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What is this document?

These are notes for the minicourse Rearrangement groups of fractals and Thomp-
son groups for the workshop “Random walks on groups, groups acting on frac-
tals” at Montpellier (5th - 7th May 2025).

I originally wrote these notes for myself, as an attempt at organizing my
thoughts and my lectures. In the end, I thought that they were decent enough
that they could be shared, although they are still quite rough and sketchy. The
notes probably include a little more than I manage to discuss in the lectures.

Why study these groups?

The importance of simple groups cannot be overstated. Classifying the infi-
nite simple groups (even just the countable ones) is arguably impossible, so
there have been attempts at subdividing countable groups into smaller fami-
lies of groups, for example by distinguishing them by their finiteness properties
[SWZ19]. Finitely presented simple groups are also important because of their
involvement in the Boone-Higman conjecture, which states that a finitely gen-
erated group has solvable word problem if and only if it can be embedded into
some finitely presented simple group, see [Bel+23].

Thompson groups T and V are the first examples of finitely presented infinite
simple groups. Together with their smaller sibling F , they were introduced in
the 60s by Richard Thompson in unpublished notes in the topic of logic and
were later popularized by Higman [Hig74]. A popular and famously difficult
question concerns the potential amenability of F [Gub23].

These three groups have countless equivalent definitions and generalizations
that relate them to different topics in mathematics, among which we recall the
following.

Topology: F , T and V are groups of piecewise-affine homeomorphisms.

Symbolic dynamics: V is the topological full group of the full shift on the
alphabet of two digits [Mat15].

Fundamental groups: F , T and V are fundamental groups of certain Ore
categories [Wit19].

Semigroup theory: F , T and V are planar, annular and symmetric diagram
groups [GS97].

Logic: F is the group of associative laws [Bel04, Theorem 1.6.1].

Computer science: Lehnert’s conjecture states that a group is coCF (i.e., its
co-word problem is context-free) if and only if it embeds into V [BMN16].

Automata theory: F , T and V can be seen as groups of asynchronous au-
tomata.
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Algebras: V is the automorphism group of a universal algebra [Hig74].

Links and knots: F encodes all knots and links in R3 [Jon17].

The diversity of settings in which Thompson groups make their appearance is
what motivated Matthew Brin to call F chameleon group [Bri96].

The goal of these notes is to explore the first of these perspectives: Thomp-
son groups as groups of “piecewise-canonical” homeomorphisms. Most gen-
eralizations of Thompson groups either have no “standard” actions on nice
topological spaces or they act in some way on the interval, the circle or the
Cantor space. Rearrangement groups instead provide a natural framework of
“piecewise-canonical” homeomorphisms of a larger class of topological spaces
(often fractals). This produces a rich class of groups with interesting behaviors
regarding their finiteness properties [WZ19; PT24b], simplicity [BF15; Tar24b;
Tar23b], generation properties [PT24a] and decision problems [Tar23a].

Also, rearrangement groups act on cool-looking fractals, which is never bad.

2



Lecture 1

Thompson groups

Let us introduce Thompson groups F , T and V as groups of piecewise-affine
homeomorphisms of the unit interval I := [0, 1], the unit circle S1 := [0, 1]/{0, 1}
and the Cantor space C.

We say that an element of I is dyadic if it belongs to Z[ 12 ]. An element of
S1 is dyadic if it has a dyadic representative in I.

1.1 Thompson’s group F

Definition 1.1. Thompson’s group F is the group of the orientation-preserving
piecewise-affine homeomorphisms g of I such that:

• g has finitely many breakpoints, all of which are dyadic;

• where g is affine, the slope is a power of 2.

Two examples are depicted in the left side of Figure 1.1.

Proposition 1.2. F is torsion-free.

Proof. Given any g ∈ F \ {idI}, consider the point

x0 = inf {x ∈ I | g(x) ̸= x} ∈ I.

Note that g(x0) = x0 and g′(x0) = 2k ̸= 1. Thus (gn)′(x0) = 2kn, which are all
distinct. So the powers gn must all be distinct.

Proposition 1.3. For any k ∈ N, given dyadics a1 < · · · < ak and b1 < · · · < bk
in I, there exists some g ∈ F such that g(ai) = bi for all i ∈ {1, . . . , k}. Actually,
the commutator subgroup F ′ has this property too.

We will omit this proof. This will be graphically evident (though a little
boring to fully write out) using a description of F as the group of dyadic rear-
rangements of tree pair diagrams.
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(b) The element X1.

Figure 1.1: Two generators X0 and X1 for Thompson’s group F .
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Figure 1.2: A dyadic subdivision built by a sequence of halvings.

Theorem 1.4. Thompson’s group F is generated by the elements X0 and X1

depicted in Figure 1.1.

We will not show this here.

1.1.1 Diagrams for the elements of F

Let us call dyadic subdivisions those families of subintervals of I that are
obtained by chopping the interval in half finitely many times, as in Figure 1.2.
Dyadic subdivisions correspond to partitions of I\{1} = [0, 1) into finitely many
standard dyadic intervals, which are intervals of the form[

a

2b
,
a+ 1

2b

)
.

Elements of Thompson’s group F can be described as dyadic rearrangements:
pairs of dyadic subdivisions with the same number of standard dyadic intervals
(the intervals are mapped affinely between the two subdivisions, in their order).
See the central part of Figure 1.1 as examples.

The process of halving the interval can be represented by finite rooted bi-
nary trees: the root represents [0, 1) and each caret represents a halving, with
the father corresponding to the interval being cut in half and the two children
representing the two halves. (Note that only the leaves of such trees represent
the standard dyadic intervals of the dyadic subdivision, whereas the inner ver-
tices represent intervals that appear in the intermediate steps of the sequence of
halvings.) Using such a description, elements of Thompson’s group F can also
be portrayed as tree pair diagrams, which are pairs of finite rooted binary
trees with the same number of leaves. The right part of Figure 1.1 show two
examples.

For the sake of brevity, we will refer to both these two ways of representing
the elements of F as diagrams.

1.1.2 Reductions of diagrams

Sometimes a diagram features redundant pieces of data, for example in Fig-
ure 1.3. For the representation as a dyadic rearrangement, this happens when
there are two standard dyadic intervals in the domain that are the halves of
a larger standard dyadic interval and are mapped to two standard dyadic in-
tervals with this same property. In a tree pair diagram, this is simply when
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Figure 1.3: A non-reduced representative for X0 ∈ F .

two leaves of a common caret in the domain tree are mapped to two leaves of
a common caret in the range tree. When this happens, the diagram can be
reduced, reverting the redundant halving for a dyadic rearrangement or remov-
ing the redundant carets in the tree pair diagram. For example, the diagrams
portrayed in Figure 1.3 are reduced to those in Figure 1.1a.

It can be seen that two diagrams represent the same element of F if and
only if the two diagrams differ by a sequence of reductions and expansions
(the opposite of a reductions). Thus, F corresponds to the set of equivalence
classes of diagrams under the equivalence relation of differing from a reduction
or expansions.

When no such reductions can be performed on a diagram, we say that the
diagram is reduced. Informally, this means that such a diagram does not
encode redundant pieces of data.

Lemma 1.5 (Existence and uniqueness of reduced diagrams for F ). Each ele-
ment of F is represented by a unique reduced diagram.

This can be shown using Newman’s diamond Lemma [New42], which is also
involved in the conjugacy problem for the third lecture and often appears when
one wants to discuss uniqueness of reduced objects or normal forms. We will not
explore the lemma here, but it informally states the following: if (1) whenever
you reduce an object in two distinct way you can reduce them further to some
common object and (2) there are no infinite chains of reductions, then there
exists a unique reduced object (for each connected component of the rewriting
system). It is easy to show that two distinct reductions of a diagram for an
element of F can always be performed in whichever order one wishes, so New-
man’s diamond Lemma applies and thus there is a unique reduced diagram for
each element.

1.1.3 Composition using diagrams

Let us see how the composition of two elements of F can be computed using
either of the two diagrammatical approaches (dyadic rearrangements and tree
pair diagrams). The procedure is similar to the sum of fractions: in order to
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(a) Two dyadic subdivisions A and B and a common expansion C.

A = B = C =

(b) Two finite rooted binary trees A and B and a common expansion C.

Figure 1.4: An example of common expansions of diagrams.

sum the numerators, one first needs to produce a common denominator E and
“expand” both fractions so that their denominator is E.

Remark 1.6. Given two dyadic subdivisions or finite rooted binary trees A and
B, there exist C that is a common expansion of them, as exemplified in Fig-
ure 1.4. (Actually, there exists a unique minimal such expansion.)

Say that you want to compute gh (which is g ◦ h, so h is applied before g),
given two diagrams g = (A,B) and h = (C,D), where A,B,C,D are dyadic
subdivisions or finite rooted binary trees.

1. Compute a common expansion E of D and A.

2. Expand the diagram for g so that it becomes (E,B′).

3. Expand the diagram for h so that it becomes (C ′, E).

4. The composition gh is represented by (C ′, B′).

For example, Figure 1.5 depicts the composition of X0 (from Figure 1.1a)
with itself. The range of the top copy of X0 and the domain of the bottom need
to be expanded so that they match.

1.1.4 Abelianization and the commutator subgroup of F

Definition 1.7. The support of a homeomorphism f of a topological space X
is the closure of the set

{x ∈ X | f(x) ̸= x}.
Moreover, we say that f is supported on some Y ⊆ X if the support of f is
included in Y (or equivalently, if f is trivial outside of Y ).

Proposition 1.8. The commutator subgroup F ′ of F consists of the elements
whose derivatives at 0 and 1 are trivial. Equivalently, these are the elements
that are supported on some proper subinterval of I.
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Figure 1.5: Computing the composition of X0 with itself.

This can be formulated in terms of diagrams: F ′ consists of the dyadic
rearrangements (A,B) such that the leftmost standard dyadic intervals of A
and B are the same, as are the rightmost intervals; equivalently, F ′ consists of
the tree pair diagrams (TA, TB) such that the leftmost leaves of TA and TB have
the same height, as do the rightmost leaves.

Proof. Consider the map

Φ: F → ⟨2⟩Q∗ × ⟨2⟩Q∗ , g 7→ (g′(0), g′(1)) ,

where ⟨2⟩Q∗ denotes the multiplicative subgroup of Q generated by 2 (i.e., the
multiplicative group of the integer powers of 2). This is a group morphism,
since 0 and 1 are fixed by every element of F . It is easy to create diagrams
with arbitrary derivatives at 0 and at 1, so Φ is surjective. Since ⟨2⟩Q∗ × ⟨2⟩Q∗

is abelian, we have that F ′ ≤ K := Ker(Φ).
The converse does not depend on F itself, but on a more general fact about

2-generated groups. Since F is 2-generated, the quotient F/F ′ is generated by
two elements (namely, X0F

′ and X1F
′). It is abelian, so it is the direct product

of two (finite, infinite or trivial) cyclic groups. But F/F ′ has (an isomorphic
copy of) Z× Z as a quotient, so it must be Z× Z itself.

Corollary 1.9. The abelianization of F is Z× Z.

Corollary 1.10. The commutator subgroup of F ′ is F ′ itself.

Proof. Let g ∈ F ′ and let [a, b] be its support, which is a proper subset of
I by Proposition 1.8. Let c ∈ (0, a) and d ∈ (b, 1) be dyadic numbers. Let
us consider the subgroup F [c, d] consisting of those elements of F that are
supported on [c, d], which can be shown to be isomorphic to F . Then g belongs
to the commutator subgroup of F [c, d] by Proposition 1.8. Since F [c, d] ≤ F ′,
we have that g ∈ F ′′, as needed.

1.1.5 Simplicity of the commutator subgroup of F

The following Lemma is inspired by strategies adopted by Epstein in [Eps70].
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Lemma 1.11 (Double commutator trick). Let G be a group of homeomorphisms
of X. Assume that H ≤ Homeo(X) is normalized by G (i.e., NHomeo(X)(H) ≥
G, which means g−1Hg = H, ∀g ∈ G). If J ∩ h−1(J) = ∅ for some h ∈ H and
some proper nontrivial open subset J of X then, for all f ∈ G

[g1, g2] ∈ H for all g1, g2 ∈ G that are supported on f(J).

Proof. Conjugating moves the support of an element, so if g1, g2 ∈ G are sup-
ported on J then h−1g1h is supported on h−1(J). Hence [g1, h] = g−1

1 (h−1g1h)
agrees with g−1

1 on J . Then we have that[
[g1, h]

−1
, g2

]
= [g1, h]g

−1
2 [g1, h]

−1g2 = g−1
1 g−1

2 g1g2 = [g1, g2].

Now, since H is normalized by G, the double commutator on the left of the
equation belongs to H and thus [g1, g2] ∈ H. Since H is normalized by G, we
can “conjugate” this statement by any f ∈ G and obtain the desired fact.

Theorem 1.12. Any nontrivial subgroup H of F that is normalized by F ′ (i.e.,
NF (H) ≥ F ′) must include F ′.

Proof. Assume F ′ ≤ NF (H) = {g ∈ G | Hg = H}. Consider any nontrivial
h ∈ H. There exists some small enough dyadic subinterval J ⊆ (0, 1) such that
J ∩ h−1(J) = ∅. By Lemma 1.11, for any f ∈ F ′ we have that

[g1, g2] ∈ H for all g1, g2 ∈ F ′ that are supported on f(J).

Now, by Propositions 1.3 and 1.8, this means that

[g1, g2] ∈ H for all g1, g2 ∈ F ′.

By Corollary 1.10 F ′ = F ′′, so F ′ is generated by {[g1, g2] | g1, g2 ∈ F ′}. Hence,
we ultimately have that H includes F ′.

Corollary 1.13. The commutator subgroup F ′ of F is simple.

1.1.6 Some additional properties of F

Theorem 1.14. Thompson’s group F admits the following infinite presentation

F = ⟨X0, X1, X2 · · · | X−1
k XnXk = Xn+1,∀k < n⟩

and the following finite presentation

F = ⟨X0, X1 | X−1
1 X2X1 = X3, X

−1
1 X3X1 = X4⟩,

where Xi := X
Xn−1

0
1 (see Figure 1.6).

Proposition 1.15. F has exponential growth (because the submonoid generated
by X0 and X−1

1 is free). However, F does not include free subgroups.
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Figure 1.6: A schematic depiction of the element Xi (for i ≥ 2).

1.2 Thompson’s groups T and V

Multiple aspects of T and V are similar to those of their smaller sibling F ,
including their diagrammatic description and a dynamical proof of simplicity
(in this case for the whole groups and not for the commutator subgroup). In
particular, the proof of simplicity of T and V (which we will omit) use the same
Lemma 1.11 that we employed for the simplicity of [F, F ].

1.2.1 Thompson’s group T

Definition 1.16. Thompson’s group T is the group of the orientation-preserving
piecewise-affine homeomorphisms g of S1 such that:

• g has finitely many breakpoints, all of which are dyadic;

• where g is affine, the slope is a power of 2.

Diagrams are similar to those for F , with the addition of a cyclic permutation
(see Figure 1.7). It is worth noting that such diagrams are no longer just pairs,
but they are instead triples: one needs to specify two dyadic subdivisions of the
circle along with a cyclic permutation of their intervals.

Proposition 1.17. Thompson’s group T has the following properties.

• T is finitely presented (actually F∞).

• T is simple.
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Figure 1.7: An element of Thompson’s group T .

• T includes any cyclic group.

• T can play ping-pong, so it contains free groups.

• T contains F .

1.2.2 Thompson’s group V

The description of V as a group of homeomorphism looks somewhat different
from those of F and T , but it is going to be useful for understanding rearrange-
ment groups.

Let us consider the binary Cantor space

C2 := {0, 1}ω = {x1x2x3 . . . | xi ∈ {0, 1}} .

We equip it with the product topology, which makes it a compact metrizable
totally disconnected space without isolated points. It is actually the only such
space up to homeomorphism, by Brouwer’s Theorem.

A cone of C2 is a subspace

C(w) = {wα | α ∈ C2} ,

where w is any finite word in the alphabet {0, 1}. Note that each cone C(w) is
homeomorphic to the whole C2 itself via the map that removes the prefix w. In
particular, every two cones are “canonically” homeomorphic by the map

C(u) → C(v), uα 7→ vα.

Definition 1.18. Thompson’s group V is the group of the homeomorphisms g of
the Cantor space C2 that are given by finitely many prefix-exchanges, i.e., there
exist partitions {C(u1), . . . , C(uk)} and {C(v1), . . . , C(vk)} of C2 into cones such
that

g(uiα) = viα, ∀i ∈ {1, . . . , k}.
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Figure 1.8: An element of Thompson’s group V .

The link with Thompson’s groups F and T is evident once we start depict-
ing elements of V using diagrams. For example, Figure 1.8 depicts the element
given by the three prefix-exchanges 00 → 0, 01 → 11 and 1 → 10. In general,
the elements of V can be represented by a triple consisting of two dyadic subdi-
visions of the Cantor space (i.e., partitions into finitely many cones) along with
a permutation between the two. The only difference with Thompson’s group T
is that, this time, the permutation need not be cyclic.

Proposition 1.19. Thompson’s group V has the following properties.

• V is finitely presented (actually F∞).

• V is simple.

• V includes any finite group.

• V contains T (so it plays ping-pong and contains F ).
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Lecture 2

Replacement systems and
Rearrangement Groups

By (finite) graph we will mean the data (V,E, ι, τ) given by the following:

• V is a (finite) set of “vertices”;

• E is a (finite) set of “edges”;

• ι and τ are maps E → V , mapping to “initial” and “terminal” vertices.

An edge-colored graph also comes equipped with

• a set C of “colors”;

• a map c : E → C.

In general, we will keep a fixed set of colors for every graph that we consider. If
we need to work with monochromatic (i.e., not colored) graphs, we will simply
assume that C is a singleton.

We say that an edge e is incident on a vertex v if ι(e) = v or τ(e) = v and
that two edges are adjacent if they are incident on some common vertex.

Note that we allow the existence of loops (i.e., e such that ι(e) = τ(e)) and
parallel edges (i.e., e1, e2 such that ι(e1) = ι(e) and τ(e1) = τ(e2)).

Graph isomorphisms are collections of bijections of the sets of vertices and
edges that preserve ι, τ and c. More precisely, a graph isomorphism is

ϕ = (ϕV : V1 → V2, ϕE : E1 → E2)

such that ι2(ϕE(e)) = ϕV (ι1(e)), τ2(ϕE(e)) = ϕV (τ1(e)) and c(ϕE(e)) = ϕE(c(e))
for all e ∈ E1.

A subgraph of a graph (V,E, ι, τ) is a graph (V ′, E′, ι′, τ ′) such that V ′ ⊆ V ,
E′ ⊆ E and ι′, τ ′ are the restrictions of ι, τ to E′.
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Figure 2.1: The airplane replacement system.

2.1 From graphs to fractals

Let us introduce the machinery that allows to build fractal topological spaces
and rearrangement groups acting on them: the replacement systems.

2.1.1 Replacement systems

Definition 2.1. A set of replacement rules is a pair (R,C), with R = {Xc |
c ∈ C}, where

• C is a finite set of colors;

• for each color c ∈ C, Xc ∈ R is a finite graph edge-colored by C and
equipped with distinct vertices ιc and τc.

Each Xc is called c replacement graph (for example, red replacement graph)
and the vertices ιc and τc are called the initial and terminal vertices of Xc,
respectively.

Definition 2.2. A replacement system (X0, R,C) consists of a set of re-
placement rules (R,C) together with a finite graph X0 that is edge-colored by
C. The graph X0 is called the base graph of the replacement system.

For example, Figure 2.1 depicts the airplane replacement system.
A c-colored edge e of a graph Γ can be expanded by replacing it with

the graph Xc, identifying the initial and terminal vertices ιc and τc of the
replacement graph Xc with the initial and terminal vertices ι(e) and τ(e) of the
edge e of Γ, respectively, producing a new graph Γ ◁ e. We will start expanding
from the base graph X0 and, say that we expand an edge e of X0. For example,
Figure 2.2 portrays two expansions of the airplane replacement system.

Note that we codify edges depending on what edges of previous expansions
they descend on. The set of “codes” that correspond to edges is called the lan-
guage of the replacement system. For example, sb1r2 belongs to the language
while sb1b2 does not.
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Figure 2.2: Two expansions of the airplane replacement system.

2.1.2 The gluing relation

The symbol space ΩR (where R is a replacement system) is the set of infinite
codes whose every prefix belongs to the language of the replacement system.
(For those who know about them, note that this is an edge shift.)

Definition 2.3. The full expansion sequence is the sequence of graph ex-
pansions E1, E2, E3, . . . obtained by expanding, at each step, every edge of the
previous graph, starting from the base graph E1 = X0.

Note that Ek consists of the edges corresponding to words of length k.

Definition 2.4. The gluing relation of a replacement system is the binary
relation on the symbol space ΩR defined by setting

α ∼ β ⇐⇒ ∀n ∈ N, α1 . . . αn and β1 . . . βn are incident in En.

Definition 2.5. A replacement system (X0, R,C) is expanding if

1. neither the base graph nor any replacement graph features isolated ver-
tices;

2. the initial and terminal vertices of the replacement graphs are not con-
nected by an edge;

3. the replacement graphs have at least three vertices and two edges.

Essentially all examples that we give are expanding, but there are interesting
rearrangement groups arising from certain non-expanding (but still somehow
well-behaved) replacement systems.

Proposition 2.6 (Proposition 1.9 of [BF19]). If the replacement system is
expanding, its gluing relation is an equivalence relation.

Also note that the symbol space of an expanding replacement system is
always a Cantor space (with the subspace topology coming from Eω, where E
here denotes the set of all edges of the base and replacement graphs).
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Figure 2.4: The airplane limit space.

2.1.3 The limit space

Definition 2.7. LetR be an expanding replacement system with gluing relation
∼ and symbol space ΩR. The limit space of R is the quotient ΩR/ ∼.

Example 2.8 (The binary coding for the unit interval). Consider the replace-
ment system depicted in Figure 2.3. The symbol space is the binary Cantor
space C2 = {0, 1}ω and the gluing relation is

w10̄ = w1000 . . . ∼ w01̄ = w0111 . . .

for all finite words w in the alphabet {0, 1}. The limit space is then the unit
interval, where each non-trivial equivalence class simply consists of the two
binary expansions for that number. For instance, 1/2 can be written as 01̄ =
0111 . . . and as 10̄ = 1000 . . ..

The limit space for the airplane replacement system is a homeomorphic copy
of the airplane Julia set and it is depicted in Figure 2.4. One can also build
fractals such as the basilica and Douady rabbit Julia sets [DT25, Appendix C]
and Ważewski dendrites [Tar23b].

Exercise 2.9. Find replacement systems for the circle S1 and for the binary
Cantor space C2.

Theorem 2.10 (Theorem 1.25 of [BF19]). Limit spaces of expanding replace-
ment systems are compact metrizable spaces.

Theorem 2.11 ([PT25]). The gluing relation is a rational relation (i.e., there
exists a finite state automaton that read pairs of elements of the symbol space if
and only if they are equivalent under the gluing relation).
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2.2 Rearrangement groups of limit spaces

Let us discuss a few other notions about limit spaces and then, finally, we will
introduce rearrangements.

2.2.1 Cells and cellular partitions

Points of the limit space will be written as JαK, where α ∈ ΩR is a representative
of the gluing class.

Given a finite word w in the language of R, a cell of the limit space is

JwK := {JwαK | wα ∈ ΩR},

which is the image of the cone C(w) of ΩR (the set of elements of the symbol
space with w as a prefix) via the quotient map. Note then that JAK has a
different meaning depending on whether A is an infinite sequence in ΩR (then
it is a point of the limit space) or a finite admissible word (then it is a cell,
which is a subset of the limit space).

Every cell has one or two boundary points, depending on whether w is a
loop or not. In Example 2.8, the boundary points of a cell JwK are the points
Jw0̄K and Jw1̄K. (Formally, a boundary point of JwK is defined as a point JαK
such that each prefix of α is an edge that is incident on a boundary vertex of
the edge w.)

Definition 2.12. A cellular partition of the limit space is a collection of cells
{Jw1K, . . . , JwkK} such that Jw1K ∪ · · · ∪ JwkK is the whole limit space and that
any pairwise intersection JwiK∩JwjK is empty or consists of one or two boundary
points.

In Example 2.8, cellular partitions correspond to dyadic subdivisions.

2.2.2 Rearrangements

Consider two cells JaK and JbK of the same color, either both loops or both non-
loops (in this case we say that they are of the same type). Then there is a
canonical homeomorphism JaK → JbK given by

JaαK 7→ JbαK.

In Example 2.8, a canonical homeomorphism is the unique affine map be-
tween two standard dyadic intervals.

Definition 2.13. A rearrangement is a self-homeomorphism of the limit
space that restricts as a canonical homeomorphism on the cells on some cel-
lular partition.

Following Example 2.8 once more, rearrangements are precisely the elements
of Thompson’s group F .
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Figure 2.5: Graph pair diagrams for X0 and X1.
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α

Figure 2.6: A rearrangement of the airplane limit space, along with a graph pair
diagram that represents it.

Each rearrangement can be represented by a graph pair diagram, which
is a triple (D,ϕ,R) where D and R are graph expansions and ϕ is a graph
isomorphism. A graph pair diagram (D,ϕ,R) represents the rearrangement
that restricts to canonical homeomorphisms JeK → Jϕ(e)K, for all edges e of D.

For our Example 2.8, a graph pair diagram naturally corresponds to a pair
of dyadic subdivisions of the interval with the same number of standard dyadic
intervals (the graph isomorphism is then uniquely determined). For instance,
Figure 2.5 shows the graph pair diagrams for the generators X0 and X1 of F .

Going back to the airplane replacement system (Figure 2.1), a rearrangement
and its graph pair diagram are depicted in Figure 2.6 (colors describe the graph
isomorphism and each colored piece is only “rescaled” and rigidly moved by the
canonical homeomorphisms).

Composition of graph pair diagrams works exactly like that of Thompson
groups: to compute (A, ϕ,B)◦(C,ψ,D) one needs to compute a common expan-
sion E of A and D, then expand both diagrams to (E, ϕ′, B′) and (C ′, ψ′, E),
and finally the composition is (C, ϕ′ ◦ ψ′, B′).

The following groups (introduced prior to replacement systems) can be re-
alized as rearrangement groups.

• Thompson groups F , T and V .

• The Higman-Thompson groups Fn,k, Tn,k, Vn,k.
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(a) The basilica limit space. (b) A dendrite limit space.

Figure 2.7: More limit spaces.

• Topological full groups of edge shifts.

• The Thompson-like groups QF , QT and QV (non-expanding replacement
systems).

• The Houghton groups Hn (non-expanding replacement systems).

2.2.3 The airplane rearrangement group

Let us write TA for the rearrangement group associated to the airplane replace-
ment system (Figure 2.1).

Theorem 2.14 ([Tar24b]). The airplane rearrangement group TA enjoys the
following properties:

• TA is generated by a copy of Thompson’s group F together with a copy of
Thompson’s group T and thus it is finitely generated.

• TA is finitely presented (actually F∞) [PT24b].

• The abelianization TA/T
′
A is Z.

• The commutator subgroup T ′
A is simple.

• The commutator subgroup T ′
A is finitely generated.

• TA embeds into Thompson’s group T .

Other rearrangement groups of fractals include the basilica rearrangement
group TB from [BF15] acting on the basilica limit space depicted in Figure 2.7a
(it is similar properties to TA in many regards, but is virtually simple and
is not finitely presented [WZ19]) and the dendrite rearrangement groups from
[Tar23b] acting on Ważewski dendrites as the one depicted in Figure 2.7b (this
is a countable family of groups that, differently from TA and TB , do not embed
into T ).
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2.2.4 More results about rearrangement groups

Finiteness properties

Theorem 2.15 (Theorem 4.1 [BF19]). Let R be a replacement system with
finite branching (i.e., with bounded vertex degrees in its graph expansions). Let
Γ(R) be collection of all graphs that are obtained by finite sequences of edge
expansions and reductions from the base graph of R. Assume that, for every
m ≥ 1, all but finitely many graphs of Γ(R) admit at least m distinct reductions.
Then the rearrangement group of R is of type F∞.

This applies to F , T and V , but it does not apply to the airplane rear-
rangement group TA nor to dendrite rearrangement groups. A similar but more
flexible statement that works for such groups is included in [PT24b].

Lack of invariable generation

Definition 2.16. A group G is invariably generated if there exists a subset
S ⊆ G such that, for every choice gs ∈ G for s ∈ S, the group G is generated
by {sgs | s ∈ S} (with gh we mean h−1gh).

Theorem 2.17 (Main Theorem of [PT24a]). Every CO-transitive subgroup G
of a rearrangement group GX is not invariably generated.

A group acting on a topological space is CO-transitive (which stands for
compact-open transitive) if it can map any “large” (proper) compact subset
inside any “small” open subset. For a rearrangement group, this property can
be fully characterized with cells. Except for Thompson’s group F , the Houghton
groups and the groups QF , QT and QV , every other known rearrangement
group is CO-transitive and thus not invariably generated.

Finite subgroups

Theorem 2.18 (Theorem 2.9 [BF19]). Every finite subgroup of a rearrangement
group is a subgroup of the automorphism group of some graph expansion of the
replacement system.
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Lecture 3

The conjugacy problem in
rearrangement groups

The contents of this chapter are from [Tar23a] or [Tar24a, Chapter 5].
A problem is solvable if there exists an algorithm that infallibly (and cor-

rectly) answers yes or no in finite time. Given a fixed group, the conjugacy
problem is the problem of deciding whether two given elements are conjugate
or not in the given group.

3.1 An example: the conjugacy problem in free
groups

The conjugacy problem is solvable in any finitely generated free group. Let us
see an easy algorithm that solves the problem by computing, for each element,
a unique “minimal” representative for each conjugacy class.

Given a word A = a1 . . . ak, we can consider the associated cyclic word,
which is the equivalence class under cyclically permuting the digits. For in-
stance, a2a3 . . . aka1 and aka1 . . . ak−2ak−1 are elements of the free groups whose
cyclic words are the same as that of a1 . . . ak. Free reductions can also be per-
formed on cyclic words. See Figure 3.1 for an illustration of this.

1. Let A = a1 . . . an and B = b1 . . . bm be elements of a free group.

2. Consider the cyclic words obtained from A and B.

3. Freely reduce the cyclic words until no reduction can be performed, finding
words A′ and B′.

4. If A′ and B′ correspond to the same cyclic word, then A and B are con-
jugate. Otherwise, A and B are not conjugate.
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Figure 3.1: An illustration of why x−1y2x2 and xy2 are conjugate in the free
group. The dotted lines allow to recover a word from a cyclic word and, keeping
track of it, one can recover a conjugator.

This sort of algorithm applied to cyclic diagrams and transformation moves
like that shown in Figure 3.1 will be used to solve the conjugacy problem in many
rearrangement groups, with a key difference: we will not work with generators
of the groups, but instead with generators of a groupoid.

3.2 Strand diagrams for rearrangements

In order to have some sort of cyclic diagram for the conjugacy classes, we need
a representation of rearrangements with diagrams with a “beginning” and an
“end” that can be glued together, as we did in Figure 3.1 for words (elements
of a free group). This is why we introduce strand diagrams.

Throughout this section, let (X0, R, C) be a fixed replacement system. We
will use the airplane replacement system as a guiding example (Figure 2.1), but
we modify it by replacing the base graph with its expansion (so the base graph is
a copy of the blue replacement graph). This does not change the rearrangement
group nor the limit space and it allows us to draw smaller pictures.

3.2.1 The forest of expansions

Expansions of the base graphs can be represented by labeled forests, as we
explain here. We will implicitly equip each forest with an ordering of the roots
and of the children of each node. Since there are multiple graphs involved in
this construction, we will refer to the edges of forests with the term strands.

The base forest

Let F0 denote a forest consisting simply of a pair of vertices joined by one strand
for each edge of the base graph X0. If the edge of X0 is v → w, then we label the
corresponding strand by a quadruple (v, w, c, i), where c is the color of the edge
and i is an additional symbol for distinguishing parallel edges (i.e., if there are
multiple edges v → w, then the strands are labeled by (v, w, 1), . . . , (v, w, k)),
which can be omitted when there are no parallel edges. We call such forest F0

the base forest. See for example Figure 3.2a. Note that, in pictures, we will
color the label instead of displaying a symbol for the color, and we will often
just write (v, w) for the label when the color is irrelevant.
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(b) A forest expansion and the corresponding graph expansion X0 ◁ (y → x).

Figure 3.2: Forest expansions of the airplane replacement system.

The replacement trees

The base forest F0 can be expanded by appending to a leaf a copy of a replace-
ment tree, which is a tree consisting of a strand labeled by (ι, τ) and colored
by c from which multiple strands depart, one for each edge of the replacement
graph Xc, each colored and labeled according to the edge of Xc. See Figure 3.3
for examples. When appending a replacement tree, the label (ι, τ) of the top
strand needs to be changed to (v, w) according to the labels of the strand being
expanded, changing each ι to v and each τ to w.

Forest expansions

Each expansion of the replacement system can be represented by a forest: for
instance, the expansion X0◁e1◁e2 corresponds to the forest obtained by attach-
ing the replacement tree to the strand corresponding to e1, then attaching the
replacement tree corresponding to e2 to the corresponding edge. Figure 3.2b
portrays an example. We will refer to such forests as forest expansions. Note
that there is a bijective correspondence between forest expansions and graph
expansions.

It is useful to note that the forest essentially consists of two pieces of in-
formation: the labels of the bottom strands describe the graph structure of a
graph expansion (i.e., edge adjacencies), and the overall forest specifies which
edges were expanded to obtain such graph (i.e., the coding of the edges in the
alphabet of edges of the base and replacement graphs, see Section 2.1.1).

Moreover, keep in mind that the names symbols used to name vertices do
not matter: two forest expansions are equivalent if one can be obtained from
the other by simply renaming each symbol to something else.
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(b) The red replacement tree Tr beside the red replacement graph.

Figure 3.3: The replacement trees of the airplane replacement system.
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Figure 3.4: A forest pair diagram for the rearrangement portrayed in Figure 2.6.

3.2.2 Forest pair diagrams

A graph pair diagram (D,ϕ,R) can be equivalently represented by (TD, ϕT , TR),
where TD and TR are the forest expansions corresponding to D and R and ϕT
is a bijection between the leaves of the two forests corresponding to the graph
isomorphism ϕ. Such diagrams are called forest pair diagrams. See Figure 3.4
for an example.

Remark 3.1. In this example we are implicitly using the fact that the orientation
of blue edges does not matter in the airplane replacement system, so a blue
label (v, w) is equivalent to a blue label (w, v). Essentially, this is because the
expansion of a blue edge (v, w) is isomorphic to the expansion of a blue edge
(w, v), so any rearrangement is allowed to swap the orientation of a blue edge
up to an expansion of such edge.

Since the symbols used to refer to vertices of graph expansions do not matter,
one can always rename those of the range forest expansion TR so that the label
corresponding to ϕ(e) in TR is the same as the label corresponding to e in TD,
as done in Figure 3.5. This allows to express ϕT entirely via the labelings of the
two forests, and in the remainder of these notes we will always assume that the
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Figure 3.5: A forest pair diagram for the same element represented in Figure 3.4
after a renaming of symbols so that ϕ is determined by the labeling.

symbols of a forest pair diagrams are chosen in this way.

3.2.3 Strand diagrams and the replacement groupoid

The leaves of the two forests of a forest pair diagrams can be glued as shown in
Figure 3.6a. Strands that are glued have the same label, so they can be merged.
Diagrams like this are called strand diagrams. These can be composed by
gluing the top strands of a strand diagram with the bottom strands of another,
after a renaming of the symbols of one (or both) strand diagrams so that the
labels of the strands that are glued coincide.

Note that every strand diagram can be decomposed into a sequence of expan-
sions, permutations and reductions, for example as in Figure 3.6b. Such small
diagrams are called expansion, permutation and reduction diagrams, re-
spectively.

Note that, in every diagram obtained by gluing the two forests of a forest pair
diagram (as explained above), the top and the bottom strands are always labeled
in such a way that represent the base graph X0. If one lifts this assumption,
they are left with a groupoid of generalized rearrangements whose elements are
all strand diagrams that are generated by all of the (infinitely many) expansion,
permutation and reduction diagrams. For instance, each of the three pieces into
which the diagram in Figure 3.6b decomposes, as well as the composition of
the first two and of the last two, are elements of this groupoid, which we will
call rearrangement groupoid. A rearrangement groupoid depends on the
replacement rules (i.e., the colors and on the replacement graphs R), but not on
the base graph. In fact, these generalized rearrangements simply describe graph
isomorphisms between graph expansions of all possible replacement systems
based on a fixed set of replacement rules.

3.3 Closed strand diagrams and conjugacy classes

The advantage of using strand diagrams to describe the elements of a rearrange-
ment group is that such diagrams have a “beginning” and an “end”: the top
and the bottom strands represent isomorphic graphs, so they can be glued to-
gether, as shown for example in Figure 3.7. We keep track of where the gluing
happened using a base line, which is simply an ordering of the points that were
glued, called the base points.
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(a) The strand diagram for the forest pair
diagram of Figure 3.5.
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Figure 3.6: Strand diagrams.
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Figure 3.7: The closed strand diagram obtained from the strand diagram de-
picted in Figure 3.6. The base line is represented by the dashed line.
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Figure 3.8: A shift of the diagram depicted in Figure 3.6 (the previous position
of the base line is shown in gray).

3.3.1 Similarities of closed strand diagrams

A permutation of a closed strand diagram consists of permuting the order of
the base points.

Lemma 3.2. A permutation move on the closed strand diagram corresponds to
conjugacy by a permutation diagram in the groupoid of generalized rearrange-
ments.

A shift of a closed strand diagram consists of moving the base line through
an expansion or a reduction, modifying symbols accordingly, as in Figure 3.8.
There are rules for how symbols behave, which guarantee that cutting through
the base line always results in a correctly labeled generalized rearrangement (an
element of the rearrangement groupoid).

Lemma 3.3. A shift move on the closed strand diagram corresponds to conju-
gacy by an expansion or reduction diagram in the groupoid of generalized rear-
rangements.

Overall, we refer to permutations and shifts with the term similarities. The
meaning of these transformations will be discussed later (Proposition 3.8).
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(b) Type 2: an X-merge on top of an X-
split produces multiple strands.

Figure 3.9: Types 1 and 2 reduction. Each strand should be labeled and colored
according to the replacement rules.

Remark 3.4. It is possible to (algorithmically) determine whether two diagrams
are similar: one needs to forget about the base line, which determines the order-
ing o the base points and the winding numbers (in other terms, it determines a
cohomology class).

3.3.2 Reductions of closed strand diagrams

Closed strand diagrams can also be reduced with the following three types of
moves, which we call reductions.

Types 1 and 2 reductions

Figure 3.9 schematically depicts reductions of types 1 and 2. These reductions
can also be performed on non-closed strand diagrams. In closed strand diagrams,
these reductions can only be performed on pieces of diagrams that do not cross
the base line. In general, because of this, a type 1 of 2 reduction may need to
be “unlocked” by a shift.

Type 1 reductions reflect the fact that expanding an edge and then reducing
the resulting subgraph has no effect. Symmetrically, type 2 reductions reflect
the fact that reducing a subgraph and then expanding the resulting edge has
no effect. It is clear, thus, that such reductions do not modify the underlying
rearrangement.

Type 3 reductions

Figure 3.10 schematically depicts reductions of type 3. These occur when there
are parallel strands that do not expand nor reduce, such that they meet the base
line in consecutive copies of a replacement graph. The number of such copies
is what we refer to as winding number, as it is depicted as the amount of times
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a looping strand goes around the central “hole”. In general, a type 3 reduction
may need to be “unlocked” by a permutation.

Type 3 reductions reflect the fact that, sometimes, the base graphs of the
domain and range graphs of a generalized rearrangement may be reduced. This
transformation changes the element, as we will see later (Proposition 3.8).

Lemma 3.5. A type 3 reduction on the closed strand diagram corresponds to
conjugacy by one or more reduction diagrams in the groupoid of generalized
rearrangements.

3.3.3 Reduction-confluence of replacement rules

When talking about replacement systems, by the term reduction we will mean
the inverse of an expansion. This is the transformation of a graph Γ given by
replacing a subgraph Y isomorphic to some replacement graph Xc (up to an
identification of the initial and terminal vertices of Xc) with an edge colored by
c, provided this would not leave “dangling edges”. (More formally, this means
that, whenever some edge of Γ \ Y is adjacent to a vertex of Y , that vertex
must correspond to the initial or terminal vertex of Xc under the isomorphism
between Xc and Y .)

Note that these reductions are not the same as reductions of closed strand di-
agrams. Moreover, these are not the same but correspond to reduction diagrams
(one of the three types of generators of the rearrangement groupoid).

A set of replacement rules (R,C) is reduction-confluent if the rewriting
system whose rewritings are the reductions is locally confluent. This means
that, whenever a 99K b and a 99K c are two finite sequences of reductions of a,
there exist a graph expansion d and two finite sequences of reductions b 99K d
and c 99K d.

For example, the airplane replacement rules are not reduction-confluent, as
shown in Figure 3.11. It is not hard to show that, instead, essentially all other
replacement rules considered in the literature (such as those for the basilica and
dendrites, as well as those for Thompson groups F , T and V ) are reduction-
confluent.

Let us consider similarity classes (equivalence classes under similarities,
which are permutations and shifts). We say that a reduction can be applied
to a similarity class if it can be applied to some diagram in the class. As we
mentioned, this allows us to “unlock” reductions by using permutations and
shifts. We say that a similarity class is reduced if no reduction can be per-
formed on it.

Lemma 3.6. If the replacement rules are reduction-confluent, then each simi-
larity class is reduced to a unique reduced similarity class.

This lemma essentially tells us that, for reduction-confluent replacement
rules, the order in which we reduce closed strand diagrams does not matter: we
always reach the same reduced closed strand diagram (up to similarities).
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Figure 3.11: The reason why the airplane replacement system is not reduction-
confluent.
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The proof of Lemma 3.6 relies on two facts: 1) that two reductions of the
same diagram that “intersect” are either a type 1 and a type 2 (it can be seen
that this is fixed by a type 3 reduction) or are both of type 3, and 2) that type
3 reductions correspond precisely to reductions of graphs, which are confluent
by hypothesis.

3.3.4 Closed strand diagrams represent conjugacy classes

Remark 3.7. Understanding conjugacy in the groupoid allows to understand
conjugacy in the groups. More precisely, If two elements of a rearrangement
group G are conjugate in the groupoid, then any conjugator in the groupoid
belongs G.

Proposition 3.8. If two elements of a rearrangement group produce a common
similarity class when reducing their closed diagrams, then they are conjugate in
the rearrangement group.

Proof. The is because similarities and reductions correspond to (possibly trivial)
conjugacy, as we mentioned in previous lemmas. Let us list every case.

Types 1 and 2 reductions do not change the element represented by a dia-
gram, so they correspond to trivial conjugacy.

Type 3 reductions correspond to conjugating by certain expansion diagrams
(in the case in which the base graph has a periodic subgraph that can be re-
duced).

Permutations correspond to conjugating by permutation diagrams (the same
permutation by which one permutes the base points).

Shifts correspond to conjugating by certain expansion or reduction diagrams
(corresponding to the expansion or reduction the base line moved through when
performing the shift).

It is easy to check that the converse statement holds: if two elements are
conjugate, then they produce a common similarity class (if g = x−1hx, the
element x can effectively be reduced in the closed strand diagram for g, leaving
only h).

Note that the previous Proposition 3.8 holds without assuming reduction-
confluence. When assuming reduction-confluence, by Lemma 3.6 and Proposi-
tion 3.8, one can solve the conjugacy problem using the following procedure.

1. Given two elements, compute their closed strand diagrams.

2. Compute their reduced closed strand diagrams.

(a) To do this, first check whether reductions can be performed when
forgetting about the base line.

(b) If reductions can be performed, do that (possibly needing to first
perform a shift or a permutation) until no more are available. By
Lemma 3.6, the order in which reductions are performed does not
matter.
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3. Check whether the two reduced closed strand diagrams are similar (check
isomorphism as graphs, cohomology and labeling).

4. If the reduced closed strand diagrams are similar, the elements are conju-
gate. Otherwise, they are not.

Theorem 3.9. The conjugacy problem of any rearrangement group defined by
reduction-confluent replacement rules is solvable.

Corollary 3.10. The conjugacy problem is solvable in the following groups.

• The basilica and rabbit rearrangement groups.

• The dendrite rearrangement groups.

• the Thompson-like groups QV , QT and QF .

Also in the following groups, in which the conjugacy problem was previously
shown to be solvable.

• Thompson groups F , T and V (previously solved in multiple papers, in-
cluding [BM14] which inspired this paper).

• The Higman-Thompson groups (previously solved in [BDR16]).

• The Houghton groups (previously solved in [ABM15]).

The conjugacy problem is also solvable in the airplane rearrangement group
TA with these methods, but some additional arguments are needed, as discussed
in the next (and last) subsection.

3.3.5 Reduction-confluence is not necessary: the airplane

We mentioned that the airplane replacement rules are not reduction-confluent
(see Figure 3.11), so Theorem 3.9 does not apply. However, the conjugacy prob-
lem can be solved simply by adding one graph reduction rule and the associated
type 3 reduction of closed strand diagrams to the list of moves that we allow,
the one portrayed in Figure 3.12a.

The additional graph reduction rule is a composition of expansions and re-
ductions, so performing a type 3 reduction associated to it corresponds to con-
jugating by the diagram depicted in Figure 3.12b. This means that reductions
still correspond to conjugacy. It can be checked that the issue portrayed in Fig-
ure 3.11b is essentially the only obstacle to reduction-confluence in the airplane
and that the inclusion of this additional rule circumvents it. Ultimately, this
solves the conjugacy problem in TA too.

Sometimes (for instance, in the replacement system depicted in Figure 3.13)
adding the graph reduction rule that seems to solve the issue ends up produc-
ing further problems (see Figure 3.14). Thus, it is still unclear when similar
strategies can always be applied to circumvent the lack of reduction-confluence.
Overall, these questions fit into the topic of graph rewriting systems, which is
currently of interest in computer science.
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Figure 3.12: The additional transformations needed to solve the conjugacy prob-
lem in the airplane rearrangement group TA.
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Figure 3.13: The red and blue replacement graphs for a non confluent-reduction
set of replacement rules where closed strand diagrams do not seem to easily solve
the conjugacy problem.

Figure 3.14: Adding this reduction to the reduction system associated to the
replacement rules of Figure 3.13 does not make the reduction system confluent.
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