Calcul différentiel.

Exercice 1

Calculer quand elles existent les dérivées partielles $f_x', f_y', f_{x^2}'', f_{y^2}'', f_{xy}''$, des fonctions :

- **a)** $f(x,y) = x^2 + y^2;$ **b)** $f(x,y) = x^3 + \frac{x}{y};$
- c) $f(x,y) = x \ln y$;
- **d)** $f(x,y) = e^{xy}$;
- e) $f(x,y) = xe^y + ye^x$.

Exercice 2

Calculer quand elle existe la différentielle des applications suivantes :

$$\mathbb{R}^p \ \longrightarrow \ \mathbb{R}$$

Calculer quand elle existe la différentielle des
$$x$$
 a) $\mathbb{R}^p \longrightarrow \mathbb{R}$ $x = (x_1, \dots, x_p) \longmapsto \|x\|^2 = \sum_{i=1}^p x_i^2$ b) $\mathbb{R}^p \longrightarrow \mathbb{R}$ $x = (x_1, \dots, x_p) \longmapsto \|x\| = \sqrt{\sum_{i=1}^p x_i^2}$ c) $M_n(\mathbb{R}) \longrightarrow \S_n(\mathbb{R})$ $A \longmapsto A^t A$ d) $M_n(\mathbb{R}) \longrightarrow M_n(\mathbb{R})$

$$\mathbb{R}^p \longrightarrow \mathbb{R}$$

$$x = (x_1, \dots, x_p) \longmapsto ||x|| = \sqrt{\sum_{i=1}^p x_i^2}$$

c)
$$\mathrm{M}_n(\mathbb{R}) \longrightarrow \S_n(\mathbb{R})$$

$$A \longmapsto A^t A$$

$$\mathbf{d)} \quad \mathbf{M}_n(\mathbb{R}) \quad \longrightarrow \quad \mathbf{M}_n(\mathbb{R}) \\ A \quad \longmapsto \quad A^p$$

Exercice 3

Soit $f \in C^1(\mathbb{R}^2, \mathbb{R})$. Soit $(a, b) \neq (0, 0)$. Montrer que f vérifie $a \frac{\partial f}{\partial x} + b \frac{\partial f}{\partial y} = 0$ si et seulement s'il existe $c \in C^1(\mathbb{R}, \mathbb{R})$ telle que $\forall (x, y) \in \mathbb{R}^2$ f(x, y) = c(bx - ay).

Exercice 4

Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ l'application définie par :

$$f(x,y) = \frac{x^3 - y^3}{x^2 + y^2}$$
 si $(x,y) \neq (0,0)$; $f(0,0) = 0$.

1) a) Montrer que:

$$\forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} \ f(x,y) = (x-y)\left(1 + \frac{xy}{x^2 + y^2}\right).$$

b) En utilisant l'inégalité classique $|xy| \leq \frac{1}{2}(x^2 + y^2)$ montrer que :

$$\forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} | |f(x,y)| \le \frac{3}{2} |x-y|.$$

En déduire que f est continue sur \mathbb{R}^2 .

- 2) Montrer que f admet des dérivées en (0,0) suivant les directions (0,1) et (1,0) que l'on calculera.
- 3) On note $\Delta(x,y) = f(x,y) x + y$. Soit $t \in \mathbb{R} \setminus \{-1,0,1\}$. Calculer

$$\lim_{x \to 0, x > 0} \frac{\Delta(x, tx)}{|x| + |tx|}.$$

En déduire que f n'est pas différentiable en (0,0).

Exercice 5

Soit $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ définie par $f(x,y,z) = x^3 + y^3 + z^3 - 3xyz$. 1) Soit $(x_0,y_0,z_0) \in \mathbb{R}^3$ tel que $f(x_0,y_0,z_0) = 0$ et $\frac{\partial f}{\partial z}(x_0,y_0,z_0) \neq 0$. Montrer qu'il existe un voisinage U de (x_0,y_0) dans \mathbb{R}^2 , un voisinage V de z_0 dans \mathbb{R} , et une fonction $\varphi: U \longrightarrow V$ de classe C^1 tels que

$$\varphi(x_0, y_0) = z_0$$
 et $\forall (x, y, z) \in U \times V$ $(f(x, y, z) = 0 \text{ ssi } z = \varphi(x, y)).$

2) Calculer $\frac{\partial \varphi}{\partial x}$ et $\frac{\partial \varphi}{\partial y}$ pour $(x,y) \in U$.

Exercice 6

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une application de classe C^1 . Sous une condition que l'on explicitera, la relation y-zx=f(z) définit localement z comme fonction implicite de (x,y). Montrer qu'on a alors

$$\frac{\partial z}{\partial x} + z \frac{\partial z}{\partial y} = 0.$$

Exercice 7

Soit l'application $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ définie par $f(x,y) = \sin y + xy^4 + x^2$.

a) Montrer qu'il existe deux voisinages ouverts U et V de 0 dans \mathbb{R} et une fonction $\varphi:U\longrightarrow\mathbb{R}$ de classe C^{∞} tels que pour tout $x \in U$, $\varphi(x)$ est l'unique solution $y \in V$ de l'équation f(x,y) = 0.

b) Donner un développement limité à l'ordre 10 de φ au voisinage de 0.

Exercice 8

a) Chercher les points réalisant les conditions d'extremum du premier ordre pour les fonctions

(i)
$$f(x,y) = -x^2 + x - xy + y - y^2$$
;

(ii)
$$f(x,y) = x^2 - 2xy - y^2 + y$$
.

Pour chaque point trouvé, préciser s'il s'agit d'un maximum, d'un minimum ou d'un "col".

b) Trouver les extrema de la fonction $f(x,y) = xe^y + ye^x$ définie sur \mathbb{R}^2 .

Exercice 9

Étudier les extrema relatifs puis les extrema absolus de la fonction

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
 $(x,y) \mapsto x^4 + y^4 - 2(x-y)^2$.

Exercice 10

Pour chacune des fonctions f de l'exercice 1, déterminer l'équation du plan tangent au graphe de f en un point (a,b) de \mathbb{R}^2 (quand il est bien défini).

Exercice 11

On considère la fonction F_i de \mathbb{R}^3 dans \mathbb{R} définie ci-dessous et la surface Σ_i d'équation $F_i(x,y,z)$ 0. Écrire les équations de la normale à Σ_i au point a_i indiqué. En déduire le plan tangent en ce même point.

a)
$$F_1(x, y, z) = 3xyz - x^3 - y^3 - z^3$$
 $a1 = (0, -1, 1)$;

b)
$$F_2(x,y,z) = 3e^{xyz} + x + y + z - 3$$
 $a2 = (0,0,0)$;

heine point.
a)
$$F_1(x, y, z) = 3xyz - x^3 - y^3 - z^3$$
 $a1 = (0, -1, 1);$
b) $F_2(x, y, z) = 3e^{xyz} + x + y + z - 3$ $a2 = (0, 0, 0);$
c) $F_3(x, y, z) = \sin xy - \cos yz$ $a3 = \left(1, \frac{\pi}{4}, 1\right).$