User's guide for the Maple code about De Smit's conjecture on flatness.

Sylvain Brochard

1 Introduction

In the paper [1], we studied the following question from Bart De Smit. Let $\varphi : A \to B$ be a flat morphism of Artin local rings, with the same embedding dimension¹. Is it true that any A-flat B-module is B-flat? We proved that the answer is positive if the embedding dimension is 2, or under an additional assumption on the ring $B_0 = B/\mathfrak{m}_A B$ (see [1] thm. 1.6). If the embedding dimension is 3, this additional assumption simply says that there is a minimal generator ν of the maximal ideal \mathfrak{m}_{B_0} of B_0 , such that $B_0/(\nu)$ is a complete intersection. If φ is flat, it is also equivalent to the following (see [1] 5.6):

(*)
$$\exists u \in \mathfrak{m}_B \setminus \mathfrak{m}_B^2, \ \exists x \in \mathfrak{m}_A B \setminus \mathfrak{m}_B \mathfrak{m}_A B$$
 such that u divides x in B

The Maple programs described in this note are designed to help you to check (in some particular cases) if, given a morphism φ explicitly, the condition (*) holds for φ . Here is a list of what you can do with our programs:

- check if the morphism φ is flat, and display a basis of B over A when this is the case (IsFlat and A_Basis);
- display a basis of B over \mathbb{C} (C_Basis);
- check if (*) holds for φ (IsKind);
- if (*) holds for φ , compute explicitly some elements u and x satisfying (*) (GiveGoodGenerators).

Our programs only work with \mathbb{C} -algebras of embedding dimension 3, with residue field equal to \mathbb{C} . Moreover, we decided to stick to the case $\mathfrak{m}_A^2 = 0$ (by [1] 2.4 it does not lose generality), so that the ring A will always be

$$A = \frac{\mathbb{C}[x, y, z]}{(x, y, z)^2} \; .$$

Though, if you want to work with an other ring A, you only need to change the first line of the program (after restart).

2 Getting started

a) First method:

- Open a terminal and execute the command maple
- Download the file bdsconj_prog.txt on the webpage of the author.
- Copy/paste its content in the terminal mentionned above.

b) Second method:

- Download the file bdsconj_prog.mws on the webpage of the author and open it with Maple.
- Validate all the input lines (Edit -> Execute -> Woksheet).

3 The input data

All our programs have the same input data, so to speak the morphism φ . The ring B is a quotient of $\mathbb{C}[u, v, w]$, say $B = \frac{\mathbb{C}[u, v, w]}{I}$. The input data (describing φ) will consist of two lists of polynomials, morph and eqB. The polynomials in the lists are polynomials in the three variables u, v and w. The first list

¹The embedding dimension of a local ring A with maximal ideal \mathfrak{m}_A and residue field $\kappa(A)$ is $\dim_{\kappa(A)}(\mathfrak{m}_A/\mathfrak{m}_A^2)$.

of polynomials, morph, is $[\varphi(x), \varphi(y), \varphi(z)]$. The second one, eqB, is a list of of generators for the ideal *I*. Note that at the beginning of the algorithm, the polynomials $\varphi(x)^2, \varphi(y)^2, \varphi(z)^2, \varphi(x)\varphi(y), \varphi(x)\varphi(z)$ and $\varphi(y)\varphi(z)$ will automatically be added to eqB so that you don't need to add them by yourself and in many cases eqB can be left empty.

Caution Please make sure that the ring B you define with morph and eqB is Artin. Otherwise Maple will probably return an error or an inconsistent result. A good way to do that is to add in eqB some "huge" powers of u, v and w (e.g. u^{20} , v^{20} and w^{20}).

Exemple 3.1 Let us give the input data for some morphisms that will be used in the examples below. In all these examples, the ring A is $\frac{\mathbb{C}[x,y,z]}{(x,y,z)^2}$ and we define a morphism $\varphi_i : A \to B_i$.

-		(<i>x</i> , <i>y</i> , <i>z</i>)	
B_1	=	$\frac{\mathbb{C}[u,v,w]}{(u^3,v^2,w^3)^2}$	> morph1:=[u^3,v^2,w^3]:
$\varphi_1(x)$	=	u^3	> eqB1:=[]:
$\varphi_1(y)$	=	v^2	
$\varphi_1(z)$	=	w^3	
B_2	=	$\frac{\mathbb{C}[u, v, w]}{(u^2 + vw, v^2 + uw, w^2 + uv)^2}$	> morph2:=[u^2+v*w,v^2+u*w,w^2+u*v]:
	=	$u^2 + vw$	> eqB2:=[]:
		$v^2 + uw$	
$\varphi_2(z)$	=	$w^2 + uv$	
B_3	=	$\frac{\mathbb{C}[u,v,w]}{(u^2,v^2,w^2)^2}$	> morph3:=[u ² ,v ² ,u ² +v ²]:
$\varphi_3(x)$	=	u^2	> eqB3:=[w ⁴ ,u ² *w ² ,v ² *w ²]:
$\varphi_3(y)$	=	v^2	
$arphi_3(z)$	=	$u^2 + v^2$	
B_4	=	$\frac{\mathbb{C}[u,v,w]}{(u^3+vw,v^2+uw^2,w^3+u^2v)^2}$	> morph4:=[u^3+v*w,v^2+u*w^2,w^3+u^2*v]:
	=	$u^3 + vw$	> eqB4:=[]:
$\varphi_4(y)$	=	$v^2 + uw^2$	
$\varphi_4(z)$	=	$w^3 + u^2 v$	

4 The function IsFlat

IsFlat(morph,eqB) --> Boolean

This procedure takes as entries morph and eqB described above, and returns true if φ is flat and false otherwise.

Exemple 4.1

>	<pre>IsFlat(morph1,eqB1);</pre>	
>	<pre>IsFlat(morph2,eqB2);</pre>	true
		true
>	<pre>IsFlat(morph3,eqB3);</pre>	false
>	<pre>IsFlat(morph4,eqB4);</pre>	Tarse
		true

5 Display a basis of B over \mathbb{C} or over A

If you are trying to handle with some (counter-?) examples for De Smit's conjecture, you may want to know a basis of B over \mathbb{C} or over A (if φ is flat). This is already implemented in Maple, with the function

SetBasis, but to avoid you reading Maple's help, we have written two functions C_Basis and A_Basis (they actually just call SetBasis in the relevant way).

C_Basis(morph,eqB) --> List of Polynomials

This procedure returns a list of polynomials which is a basis of the ring B over the field \mathbb{C} .

Exemple 5.1 > C_Basis(morph3,eqB3); 2 3 2 2 3 2 2 3 2 2 3 3 3 3 u,uw,uv,uvw] A_Basis(morph,eqB) --> List of Polynomials

This procedure returns a list of polynomials which is a basis of the ring $B/\mathfrak{m}_A B$ over the field \mathbb{C} , even if B is not flat over A. Of course, this will be an A-basis of B if B is flat over A. If you ask for an A-basis while φ is not flat, the procedure will not return an error message (which would be the behavior that you might have expected) but as we just told, it will return a \mathbb{C} -basis for the ring $B/\mathfrak{m}_A B$.

Exemple 5.2

```
> A_Basis(morph1,eqB1);
   2
                     2
       2
                                  2
                                   2
                                       2
                                          2 2 2
2 2
          2
  u vw, u vw]
> A_Basis(morph2,eqB2);
                    2 3
               [1, w, w , w , v, v w, v , u]
> A_Basis(morph3,eqB3);
              2
                  3
    2 3
                            2
                               3
                                            2
                                                 З
[1, w, w , w , v, v w, w v, v w , u, w u, u w , u w , u v w, u v w ]
```

6 The functions IsKind and GiveGoodGenerator

```
IsKind(morph,eqB) --> Boolean
```

This procedure returns true if φ satisfies the condition (*) above and false otherwise.

Exemple 6.1

>	<pre>IsKind(morph1,eqB1);</pre>	
		true
>	<pre>IsKind(morph2,eqB2);</pre>	
`	<pre>IsKind(morph4,eqB4);</pre>	true
1	Iskind(morph+,eqb+),	false

Work in progress... this function does not exist yet.

References

[1] Sylvain Brochard and Ariane Mézard. About De Smit's conjecture on flatness. À paraître dans *Math. Zeit.*, 2008.