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Abstract

We prove the semicontinuity theorem for a coherent sheaf over a (non
necessarily tame) proper algebraic stack. For schemes, this theorem (as
well as many other “cohomology and base change” theorems) relies on the
existence of a finite complex of flat modules computing the cohomology
of a given coherent sheaf. We discuss the existence of such a complex for
stacks. This note has more or less been included in the appendix of [4].

Nous démontrons le théorème de semi-continuité pour un faisceau co-
hérent sur un champ algébrique propre (non nécessairement modéré).
Dans le cadre des schémas, ce théorème repose sur l’existence d’un com-
plexe fini de modules plats calculant la cohomologie d’un module cohérent
donné. Nous discutons l’existence d’un tel complexe dans le cadre des
champs algébriques. L’essentiel de cette note a été inclus dans l’appendice
de [4].

1 Introduction

In scheme theory, the key point to get some “base change theorems” for coho-
mology of a coherent sheaf F on a proper scheme (over a noetherian ring A), is
the existence of a finite complex of finite free A-modules computing“universally”
the cohomogy of F (see [12] §5). A significant difference between an algebraic
stack and a scheme (or even an algebraic space) is that the former can have in-
finite cohomological dimension. Consequently, there does not always exist such
a finite complex. However, we explain below that even without such a complex,
the semicontinuity theorem still holds for stacks.

Theorem 1.1 (see 4.2) Let S be a scheme, X a proper algebraic stack of
finite presentation over S, and F a coherent OX -module that is flat over S.
Then for any integer i ≥ 0, the function

di :

{

S −→ N

s 7−→ dimκ(s) H
i(Xs,Fs)

is upper semicontinuous over S.

Moreover, there are two particular cases in which it is worth mentionning
that we can say much more :

a) if the stack is tame;
b) if the base ring has finite global cohomological dimension (e.g. if it is

regular and finite dimensional).
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Indeed, in these two cases, we can actually compute the cohomology of a given
OX -module F (at least the first groups) with a finite complex of A-modules.

Proposition 1.2 (see 2.4) Let S be the spectrum of a ring A (resp. a noethe-
rian ring A) and let X be a quasi-compact and separated (resp. proper) tame
stack on S. Let F be a quasi-coherent (resp. coherent) sheaf on X that is flat
over S. Then there is a complex of flat A-modules (resp. of finite type)

0 M0 M1 . . . Mn 0

with M i free over A for 1 ≤ i ≤ n, and isomorphisms

Hi(M• ⊗A A′) Hi(X ⊗A A′,F ⊗A A′) , i ≥ 0

functorial in the A-algebra A′.

Proposition 1.3 (see 3.4) Let A be a noetherian ring with finite global coho-
mological dimension, S its spectrum, X a proper algebraic stack over S, and
F a coherent OX -module, flat over S. Let n be a natural integer. Then there
is a finite complex of flat and finite type A-modules

0 M0 M1 . . . Mn Mn+1,

and functorial isomorphisms

Hi(M• ⊗A B)
∼

Hi(X ⊗A B,F ⊗A B) , 0 ≤ i ≤ n .

Consequently, in these cases, the cohomology of F really behaves under base
change as if X were a scheme (see 2.5, 2.6, 3.5).

Since the proof of the theorem 1.1 relies on the case b), we will start with
these particular cases.

Notations and conventions. Following [11], all algebraic stacks (a fortiori
all schemes and algebraic spaces) are supposed to be quasi-separated. The
cohomology groups on an algebraic stack X are computed with respect to the
smooth-étale topology.

Acknowledgments. We warmly thank Angelo Vistoli, who gave us the idea
of using rings with finite global cohomological dimension.

2 If the stack is tame

Before dealing with complexes, let us recall the definition of tame stacks and
give a few facts about them. If X is an Artin stack locally of finite presentation
over a scheme S, and if its inertia stack I = X ×X ×SX X is finite over
X , it follows from [10] that there is a moduli space π : X X for X (see
also [6]). Note by the way that the map π is proper and quasi-finite. Moreover,
the algebraic space X is locally of finite type if S is locally noetherian, and if
X is separated then X is separated as well.
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Definition 2.1 ([2] 3.1) Let S be a scheme and let X S be a locally
finitely presented algebraic stack over S with finite inertia. Let π : X X

be its Keel-Mori moduli space. We say that X is tame if the functor

π∗ : Qcoh (X ) Qcoh (X)

is exact.

We also recall that the class of tame stacks is stable under arbitrary base
change ([2] 3.4) and that if X is tame then forming its moduli space commutes
with any base change ([2] 3.3).

Lemma 2.2 With the notations and assumptions of 2.1, let F be a quasi-
coherent sheaf on X and let N be a quasi-coherent sheaf on X. Then the
natural morphism

(π∗F )⊗OX
N π∗(F ⊗OX

π∗
N )

is an isomorphism. In particular, if F is flat over S, then so is π∗F .

Proof. We use more or less the same argument as in the proof of [2] 3.3 (b).
Since the question is local on X for the étale topology, we can assume that X
is an affine scheme. The statement is obvious if N is free. In the general case,
let Q1 Q0 N 0 be a free presentation of N . Then we have a
commutative diagram with exact rows (since π∗ is exact):

(π∗F )⊗OX
Q1 (π∗F )⊗OX

Q0 (π∗F ) ⊗OX
N 0

π∗(F ⊗OX
π∗Q1) π∗(F ⊗OX

π∗Q0) π∗(F ⊗OX
π∗N ) 0.

The first two columns are isomorphisms, hence so is the third. The last assertion
follows immediately, keeping in mind the fact that π∗ is exact. �

Let us recall the following lemma from [12] §5 (see also [8] chap. 0 (11.9.1)).

Lemma 2.3 ([12] §5 lemma 1)

a) Let A be a ring and let C• be a complex of A-modules such that Cp 6= 0
only if 0 ≤ p ≤ n. Then there exists a complex K• of A-modules such
that Kp 6= 0 only if 0 ≤ p ≤ n and Kp is free if 1 ≤ p ≤ n, and a quasi-
isomorphism of complexes K• C•. Moreover, if the Cp are flat, then
K0 will be A-flat too.

b) If A is noetherian and if the Hi(C•) are finitely generated A-modules, then
the Kp’s can be choosen to be finitely generated.

Proof. The assertion b) is exactly [12] §5 lemma 1. For a), the same proof
works, erasing the words “finitely generated” everywhere. �

Proposition 2.4 Let S be the spectrum of a ring A (resp. a noetherian ring
A) and let X be a quasi-compact and separated (resp. proper) tame stack on
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S. Let F be a quasi-coherent (resp. coherent) sheaf on X that is flat over S.
Then there is a complex of flat A-modules (resp. of finite type)

0 M0 M1 . . . Mn 0

with M i free over A for 1 ≤ i ≤ n, and isomorphisms

Hi(M• ⊗A A′) Hi(X ⊗A A′,F ⊗A A′) , i ≥ 0

functorial in the A-algebra A′.

Proof. Let π : X X be the moduli space of X . Note that X is separated.
Choose a finite affine covering U = (Ui)i∈I of X by affine open subschemes.
Then form the Čech complex C• = C•(U, π∗F ) of alternating Čech cochains.
It is a finite complex of flat (2.2) A-modules and it computes the cohomology
groups Hi(X, π∗F ). Since X is separated, the elements of the covering U⊗AA′

obtained after a base change A A′ are still affines, so the cohomology of the
complex C• is universally isomorphic to the cohomology of π∗F on X . But this
is also the cohomology of F on X , since the functor π∗ is exact (use for instance
the Leray spectral sequence for π, [5] A.2.8). Note that if A is noetherian, X

proper and F coherent, then the modules Hi(X ,F ) are finitely generated by
[13] (1.2), so in this case the cohomology modules of the complex C• are finitely
generated. Now it is enough to apply 2.3 and [12] §5 lemma 2. �

Remark 2.5 Because of the existence of this complex, all the corollaries that
are in [12] §5 hold for tame stacks. In other words, the cohomology of such
stacks behaves like that of schemes under base change.

To illustrate how this complex can be used, let us give an other application
in the same spirit.

Corollary 2.6 Let S be a scheme and let f : X S be a quasi-compact
and separated tame stack on S. Let F be a quasi-coherent sheaf on X that
is flat over S. If all the sheaves Rif∗F (i ≥ 0) are flat over S then forming
them commutes with any base change, i.e. if ϕ : S′ S is a base change
morphism and if ϕ′ : X ×S S′ X and f ′ : X ×S S′ S′ denote the
induced morphisms, then the natural morphisms

ϕ∗Rif∗F Rif ′

∗
(ϕ′∗

F ) , i ≥ 0

are isomorphisms.

Proof. Since forming the higher direct images commutes with any flat base
change ([5] A.3.4), the assertion is local on both S and S′ so that we can assume
that they are both affine, say S = SpecA and S′ = SpecA′. Let M• be the
complex given by 2.4. In view of 2.4, it is enough to prove that forming Hi(M•)
commutes with base change. But for any A-module N there is a Künneth
spectral sequence

E2
p,q = Tor−p(H

q(M•), N) =⇒ Hp+q(M• ⊗A N).

Since all the Hq(M•) are flat, this spectral sequence degenerates and yields
isomorphisms

Hi(M•)⊗A N Hi(M• ⊗A N).

�
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3 If the base ring has finite global dimension

First, we prove that in the general case, there is always an infinite complex of
flat modules computing universally the cohomology of F .

Lemma 3.1 Let S be the spectrum of a ring A and X a quasi-compact algebraic
stack over S. Let F be a quasi-coherent sheaf on X . Then there is a complex
of A-modules

0 M0 M1 . . . Mn . . .

and isomorphisms

Hi(M• ⊗A A′) Hi(X ′,F ′)

functorial in the A-algebra A′ (where X ′ = X ⊗A A′ and F ′ = F ⊗A A′).
If moreover F is flat over S, then we can assume that all the M i’s are flat
A-modules.

Proof. Let U0 X be a presentation of X , such that U0 is an affine
scheme. Let V 1 = U0×X U0. Let W 1 V 1 be a presentation of the algebraic
space V 1, the source of which W 1 is an affine scheme, and let U1 = U0

∐

W 1.
We then get a truncated hypercover1

U1 U0 X .

Let U• be the 1-coskeleton2 of this diagram. Clearly this is a hypercover (of
type 1) for X . Moreover, we can see easily in the construction of the coskeleton
(cf. [7] (0.8)) that for every n ≥ 0, the algebraic stack Un+2 can be expressed
in terms of fiber products obtained from the diagram:

Un+1
... Un.

We deduce that for every n ≥ 0, Un is an affine scheme. We denote by F i the
pullback of F on U i. To U• we can associate for every q the alternating chain
complex

Hq(U0,F 0) Hq(U1,F 1) . . . Hq(Up,F p) . . .

and we denote by Ȟp(Hq(U•,F •)) the p-th cohomology group of this complex.
Applying [1] V (7.4.0.3) there is a spectral sequence:

E
p,q
2 = Ȟp(Hq(U•,F •)) ⇒ Hp+q(X,F ).

Since F is quasi-coherent, we have Hq(U i,F i) = 0 for all q > 0 and for all i,
thus E

p,q
2 = 0 for all q > 0. In other words, the spectral sequence degenerates

and induces for every p an isomorphism:

Ȟp(H0(U•,F •))
∼

Hp(X ,F ).

1for the definitions of hypercovers, we refer to [1] V (7.3.1.2)
2the 1-coskeleton functor is by definition the right-adjoint of the 1-truncation functor,

which to any simplicial object associates its first order truncation
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Now, if A′ is an A-algebra and S′ = SpecA′, the simplicial object U• ×S S′

obtained by base change is an hypercover for X ′, and its objects are affine
schemes. Thus we also have an isomorphism:

Ȟp(H0(U• ×S S′,F ′•))
∼

Hp(X ′,F ′).

Taking M i = H0(U i,F i), we get our complex. Now if F is flat over S, the
M i’s are obviously flat over A. �

The complex given by 3.1 can be useful in some circumstances. For instance,
the following is an immediate corollary (see [3] and [5]).

Corollary 3.2 ([5] A.3.4) Let f : X Y be a quasi-compact morphism of
S-algebraic stacks, and let F be a quasi-coherent sheaf on X . Let u : Y ′ Y

be a flat base change morphism. Let us take the following notations.

X ′
v

g �

X

f

Y ′
u

Y

Then for every q ≥ 0 the natural morphism

u∗Rqf∗F (Rqg∗)(v
∗
F )

is an isomorphism.

To get deeper results (e.g. semicontinuity), we need a finite complex. For
that, we would like to truncate the infinite complex given by 3.1. So, for a fixed
n, we want to consider a complex M ′• with M ′i = M i if i < n and M ′i = 0
for i > n. Now we have at least two possibilities for the choice of M ′n: either
we keep M ′n = Mn, but in this case the last cohomology module is changed,
or we take M ′n = Ker (Mn Mn+1), but in this case M ′n is not necessarily
flat. In both cases, an assumption is missing when we want to replace this finite
complex by a finite complex of finite modules with the same cohomology (in
the first case the last cohomology module is not of finite type and in the second
case the last module of the complex might not be flat). In the sequel we will
choose the second option, and the whole point is to check that, when the base
ring has finite global dimension, we can still replace the complex by a complex
of finite modules without affecting the first cohomology groups (even after base
change!). This is what we do in the following variation of Mumford’s lemmas 1
and 2.

Lemma 3.3 Let n be an integer and A a noetherian ring with global cohomo-
logical dimension k ≤ n+ 1. Let M• be a complex of A-modules

0 M0 M1 . . . Mn Mn+1 0

with M i 6= 0 only if 0 ≤ i ≤ n + 1. Assume that M i is flat for 0 ≤ i ≤ n

and that all the cohomology modules Hi(M•) are of finite type. Then there
exists a complex K• of A-modules of finite type and a morphism of complexes
K• M• such that
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a) Ki 6= 0 only if 0 ≤ i ≤ n+ 1;
b) Ki is free for 1 ≤ i ≤ n+ 1;
c) K0 is flat;
d) K• M• is a quasi-isomorphism;
e) for any A-algebra B and for every i, 0 ≤ i ≤ n− k − 1, the morphism

Hi(K• ⊗A B) Hi(M• ⊗A B)

is an isomorphism.

Proof. Using Mumford’s lemma 1 ([12] §5), there is a complex K• of finite
type A-modules and a morphism f : K• M• satisfying the properties a), b)
and d). The “mapping cylinder”L• associated with this morphism of complexes
is defined by

Lp = Kp ⊕Mp−1

δL(x, y) = (δKx, f(x) − δMy) ∀x ∈ Kp, y ∈ Mp−1

There is a short exact sequence of complexes

0 M ′• L• K• 0

where M ′• is defined by M ′p = Mp−1 and δM ′ = −δM . This short exact
sequence induces a long exact sequence of cohomology

0 H0(L•) H0(K•)
∂

H0(M•)

H1(L•) H1(K•)
∂

H1(M•)

. . .

and the cobordism ∂ : H(K•) H(M•) coincides with the morphism induced
by f : K• M•. Since f is a quasi-isomorphism, this proves that all the
Hi(L•) vanish, in other words that the complex L• is exact. But L• is:

0 K0 K1 ⊕M0 . . . Kn+1 ⊕Mn Mn+1 0.

All the terms in the middle are flat, thus, splitting this exact sequence in short
exact sequences, we get an isomorphism

TorAn+2(M
n+1, N)

∼

TorA1 (K
0, N)

for any A-module N . But the global cohomological dimension of A is k ≤ n+1,
so TorAn+2(M

n+1, N) = 0 and K0 is therefore flat.
It remains to prove e). The complex L• is a flat resolution of Mn+1, so

for any A-module N and for i ≤ n, the module Hi(L• ⊗ N) is isomorphic to
TorAn+1−i(M

n+1, N). In particular, for i ≤ n − k (i.e. n + 1 − i ≥ k + 1) we
have Hi(L• ⊗N) = 0. Using the “mapping cylinder” and the cohomology long
exact sequence associated to

0 M ′• ⊗N L• ⊗N K• ⊗N 0
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we deduce that for any A-module N and for every 0 ≤ i ≤ n−k−1, the natural
morphism

Hi(K• ⊗A N) Hi(M• ⊗A N)

is an isomorphism. �

Corollary 3.4 Let A be a noetherian ring with finite global cohomological di-
mension, S its spectrum, X a proper algebraic stack over S, and F a coherent
OX -module, flat over S. Let n be a natural integer. Then there is a finite
complex of flat and finite type A-modules

0 M0 M1 . . . Mn Mn+1,

and functorial isomorphisms

Hi(M• ⊗A B)
∼

Hi(X ⊗A B,F ⊗A B) , 0 ≤ i ≤ n .

Proof. Let M• be the infinite complex given by the first lemma. Since X is
proper and F is coherent, the A-modules Hi(M•) are of finite type. Let k be
the global dimension of A and let N = n+ k+1. Let M ′• be the complex given
by

M ′p = Mp if p ≤ N,

M ′N+1 = Ker (MN+1 MN+2),

M ′p = 0 if p ≥ N + 2.

Apply the previous lemma to M ′• and let K• be the resulting complex. Then
the (n+ 1)-th truncation of K• is suitable. �

Remark 3.5 As in the case of tame stacks, the existence of this complex implies
that all the corollaries from [12] §5 hold for a stack over a noetherian ring with
finite global dimension (e.g. a regular ring with finite dimension). There is also
an analogue of 2.6 (see the appendix of [4]).

4 The semicontinuity theorem

In this section we will prove the semicontinuity theorem for an arbitrary base
ring and for non necessarily tame algebraic stacks. First, let us recall the fol-
lowing fact:

Lemma 4.1 Let S be a noetherian scheme and f : S N a function on S.
Then f is upper semicontinuous if and only if the two following conditions are
satisfied:

a) For any discrete valuation ring A and for any morphism g : SpecA S,
we have

f(g(η)) ≤ f(g(ξ))

where η (resp. ξ) denotes the generic (resp. special) point of SpecA.
b) For any noetherian domain A and for any morphism g : SpecA S,

there is a nonempty open subset of SpecA on which the function f ◦ g is
constant.
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Proof. This is an easy consequence of EGA 0III ([8]) 9.3.3 and 9.3.4. �

Theorem 4.2 Let S be a scheme, X a proper algebraic stack of finite presen-
tation over S, and F a coherent OX -module that is flat over S. Then for any
integer i ≥ 0, the function

di :

{

S −→ N

s 7−→ dimκ(s) H
i(Xs,Fs)

is upper semicontinuous over S.

Proof. Obviously we can assume that S is affine, say S = SpecA. By standard
limit arguments, we can also assume that A is of finite type over Z. Owing to
the previous lemma, it is enough to prove that the theorem holds

a) when A is a discrete valuation ring;
b) over a nonempty open subset of SpecA, when A is a domain.

But if A is an integral, finite type Z-algebra, there is a nonempty open subset of
SpecA which is regular. Thus in both cases it is enough to prove the theorem
when A is a regular, integral Z-algebra of finite type. Such a ring has finite
global cohomological dimension (see e.g. [9] chap. 0 17.3.1). Hence, using the
lemma 3.4, there is a finite complex of flat and finite type A-modules computing
universally the cohomology modules of F over X at least up to the i-th rank.
Now, to reach the conclusion that di is upper semicontinuous, we can proceed
exactly as in [12] §5 (see the corollary p. 50). �
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