);w(yo)(7(s) ® &)

is an irreducible character of G(s)” and is unipotent by definition. It
follows from [B, Propositions 6.3.2 and 6.3.3] that

Y= SG"(s)EG"Rg(x)('Y(S) ®5). (17.1)
Remark. The remark following Lemma 1.5.1 shows that the Lusztig

functor Rg(s) does not depend on the choice of a parabolic subgroup of G
that has G(s) as Levi subgroup.
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THEOREM 1.7.2 (Jordan Decomposition). With the above notation the
map

Vot £(G",(5)) = &(G(s)".1)
v = v(s)

is well-defined and bijective. The inverse map is given by Formula (1.7.1).

Proof. First we have to prove that V; , is well defined. There is one
ambiguity in the construction of y(s): in the first step, we chose an
irreducible character y° € £(G°*, (s)°) occurring in the restriction of y to
G°*. If 8° is another element of the Lusztig series £(G°”, (s)°) occurring
in the restriction of y to G°*, then there exists a € 4 such that 6° =%°.
But both lie in &(G°",(s)°), so we have a € A(s). If we construct §°(s),
8(s), and 8(s) in the same way as y° (s), ¥(s), and y(s), respectively, then
5° (s) ="y°(s) (by uniqueness), so 6(s) =% (s), and so 6(s) =6(s) = 8(s)
because a € A(s). Thus Vg | is well defined.

Vs, s is injective by Formula (1.7.1) and surjective by Lemma 1.5.1, which
proves that Formula (1.7.1) always defines an element of £(G”,(s)). |

2. UNIFORM FUNCTIONS

In [B, Formula 7.3.1 and Theorem 7.3.2] the unipotent characters of G*
are described as linear combinations of generalized Deligne—Lusztig char-
acters. It is possible using Formula (1.7.1) to describe all of the irreducible
characters of G as linear combinations of generalized Deligne—Lusztig
characters.

2.1. Notation

Let s be a nice semisimple element of G*of”,

We fix an F-stable and A(s)-stable Borel subgroup Bj(s) of G°(s) and
an F-stable and A(s)-stable maximal torus T; (s) of B} (s). We denote by
W(s) (respectively, W°(s)) the Weyl group of G(s) (respectively, G°(s))
to T3 (s).

For each a € A(s), we define T;(s, ) to be the semidirect product
T;(s) X (a). For each w € W°(s)* (that is, the subgroup of W°(s)
consisting of elements centralized by «), we denote by T, (s, «) the
quasi-maximal torus of G°(s) X {«) associated with w as in [DM2, Propo-
sition 1.40] (for the definition of a quasi-maximal torus, cf. [B, Definition
6.1.3D. T,(s, @) is defined by the following property: (T, (s, @)*)° is an
F-stable maximal torus of G°(s)* of type w with respect to T; (s)“.
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The group W° (s) is a product of symmetric groups, and A(s) and F act
on W° (s) by permutations of the components (F acts on W°(s) as o). By
the argument used in [B, Sect. 7.3] we can associate canonically with each
irreducible character y° of W°(s)f and each « in the stabilizer A(s, x°)
of x° in A(s) an irreducible character X, of W°(s)* X (o).

2.2. Irreducible Characters in £(G°*,(s)) as Uniform Functions

Let x° be an irreducible character of W°(s)F. We define

o o €67 (9)%c°
R (s) =Ry (s) = e ()] Z( )XI(WU)R G(8). (2.21)
weWe(s

PRoPoOSITION 2.2.2 (Lusztig—Srinivasan [LS, Theorem 3.2]). (@) For all
xX° € lrrwe(s)f, R;o(s) is an irreducible character of G°* in £(G°*,(s)°).

(b) The map

Irwe (s)" > &(G° ", (5)°)
XO — R;o (S)
is bijective.
CorOLLARY 2.2.3. (a) If x° € Irr W°(s)" and a € A(s), then “R}:-(s)
= R2 - (s).
(b) If x° € Irr W (s)", then AR (s)) = A(s, x°).
2.3. Canonical Extensions as Uniform Functions

Let x° be an irreducible character of W°(s)". We define a function
= (s)on G° T X A(s, x°) by

ResS: “(”)R (s)

Ero 5 Ero
= O Y Ra(wo) ResEIX(ORE M((F) (23.1)
|W (S) |wEW°(s)“
for all @ € A(s, x°).

PROPOSITION 2.3.2. EXO(S) is an irreducible character of G°* X A(s, x°)
and is in fact the canonical extension of R’ (s) (cf. Definition 1.6.3).

Proof. This follows immediately from Formula (1.6.2), from [B, Theo-
rem 7.3.2], and from [DM2, Proposition 2.3]. I
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2.4. Parameterization of £(GF,(s))

We denote by .#(s) the set of pairs ( x°, £) where x° is an irreducible
character of W°(s)" and ¢ is an irreducible character of A(s, x°). The
group A(s) acts by conjugation on .#(s), and we denote by .#(s) the set of
orbits of A(s) in .#(s). Moreover, if ( x°, £) €.7(s), we denote by y° = &
its orbit under A(s).

For all x° = £ € 7(s), we define

RS, ((8) =Ry, (5) = IndS sy i oo(Ro(5) ® £). (24.0)

It follows from Corollary 2.2.2(a) that R -, .(s) only depends on the orbit
of ( x°, &) under A(s). Moreover, it follows from Clifford theory and from
Corollary 2.2.2(b) that we have

LEMMA 2.4.2. The map
A(s) > &(G".(9))
X' #E R ()
is bijective.
By [B, Proposition 2.3.1], x° has a canonical extension Yy to the
semidirect product W°(s) X A(s, x°). By Clifford theory again we have

LEMMA 2.4.3. The map
F(s) = Irrw(s)"
X° xEP Ind%(os():)FNA(S'Xo)( X® &)
is bijective.
Lemmas 2.4.2 and 2.4.3 imply the following:
THEOREM 2.4.4. There is a well-defined bijection
Irr W(s)" - &(G",(s))
X~ RX(s).

Remark. 1 necessary, we will write R$(s) for the irreducible character
R (s) of G". By applying Theorem 2.4.4 in the case where G = G(s) and
s = 1, we obtain a bijection,

It w(s)" - &(G(s)",1)

X~ RS(S)(l),
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and it is easy to check that the following diagram is commutative:

Irr W(s)"

/ \ (2.4.5)

£(G",(5)) Z(G(s)".1).

VG, s

2.5. Induction from a Particular Subgroup of G

Let G’ be a subgroup of G containing G°. It is F-stable because F acts
trivially on A. There exists a subgroup A" of A such that

G =G" XA4'.

If we construct G'™* in the way we construct G, then G'* may be identified
with a subgroup of G*. We can also construct G'(s) so that it is contained
in G(s), and we denote by W'(s) the Weyl group of G'(s) relative to T; (s)
so that W'(s) is a subgroup of W(s).

PROPOSITION 2.5.1. Let x' be an irreducible character of W'(s)F. Sup-
pose

F
Ind%(,fz)p)(’ = Y nXx-
XE lrr W(sHF
Then
IndgRS:(s) = X n,RE(s).
XE lrr W(s)F

3. LUSZTIG FUNCTORS
HypoTHESIS.  Throughout this section, and only in this section, A will be
assumed abelian.
3.1. Notation

Let L be an F-stable Levi subgroup of a parabolic subgroup P of G. Let
A, be the image of L through the composite morphism

L-G—->G/G —4

(A, is a subgroup of A). Because A is abelian, we can use the same
argument as in [B, 7.6] to assume that L contains A,. Let A% be the
image of A, under the anti-isomorphism A4 — A4*.
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Let L°* be an F*-stable Levi subgroup of a parabolic subgroup of G*°
that is a dual of L°. We can choose L°* to be Af-stable, and we define
L* = L°% X A%,
then L* is an F*-stable Levi subgroup of a parabolic subgroup of G* and
L*e = L°%,

3.2. Jordan Decomposition and Lusztig Functors

Let s be a semisimple element in L*°*". We may assume that s is nice
in G*. Then the subgroup L(s) of L following the construction of Section
1.4 can be chosen as a subgroup of G(s). The linear character of L(s)"
associated with s as defined in Section 1.4 is then the restriction of § to
L(s)F. 1t results from this remark and from the transitivity of Lusztig
induction functors (cf. [B, Proposition 6.3.3]) that the following diagram is
commutative:

&(LF, (s)er) ICEN g(L(s)".1)

£y gGDREl jSL"(nge‘?(s)Rf((f)) (3.2.1)
F
g(GF, (S)G*F*) T) g(G(S) ) 1)

The description of the functor R;) in [B, Theorem 7.6.1] thus provides
a description of the functor RS via the commutative diagram (3.2.1).

4. SHINTANI DESCENT IN THE GENERAL
LINEAR GROUP

In this section, we explain the link between the theory of irreducible
characters of G and the theory of Shintani descent for the general linear
group. For this purpose, we need to consider a particular case:

HyPOTHESIS AND NOTATIONS.  Throughout this section, we assume that
r = 1. We will denote d = d, and n = n, for simplicity. We also assume that
o=(,...,d) and that A is generated by o.

4.1. The Group G*

We denote by G, the general linear group GL,, and we endow it with
the split Frobenius endomorphism:

Fy:G, » G,

g~ g(q)_
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We denote by ¢, the automorphism of Gfg induced by F,. Then the map
0: Gt - G°F
g (8 Fo(8).--- Fi~'(8))

is an isomorphism of groups and the following diagram is commutative:

d 0
Gl — G°F

of ]

Git — G
This implies that 6 can be extended to an isomorphism denoted by
9: GF X (¢,) - GF
8o — 0(g)o~"

forall g € Gt and k € Z.

4.2. Shintani Descent

Let g € Glo. By Lang’s theorem, there exists x € G, such that g =

xLFE(x). Then g' = Fy(x)x! belongs to GI%, and the map that sends
the conjugacy class of g in Gi° to the ¢,- conjugacy class of g’ in GF0 is
well-defined and is bijective. We denote it by

Ny, rg: CI(GT?) — HY( by, G1?),

where H(¢,, GI¢) denotes the set of ¢,-conjugacy classes of G4 and
CI(GFO) denotes the set of conjugacy classes of Gfo. If we denote by
%(GF0 ¢,) (respectively, (G%0)) the space of class functlons on GF¥ - ¢,
obtained by restrictions from class functions on the group GF°<¢O> (re-
spectively, G1°), then Ngg ,, induces an isomorphism

Shyg, r,: (G110~ o) = €(GI0),
called the Shintani descent from F§ to F,,.

We recall the following theorem:

THEOREM 4.2.1 (Shintani). Let y, be an irreducible character of GFd
stable under qbo Then there exists an extension y, of y, to Gf¢ ¢ X (dor such
that Shpa,p ¥, is, up to a sign, an irreducible character of G °,
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4.3. Shintani Descent and Characters of G*

We denote by 6* and 6* the isomorphisms of @ -vector spaces:
0*:2(G°") - &(GfY)
and
012 (G") - &(GI¥ X (¢y)),

induced by 6 and 0, respectively.
Let y° be an irreducible character of G°*, and let y, = 6*(y°). Then
v, 1S ¢,-stable if and only if y° is o-stable.

HyYPOTHESIS.  From now on, we assume that vy, is ¢-stable.

Let s be a nice semisimple element of G*°f" such that y° €
£(G°F,(s’). Then A(s) = A because vy, is ¢,-stable. Let x° be the
irreducible character of W°(s) (stable under F) such that y° = R}-(s).
Then A(s, x°) = A.

THEOREM 4.3.1. With the above notations, we have

(@) There exists a unique extension 3, of v, to G X (¢, such that
Shpa, p, 71 is an irreducible character of G1o. We call it the Shintani extension
of v1-

(b) We have y, = 6*(R,.(s)).

(c) Let e be a divisor of d, and let () be the Shintani extension of vy,
to G¥6 X (p¢). Then ¥ is the restriction of ¥,.

Remark. The result stated in (a) of Theorem 4.3.1 is slightly stronger
than Shintani’s. It was already known for characters of the principal series
[DM3].

Proof. By Theorem 4.2.1, (a), (b), and (c) are immediate consequences
of the following:

LEMMA 4.3.2. ﬁso(s)(cr“) is a positive integer for all e € 7.

Proof of Lemma 4.3.2. Let e € Z. We first prove that
Ego syt = Eo(s) AN Egoyre = &g (%)

Because G°(s) is a direct product of groups of the same type as G°, it is
sufficient to prove the result for G°. But (Tg ) is a maximal split subtorus
of G°, so it is a maximal split subtorus of (G°)?". That proves ().

Let X, be the irreducible character of W°(s)" X (¢ ) associated with
x° as in Section 2.1 (it was denoted X ., but we just want to have simpler
notations).
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Then, by formulas (2.3.1) and (), we have

~ SGO(,)UES(GO)(YE _ o eN o
RE(s)(0°) = o) | & Y X.(wo)RP S (5) (o).
w (S) wewe(s)"

Using [DM2, Theorem 4.13], we get

~ E6e (57 €7 )" ~ ] o
RE(s)(0°) = o) | Y Xe(wo)dimRE ) o poe. (1)
w (S) wew°(s)”’

But this last formula gives the degree of an irreducible character of
((G°)7)F (cf. [LS, Theorem 3.2]). 1
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