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Abstract

We prove some finiteness theorems for the Picard functor of an algebraic stack, in the spirit of SGA 6,
exp. XII and XIII. In particular, we give a stacky version of Raynaud’s relative representability theorem,
we give sufficient conditions for the existence of the torsion component of the Picard functor, and for the
finite generation of the Néron–Severi groups or of the Picard group itself. We give some examples and
applications. In Appendix A, we prove the semicontinuity theorem for a (non-necessarily tame) algebraic
stack.
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1. Introduction

Let X be a proper, flat and finitely presented scheme (or stack) over a base scheme S, and
let PicX/S denote its Picard functor. If S is the spectrum of a field, the connected component
of the identity Pic0

X/S is an open and closed group subscheme. One reason why Pic0
X/S is a bit

easier to handle than the whole Picard functor is that it is of finite type over S. Over a general
base scheme S, the situation is more complicated and we need additional assumptions to ensure
the existence of the neutral component. There are a few positive results: for instance, if S is a
characteristic-zero scheme, and if X → S is proper, smooth and with geometrically connected
fibers, then Pic0

X/S is an open subspace of PicX/S , which is moreover proper over S. But without

these assumptions, it can actually happen that Pic0
X/S does not exist as an algebraic space (even

if PicX/S does), see 3.3.4 for an easy example. In such a case, there is an other subfunctor which
can serve as a substitute: the torsion component of PicX/S , denoted by Picτ

X/S . Roughly speaking,

it is the set of points of PicX/S , a power of which lies in Pic0
X/S . In the case of schemes, we know

from SGA 6, exp. XIII that Picτ
X/S does exist as an algebraic space much more often than Pic0

X/S ,
and that it is an open subspace of PicX/S which is of finite type over S. Actually it is in most cases
the biggest finite type open group subspace of PicX/S .

On the other hand, even if Pic0
X/S exists, a drawback of this subfunctor is that, by construction,

it does not contain the discrete information that is enclosed in the whole Picard functor (the
number of connected components for instance). For this reason, it is natural to study the Néron–
Severi groups. For every geometric point s̄ of S, the Néron–Severi group at s̄ is

NS(s̄) = PicXs̄/κ(s̄)

(
κ(s̄)

)
/Pic0

Xs̄/κ(s̄)

(
κ(s̄)

)
.

Raynaud and Kleiman proved that these groups are of finite type as soon as X is a proper scheme
over S. Moreover, if S is noetherian, their rank and the order of their torsion subgroup are uni-
formly bounded over S.

The original motivation of the present work was to provide some information about the
Néron–Severi groups and the torsion component of the Picard functor of an algebraic stack X
over S. It turned out that it was necessary to prove a stacky version of the relative representability
theorem from SGA 6, exp. XII. The latter is the main theorem of this article, stated in 2.3.2. The
others are easy consequences of this one, using Chow’s lemma. By the way, we also get some
finiteness results for the Picard stack Pic(X /S).

While proving these results, a special care was taken to avoid superfluous tameness assump-
tions. Because of the fact that an algebraic stack might have infinite cohomological dimension,
it is often convenient to assume that the algebraic stacks under consideration are tame. However,
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in positive characteristic, this assumption is quite restrictive. In Appendix A, we will see that the
cohomology of an arbitrary algebraic stack is tractable as soon as the base scheme is regular and
noetherian. As a byproduct we get the semicontinuity theorem for algebraic stacks (A.3.2).

Contents. The paper is organized as follows. In Section 2, we prove the main theorem. We start
with some preliminary lemmas that have been separated from the rest of the proof for the sake
of clarity. The Sections 2.2 and 2.3 contain the heart of the proof of 2.3.2. At the end of 2.3, we
also give a few immediate corollaries. In particular, we prove that the Picard functor of a proper
algebraic stack over a field is always a scheme, without any further assumption (2.3.7).

In Section 3, we give some corollaries and applications. We begin with general finiteness re-
sults (§3.2). For instance we prove that the “nth-power” maps of the Picard functor PicX/S and
of the Picard stack Pic(X /S) are of finite type. Paragraph 3.1 is devoted to the definition and
basic properties of quasi-compact or quasi-separated morphisms of non representable functors.
(These elementary results were necessary for 3.2.) The results concerning the torsion compo-
nent Picτ

X /S are in paragraph 3.3. We conclude this part with some applications that are more
arithmetic in nature (§3.4), including the finite generation of the Néron–Severi groups mentioned
above. We also prove there a few finiteness properties for the Picard group of an algebraic stack.
Some concrete examples and computations can also be found in this Section 3.

In the appendix (Appendix A), we provide some cohomological stuff, in the spirit of Mum-
ford’s [12, §5 “Cohomology and base change”]. In particular, we prove there the semicontinuity
theorem for algebraic stacks, that was still lacking to the literature.

Notations and conventions. Following [11], all algebraic stacks (a fortiori all schemes and
algebraic spaces) are supposed to be quasi-separated. A stack admitting a smooth cover, and the
diagonal of which is (only) representable and locally of finite type will be called an algebraic
stack in Artin’s sense. The cohomology groups on an algebraic stack X are computed with re-
spect to the smooth-étale topology. Note that if X is a Deligne–Mumford stack, and in particular
a scheme, we recover the étale cohomology groups (cf. [5, A.1.6]). If X is an algebraic stack
over a base scheme S, its Picard functor, denoted by PicX /S , is the fppf sheaf associated with
the presheaf U �→ Pic(X ×S U). Its Picard stack Pic(X /S) is the stack whose fiber category
over an S-scheme U is the category of invertible sheaves on X ×S U .

2. A relative representability theorem

The main result of this section is the relative representability Theorem 2.3.2, which general-
izes [15, exp. XII, 1.1]. It says the following. Let f : X → Y be a surjective morphism between
two proper and finitely presented algebraic stacks over an integral base scheme S. Then, over
a nonempty open subset of S, the induced morphism f ∗ between the Picard functors is quasi-
affine and of finite type (see 2.3.2 for a more complete statement). Our result is more general in
two respects: first it also applies to algebraic stacks, second it gives information not only about the
Picard functors, but also about the Picard stacks. For the proof, as in [15, XII] we treat separately
the case of a nilpotent immersion, and then we use non-flat descent. However, the proof given
here is much simpler than the proof given (for the particular case of schemes) in [15], due to the
use of the representability theorem by an algebraic space for PicX /S (see [2] and [5]). We do not
need to prove the representability of f ∗, but only its quasi-affineness and its quasi-compactness.
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2.1. Preliminary lemmas

In the proof of 2.3.2 we will need some improvements of the results given in [5]. The
point (1) of the theorem below is a refinement of [5, 1.2]. The superfluous assumption that
OS

∼
f∗OX holds universally has been removed. See the notations and conventions above

for the definition of the Picard functor and the Picard stack of an algebraic stack.

Theorem 2.1.1. Let S be scheme and let f : X → S be a proper, flat and finitely presented
algebraic stack over S.
(1) Then the diagonal �P of the Picard stack Pic(X /S) is separated and of finite presenta-

tion. (In particular the stack Pic(X /S) is quasi-separated, hence is algebraic in the sense
of [11].)

(2) If OS
∼

f∗OX holds universally, then �P is quasi-affine, and the Picard functor
PicX /S is a (quasi-separated ) algebraic space.

(3) If S is noetherian and X is tame,1 then �P is affine and of finite presentation.
(4) If U is a noetherian scheme with finite global cohomological dimension (e.g. a regular

scheme of finite dimension) then for any morphism

ϕ : U −→ Pic(X /S) ×S Pic(X /S),

the pullback of �P along ϕ is affine and of finite presentation.
(5) If S is integral and noetherian, then there is a nonempty open subset U of S over which �P

is quasi-affine.

Remark 2.1.2. In view of (3), (4) and (5), it is tempting to believe that, under the assumptions of
the theorem, the diagonal �P is always affine. I do not know whether this is the case or not.

Proof. (3) and (4) are reformulations of A.4.3. Let us prove (1). By [5] we already know
that Pic(X /S) is an algebraic stack in Artin’s sense. In particular, for a scheme U and two
invertible sheaves L ,M on X ×S U , the sheaf I som(L ,M ) is an algebraic space locally of
finite presentation. To prove that it is separated, we can assume that S is the spectrum of a discrete
valuation ring and then it is a consequence of (4). It remains to prove that it is quasi-compact.
By standard limit arguments (use [14, 2.2]) we can assume that S is of finite type over Spec Z.
Moreover we can assume that it is reduced. By noetherian induction, it is enough to prove the
assertion over a nonempty open subset U of S. Hence we can assume that S is regular and once
again it is a consequence of (4).

Let us prove (2). The assertion about PicX /S was proved in [5, 2.3.3]. Now notice that the
diagonal of PicX /S → S is a monomorphism of finite type of algebraic spaces, hence, apply-
ing [11, (A.2.2)] it is quasi-affine. Thus to prove that �P is quasi-affine, it is enough to prove
that the diagonal of Pic(X /S) → PicX /S is quasi-affine. By faithfully flat descent we may
assume that the morphism f has a section. Then by [5, 2.3.4] Pic(X /S) is isomorphic to
PicX /S ×SBGm. The assertion follows since the diagonal of BGm is affine.

Finally let us prove (5). We can assume that S is affine and regular. Using A.4.1 and generic
flatness, we can assume that f is cohomologically flat in dimension zero (i.e. that forming f∗OX

1 We recall the definition of a tame stack, due to Abramovich, Olsson and Vistoli, in A.1. In particular, a scheme or an
algebraic space is tame.
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commutes with base change). Moreover we can assume that f∗OX is free of finite rank. Let
S = Spec(f∗OX ) and let

X
f̄

S
h

S

be the Stein factorization. There is a dense open subset U of S over which f̄ is flat. Since h

is flat, this dense open subset contains the generic fiber of h. Now, since h is finite, h(S \ U)

is a closed subset of S, that does not contain the generic point of S. Thus, replacing S with
a nonempty open subset, we may assume that f̄ is flat. Owing to (2), we then know that the
diagonal of Pic(X /S) → S is quasi-affine. Let T be an S-scheme and let L ,M be invert-
ible sheaves on X ×S T . We have to prove that I := I somT (L ,M ) is quasi-affine over T .
Let T = S ×S T . By the above we know that I := I somT (L ,M ) is quasi-affine. But I is
the Weil restriction of I along the morphism h, and it is known that Weil restriction along a fi-
nite and locally free morphism preserves quasi-affineness (see [3, §7.6]). This concludes the
proof. �

The following lemma will be strengthened in 2.3.6, using 2.3.2.

Lemma 2.1.3. Let S be an integral scheme and X a proper and finitely presented algebraic
stack over S. Then there is a nonempty open subset U of S such that (PicX /S)|U is an algebraic
space locally of finite presentation over U .

Proof. We can assume that S is affine and of finite type over Spec Z. Replacing S with
a nonempty open subset, we can assume that S is regular, hence has finite global dimension.
Moreover by generic flatness [8, EGA IV2 6.9.1], we can assume that X is flat over S. Then
by A.4.3, the functor I : T �→ Γ (XT ,OXT

)× is an affine scheme of finite presentation over S.
Note that forming I commutes with base change. Using generic flatness again, we can assume
that I is flat over S. Now, since we know by 2.1.1 that Pic(X /S) is an algebraic stack in the
sense of [11], we can apply [11, (10.8)] and this gives the result. �

The lemma below is a slight variation of [11, (A.2.2)]. It will be one of the key ingredients of
the proof of 2.3.2.

Lemma 2.1.4. Let f : X → Y be a monomorphism of algebraic spaces. Assume that Y is locally
noetherian and that f is locally of finite type. Then f is quasi-affine.

Proof. Using [11, (A.2.2)], it is enough to prove that f is quasi-compact. We can assume that Y

is affine and reduced. Moreover, using noetherian induction on Y , it is enough to prove that there
is a nonempty open subset V of Y such that X ×Y V is quasi-compact. Now we can assume that
Y is integral, and using generic flatness [8, EGA IV2 6.9.1], that f is flat on a nonempty quasi-
compact open subspace U of X. But now f is open on U . Let V denote the image of U in Y .
Then, since f is a monomorphism, the subspace f −1(V ) is equal to U and thus quasi-compact.
This concludes the proof. �
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Let S be a scheme and let f : X → Y be a morphism of algebraic stacks over S. Let g denote
the canonical morphism from X ×Y X to Y . We will say that P(f ) holds if the diagram

OY f∗OX

π∗
1

π∗
2

g∗OX ×Y X

is exact. We will say that P(f ) holds universally if P(f ×S S′) holds for any S-scheme S′. The
following lemma generalizes [15, XII 2.6]. It will allow us to use descent techniques.

Lemma 2.1.5. Let f : X → Y be a finite morphism of algebraic stacks. Assume that Y is
noetherian, and that OY → f∗OX is injective (e.g. f is surjective and Y is reduced). Then
there is a factorization of f as follows

X = Y0
f1

Y1
f2 · · · fn

Yn = Y

where for each i, the morphism fi is finite and P(fi) holds.

Proof. Let Y → Y be a presentation of Y with Y affine and let us take the following notations

A = OY ,

B0 = f∗OX ,

Bi = Ker(Bi−1 Bi−1 ⊗A Bi−1) ,

Yi = S pecBi (in the sense of [11, 14.2]),

Yi = Yi ×Y Y ,

X = X ×Y Y .

Since the morphism Yi → Y is affine, Yi is an affine scheme, say Yi = SpecBi . Moreover, since
forming a pushforward or a kernel commutes with flat base change, we have B0 = f∗OX and

Bi = Ker(Bi−1 Bi−1 ⊗A Bi−1)

where A = OY . The proof given in [15, XII 2.6] shows that for all i, the property P(Yi → Yi+1)

holds and that for i big enough, Yi → Y is an isomorphism. By faithfully flat descent, the same
holds for the Yi ’s. �
Lemma 2.1.6. Let S be an integral scheme and X a proper and finitely presented algebraic stack
over S. Then there is a nonempty open subset V of S, an integral scheme V ′, and a finite flat
morphism V ′ → V such that the fibers of (XV ′)red are geometrically reduced, and the connected
components of XV ′ have geometrically connected fibers.

Proof. By standard arguments we can assume that S = SpecA with A of finite type over Z.
Replacing S with a nonempty open subset, we can further assume that X is flat and (us-
ing A.4.1) that forming H 0(X ,OX ) commutes with any base change. Let X be the spectrum
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of H 0(X ,OX ). We observe that for any field k and any morphism Speck → S, the stack
X ×S Speck is connected if and only if X ×S Speck is. We will use this (and the fact that being
reduced is a property of local nature for the smooth topology) to apply some results from EGA [8]
to the stack X . Let η be the generic point of S, and k its function field. By EGA IV2 4.6.8, there is
a finite extension k′ of k such that (Xk′)red is geometrically reduced, and such that the connected
components of Xk′ are geometrically connected. There is a finite, flat and integral A-algebra A′
with function field equal to k′. Replacing A by A′ we can assume that k′ = k. Now the generic
fiber of Xred is geometrically reduced, hence by EGA IV3 9.7.7 there is a nonempty open subset
U of S over which the fibers of Xred are geometrically reduced. We replace S with U . Let us
denote by Xi , i = 1, . . . , n the irreducible components of X . Shrinking S if necessary, we can
assume that Xi ∩ Xj is empty if and only if (Xi )η ∩ (Xj )η is empty. We can also assume that
X is connected. Now Xη is connected as well, hence geometrically connected by the above.
We apply EGA IV3 9.7.7 to find a nonempty open subset of S over which the fibers of X are
geometrically connected, and this concludes the proof. �
2.2. The case of a nilpotent immersion

Theorem 2.2.1. Let S be an integral scheme and let f : X → Y be a surjective closed im-
mersion of proper and finitely presented algebraic stacks over S. Then there is a nonempty open
subset U of S with the following properties:
(a) The functors (PicX /S)|U and (PicY /S)|U are algebraic spaces, and the morphism

f ∗ : (PicY /S)|U → (PicX /S)|U is affine and of finite type.
(b) The stacks Pic(X /S)|U and Pic(Y /S)|U are algebraic stacks, and the morphism

f ∗ : Pic(Y /S)|U → Pic(X /S)|U is of finite type with affine diagonal.

Proof. We can assume that S is affine, of finite type over Z, and regular. The ideal I in Y
defining f is a nilpotent ideal. Obviously we can assume that I is square-zero. Using 2.1.3 we
can assume that PicX /S and PicY /S are algebraic spaces locally of finite presentation. Let k be
the global dimension of the ring OS . Using generic flatness we can assume that X , Y , I and
all the sheaves Riμ∗I , i � k + 2 are flat over S, where μ is the structural morphism Y → S.
Then by 2.1.1 the Picard stacks are algebraic, and by A.4.4 the sheaves Vi on (Sch/S)◦ defined
on affine schemes by

Vi(T ) = Hi(XT ,IT )

are affine schemes of finite type over S for i = 0,1,2.
For each S-scheme T , the exact sequence of abelian sheaves

0 IT O×
YT

(fT )∗O×
XT

0

induces the following exact sequence of abelian groups

0 H 1(YT ,IT ) Pic(YT ) Pic(XT )
ω

H 2(YT ,IT ) (∗)
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(see [5, 3.1.3] for the details of this computation). Applying the functor “fppf associated sheaf”,
we get an exact sequence of fppf abelian sheaves:

0 V1 PicY /S PicX /S V2.

Let P denote the kernel of the map PicX /S → V2. Since V2 is separated, the morphism
P → PicX /S is a closed immersion thus an affine morphism. Let us prove that the morphism
PicY /S → P is affine. Since the sequence

0 V1 PicY /S P 0

is exact, we see that PicY /S is a V1 pseudo-torsor over P . Considering a presentation of the
algebraic space P by an affine scheme, we can assume that P is an affine scheme and even that
P = S. Moreover, by fppf descent, we can assume that the morphism PicY /S → P has a section.
Then PicY /S is a trivial torsor, hence isomorphic to V1 and affine.

Now let us prove (b). Let P denote the kernel of the natural map from Pic(X /S) to V2, i.e.
P is defined by the cartesian square

P

�

S

e

Pic(X /S) V2

where e : S → V2 is the neutral section. Then P is a closed substack of Pic(X /S) and it
suffices to prove that the natural morphism from P(Y /S) to P is of finite type with affine
diagonal. It is enough to prove that the same holds for the morphism obtained after a base change
via u : U → P , where U is an affine scheme. To avoid heavier notations, let us assume that
U = S (this is harmless). Now consider the cartesian square

Q

�

S

u

Pic(Y /S) P.

By definition of P , the point u corresponds to an invertible sheaf L on X , the obstruction
class ω(L ) of which is trivial (see (∗), note also that ω(L ) is really trivial and not only locally
for the fppf topology, because in the fppf sheafification process above V2 was not affected). Let
us describe the stack Q. If T is an affine scheme over S, the fiber category Q(T ) is the cate-
gory of couples (M , α) where M is an invertible sheaf on Y ×S T and α is an isomorphism
α : f ∗M → L|T . Since the obstruction class ω(L ) is zero, we see from the above exact
sequence (∗) that the stack Q has an S-point. Thus we can assume that L is trivial. Now
we can check easily that the set of isomorphism classes of objects of Q(T ) is isomorphic
to Ker(Pic(YT ) → Pic(XT )), i.e. to H 1(YT ,IT ) = V1(T ). Moreover, the group of automor-
phisms of an object is Ker(Aut(OY ) → Aut(OX )) i.e. it is H 0(YT ,IT ) = V0(T ). Hence we
see that the algebraic stack Q is (isomorphic to) the S-groupoid associated to [V0 ×S V1 V1 ]
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(see [11, 2.4.3]), where both maps (source and target) from V0 ×S V1 to V1 are equal to the projec-
tion map on V1. It follows immediately that Q is quasi-compact and has an affine diagonal. �
2.3. General case (non-flat descent arguments)

Let us start with a lemma that will be helpful when we compare the Picard stack and the
Picard functor.

Lemma 2.3.1. Let f : X → Y be a morphism of algebraic S-stacks. Let us denote by a and b

the structural morphisms of X and Y . Assume that OS
∼

a∗OX and OS
∼

b∗OY hold
universally. Then the natural square of stacks

Pic(Y /S)
f ∗

Pic(X /S)

PicY /S

f ∗
PicX /S

is 2-cartesian.

Proof. Let us denote by FP the fiber product PicY /S ×PicX /S
Pic(X /S). For any S-scheme U ,

the category FP(U) can be described as follows. Its objects are couples (m,L ) where m ∈
PicY /S(U) and L is an invertible sheaf on X ×S U , such that the class [L ] of L in PicX /S(U)

is equal to the inverse image f ∗m. If (m1,L1) and (m2,L2) are two such pairs, then the set
Hom((m1,L1), (m2,L2)) of morphisms in FP(U) is empty if m1 �= m2, and is Isom(L1,L2) if
m1 = m2. We have to prove that the natural map ψ from Pic(Y /S) to FP induced by the above
square is an isomorphism. Owing to [11, (3.7.1)], it suffices to prove that it is a monomorphism
and an epimorphism.

Let (m,L ) ∈ FP(U). Then, étale-locally on U , there is an invertible M on Y ×S U such that
m = [M ] and L � f ∗M . This proves that ψ is an epimorphism.

Saying that ψ is a monomorphism just means that for any U , ψ(U) is fully faithful. Let M1
and M2 be two invertible sheaves on Y ×S U . We have to prove that

Isom(M1,M2) −→ Hom
(([M1], f ∗M1

)
,
([M2], f ∗M2

))
is bijective. This is obvious if the right-hand side is empty. Otherwise we have [M1] = [M2]
in PicY /S(U) and there is an isomorphism f ∗M1 � f ∗M2. Using [5, 2.2.6], this implies that
M1 and M2 are isomorphic. But then both sides of the above map naturally identify to Gm(U),
which concludes the proof. �
Theorem 2.3.2. Let S be an integral base scheme and let X , Y be proper and finitely presented
algebraic stacks over S. Let f : X → Y be a surjective morphism. Then there is a nonempty
open subset U of S with the following properties:
(a) The functors (PicX /S)|U and (PicY /S)|U are algebraic spaces, and the morphism

f ∗ : (PicY /S)|U → (PicX /S)|U is quasi-affine and of finite type.
(b) The stacks Pic(X /S)|U and Pic(Y /S)|U are algebraic stacks, and the morphism

f ∗ : Pic(Y /S)|U → Pic(X /S)|U is of finite type with affine diagonal.



1564 S. Brochard / Advances in Mathematics 229 (2012) 1555–1585
Remark 2.3.3. If moreover X and Y are reduced with geometrically reduced and geometrically
connected fibers, then the morphism f ∗ in (b) is quasi-affine as well (Lemma 2.3.1).

Remark 2.3.4. We will see later (2.3.7) that if s is a point of S, then the fiber morphism
f ∗

s : (PicY /S)s → (PicX /S)s is actually affine.

Proof. We can assume that S is affine, of finite type over Z, and regular. Let us start with some
further reductions.

• We can assume that Xred and Yred have geometrically reduced and geometrically connected
fibers.
Indeed, using Lemma 2.1.6 and finite flat descent, we can assume that the connected components
of X and Y have this property. Let us denote by Xi (resp. Yj ) the connected components
of X (resp. Y ). For every i, there is a j such that f (Xi ) ⊂ Yj . Since PicX /S = ∏

i PicXi /S

and PicY /S = ∏
j PicYj /S (and similarly for the Picard stacks) we can replace X by Xi and Y

by Yj .

• We can assume that X and Y are reduced.
Indeed, there is a commutative diagram

PicY /S

f ∗
PicX /S

PicYred/S
f ∗

red

PicXred/S .

Shrinking S if necessary, the vertical maps are affine and finite type morphisms of algebraic
spaces owing to 2.2.1. Now, if f ∗

red is quasi-affine and of finite presentation, then so is f ∗. The
same diagram with Picard stacks instead of Picard functors shows that if f ∗

red is of finite type
with affine diagonal, then the same holds for f ∗. From now on, to prove (a) and (b) we can work
under the additional assumptions of 2.3.3.

• We can assume that P(f ) holds (see the definition of P(f ) on p. 1560).
Indeed, let us consider the Stein factorization of f ,

f : X f0
S pec(f∗OX ) = Y0

h
Y .

Then the morphism OY0 → (f0)∗OX is an isomorphism and thus P(f0) holds. Moreover, h

is finite, and since it is surjective and Y is reduced, we can apply Lemma 2.1.5 and h is the
composition of a finite number of morphisms satisfying the property P . Note that Y0 and all
the stacks given by 2.1.5 are reduced. Note also that, since X has geometrically connected
fibers, and since all the morphisms in this factorization are surjective, it follows that all the
stacks Yi have geometrically connected fibers. Below, we will prove that P(f ) holds universally
over a nonempty open subset of S. Since X has geometrically reduced fibers, this will imply
that the fibers (over this open subset) of the stacks occurring in the above factorization are still
geometrically reduced.

• We can assume that P(f ) holds universally.
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Let A = OS and let k be its global dimension. First, we notice that P(f ) remains true after any
flat base change [5, A.3.4]. Thus using generic flatness, we can assume that X , Y and all the
Rif∗OX and Rig∗OX ×Y X for i � k (where g is the natural morphism from X ×Y X to Y )
are flat over S. Then forming f∗OX and g∗OX ×Y X commutes with any base change. Indeed,
this question is local on Y so to prove it we can assume that Y is an affine scheme SpecB .
Now g∗OX ×Y X and f∗OX are the coherent OY -modules corresponding to the B-modules
H 0(X ×Y X ,OX ×Y X ) and H 0(X ,OX ), so we only have to prove that forming these B-
modules commutes with any base change A → A′, which follows immediately from A.4.1. Let
us denote by π1 and π2 the projection maps from X ×Y X to X . By generic flatness again,
we can assume that Coker(π∗

1 − π∗
2 ) is flat over S. Now, we claim that P(f ) holds universally.

Indeed, forming Coker(π∗
1 −π∗

2 ) commutes with (and thus it remains flat after) any base change.
This implies that the same holds for Im(π∗

1 − π∗
2 ), hence also for Ker(π∗

1 − π∗
2 ). Thus the latter

is universally equal to OY .

Lemma 2.3.5. (See [15, XII 4.2].) Let f : X → Y be a morphism of algebraic stacks. Assume
that P(f ) holds and denote by g the canonical map from X ×Y X to Y . Let L , M be locally
free sheaves of finite rank over Y . Then the diagram

HomOY (L ,M ) HomOX (f ∗L , f ∗M ) HomOX ×Y X (g∗L , g∗M )

is exact.

Proof. This is an easy fact and the (short) proof given in [15, XII 4.2] works without any
change. �

Let us now finish the proof of Theorem 2.3.2. First, we can assume that PicX /S and PicY /S

(resp. Pic(X /S) and Pic(Y /S)) are both algebraic spaces (resp. algebraic stacks) locally of
finite presentation over S (use 2.1.1 (1) and 2.1.3). Moreover we can assume that the diagonal
of Pic(X ×Y X ) is quasi-affine (2.1.1 (5)). Using Lemma 2.3.1 and faithfully flat descent, it
is enough to prove that the map f ∗ in (b) is quasi-affine and of finite type. For this we have to
prove that given an invertible sheaf L on X , corresponding to a map S → Pic(X /S), the fiber
product Z := Pic(Y /S)×Pic(X /S) S is a quasi-affine scheme of finite presentation (assuming
that S is affine and noetherian, but not integral nor regular anymore).

The stack Z can be described as follows. An object of the fiber category Z (T ) is a couple
(M , α) where M is an invertible sheaf on Y ×S T and α is an isomorphism f ∗M → LT . Note
that because of 2.3.1 Z is actually an algebraic space.

Let us denote by I the sheaf I som(π∗
1 L ,π∗

2 L ) on S-schemes. Because of our previous
reductions on the diagonal of Pic(X ×Y X ), I is a quasi-affine scheme of finite presentation
over S. Given an invertible sheaf M on Y and an isomorphism α : f ∗M → L , the canonical
isomorphism π∗

1 f ∗M → π∗
2 f ∗M induces an isomorphism from π∗

1 L to π∗
2 L , thus an element

of I (S). This construction is clearly functorial in S and yields a morphism Z → I .
Let us prove that this morphism is a monomorphism. Consider two points (M1, α1) and

(M2, α2) which have the same image in I (S). Then we have an isomorphism α−1
2 α1 from f ∗M1

to f ∗M2. Saying that (M1, α1) and (M2, α2) have the same image in I (S) means that in the
diagram

HomOY (M1,M2) HomOX (f ∗M1, f
∗M2)

π∗
1

π∗
2

HomOX ×Y X (g∗M1, g
∗M2)
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we have π∗
1 (α−1

2 α1) = π∗
2 (α−1

2 α1). Using the exactness (2.3.5) of this diagram, and applying the
same argument with α−1

1 α2, we deduce that there is an isomorphism M1 → M2 over α−1
2 α1.

This proves that (M1, α1) and (M2, α2) are isomorphic in Z (S), as desired.
Now, applying Lemma 2.1.4, we see that Z → I is quasi-affine and of finite presentation,

and this concludes the proof. �
To conclude this section, let us state two immediate corollaries.

Corollary 2.3.6. Let X be a proper and finitely presented algebraic stack over an integral base
scheme S. Then there is a nonempty open subset V of S such that the Picard functor (PicX /S)|V
is representable by a scheme that is a disjoint union of quasi-projective and finite presentation
open subschemes.

Proof. Using [14, 2.2] we can assume that S is noetherian. Now the result is known if X is
a scheme (see [15, XII 1.2]). In the general case, let X → X be a Chow presentation of X ,
i.e. a proper and surjective morphism where X is a scheme. Then replacing S with a nonempty
open subscheme, we may assume that PicX/S is representable by a scheme which is a disjoint
union of quasi-projective and finite presentation open subschemes [15], and that the morphism
PicX /S → PicX/S is representable by a quasi-affine and finite presentation morphism (2.3.2).
This gives the result. �
Corollary 2.3.7.
(i) Let S be the spectrum of a field and X a proper algebraic stack over S. Then the relative

Picard functor PicX /S is representable by a scheme which is a disjoint union of quasi-
projective and finite presentation open subschemes.

(ii) Let f : X → Y be a surjective morphism between two proper algebraic stacks over
a field k. Then the induced morphism

f ∗ : PicY /k −→ PicX /k

is affine.

Proof. (i) follows immediately from 2.3.6. For (ii), we know by 2.3.2 that f ∗ is quasi-affine.
Using [15, XII 1.4], we see that f ∗ is actually affine. �
3. Corollaries, examples and applications

To state the results concerning the Picard functors, we need some finiteness notions for non-
representable functors or non-algebraic stacks. Paragraph 3.1 is devoted to the definitions and
elementary properties of these notions.

3.1. Finiteness properties for non-representable functors

Let S be a base scheme. We consider functors from (Sch/S)op to (Sets). We will need the no-
tions of quasi-compact, quasi-separated or finite presentation functors or morphism of functors,
even if the functors are not representable.
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Definition 3.1.1. A morphism of functors F → G is surjective if for every field K and every
point ξ in G(K), there is an extension L of K such that ξL is in the image of F(L).

Definition 3.1.2.
(i) A functor F is said to be quasi-compact if there exists a quasi-compact S-scheme T and

a surjective morphism T → F .
(ii) A morphism of functors F → G is said to be quasi-compact if for every quasi-compact

scheme T and every morphism T → G, the functor FT obtained by base change is quasi-
compact.

(iii) A morphism of functors F → G is said to be quasi-separated if the diagonal morphism
F → F ×G F is quasi-compact.

(iv) A functor F is said to be locally of finite presentation (implicitly, over S) if for every filtering
inverse system (Zλ)λ∈Λ of S-schemes, such that each Zλ is an affine scheme, the map

lim−→ F(Zλ) −→ F
(
lim←− Zλ

)
is bijective.

(v) A morphism of functors F → G is said to be locally of finite presentation if for every
S-scheme U and every morphism U → G, the functor FU = F ×G U is locally of finite
presentation over U .

(vi) A morphism of functors F → G is said to be of finite presentation if it is locally of finite
presentation, quasi-compact, and quasi-separated.

The following properties are straightforward. We give detailed proofs in the note [4].

Proposition 3.1.3.
(i) If F is an algebraic space, or if the morphism F → G is representable by algebraic spaces,

the above notions coincide with the usual ones.
(ii) Every isomorphism is quasi-compact.

(iii) Every monomorphism is quasi-separated.
(iv) The class of surjective (resp. quasi-compact, quasi-separated, finite presentation, locally

of finite presentation) morphisms is stable by base change and composition.
(v) If F → G is a surjective morphism and if F is quasi-compact, then G is quasi-compact.

(vi) If F → G is a quasi-compact morphism and if G is quasi-compact, then F is also quasi-
compact.

(vii) Let

F
f

h

G

g

H

be a commutative diagram of functors. If h is quasi-compact and g is quasi-separated,
then f is quasi-compact.

(viii) In a diagram as in (vii), if h is quasi-separated, then f is too.
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(ix) Let

F ′ ϕ′

f ′ �

F

f

G′ ϕ

G

be a cartesian diagram of functors. Assume that the base change morphism ϕ is surjective
and quasi-compact. Then f is quasi-compact (resp. quasi-separated), if and only if f ′ is.

(x) In a diagram as in (vii), if g and h are locally of finite presentation, then f is too. If more-
over h is of finite presentation and g is quasi-separated, then f is of finite presentation.

Remark 3.1.4. We explain in the note [4] that the definition of a quasi-compact morphism given
above generalizes Kleiman’s definition of a finite type morphism of Picard functors (SGA6 [15,
XIII]).

Remark 3.1.5. For a (non-necessarily algebraic) stack over S, we have analogous notions to 3.1.1
and 3.1.2, with the same formal properties as in 3.1.3. We leave the details to the reader.2

3.2. General finiteness results for the Picard functor

Propositions 3.2.1 and 3.2.2 below are easy consequences of 2.3.2, using noetherian induction.
Note that 3.2.2(ii) and 3.2.3 generalize [15, XIII, (3.5) and (3.6)].

Proposition 3.2.1. Let X be a proper and finitely presented algebraic stack over a base
scheme S. Then the Picard functor PicX /S is quasi-separated, and the Picard stack Pic(X /S)

has a quasi-compact diagonal (in the sense of 3.1.2 and 3.1.5).

Proof. By standard limit arguments, we can assume that S is noetherian [14, 2.2]. Let T de-
note the disjoint union of the irreducible components of S. The morphism T → S is surjective
and quasi-compact, so that using 3.1.3(ix) we may assume S is irreducible. Plainly we can as-
sume S is integral. By noetherian induction it is enough to prove that there is a nonempty open
subset U of S such that PicX /S ×SU is quasi-separated (apply 3.1.3(ix) with the base change
U � (S \ U) → S). This fact is an immediate consequence of 2.3.6. The same proof works for
the Picard stack. �
Proposition 3.2.2.
(i) Let X and Y be algebraic stacks over a scheme S. Assume that Y is proper and finitely pre-

sented. Then every S-morphism PicY /S → PicX /S is quasi-separated and locally of finite
presentation. Moreover, every S-morphism from Pic(Y /S) to Pic(X /S) has a quasi-
compact diagonal and is locally of finite presentation.

2 There is however a little problem of terminology. Usually, an algebraic stack is said to be quasi-separated if its
diagonal is quasi-compact and separated. With the definitions above the diagonal is only quasi-compact (note that this
problem did not occur with algebraic spaces since the diagonal of an algebraic space is always separated). To avoid
confusion in the sequel, we will stick to the usual definition and only talk about “stacks with quasi-compact diagonal”
when we need to.
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(ii) Let X and Y be proper and finitely presented algebraic stacks over a base scheme S. Let
f : X → Y be a surjective morphism. Then the morphisms f ∗ : PicY /S → PicX /S and
f ∗ : Pic(Y /S) → Pic(X /S) are of finite presentation.

Proof. (i) Apply 3.2.1 and 3.1.3(viii). The finite presentation assertion is well known.
(ii) We already know that f ∗ is quasi-separated and locally of finite presentation. It remains

to prove that it is quasi-compact. As in the proof of 3.2.1, using 3.1.3(ix) we can assume that
S is noetherian and integral. By noetherian induction it is enough to prove the assertion over
a nonempty open subset of S. It is now an immediate consequence of 2.3.2. The same proof
works for f ∗ : Pic(Y /S) → Pic(X /S). �
Proposition 3.2.3. Let X be a proper and finitely presented algebraic stack over a scheme S.
Then for every positive integer n, the morphisms

ϕn:
{

PicX /S −→ PicX /S

L �−→ L ⊗n
and λn:

{
Pic(X /S) −→ Pic(X /S)

L �−→ L ⊗n

are of finite presentation.

Proof. Again we only have to prove that ϕn and λn are quasi-compact. By Chow’s lemma [13,
1.1] there is a proper and surjective morphism π : X → X with X a projective S-scheme. We
have a commutative diagram:

PicX /S
π∗

ϕn,X

PicX/S

ϕn,X

PicX /S
π∗ PicX/S .

The morphism π∗ is quasi-compact by 3.2.2, and so is ϕn,X by [15, XIII 3.6]. So ϕn,X is quasi-
compact by 3.1.3(vii).

To prove that λn is quasi-compact, as in the preceding proofs we can assume that S is integral,
and by noetherian induction it is enough to prove that the assertion holds over a nonempty open
subset of S. We can obviously assume that X → S is surjective and that X is connected.
Using 2.2.1 and the diagram

Pic(X /S)
λn

Pic(X /S)

Pic(Xred/S)
λred

n

Pic(Xred/S)

we can assume that X is reduced. With these remarks and with 2.1.6, we can restrict to the case
where X has geometrically reduced and geometrically connected fibers. By fppf descent we
can also assume that X has a section. Now, by [5, 2.3.4], the stack Pic(X /S) is isomorphic
to PicX /S ×SBGm. Hence λn is the product of ϕn and the nth-power map BGm → BGm, so
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it suffices to prove that the latter is quasi-compact, which is obvious since BGm itself is quasi-
compact. �
3.3. The torsion component Picτ

X /S

We recall the definition of the torsion and the neutral component of a (commutative) group
functor.

Definition 3.3.1. Let G : (Sch/S)op → (Gr) be a functor, where (Gr) is the category of commu-
tative groups. We define two group subfunctors G0 and Gτ of G as follows. If T is the spectrum
of an algebraically closed field K , we say that a point t ∈ G(T ) is in G0(T ) if there are connected
K-schemes of finite type T1, . . . , Tn, and for each i a morphism αi : Ti → G (i.e. αi ∈ G(Ti))
and two K-points si , ti ∈ Ti such that

α1(s1) = t

α1(t1) = α2(s2)

...

αn−1(tn−1) = αn(sn)

αn(tn) = 0.

For an arbitrary S-scheme T , we say that a point t ∈ G(T ) is in G0(T ) (resp. in Gτ(T )) if
for every algebraically closed field K and every morphism ξ : SpecK → T , the restriction tξ ∈
G(SpecK) is in G0(SpecK) (resp. if there is n > 0 such that tn ∈ G0(T )).

We let the reader check that these are indeed group subfunctors of G, and that forming them
commutes with any base change. Moreover, if G is a group scheme locally of finite type over
a field k, then G0 is the connected component of the neutral element (hence it is open, closed,
geometrically irreducible and of finite type). In this case Gτ is then an open and closed group
subscheme of G: it is open because it is the union

⋃
n>0 ϕ−1

n (G0) where ϕn : G → G is the
multiplication by n. To prove that it is closed, by faithfully flat descent we may assume that the
base field is algebraically closed, and then the complement of Gτ is a union of translates of Gτ ,
more precisely

G \ Gτ =
⋃

g∈G(k)\Gτ (k)

gGτ .

The reader can also check that Gτ contains any group subscheme of finite type of G.
For an arbitrary base scheme S, G0 may not be representable (but its fibers are, by the above).

In the case of the Picard functor PicX /S of a proper algebraic stack X over a base scheme S,
we have proved in [5, (4.2.10)] that the subfunctor Pic0

X /S
is representable if PicX /S is a locally

finitely presented algebraic space that is smooth along the unit section. In this case Pic0
X /S

is an
open subspace of PicX /S , and is of finite type over S. We prove in 3.3.3 below that the same
conclusions hold for Picτ without the additional assumption on PicX /S .
X /S
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Lemma 3.3.2. Let X and Y be proper algebraic stacks over a noetherian scheme S, and
f : X → Y a surjective morphism. Then the natural diagram

Picτ
Y /S

Picτ
X /S

PicY /S
f ∗ PicX /S

is cartesian. In other words, for every S-scheme T and every element l in PicY /S(T ), l is in
Picτ

Y /S
(T ) if and only if f ∗(l) is in Picτ

X /S
(T ).

Proof. For any geometric point SpecK → S the functors (PicY /S)K and (PicX /S)K are
schemes locally of finite type (2.3.7) over K and the morphism

f ∗ : (PicY /S)K → (PicX /S)K

is quasi-compact (3.2.2). Thus we can apply [15, XIII 4.2]. �
Theorem 3.3.3. Let X be a proper and finitely presented algebraic stack over a base scheme S.
Then:
(i) The morphism Picτ

X /S
→ PicX /S is representable by an open immersion.

(ii) Picτ
X /S

is of finite presentation over S.

Proof. We can assume that S is noetherian. By Chow’s lemma, there is a projective scheme X

over S and a surjective morphism π : X → X . By 3.3.2, we have a cartesian square

Picτ
X /S

π∗,τ

iX �

Picτ
X/S

iX

PicX /S
π∗

PicX/S .

(i) Applying [15, XIII, (4.7) (i)] to the scheme X/S, we see that the morphism iX is representable
by an open immersion. So iX is too.

(ii) By 3.2.2 the morphism π∗ is quasi-compact, hence π∗,τ is quasi-compact too. By [15,
XIII 4.7 (iii)], Picτ

X/S is quasi-compact over S. So Picτ
X /S is quasi-compact over S. Moreover

iX is quasi-separated and locally of finite presentation since it is an open immersion. But PicX /S

is quasi-separated and locally of finite presentation over S. Then so is Picτ
X /S . �

Example 3.3.4. The latter theorem provides an open subgroup of PicX /S which is of finite type
over S. This can be very useful when the existence theorems for the neutral component Pic0

X /S

do not apply. Let us give an example in which Pic0
X /S

is not representable. Let S = Spec Z and

let X be the classifying stack B(Z/nZ) 1 over P1 . In other words, X = B(Z/nZ)×S P1 . Note

P

Z
Z Z
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that the stack X is smooth and proper over S, with geometrically integral fibers. If T is a scheme
over S, we have an isomorphism (see [5, Exemple 5.3.7])

Pic(X ×S T ) � Pic
(
P1

T

) × ̂(Z/nZ)
(
P1

T

)
where ̂(Z/nZ) = HomS−Gr(Z/nZ,Gm) is the Cartier dual of Z/nZ. But ̂(Z/nZ) � μn and
μn(P

1
T ) � μn(T ), hence the Picard functor of X /S is representable and we have an isomor-

phism

PicX /S � Z × μn.

As a scheme, PicX /S is a disjoint union of copies of μn, indexed by Z (in particular it is not
of finite type). The open subgroup Picτ

X /S
provided by 3.3.3 is the 0th copy of μn. It is a finite

flat group scheme over S. On the other hand, the subfunctor Pic0
X /S

coincides with the neutral

component μ0
n of μn. The reader can check easily that it is not an open subspace of μn.

Example 3.3.5. In the case of root stacks, we can also prove directly Theorem 3.3.3 from 3.2.3.
Let X be an S-scheme that is proper (resp. projective), flat and with geometrically integral fibers.
Let L be an invertible sheaf on X. We know that PicX/S is an algebraic space. Let us denote

by X = [L 1
n ] the stack, the fiber category over an S-scheme U of which is the category of

triples (x,M , ϕ) where x ∈ X(U), M is an invertible sheaf on X and ϕ is an isomorphism of
invertible sheaves from M ⊗n to x∗L . Then by [5, 5.3], there is a short exact sequence of étale
sheaves:

0 PicX/S PicX /S Z/nZ 0.

Moreover, PicX /S is an algebraic space, and π∗ : PicX/S → PicX /S is an open and closed
immersion. As in 3.2.3, let us denote by ϕn the nth-power map of the Picard functor PicX /S .
Because of the above exact sequence, the image of ϕn lies in PicX/S . We deduce easily from this
remark, and from the fact that π∗ induces an isomorphism from Pic0

X/S to Pic0
X /S

(see [5]), that
there is a cartesian square:

Picτ
X /S

�

Picτ
X/S

g

PicX /S
ϕn

PicX /S

where g is the composition of π∗ and of i : Picτ
X/S → PicX/S . We know by [15, XIII 4.7] that i

is an open (resp. open and closed) immersion and that Picτ
X/S is of finite type over S. It follows

that Picτ
X /S → PicX /S is an open (resp. open and closed) immersion. Since ϕn is of finite type

by 3.2.3, we also deduce that Picτ
X /S

is of finite type over S as well.

For a concrete example, if X = Pk
S and L = O(l), then Pic0

X/S , Picτ
X/S and Pic0

X /S
are

trivial S-groups. Let d = gcd(l, n). We can see easily that Picτ is isomorphic to the constant
X /S
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group scheme Z/dZ, generated by the section corresponding to Ω
n
d ⊗ O(− l

d
), where Ω is the

canonical nth root of L on X .

3.4. Arithmetic results

Theorem 3.4.1. Let X be a proper algebraic stack over a noetherian base scheme S. If
ξ : SpecK → S is a geometric point of S, let us denote by NS(ξ) (or NS(X , ξ) if we need
to precise the stack) the Néron–Severi group of the geometric fiber Xξ of X over ξ .

NS(ξ) = PicXξ /K(K)

Pic0
Xξ /K

(K)
.

Then the groups NS(ξ) are of finite type. Moreover, their rank and the order of their torsion
subgroups are uniformly bounded over S.

Proof. It is enough to prove the second assertion. To bound the rank, let us take a Chow presen-
tation π : X → X . By 3.3.2, we have a cartesian square of group functors

Picτ
X /S

�

Picτ
X/S

PicX /S PicX/S .

This implies that for each geometric point ξ , the morphism π∗ induces an injective morphism

NS(X ,ξ)
NS(X ,ξ)tors

= PicXξ /K (K)

Picτ
Xξ /K

(K)

PicXξ /K(K)

Picτ
Xξ /K(K)

= NS(X,ξ)
NS(X,ξ)tors

.

But the group on the right is free of finite rank uniformly bounded over S [15, XIII 5.1]. Hence
the same holds for the left-sided group (with the same bound as for X).

To see that the order of the torsion subgroup is bounded, the proof given in [15] works without
any change: using 2.3.6, 3.3.3 and noetherian induction, we may assume that S is integral and that
Picτ

X /S
is a scheme of finite type. For a geometric point ξ of S, the torsion subgroup NS(ξ)tors

is equal to the group Picτ
Xξ /K

(K)/Pic0
Xξ /K

(K), so its order is equal to the number of connected
components of Picτ

Xξ /K
. But by [8, EGA IV4 9.7.9], there is a nonempty open subset of S over

which this number is constant. �
Example 3.4.2. Let S be the spectrum of an algebraically closed field k, let C be a smooth n-
pointed twisted curve in the sense of Abramovich and Vistoli, and let C be its coarse moduli
space. Let us denote by (d1, . . . , dn) the n-uplet of integers defining the actions on the marked
points, and by Li the invertible sheaf OC (Σi) where Σi → C is the ith marked point (see also
[6, 2.2.4 and 4.1]). Then by [6], we know that there is a short exact sequence

0 Pic(C) Pic(C )

n∏
i=1

Z/diZ 0,
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in which the class of the invertible sheaf Li on C is sent to a generator of the factor Z/diZ.
Since k is algebraically closed, we have PicC /S(k) = Pic(C ) and PicC/S(k) = Pic(C). Moreover,
by [5] we know that Pic0

C /S
= Pic0

C/S . It follows that the above exact sequence induces an exact
sequence involving the Néron–Severi groups:

0 NS(C) NS(C )

n∏
i=1

Z/diZ 0.

So NS(C ) is the group obtained from NS(C) by adding formally, for every i, a di th root of the
class of O(Di), where Di is the ith marked point on C. From the latter exact sequence, we see
that NS(C) and NS(C ) have the same rank. Moreover, the order of NS(C )tors is bounded by
|NS(C)tors|.∏n

i=1 di . More precisely, if ι is the index of the free part of NS(C) in the free part
of NS(C ), we have the relation

ι × |NS(C )tors|
|NS(C)tors| =

n∏
i=1

di.

In the rest of this section, we generalize to algebraic stacks some results of the article [9] of
Kahn.

Lemma 3.4.3. (See [9, théorème 1 a)].) Let X be a reduced algebraic stack, of finite type over
Spec Z. Then the group H 0(X ,Gm) is of finite type.

Proof. Let X → X be a smooth and quasi-compact presentation of X . Then H 0(X ,Gm) is
a subgroup of H 0(X,Gm), which is of finite type owing to [9, thm. 1 a)]. �
Lemma 3.4.4. Let X → Y be a smooth, surjective and quasi-compact morphism of reduced
algebraic stacks. Assume that X and Y are of finite type over Spec Z. If Pic(X ) is of finite
type, then Pic(Y ) is of finite type.

Proof. A descent argument (see for instance [5, 2.1.2]) shows that the kernel of the morphism
Pic(Y ) → Pic(X ) is equal to the homology of the complex

H 0(X ,Gm)
p∗

1−p∗
2

H 0(X ×Y X ,Gm)
p∗

23−p∗
13+p∗

12
H 0(X ×Y X ×Y X ,Gm).

The result follows since H 0(X ×Y X ,Gm) is of finite type. �
Theorem 3.4.5. (Cf. [9, thm. 1, cor. 2 and cor. 4].)
(a) Let S be equal to Spec Z or Speck, where k is a field of finite type over its prime subfield. If

X is a normal and reduced algebraic stack of finite type over S, then the group Pic(X ) is
of finite type.

(b) In the case where S is Speck, assume moreover that X is proper, geometrically normal and
geometrically integral. Let k̄ be an algebraic closure of k and G = Gal(k̄/k). Then the group
Pic(Xk̄)

G is of finite type (where Xk̄ denotes the fiber product X ×Speck Spec k̄).
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Proof. (a) For the case S = Spec Z, consider a presentation X → X of X , with X a normal
scheme, of finite type over S. Then Pic(X) is of finite type because of Theorem 1 of [9]. The
preceding lemma then implies that Pic(X ) is of finite type.

For the case S = Speck, the proof given in [9] works without any change. We include it
here for the convenience of the reader: let us choose an integral scheme U of finite type over
Spec Z, whose function field is k. Then by [11, 4.18], replacing U with a nonempty open subset
if necessary, there is an algebraic stack X̃ of finite presentation over U whose generic fiber
is equal to X . Moreover we may assume X̃ is normal. Now Pic(X̃ ) is of finite type by the
preceding case. Moreover, the morphism from Pic(X̃ ) to Pic(X ) is surjective. This concludes
the proof.

(b) Let P be the scheme PicX /k (2.3.7) and P 0 its neutral component. Then P 0 is proper [5],
thus an abelian variety. We have an exact sequence

0 P 0(k̄) P (k̄) NS(k̄),

inducing

0 P 0(k̄)G P (k̄)G NS(k̄).

Now, the last group is of finite type by 3.4.1, and P 0(k̄)G is equal to P(k), thus of finite type by
[9, cor. 3]. Moreover P(k̄) = Pic(Xk̄). �
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Appendix A. Cohomology and base change for stacks

In scheme theory, the key point to get some “base change theorems” for cohomology of a co-
herent sheaf F on a proper scheme (over a noetherian ring A), is the existence of a finite complex
of finite free A-modules computing “universally” the cohomology of F (see [12, §5]). A sig-
nificant difference between an algebraic stack and a scheme (or even an algebraic space) is that
the former can have infinite cohomological dimension. Consequently, there does not always ex-
ist such a finite complex. However, we explain below that even without such a complex, the
semicontinuity theorem still holds for stacks (Theorem A.3.2).

Moreover, it is worth mentioning that there are two particular cases in which we can say much
more:
(a) if the stack is tame;
(b) if the base ring has finite global cohomological dimension (e.g. if it is regular and finite-

dimensional).

Indeed, in these two cases, we can actually compute the cohomology of a given OX -module
F (at least the first cohomology groups) with a finite complex of A-modules. The existence of
such complexes is provided by Proposition A.1.4 for the case (a), and by Corollary A.2.4 for (b).
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Consequently, in these cases, the cohomology of F really behaves under base change as if X
were a scheme (see A.1.5, A.2.5, A.4).

Since the proof of the semicontinuity Theorem A.3.2 relies on the case (b), we will start with
these two particular cases.

A.1. If the stack is tame

Let us first recall the definition of tame stacks and give a few facts about them. If X is an Artin
stack locally of finite presentation over a scheme S, and if its inertia stack I = X ×X ×SX X
is finite over X , it follows from [10] that there is a coarse moduli space π : X → X for X .
Note by the way that the map π is proper. Moreover, the algebraic space X is locally of finite
type if S is locally noetherian, and if X is separated then X is separated as well.

Definition A.1.1. (See [1, 3.1].) Let S be a scheme and let X → S be a locally finitely presented
algebraic stack over S with finite inertia. Let π : X → X be its Keel–Mori moduli space. We
say that X is tame if the functor π∗ : Qcoh(X ) → Qcoh(X) is exact.

The tameness condition can be stated in terms of automorphism groups of geometric points.
More precisely, a stack X → S as above is tame if and only if the automorphism group scheme
of any geometric point is linearly reductive [1, 3.2]. If X is a Deligne–Mumford stack, this
means that the order of the automorphism group of any geometric point is prime to the char-
acteristic of the corresponding field. We also recall that the class of tame stacks is stable under
arbitrary base change [1, 3.4] and that if X is tame then forming its moduli space commutes
with any base change [1, 3.3].

Lemma A.1.2. With the notations and assumptions of A.1.1, let F be a quasi-coherent sheaf on
X and let N be a quasi-coherent sheaf on X. Then the natural morphism

(π∗F ) ⊗OX
N −→ π∗

(
F ⊗OX π∗N

)
is an isomorphism. In particular, if F is flat over S, then so is π∗F .

Proof. We use more or less the same argument as in the proof of [1, 3.3 (b)]. Since the question
is local on X for the étale topology, we can assume that X is an affine scheme. The statement is
obvious if N is free. In the general case, let Q1 → Q0 → N → 0 be a free presentation of N .
Then we have a commutative diagram with exact rows (since π∗ is exact):

(π∗F ) ⊗OX
Q1 (π∗F ) ⊗OX

Q0 (π∗F ) ⊗OX
N 0

π∗(F ⊗OX π∗Q1) π∗(F ⊗OX π∗Q0) π∗(F ⊗OX π∗N ) 0.

The first two columns are isomorphisms, hence so is the third. The last assertion follows imme-
diately, keeping in mind the fact that π∗ is exact. �
Lemma A.1.3. (See [12, §5 lemma 1], see also [8, chap. 0III (11.9.1)].)
(a) Let A be a ring and let C• be a complex of A-modules such that Cp �= 0 only if 0 � p � n.

Then there exists a complex K• of A-modules such that Kp �= 0 only if 0 � p � n and Kp
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is free if 1 � p � n, and a quasi-isomorphism of complexes K• → C•. Moreover, if the Cp

are flat, then K0 will be A-flat too.
(b) If A is noetherian and if the Hi(C•) are finitely generated A-modules, then the Kp’s can be

chosen to be finitely generated.

Proof. The assertion (b) is exactly [12, §5 lemma 1]. For (a), the same proof works, erasing the
words “finitely generated” everywhere. �
Proposition A.1.4. Let S be the spectrum of a ring A (resp. a noetherian ring A) and let X be
a quasi-compact and separated (resp. proper) tame stack on S. Let F be a quasi-coherent (resp.
coherent) sheaf on X that is flat over S. Then there is a complex of flat A-modules (resp. of finite
type)

0 M0 M1 . . . Mn 0

with Mi free over A for 1 � i � n, and isomorphisms

Hi
(
M• ⊗A A′) −→ Hi

(
X ⊗A A′,F ⊗A A′), i � 0

functorial in the A-algebra A′.

Proof. Let π : X → X be the moduli space of X. Note that X is separated. Choose a finite
affine covering U = (Ui)i∈I of X by affine open subschemes. Then form the Čech complex
C• = C•(U,π∗F ) of alternating Čech cochains. It is a finite complex of flat (A.1.2) A-modules
and it computes the cohomology groups Hi(X,π∗F ). Since X is separated, the elements of the
covering U⊗A A′ obtained after a base change A → A′ are still affines, so the cohomology of the
complex C• is universally isomorphic to the cohomology of π∗F on X. But this is also the coho-
mology of F on X , since the functor π∗ is exact (use for instance the Leray spectral sequence
for π , [5, A.2.8]). Note that if A is noetherian, X proper and F coherent, then the modules
Hi(X ,F ) are finitely generated by [13, (1.2)], so in this case the cohomology modules of the
complex C• are finitely generated. Now it is enough to apply A.1.3 and [12, §5 lemma 2]. �
Remark A.1.5. Because of the existence of this complex, all the corollaries that are in [12, §5]
hold for tame stacks. In other words, the cohomology of such stacks behaves like that of schemes
under base change.

A.2. If the base ring has finite global dimension

First, we prove that in the general case, there is always an infinite complex of flat modules
computing universally the cohomology of F .

Lemma A.2.1. Let S be the spectrum of a ring A and X a quasi-compact algebraic stack over S.
Let F be a quasi-coherent sheaf on X . Then there is a complex of A-modules

0 M0 M1 · · · Mn · · ·
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and isomorphisms

Hi
(
M• ⊗A A′) −→ Hi

(
X ′,F ′)

functorial in the A-algebra A′ (where X ′ = X ⊗A A′ and F ′ = F ⊗A A′). If moreover F is
flat over S, then we can assume that all the Mi ’s are flat A-modules.

Proof. Let U0 → X be a presentation of X , such that U0 is an affine scheme. Let V 1 =
U0 ×X U0. Let W 1 → V 1 be a presentation of the algebraic space V 1, the source of which W 1

is an affine scheme, and let U1 = U0 ∐
W 1. We then get a truncated hypercover3

U1 U0 X .

Let U• be the 1-coskeleton4 of this diagram. Clearly this is a hypercover (of type 1) for X .
Moreover, we can see easily in the construction of the coskeleton (cf. [7, (0.8)]) that for every
n � 0, the algebraic stack Un+2 can be expressed in terms of fiber products obtained from the
diagram:

Un+1
... Un.

We deduce that for every n � 0, Un is an affine scheme. We denote by F i the pullback of F
on Ui . To U• we can associate for every q the alternating chain complex

Hq
(
U0,F 0

)
Hq

(
U1,F 1

) · · · Hq
(
Up,Fp

) · · ·

and we denote by Ȟ p(Hq(U•,F •)) the pth cohomology group of this complex. Applying [16,
V (7.4.0.3)] there is a spectral sequence:

E
p,q

2 = Ȟ p
(
Hq

(
U•,F •)) ⇒ Hp+q(X,F ).

Since F is quasi-coherent, we have Hq(Ui,F i ) = 0 for all q > 0 and for all i, thus E
p,q

2 = 0
for all q > 0. In other words, the spectral sequence degenerates and induces for every p an
isomorphism:

Ȟ p
(
H 0

(
U•,F •)) ∼

Hp(X ,F ).

Now, if A′ is an A-algebra and S′ = SpecA′, the simplicial object U• ×S S′ obtained by base
change is a hypercover for X ′, and its objects are affine schemes. Thus we also have an isomor-
phism:

Ȟ p
(
H 0

(
U• ×S S′,F ′ •)) ∼

Hp
(
X ′,F ′).

3 For the definitions of hypercovers, we refer to [16, V (7.3.1.2)].
4 The 1-coskeleton functor is by definition the right-adjoint of the 1-truncation functor, which to any simplicial object

associates its first order truncation.



S. Brochard / Advances in Mathematics 229 (2012) 1555–1585 1579
Taking Mi = H 0(Ui,F i ), we get our complex. Now if F is flat over S, the Mi ’s are obviously
flat over A. �

The complex given by A.2.1 can be useful in some circumstances. For instance, the following
is an immediate corollary.

Corollary A.2.2. (See [5, A.3.4].) Let f : X → Y be a quasi-compact morphism of S-algebraic
stacks, and let F be a quasi-coherent sheaf on X . Let u : Y ′ → Y be a flat base change
morphism. Let us take the following notations

X ′ v

g �

X

f

Y ′ u
Y .

Then for every q � 0 the natural morphism

u∗Rqf∗F −→ (
Rqg∗

)(
v∗F

)
is an isomorphism.

To get deeper results (e.g. semicontinuity), we need a finite complex. For that, we would like
to truncate the infinite complex given by A.2.1. So, for a fixed n, we want to consider a complex
M ′ • with M ′ i = Mi if i < n and M ′ i = 0 for i > n. Now we have at least two possibilities for
the choice of M ′n: either we keep M ′n = Mn, but in this case the last cohomology module is
changed, or we take M ′n = Ker(Mn → Mn+1), but in this case M ′n is not necessarily flat. In
both cases, an assumption is missing when we want to replace this finite complex by a finite
complex of finite modules with the same cohomology (in the first case the last cohomology
module is not of finite type and in the second case the last module of the complex might not be
flat). In the sequel we will choose the second option, and the whole point is to check that, when
the base ring has finite global dimension, we can still replace the complex by a complex of finite
modules without affecting the first cohomology groups (even after base change!). This is what
we do in the following variation of Mumford’s Lemmas 1 and 2.

Lemma A.2.3. Let n be an integer and A a noetherian ring with global cohomological dimension
k � n + 1. Let M• be a complex of A-modules

0 −→ M0 −→ M1 −→ · · · −→ Mn −→ Mn+1 −→ 0

with Mi �= 0 only if 0 � i � n+ 1. Assume that Mi is flat for 0 � i � n and that all the cohomol-
ogy modules Hi(M•) are of finite type. Then there exists a complex K• of A-modules of finite
type and a morphism of complexes K• → M• such that
(a) Ki �= 0 only if 0 � i � n + 1;
(b) Ki is free for 1 � i � n + 1;
(c) K0 is flat;
(d) K• → M• is a quasi-isomorphism;
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(e) for any A-algebra B and for every i, 0 � i � n − k − 1, the morphism

Hi
(
K• ⊗A B

) −→ Hi
(
M• ⊗A B

)
is an isomorphism.

Proof. Using Mumford’s Lemma 1 [12, §5], there is a complex K• of finite type A-modules and
a morphism f : K• → M• satisfying the properties (a), (b) and (d). The “mapping cylinder” L•
associated with this morphism of complexes is defined by

Lp = Kp ⊕ Mp−1

δL(x, y) = (
δKx,f (x) − δMy

) ∀x ∈ Kp, y ∈ Mp−1.

There is a short exact sequence of complexes

0 −→ M ′ • −→ L• −→ K• −→ 0

where M ′ • is defined by M ′p = Mp−1 and δM ′ = −δM . This short exact sequence induces a long
exact sequence of cohomology

0 H 0(L•) H 0(K•)
∂

H 0(M•)

H 1(L•) H 1(K•)
∂

H 1(M•)
. . .

and the cobordism ∂ : H(K•) → H(M•) coincides with the morphism induced by f : K• → M•.
Since f is a quasi-isomorphism, this proves that all the Hi(L•) vanish, in other words that the
complex L• is exact. But L• is:

0 K0 K1 ⊕ M0 · · · Kn+1 ⊕ Mn Mn+1 0.

All the terms in the middle are flat, thus, splitting this exact sequence in short exact sequences,
we get an isomorphism

TorAn+2

(
Mn+1,N

) ∼
TorA1

(
K0,N

)
for any A-module N . But the global cohomological dimension of A is k � n + 1, so
TorAn+2(M

n+1,N) = 0 and K0 is therefore flat.
It remains to prove (e). The complex L• is a flat resolution of Mn+1, so for any A-module N

and for i � n, the module Hi(L• ⊗ N) is isomorphic to TorAn+1−i (M
n+1,N). In particular, for

i � n − k (i.e. n + 1 − i � k + 1) we have Hi(L• ⊗ N) = 0. Using the “mapping cylinder” and
the cohomology long exact sequence associated to

0 −→ M ′ • ⊗ N −→ L• ⊗ N −→ K• ⊗ N −→ 0
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we deduce that for any A-module N and for every 0 � i � n − k − 1, the natural morphism

Hi
(
K• ⊗A N

) −→ Hi
(
M• ⊗A N

)
is an isomorphism. �
Corollary A.2.4. Let A be a noetherian ring with finite global cohomological dimension, S its
spectrum, X a proper algebraic stack over S, and F a coherent OX -module, flat over S. Let n

be a natural integer. Then there is a finite complex of flat and finite type A-modules

0 M0 M1 . . . Mn Mn+1,

and functorial isomorphisms

Hi
(
M• ⊗A B

) ∼
Hi(X ⊗A B,F ⊗A B), 0 � i � n.

Proof. Let M• be the infinite complex given by Lemma A.2.1. Since X is proper and F is
coherent, the A-modules Hi(M•) are of finite type. Let k be the global dimension of A and let
N = n + k + 1. Let M ′ • be the complex given by

M ′p = Mp if p � N,

M ′N+1 = Ker
(
MN+1 → MN+2),

M ′p = 0 if p � N + 2.

Apply the previous lemma to M ′ • and let K• be the resulting complex. Then the (n + 1)th
truncation of K• is suitable. �
Remark A.2.5. As in the case of tame stacks, the existence of this complex implies that all the
corollaries from [12, §5] hold for a stack over a noetherian ring with finite global dimension (e.g.
a regular ring with finite dimension).

A.3. The semicontinuity theorem

In this section we will prove the semicontinuity theorem for an arbitrary base ring and for
non-necessarily tame algebraic stacks. First, let us recall the following fact:

Lemma A.3.1. Let S be a noetherian scheme and f : S → N a function on S. Then f is upper
semicontinuous if and only if the two following conditions are satisfied:
(a) For any discrete valuation ring A and for any morphism g : SpecA → S, we have

f
(
g(η)

)
� f

(
g(ξ)

)
where η (resp. ξ ) denotes the generic (resp. special) point of SpecA.

(b) For any noetherian domain A and for any morphism g : SpecA → S, there is a nonempty
open subset of SpecA on which the function f ◦ g is constant.

Proof. This is an easy consequence of EGA 0III [8, 9.3.3 and 9.3.4]. �
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Theorem A.3.2. Let S be a scheme, X a proper algebraic stack of finite presentation over S,
and F a coherent OX -module that is flat over S. Then for any integer i � 0, the function

di :
{

S −→ N

s �−→ dimκ(s) H
i(Xs ,Fs)

is upper semicontinuous over S.

Proof. Obviously we can assume that S is affine, say S = SpecA. By standard limit arguments,
we can also assume that A is of finite type over Z. Owing to the previous lemma, it is enough to
prove that the theorem holds
(a) when A is a discrete valuation ring;
(b) over a nonempty open subset of SpecA, when A is a domain.

But if A is an integral, finite type Z-algebra, there is a nonempty open subset of SpecA which
is regular. Thus in both cases it is enough to prove the theorem when A is a regular, integral
Z-algebra of finite type. Such a ring has finite global cohomological dimension (see e.g. [8,
chap. 0IV 17.3.1]). Hence, using Lemma A.2.4, there is a finite complex of flat and finite type
A-modules computing universally the cohomology modules of F over X at least up to the ith
rank. Now, to reach the conclusion that di is upper semicontinuous, we can proceed exactly as in
[12, §5] (see the corollary p. 50). �
A.4. Other consequences

Let us give below some other consequences of the existence of the complexes A.1.4 and A.2.4.
The results below are generalizations to a stacky context of some standard results in scheme
theory. They were needed in the proof of 2.3.2.

Proposition A.4.1. Let A be a ring with finite global dimension k and let S be its spectrum. Let
f : X → S be a quasi-compact algebraic stack over S and let F be a quasi-coherent sheaf on
X that is flat over S. Let n ∈ N be an integer. Assume that all the sheaves Rn+if∗F , 1 � i � k

are flat over S. Then forming Rnf∗F commutes with any base change, i.e. if ϕ : S′ → S is
a base change morphism and if ϕ′ : X ×S S′ → X and f ′ : X ×S S′ → S′ denote the induced
morphisms, then the natural morphism

ϕ∗Rnf∗F −→ Rnf ′∗
(
ϕ′∗F

)
is an isomorphism.

Proof. Since forming the higher direct images commutes with any flat base change [5, A.3.4],
the assertion is local on S′ so we can assume that it is affine, say S′ = SpecA′. Since Rnf∗F is
the quasi-coherent sheaf corresponding to the A-module Hn(X ,F ) (and similarly over A′), it
is enough to prove that forming Hn(X ,F ) commutes with the base change A → A′. Let M•
be the (n + k + 1)th-truncation (that is, Mi = 0 if i � n + k + 2) of the complex given by A.2.1.
It is enough to prove that forming Hn(M•) commutes with the given base change. But for any
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A-module N there is a Künneth spectral sequence

E2
p,q = Tor−p

(
Hq

(
M•),N) �⇒ Hp+q

(
M• ⊗A N

)
.

Since all the Hq(M•) are flat for n + 1 � q � n + k, and since the global dimension of A is k,
the only possibly nonzero terms in this spectral sequence are located at the places marked with a
bullet (•) in the following picture.

Hence we get an isomorphism Hn(M•) ⊗A N → Hn(M• ⊗A N). �
Remark A.4.2. There is also a “tame version” of this result, which is left to the reader.

Proposition A.4.3. Let X be a proper and flat algebraic stack over a noetherian base scheme S

and let L , M be invertible sheaves on X . Assume moreover that either S has finite global
dimension (e.g. S is finite-dimensional and regular) or that X is tame. Then the sheaves
H om(M ,L ) : T �→ HomOXT

(MT ,LT ) and I som(M ,L ) : T �→ IsomOXT
(MT ,LT ) are

affine schemes of finite type over S.

Proof. We can assume that S is affine (S = SpecA). Tensoring by M −1, we can assume that
M = OX . Now the first of the above functors is T �→ H 0(XT ,LT ). Since we already know
it is a sheaf, it is enough to consider its restriction to affine schemes, i.e. to look at the functor
B �→ H 0(X ⊗A B,L ⊗A B). Let M• be a finite complex of finite free A-modules comput-
ing universally the (beginning of the) cohomology of L . Such a complex is given by A.1.4 or
by A.2.4 depending on our assumption. Then for any B , H 0(X ⊗A B,L ⊗A B) is canon-
ically isomorphic to H 0(M• ⊗A B). Now, applying [8, EGA III2 7.4.6] there exists an A-
module Q of finite type and a functorial isomorphism H 0(M• ⊗A B) → Hom (Q,B).
A-Mod
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Thus H om(M ,L ) is the vector bundle V(Q), hence an affine scheme of finite type. Now
I som(M ,L ) is the closed subscheme of H om(M ,L ) ×S H om(L ,M ) defined by the
conditions ϕ ◦ ψ = id and ψ ◦ ϕ = id for (ϕ,ψ) ∈ Hom(MT ,LT ) × Hom(LT ,MT ). �
Proposition A.4.4. Let S be a noetherian scheme and let f : X → S be a proper algebraic stack
over S. Assume that S has finite global dimension k. Let F be a coherent sheaf on X that is flat
over S. Assume that all the sheaves Rn+if∗F are flat over S for 0 � i � k. Then the sheaf Vn

on (Sch/S)◦ defined on affine schemes by

Vn(T ) = Hn(XT ,FT )

is an affine scheme of finite type over S.

Proof. We can assume that S = SpecA. Let M• be the complex given by A.2.4. Then Vn is
(isomorphic to) the Zariski sheaf on (Sch/S)◦ defined by Vn(A

′) = Hn(M• ⊗A A′) for any A-
algebra A′. Proceeding as in the proof of A.4.1, we see that the functor Hn(M• ⊗A N) in the A-
module N is isomorphic to Hn(M•)⊗A N , hence it is exact since Hn(M•) is flat. Now owing to
[8, EGA III2 7.4.6] there is an A-module Qn and an isomorphism of functors Hn(M• ⊗A A′) →
HomA-Mod(Qn,N), thus Vn is the vector bundle V(Qn). �
Remark A.4.5. Once again there is a tame version as follows. Let X be a proper and tame
algebraic stack over a noetherian scheme S. Let F be a coherent sheaf that is flat over S, and such
that all the sheaves Rif∗F are flat over S (i � n). Then the conclusion of the above proposition
holds.
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