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Abstract. We consider projection estimator methods for the estimation of den-

sity and hazard rate functions based on randomly right-censored data. Two types

of adaptive hazard estimators are considered. The first one is a two-step estimator

defined as the ratio of a penalized contrast estimator of the subdensity and of the

empirical survival function of the data. The second estimator is built by using

another penalized projection contrast. Both estimators are proved to achieve au-

tomatically the standard optimal rate associated with the unknown regularity of

the hazard function, but with some restriction for the ”ratio” estimator. In the

examples studied here, the ratio estimator seems to be slightly better than the

direct estimator.

Revised Version, January 2005

AMS Classification (2001): 62G05; 62G20.

Keywords and phrases. Adaptive estimation. Hazard rate. Minimax rate. Right-

Censoring. Nonparametric penalized contrast estimator.

1. Introduction

This paper considers a model which is most commonly used in reliability or sur-

vival analysis: more precisely, we are interested in lifetimes (or failure times) of some

individuals in presence of right-censoring. Right-censoring occurs for example when

some of the individuals under study are not observed until the end (death, remission,

recovery); in that case, only a lower bound of their lifetimes is observed, which is

called the censoring time. In the end, the observation consists in the minimum of

the lifetime and the censoring time, and in the knowledge whether the survival time

is censored or not. Two functions are of interest in this context, the density of the
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data which are not censored, called the subdensity function, and the derivative of

the log-survival probability called the hazard rate function. We consider hereafter

some nonparametric and adaptive methods in order to estimate these functions.

Let us first describe the nonparametric methods used in the literature. Different

strategies are possible to build a nonparametric estimator of the hazard rate. One

method is to use the relationship of the hazard rate with the subdensity. Since Blum

and Susarla (1980) kernel estimators of the subdensity and the hazard rate in pres-

ence of right censoring have been studied by many authors: Mielniczuk (1986), Diehl

and Stute (1988), Lo et al. (1989), Uzunoḡullari and Wang (1992). The bandwidth

selection remains an important problem in this context: indeed, the optimal band-

width depends on the unknown function under estimation. Antoniadis et al. (1999)

consider both subdensity and hazard estimators via some wavelet estimator, but the

optimal wavelet resolution also depends on the unknown function. In the present

work, an adaptive estimator of the subdensity is built. More precisely, a projection

estimator on a finite dimensional space is defined and the dimension of the pro-

jection space is selected by using a data driven penalty function. This estimator

can therefore automatically reach the optimal rate of convergence, in term of its

integrated mean square risk. Then, we point out the possible sub-optimality of the

resulting hazard rate estimator, due to its ratio feature.

Other kinds of non parametric estimators of the hazard rate are constructed by

direct regularization (by convolving with a kernel for instance) of some cumula-

tive hazard estimator as the Nelson-Aalen or the Kaplan-Meier estimators; early

results for such kernel methods can be found in Tanner and Wong (1983), Ramlau-

Hansen (1983) and Yandell (1983). In the same way, Wu and Wells (2003), proposed

a wavelet-type estimator based on the transform of a Nelson-Aalen cumulative haz-

ard estimator. Let us mention also Kooperberg et al. (1995) who study the L2

convergence rate of a hazard rate estimator in a context of tensor product splines.

Only few works deal with adaptive procedures of estimation and can therefore be

compared with the present paper. We can cite Dölher and Rüschendorf (2002), who

introduce an adaptive sieved maximum likelihood method but the rate of conver-

gence of their estimator involves a logarithmic loss which makes their procedure

slightly suboptimal. Reynaud-Bouret (2002) obtains adaptive results and minimax
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rates for penalized projection estimators of the Aalen multiplicative intensity pro-

cess. She first considers histogram-type projection spaces, which are therefore more

suitable for the estimation of highly non regular functions than for smooth ones. She

also considers Fourier strategies and trigonometric projection spaces, to which we

compare our method. Lastly, Brunel and Comte (2004) consider penalized contrast

estimator using the Kaplan-Meier cumulative hazard estimator and a larger variety

of models. In the present work, we propose, as for the subdensity, a direct projec-

tion estimator of the hazard rate, with automatic selection of the projection space

by contrast penalization. Our estimator is simple to define and easy to compute

(the simulation section illustrates it). Moreover, it is adaptive in the sense that its

risk reaches the optimal rate of convergence without any prior information on the

unknown function h. Note that the lower bounds for minimax rates in hazard esti-

mation have been recently proved in Huber and Mac Gibbon (2004). Note also that

our estimator may be related to the one studied in Patil (1997), who considers how-

ever uncensored data and does not prove any adaptive results. One original feature

of our estimator comes from its definition without any resort to the Nelson-Aalen

or Kaplan-Meier cumulative hazard rate as it is commonly done in the methods

described above.

The method used in this work follows the mainstream of model selection meth-

ods introduced and developed in different frameworks by Barron and Cover (1991),

Birgé and Massart (1997) and Barron et al. (1999). Most proofs rely on the pow-

erful Talagrand’s (1996) inequality for empirical centered processes. Some more

technical properties, proved in a regression framework by Baraud et al. (2001) and

Baraud (2002), are also used.

The outline of the paper is as follows. After the description in Section 2 of

the lifetimes model and some preliminaries on the projection spaces, we present in

Section 3 the study of the estimator of the subdensity of the failure times based on

a projection contrast function. Both convergence and adaptation results are given.

This estimator is then used to estimate the hazard rate. Section 4 describes a direct

adaptive procedure to estimate the hazard rate based on another projection contrast.

Note that we consider here the case of both regular and non regular partitions of

the set of estimation. Section 5 provides some examples and simulation results,
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together with comparisons with other estimators. Most proofs and technical lemmas

are deferred to Section 6.

2. Notation and assumptions

2.1. Model set-up. We consider nonnegative i.i.d. random variables X0
i , for i =

1, . . . , n (lifetimes for the n subjects under study) with common continuous distri-

bution function F 0, and C1, . . . , Cn i.i.d. nonnegative random variables (“censoring

sequence”) with common distribution function G, both sequences being indepen-

dent. One classical problem when processing with lifetime data is the estimation of

the hazard rate function or failure rate function h defined, if F 0 has density f 0 by

h(x) =
d

dx
H(x) =

f 0(x)

F̄ 0(x)
, for F 0(x) < 1.

where H = − log(F̄ 0) is the cumulative hazard rate and F̄ 0 = 1−F 0 is the survival

function. In the setting of survival analysis data with random right censorship, the

bivariate sample (X1, δ1), . . . , (Xn, δn) is observed, where

Xi = X0
i ∧ Ci, δi = 1I{X0

i ≤Ci}.

In other words, δi = 1 indicates that the i-th subject’s survival time is uncensored.

We denote by f and F the common density and distribution function of the Xi’s.

Note that F̄ = 1−F = (1−F 0)(1−G). Moreover, we define the subdensity function

ψ, the density of the uncensored data, as

ψ(x) = f 0(x)(1−G(x)) .

Consequently, the hazard rate function can also be expressed as

h(x) =
ψ(x)

1− F (x)
, for F (x) < 1.

Since the hazard rate function is not square integrable in general, estimates will

only be computed over a bounded interval [0, a] where a < τF = sup{x : F (x) < 1}.
As mentioned in Antoniadis et al. (1999), it can be easily shown that X(n) → τF

almost surely as n → ∞ where X(n) is the n-th order statistic. So, this does

not imply any practical restriction since, for estimation purpose, we can choose

the bound a greater than the largest of the uncensored Xi’s (see also Dölher and

Rüschendorf (2002)). Without loss of generality, we set a = 1 in all the following
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(except in Section 5). Notice that this restriction is not necessary for the estimation

of the subdensity itself and estimates can be constructed on the whole real line, but

this would require another context and different assumptions. In our setting, the

following condition is always satisfied

(2.1) ∃cF > 0, ∀x ∈ [0, 1], cF ≤ 1− F (x) < 1,

by taking cF = infx∈[0,1](1− F (x)) = 1− F (1).

2.2. Description of the spaces of approximation. In this section, the spaces

(Sm)m∈Mn considered in the sequel are described and their key properties are pointed

out. The spaces will satisfy the following assumption:

(H1) (Sm)m∈Mn is a collection of finite-dimensional linear sub-spaces of L2([0, 1]),

with dimension dim(Sm) = Dm such that Dm ≤ n, ∀m ∈Mn and satisfying:

(2.2) ∃Φ0 > 0,∀m ∈Mn,∀t ∈ Sm, ‖t‖∞ ≤ Φ0

√
Dm‖t‖.

where ‖t‖2 =
∫ 1

0
t2(x)dx, for t in L2([0, 1]).

An orthonormal basis of Sm is denoted by (ϕλ)λ∈Λm where |Λm| = Dm. It fol-

lows from Birgé and Massart (1997) that Property (2.2) in the context of (H1) is

equivalent to

(2.3) ∃Φ0 > 0, ‖
∑
λ∈Λm

ϕ2
λ‖∞ ≤ Φ2

0Dm.

Moreover, for the results concerning the adaptive estimators, we need the following

additional assumption:

(H2) (Sm)m∈Mn is a collection of nested models, we denote by Sn the space be-

longing to the collection, such that ∀m ∈ Mn, Sm ⊂ Sn. We denote by Nn

the dimension of Sn: dim(Sn) = Nn (∀m ∈Mn, Dm ≤ Nn).

We consider more precisely the following examples:

[T] Trigonometric spaces: Sm is generated by { 1,
√

2 cos(2πjx),
√

2 sin(2πjx) for

j = 1, . . . ,m }, Dm = 2m+ 1 and Mn = {1, . . . , [n/2]− 1}.
[P] Regular piecewise polynomial spaces: Sm is generated by m(r + 1) polynomials,

r + 1 polynomials of degree 0, 1, . . . , r on each subinterval [(j − 1)/m, j/m], for j =

1, . . .m, Dm = (r+1)m, m ∈Mn = {1, 2, . . . , [n/(r+1)]}. For example, consider the

orthogonal collection in L2([−1, 1]) of Legendre polynomials Qk, where the degree
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of Qk is equal to k, |Qk(x)| ≤ 1,∀x ∈ [−1, 1], Qk(1) = 1 and
∫ 1

−1
Q2
k(u)du =

2/(2k+1). Then the orthonormal basis is given by ϕj,k(x) =
√
m(2k + 1)Qk(2mx−

2j + 1)1I[(j−1)/m,j/m[(x) for j = 1, . . . ,m and k = 0, . . . , r, with Dm = (r + 1)m.

In particular, the histogram basis corresponds to r = 0 and is simply defined by

ϕj(x) =
√
Dm 1I[(j−1)/Dm,j/Dm](x) andDm = m. We call dyadic collection of piecewise

polynomials, and denote by [DP], the collection corresponding to dyadic subdivisions

with m = 2q and Dm = (r + 1) 2q.

[W] Dyadic wavelet generated spaces with regularity r and compact support, as

described e.g. in Donoho and Johnstone (1994): Sm is generated by {φj0,k , ψj,k ; k ∈
Z , m ≥ j ≥ j0} for any fixed resolution j0 and with φj0,k(x) =

√
2j0 φ(2j0 x−k) and

ψj,k(x) =
√

2j ψ(2j x − k) where φ and ψ denote respectively the scaling function

and the mother wavelet on [0, 1] and are elements of the Hölder space Cr , r ≥ 0. In

this case, the multi-resolution analysis is said to be r regular. Moreover, the wavelet

ψ has vanishing moments up to order r (see for example Daubechies, (1992)). Since

φ and ψ are compactly supported on [0, 1], for any fixed j the sum over k is finite

in the wavelet series, more precisely for a function t ∈ Sm,

t(x) =
2j0−1∑
k=0

aj0,k φj0,k(x) +
m∑
j=j0

2j−1∑
k=0

bj,k ψj,k(x).

Therefore, the generating basis is of cardinality Dm = 2m+1 and m ∈ Mn =

{1, 2, . . . , [ln(n)/2]− 1}.

All those spaces satisfy (H1), with for instance Φ0 =
√

2 for collection [T] and

Φ0 =
√

2r + 1 for collection [P]. Moreover, [T], [DP] and [W] satisfy (H2).

3. Analysis of the subdensity and of the resulting hazard rate

estimators

3.1. Definition of the estimator of the subdensity. Consider the following

contrast function

(3.1) γψn (t) = ‖t‖2 − 2

n

n∑
i=1

1I{Xi≤1}δit(Xi)
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where t is a function of L2([0, 1]), ‖t‖2 =
∫ 1

0
t2(x)dx. Let then ψ̂m = arg mint∈Sm γ

ψ
n (t).

An explicit expression of the estimator follows from this definition by using the or-

thonormal basis (ϕλ)λ∈Λm of Sm described in (H1):

(3.2) ψ̂m =
∑
λ∈Λm

âλϕλ with âλ =
1

n

n∑
i=1

1I{Xi≤1}δiϕλ(Xi).

We define also ψm as the orthogonal projection of ψ on Sm. We can write

(3.3) ψm =
∑
λ∈Λm

aλϕλ with aλ =

∫ 1

0

ϕλ(x)ψ(x)dx.

3.2. Convergence results and adaptation.

3.2.1. Optimal rate of the estimator of the subdensity. The rate of ψ̂m is quite easy

to derive. Indeed, it follows from Pythagoras theorem, (3.2) and (3.3) that

‖ψ − ψ̂m‖2 = ‖ψ − ψm‖2 + ‖ψm − ψ̂m‖2 = ‖ψ − ψm‖2 +
∑
λ∈Λm

(aλ − âλ)
2

= ‖ψ − ψm‖2 +
∑
λ∈Λm

(
1

n

n∑
i=1

1I{Xi≤1}δiϕλ(Xi)−
∫ 1

0

ψ(x)ϕλ(x)dx

)2

.

Therefore

E(‖ψ − ψ̂m‖2) = ‖ψ − ψm‖2 +
∑
λ∈Λm

Var

(
1

n

n∑
i=1

1I{Xi≤1}δiϕλ(Xi)

)

= ‖ψ − ψm‖2 +
1

n

∑
λ∈Λm

Var
(
1I{X1≤1}δ1ϕλ(X1)

)
≤ ‖ψ − ψm‖2 +

1

n
E

[(∑
λ∈Λm

ϕ2
λ(X1)

)
1I{X1≤1}δ1

]
.

Then by using (2.3), we obtain the following Proposition:

Proposition 3.1. Let ψ̂m = arg mint∈Sm γ
ψ
n (t) where γψn (t) is defined by (3.1) and

Sm is a Dm-dimensional linear space in a collection satisfying (H1). Then

(3.4) E(‖ψ − ψ̂m‖2) ≤ ‖ψ − ψm‖2 +
Φ2

0Dm

n

∫ 1

0

ψ(x)dx.
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Inequality (3.4) gives the asymptotic rate for an estimator if we consider that ψ

belongs to a Besov space.

Let us recall that the Besov space Bα,p,∞([0, 1]) is defined by:

Bα,p,∞([0, 1]) = {f ∈ Lp([0, 1]), |f |α,p := sup
t>0

t−αωr(f, t)p < +∞}

where r = [α] + 1 ([.] denotes the integer part), and ωr(f, t)p is called the r-th

modulus of smoothness of a function f ∈ Lp(A) and is equal to:

ωr(f, t)p = sup
0<h≤t

‖∆r
h(f, .)‖p([0, 1−rh]), t ≥ 0,∆r

h(f, x) =
r∑

k=0

(
r

k

)
(−1)r−kf(x+kh).

Note that |f |α,p is a semi-norm with usual associated norm ‖f‖α,p = ‖f‖p + |f |α,p,
‖f‖p =

(∫
|f |p(x)dx

)1/p
. For details, we refer to DeVore and Lorentz (1993, p.54-

57). The inclusion Bα,p,∞([0, 1]) ⊂ Bα,2,∞([0, 1]) for p ≥ 2 justifies that we now

restrict our attention to spaces Bα,2,∞([0, 1]), i.e. to square integrable functions with

smoothness order α. Heuristically, a function in Bα,2,∞([0, 1]) can be seen as square

integrable and [α]-times differentiable with derivative of order [α] having a Lipschitz

property of order α− [α]. Then the following (standard) rate is obtained:

Corollary 3.1. Let ψ̂m = arg mint∈Sm γ
ψ
n (t) where γψn (t) is defined by (3.1) and Sm

is a Dm-dimensional linear space in collection [T], [P], or [W]. Assume moreover

that ψ belongs to Bαψ ,2,∞([0, 1]) with r > αψ > 0 and choose a model with m = mn

such that Dmn = O(n1/(2αψ+1)), then

(3.5) E(‖ψ − ψ̂mn‖2) = O

(
n
−

2αψ
2αψ+1

)
.

Remark 3.1. The bound r on αψ stands for the regularity of the basis functions

for collections [P] and [W]. For the trigonometric collection [T], no upper bound for

the regularity αψ is required.

Proof. The result is a straightforward consequence of the results of DeVore and

Lorentz (1993) and of Lemma 12 of Barron, Birgé and Massart (1999). They imply

that, if ψ ∈ Bαψ ,2,∞([0, 1]) for some αψ > 0, then ‖ψ − ψm‖ is of order D
−αψ
m in the

three collections [T], [P] and [W]. Thus the minimum order in (3.4) is reached for a

model Smn with Dmn = O([n1/(1+2αψ)]), which is less than n for αψ > 0. Then, we

find the standard nonparametric rate of convergence n−2αψ/(1+2αψ). �
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3.2.2. Adaptive estimator of the subdensity. The penalized estimator is defined in

order to ensure an automatic choice of the dimension. Indeed, it follows from Corol-

lary 3.1 that the optimal dimension depends on the unknown regularity αψ of the

function to be estimated in the asymptotic setting, and more generally on the un-

known constants involved in the squared-bias/variance terms. Then we define

(3.6) m̂ = arg min
m∈Mn

[γψn (ψ̂m) + penψ(m)]

where the penalty function penψ is determined in order to lead to the choice of a

“good” model. We easily derive the following result:

Theorem 3.1. Let Sm be a Dm-dimensional linear space in a collection satisfying

(H1) and (H2). Consider the estimator ψ̂m̂ with m̂ defined by (3.6) with

penψ(m) = κΦ2
0

(∫ 1

0

ψ(x)dx

)
Dm

n

where κ is a universal constant (κ ≥ 4 suits). Then ψ̂m̂ satisfies

(3.7) E(‖ψ̂m̂ − ψ‖2) ≤ C1 inf
m∈Mn

(
‖ψ − ψm‖2 + penψ(m)

)
+
C2

n
,

where C1 is a constant depending on κ only and C2 is a constant depending on Φ0

and on
∫ 1

0
ψ(x)dx.

Therefore, the adaptive estimator automatically makes the squared-bias/variance

compromise and from an asymptotic point of view, reaches the optimal rate, pro-

vided that the constant in the penalty is known. In practice, the constant in the

penalty, denoted above by κ, is found by simulation experiments (see Section 5).

Note that Inequality (3.7) is nevertheless non-asymptotic.

3.2.3. Random penalization of the subdensity estimator. The penalty given in The-

orem 3.1 can not be used in practice since it depends on the unknown quantity∫ 1

0
ψ(x)dx. A solution is to use that

∫ 1

0
ψ(x)dx ≤ 1; it follows that Inequality (3.7)

would hold for a penalty defined by penψ(m) = κΦ2
0Dm/n. This possibly results

in overestimation of the penalty, in a way depending on the unknown function ψ.

The alternative solution is to replace the unknown quantity by an estimator (rather

than a bound), and to prove that the estimator of ψ built with this random penalty

retains the adaptation property of the theoretical estimator. This is described in

the following theorem:
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Theorem 3.2. Assume that the assumptions of Theorem 3.1 are satisfied. Consider

the estimator ψ̂m̂ with m̂ defined by m̂ = arg minm∈Mn [γ
ψ
n (ψ̂m) + p̂enψ(m)] and

p̂enψ(m) = κΦ2
0

(
1

n

n∑
i=1

1I{Xi≤1}1I{δi=1}

)
Dm

n

where κ is a universal constant (κ ≥ 8 suits). Then ψ̂m̂ satisfies

(3.8) E(‖ψ̂m̂ − ψ‖2) ≤ inf
m∈Mn

K0

[
‖ψ − ψm‖2 + Φ2

0

(∫ 1

0

ψ(x)dx

)
Dm

n

]
+
K1

n
,

where K0 is a universal constant (depending on κ) and K1 depends on ψ, Φ0.

We can derive from Inequality (3.8) in Theorem 3.2 some adaptation result to

unknown smoothness:

Proposition 3.2. Consider the collection of models [T], [DP] or [W], with r >

αψ > 0. Assume that an estimator ψ̃ of ψ satisfies inequality (3.8) in Theorem 3.2

(respectively inequality (3.7) in Theorem 3.1). Let L > 0. Then

(3.9)

(
sup

ψ∈Bαψ,2,∞(L)

E‖ψ − ψ̃‖2

) 1
2

≤ C(αψ, L)n
−

αψ
2αψ+1

where Bαψ ,2,∞(L) = {t ∈ Bαψ ,2,∞([0, 1]), |t|αψ ,2 ≤ L} where C(αψ, L) is a constant

depending on αψ, L and also on ψ, Φ0.

3.3. Application to the estimation of the hazard rate. An estimator of the

hazard rate h is deduced from ψ̂m̂ by setting

(3.10) h̃ψ =
ψ̂m̂

1− F̂n
with F̂n(x) =

1

n+ 1

n∑
i=1

1I{Xi≤x}.

Then by using the decomposition

(3.11) h̃ψ − h =

(
ψ̂m̂ − ψ

1− F̂n
+ ψ(

1

1− F̂n
− 1

1− F
)

)
we find (see Section 6) the bound:

(3.12) E‖h̃ψ − h‖2 ≤ 24

c2F
E‖ψ̂m̂ − ψ‖2 +

C(cF , ‖ψ‖)
n

,

where C(cF , ‖ψ‖) is a constant depending on cF (defined in (2.1)) and ‖ψ‖. From

Inequality (3.12), we deduce by using results (3.7) or (3.8) that h̃ψ is an adaptive
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estimator of h if the functions h and ψ have the same regularity α = αh = αψ, or

if the distribution function G of the censoring time is smoother than the hazard

rate h (or the density f 0). An analogous result is found (without adaptation) in

Antoniadis et al. (1999). Here the following Proposition holds:

Proposition 3.3. Consider the collection of models [T], [DP] or [W], with r > αh =

αψ > 0 and the estimator h̃ψ defined by (3.10). Let L > 0. Then

(3.13)

(
sup

h∈Bαh,2,∞(L)

E‖h− h̃ψ‖2

) 1
2

≤ C(αh, L)n
− αh

2αh+1

where Bαh,2,∞(L) = {t ∈ Bαh,2,∞([0, 1]), |t|αh,2 ≤ L} where C(αh, L) is a constant

depending on αh, L and also on ψ, Φ0 and cF .

The rate in Proposition 3.3 is known from Huber and Mac Gibbon (2004) to be

optimal in the minimax sense. But it must be pointed out also that if the index

of regularity of h, αh, is greater than the index of regularity of ψ, αψ, then the

asymptotic rate of the estimator h̃ψ is given by n−αψ/(1+2αψ) instead of the optimal

one n−αh/(1+2αh). Clearly, the procedure is very simple and it is shown in Section

5 that the estimate of ψ behaves well, but it is not completely satisfactory as an

estimator of h, even if none of the indexes are required to be known for implementing

the procedure. This is due to the fact that the reference bias term here is ‖ψ−ψm‖
instead of ‖h−hm‖. This is the reason why another contrast may be chosen in order

to estimate h.

4. Study of the direct estimator of the hazard rate

In this section, we define the estimator of h and its adaptive version. The global

line of the study is the same as for estimating ψ, even if some additional difficulties

appear.

4.1. Definition of the estimator of the hazard rate. A direct estimator of the

hazard rate can be obtained by considering the following contrast function:

(4.1) γhn(t) = ‖t‖2 − 2

n

n∑
i=1

1I{Xi≤1}
δit(Xi)

1− F̂n(Xi)
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where F̂n(x) = (1/(n+ 1))
∑n

i=1 1I{Xi≤x}. An estimator of h can be defined by

(4.2) ĥm = arg min
t∈Sm

γhn(t).

Then ĥm can be expressed as

(4.3) ĥm =
∑
λ∈Λm

âλϕλ with âλ =
1

n

n∑
i=1

1I{Xi≤1}
δiϕλ(Xi)

1− F̂n(Xi)
.

If hm denotes the orthogonal projection of h on Sm, we find that

hm =
∑
λ∈Λm

aλϕλ with aλ =

∫ 1

0

h(x)ϕλ(x)dx.

4.2. Study of the quadratic risk of the hazard rate estimator ĥm. The rate

of convergence of ĥm derived by considering the following decomposition of the

contrast:

γhn(t)− γhn(s) = ‖t− h‖2 − ‖s− h‖2 − 2ν ′n(t− s)− 2Rn(t− s),(4.4)

with the centered empirical process defined by

(4.5) ν ′n(t) =
1

n

n∑
i=1

(
1I{Xi≤1}

δit(Xi)

(1− F (Xi))
−
∫ 1

0

t(x)h(x)dx

)
and the residual term

Rn(t) =
1

n

n∑
i=1

1I{Xi≤1}
δit(Xi)(F (Xi)− F̂n(Xi))

(1− F (Xi))(1− F̂n(Xi))
.

This leads to the following result:

Proposition 4.1. Consider the estimator ĥm given by (4.2) or (4.3) where Sm is a

Dm-dimensional linear space in a collection satisfying (H1). Then

(4.6) E(‖ĥm − h‖2) ≤ 7‖hm − h‖2 +KΦ2
0

Dm

n

(∫ 1

0

h(x)

1− F (x)
dx+

1

c6F

)
where K is a numerical constant.

Equation (4.6) gives the usual terms of the squared-bias / variance term de-

composition, up to the constants and therefore, the usual rate n−2αh/(2αh+1) when

h ∈ Bαh,2,∞([0, 1]) for a choice of Dm of order n1/(2αh+1).
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Proof of Proposition 4.1. By taking t = ĥm and s = hm in (4.4), it follows from

γhn(ĥm) ≤ γhn(hm) that:

(4.7) ‖ĥm − h‖2 ≤ ‖hm − h‖2 + 2ν ′n(ĥm − hm) + 2Rn(ĥm − hm).

For the centered empirical process, the standard bound follows:

2 E(|ν ′n(ĥm − hm)|) ≤ 1

8
E(‖ĥm − hm‖2) + 8 E

(
sup

t∈Sm,‖t‖=1

(ν ′n(t))
2

)

≤ 1

4
E(‖ĥm − h‖2) +

1

4
‖hm − h‖2 + 8Φ2

0

Dm

n

∫ 1

0

h(x)

(1− F (x))
dx.(4.8)

For the residual term Rn, consider the set

(4.9) ΩcF = {ω,∀x ∈ [0, 1], F (x)− F̂n(x) > −cF/2}

where cF is defined by (2.1), on which 1− F̂n(x) = 1−F (x)+F (x)− F̂n(x) ≥ cF/2.

Note that 1− F̂n(x) ≥ 1/(n+ 1) otherwise. Therefore:

2E(|Rn(ĥm − hm)|1IΩcF ) ≤ 4Φ0

√
Dm

c2F
E(‖ĥm − hm‖‖F̂n − F‖∞)

≤ 1

8
E(‖ĥm − hm‖2) + 32

Φ2
0Dm

c4F
E(‖F̂n − F‖2

∞)

≤ 1

4
E(‖ĥm − h‖2) +

1

4
‖hm − h‖2 + 32Φ2

0c
−4
F C1

Dm

n
,(4.10)

where C1 is defined in Lemma 6.1. On the other hand, on the complement of ΩcF ,

2E(|Rn(ĥm − hm)|1IΩccF ) ≤ 2Φ0(n+ 1)
√
Dm

cF
E(‖ĥm − hm‖‖F̂n − F‖∞1I{‖F−F̂n‖∞>cF /2})

≤ 1

8
E(‖ĥm − hm‖2) + 27 Φ2

0Dm(n+ 1)2

c6F
E(‖F̂n − F‖6

∞)

≤ 1

4
E(‖ĥm − h‖2) +

1

4
‖hm − h‖2 + 28Φ2

0C3c
−6
F

Dm

n
,(4.11)

where C3 is defined in Lemma 6.1. By gathering (4.8), (4.10) and (4.11) together in

(4.7), the result follows. �

4.3. Adaptation with theoretical and random penalization. As in the case

of the study of ψ, the decomposition (4.6) shows that ĥm can reach the minimax

usual rate if the dimension Dm is relevantly chosen as a function of n and of the
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unknown smoothness of the function h. Therefore, here again, we need to build an

adaptive estimator and the model selection procedure is:

(4.12) m̂ = arg min
m∈Mn

(
γhn(ĥm) + penh(m)

)
.

Then by using decomposition (4.7) again, the following theorem can be proved:

Theorem 4.1. Assume that supx∈[0,1] f(x) ≤ f1 and the Sm’s are Dm-dimensional

linear spaces in collections [T], [DP] or [W] with |Mn| ≤ n and Nn ≤ n/(16f1Kϕ)

for [DP] and [W] and Nn ≤
√
n/(4

√
f1) for [T], where Kϕ is a constant depending

on the basis only. Then the estimator ĥm̂ with m̂ defined by (4.12) and

penh(m) = κΦ2
0

(∫ 1

0

h(x)

1− F (x)
dx

)
Dm

n

where κ is a universal constant (κ > 16 suits) satisfies

(4.13) E(‖ĥm̂ − h‖2 ≤ inf
m∈Mn

(
7‖h− hm‖2 + 8penh(m)

)
+
C
√

ln(n)

n
,

where C is a constant depending on f1, Φ0, cF = infx∈[0,1](1− F (x)).

As for ψ, the penalty given in Theorem 4.1 can not be used in practice since it

depends on the unknown quantity
∫ 1

0
h(x)/(1− F (x))dx. Therefore we replace this

quantity by an estimator. We can then prove that the estimator of h built with this

random penalty retains the adaptation property of the theoretical estimator. The

idea is that
∫ 1

0
h(x)/(1 − F (x))dx is the second order moment of the independent

random variables 1I{δi=1,Xi≤1}/(1− F (Xi)) and therefore can be estimated by

(4.14) ŝ2 =
1

n

n∑
i=1

1I{Xi≤1}δi

(1− F̂n(Xi))2
, F̂n(x) =

1

n+ 1

n∑
i=1

1I{Xi≤x}.

The following result holds:

Corollary 4.1. Under the assumptions of Theorem 4.1 but with penh(m) replaced

by

p̂enh(m) = κΦ2
0ŝ2

Dm

n

where ŝ2 is defined by (4.14) and κ is a universal constant (κ > 16 suits), the

estimator ĥm̂ satisfies (4.13).
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Then the result given for the “ratio” estimator h̃ψ in Proposition 3.3 holds for

h̃ = ĥm̂ defined in Theorem 4.1 without the restrictive condition αh = αψ. Therefore

this second estimator can automatically reach the optimal minimax rate in all cases.

However, note that the condition αh > 0 for [DP] and [W] becomes αh > 1/2 for

collection [T] since in that case, it follows from Theorem 4.1 that Nn ≤ O(
√
n).

4.4. Adaptive estimation of the hazard rate with a general collection of

models. Non regular models are of great interest to capture some variability in

the regularity of the function to be estimated and are in particular applied for

the detection of ruptures. Moreover, it is likely to be well suited for hazard rate

estimation because of the frequent scarsity of the observations at the end of the time

interval. Extension of the results to such a framework is possible under some mild

restrictions. Some adaptation results are proved by Reynaud-Bouret (2002) for non

regular histograms provided that knots are chosen in a set of cardinality less than

n/ ln2(n). We can prove here a similar result, with a similar constraint, with the

additional advantage that we consider a more general collection than histograms,

namely piecewise polynomials. Let Kn = Nn/(r + 1) where Nn is the dimension of

the largest space of the collection. We consider the set of knots Γ = {`/Kn, ` =

1, . . . , Kn − 1}. A general piecewise polynomial model, non necessarily regular, is

then defined by the maximal degree r of the polynomials and a set of knots

{a0 = 0, a1, . . . , a`, a`+1 = 1}

where {a1, . . . a`} is any subset of Γ : its dimension is Dm = (` + 1) (r + 1). This

means that with a non regular collection, for any fixed dimension Dm, there is(
Kn − 1

`

)
associated models corresponding to the possible choices of the subset

{a1, . . . a`} with ` = 1, . . . , Kn − 1. Therefore, the cardinality of the set Mn of all

possible m is:

Kn−1∑
`=1

(
Kn − 1

`

)
= 2Kn−1 − 1 =

1

2
exp(Kn ln(2))− 1 .

Since Kn is of order n, it is exponentially great. In any case, it is much greater than

the order O(n) obtained in the regular case, when only one model per dimension is
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considered. The ϕλ’s for λ = (aj, aj+1; k) ∈ Λm are given by√
2k + 1

aj − aj−1

Qk

(
2

aj − aj−1

x− aj + aj−1

aj − aj−1

)
1I[aj−1,aj [(x)

for k = 0, 1, . . . , r and j = 0, . . . , `+ 1, where Qk denotes the kth Legendre polyno-

mial. We call [GP] this general collection of piecewise polynomials.

Note that the key property (2.2) no longer holds for this collection. We can never-

theless prove the following result:

Theorem 4.2. Let Sm be a Dm-dimensional linear space in the general collection

of piecewise polynomials [GP] with Nn ≤ Kn/ ln(n) for a given constant K. Then

the estimator ĥm̂ with m̂ defined by (4.12) and

(4.15) pen(m) = κ sup
x∈[0,1]

(
h(x)

1− F (x)

)
Dm(1 + ln(n))

n

where κ is a universal constant satisfies

(4.16) E(‖ĥm̂ − h‖2 ≤ inf
m∈Mn

(
3‖h− hm‖2 + 4pen(m)

)
+
K

n
,

where K is a constant depending on h, F and r.

Note first that the additional ln(n) factor in the penalty implies a ln(n) factor loss

in the resulting asymptotic rates which become of order O((n/ ln(n))−2αh/(2αh+1))

in the best case. This is the price to pay for considering such a huge collection of

models. Secondly, the unknown term in the penalty is now supx∈[0,1](h(x)/(1−F (x))

and must be replaced by an estimator as in the previous subsection. For instance

choose supx∈[0,1][ĥn(x)/(1 − F̂n(x))] where ĥn is a given estimator of h on a well

chosen regular space of piecewise polynomials and F̂n is the empirical distribution

of the data as defined above.

5. Simulations and examples

5.1. Examples. For simulated observations in [0, a] (where a is the maximum of

the observed Xi’s), we compute one estimator of ψ and two estimators of h. For the

sake of simplicity, we use here the trigonometric basis and this yields:

ψ̂D(x) =
â1√
a

+

√
2

a

[D/2]∑
k=1

â2k cos

(
2πkx

a

)
+

√
2

a

[(D−1)/2]∑
k=1

â2k+1 sin

(
2πkx

a

)
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with

â1 =
1

n
√
a

n∑
i=1

δi, â2k =

√
2

n
√
a

n∑
i=1

δi cos

(
2kπXi

a

)
, â2k+1 =

√
2

n
√
a

n∑
i=1

δi sin

(
2kπXi

a

)
.

Then we select D̂ψ such that the penalized contrast, equal to −
∑D

j=1 â
2
j +κψŝ

ψ
2D/n

is minimal. Here ŝψ2 =
∑n

i=1 δi/n and κψ is a well chosen constant. Given ψ̂D̂ψ = ψ̃,

the estimator of h is defined as h̃ψ = ψ̃/(1− F̂ ) (cf. (3.10)) where we took F̂ (x) =

(1/(n+ 5))
∑n

i=1 1I{Xi≤x}. The other estimator is computed as

ĥD(x) =
b̂1√
a

+

√
2

a

[D/2]∑
k=1

b̂2k cos

(
2πkx

a

)
+

√
2

a

[(D−1)/2]∑
k=1

b̂2k+1 sin

(
2πkx

a

)
with

b̂1 =
1

n
√
a

n∑
i=1

δ(i)

1− F̂ (X(i))
, b̂2k =

√
2

n
√
a

n∑
i=1

δ(i)

1− F̂ (X(i))
cos

(
2kπX(i)

a

)
,

b̂2k+1 =

√
2

n
√
a

n∑
i=1

δ(i)

1− F̂ (X(i))
sin

(
2kπX(i)

a

)
,

where we took F̂ (X(i)) = max(1.5,min(1/(1 − i/(n + 5)),
√
n). Here X(i) is the

i-th order statistic for the sample (X1, . . . , Xn) and δ(i) is the induced order statistic

corresponding toX(i). Note that all denominators 1−i/(n+1) have been replaced by

1− i/(n+ log2(n)) for numerical reason. Then we select D̂h such that the penalized

contrast, equal to −
∑D

j=1 b̂
2
j + κhŝ2D/n is minimal. Here ŝ2 = (1/n)

∑n
i=1 δ(i)/(1−

i/(n + log2(n)))2 and κh is a well chosen constant. Then h̃ = ĥD̂h is the other

estimator of h.

Here the penalty is calibrated with κψ = κh = 0.5 and following the findings of

Birgé and Rozenholc (2002) for density estimation, we replace the term D/n in

both penalties by (D + ln(D)2.5)/n. Moreover, we removed the four (for n = 200)

or five (for n = 500) largest values of the sample before computing the estimators

and took F̂ (x) = (1/(n+ log2(n)))
∑n

i=1 1I{Xi≤x} to avoid some instability problems

due to the divisions.

For simulating the data, we consider two cases:

(a) The first set of simulations is called in the following the “Gamma case”. The

X0
i ’s are generated from a Gamma distribution with shape parameter 5 and scale 1

and the independent Ci’s from an exponential distribution with mean 6.
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(b) The second set is called “the bimodal case”. The X0
i ’s have a bimodal density

defined by

f 0 = 0.8u+ 0.2v

where u is the density of exp(Z/2) with Z ∼ N (0, 1) and v = 0.17Z + 2. The C ′
is

are generated from an exponential distribution with mean 2.5.

Examples of estimation are given in Figures 1, 2 and 3. Figure 1 illustrates the

interest of a relevant selection of D (D too small implies a curve too flat, D too

great implies too much variance). Most plots for the estimation of h are usually

truncated since it is well known that the estimation is often bad at the end of the

interval. We kept the whole interval of estimation to illustrate it, but it is clear that

a plot stopping at x = 6 for Figure 2 and at x = 2 for Figure 3 would look better

(see Antoniadis et al. (1999, Fig. 1 and 2)) and avoid the problem of sparsity of

the observations at the end of the interval. Moreover it appears that the estimators

behave in very different ways, in particular at the end of the intervals.

0 5 10
−0.02

0

0.02

0.04

0.06

0.08

0.1

0 5 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0 5 10
−0.02

0

0.02

0.04

0.06

0.08

0.1

Figure 1. Estimation of ψ for n = 500 in model (a), with different

dimensions of the projection space (left: D = 3, center: D = 5, right:

D = 13). .....: true function ψ, —–: estimated ψ, ψ̂D.

5.2. Simulation results. The two examples (a) and (b) have been studied by

Antoniadis et al. (1999) (wavelet estimator with selection of the coefficients by cross-

validation) and Reynaud-Bouret (2002) (histogram and Fourier estimators of the
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Figure 2. Estimation of ψ and h in the Gamma case (a).

Dotted: true function (left: ψ, right: h), continuous: ψ̃ (left) and h̃ψ

(right), dashed: h̃ (right). L2: MSE, rL2: restricted MSE2 (for ψ̃ (left), or

for h̃ψ (right, index 1) and for h̃ (right, index 2).

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
L2=0.000667

rL2=0.000811

0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

L2
1
=0.68 --- L2

2
=0.992

rL2
1
=0.0305 -- rL2

2
=0.0178

Figure 3. Estimation of ψ and h in the Bimodal case (b).

Dotted: true function (left: ψ, right: h), continuous: ψ̃ (left) and h̃ψ

(right), dashed: h̃ (right). L2: MSE, rL2: restricted MSE2 (for ψ̃ (left), or

for h̃ψ (right, index 1) and for h̃ (right, index 2).
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Aalen intensity). Antoniadis et al. (1999) estimate both the subdensity and the

hazard rate, whereas Reynaud-Bouret (2002) estimates h only. We compare our

results to theirs in Table 1 for ψ and in Tables 2 and 3 for h.

The authors give the mean squared errors of their estimator computed over T =

200 replications of samples of size n = 200 and n = 500. The error is computed

over K regularly spaced points tk, k = 1, . . . , K, of the interval in which the Xi’s

fall ([0,maxXi]), as the mean over the replications j of

MSEj =
1

K

K∑
k=1

(h(tk)− ĥj(tk))
2

where ĥj is the estimate of h for the sample number j, j = 1, . . . , T .

Estimator of ψ of Our estimator of ψ,

Antoniadis et al. ψ̃.

Model Gamma Bimodal Gamma Bimodal

n = 200 500 200 500 200 500 200 500

MSE ×105 18.5 6.7 369 263 17.3 8.52 340 130

Table 1. Results of Antoniadis et al. (1999, Table 2) and of our estimator for the

estimation of ψ, T = 200 replications.

In order to take into account the sparsity of the observations at the end of the

interval, (P(X0 > 6) = 0.25 in the Gamma case and P(X0 > 2) = 0.16 in the

bimodal case), they also compute an error MSE2 defined by the same kind of mean

squared error but with a truncated mean over the tk’s less than 6 in the Gamma

case and 2 in the bimodal case. For K = 64, Table 1 compares our results to those

of Antoniadis et al. (1999). Note that we consider only the global MSE here since

we can see from Figures 2 and 3 that there is not any problem at the end of the

interval for ψ. We can see that the results have the same orders, our estimator seems

slightly better (three of our MSE values out of four are better with our estimator).

A larger set of examples should be studied to get more conclusive evidence.

Reynaud-Bouret (2002) studies a Fourier strategy for an adaptive estimator based

on a contrast different from ours and for the same kind of data. We expect to obtain

results of the same order, but with a theoretically simpler tool. Her results and those
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of Antoniadis et al. (1999) are recalled in Table 2, while ours are given in Table 3.

Estimator of Estimator of

Antoniadis et al. Reynaud-Bouret

Model Gamma Bimodal Gamma Bimodal

n = 200 500 200 500 200 500 200 500

MSE 0.112 0.0995 2.080 1.970 0.055 0.0579 1.259 1.122

MSE2 0.0025 0.0016 0.048 0.032 0.0032 0.0012 0.150 0.051

Table 2. Results of Antoniadis et al. (1999, Table 2) and of the Fourier strategy

in Reynaud-Bouret (2002, Table 10) for the estimation of h, T = 200 replications

h̃ψ h̃

Model Gamma Bimodal Gamma Bimodal

n = 200 500 200 500 200 500 200 500

MSE 0.0857 0.0900 0.902 0.706 0.0800 0.0986 1.117 1.140

MSE2 0.0023 0.0013 0.1068 0.0408 0.0091 0.0017 0.145 0.059

Table 3. Our results for our two estimators of h, T = 200 replications.

The first remark is that, surprisingly, h̃ψ is always slightly better than h̃. This is

probably due to the fact that the ratio strategy works well for very regular functions.

In term of the MSE, we can see that h̃ψ is always better than the estimator of

Antoniadis et al. (1999), whereas in term of the MSE2, we have the same orders.

This shows that our estimator is better with respect to the global interval and

comparable when the end of the interval is cut. The comparison with Reynaud-

Bouret (2002) shows that h̃ψ is better for both MSE and MSE2 for the second

model and slightly worse for the first one, so that as expected, we have globally the

same orders of errors. Note that the MSE2 given by Reynaud-Bouret (2002) for the

Fourier Strategy are the lowest she obtains over all the strategies she experimented.

Thus our estimator is superior to all her other strategies for estimating h in terms

of MSE2. The other strategies used by Reynaud-Bouret (2002) may be studied in

our case also, in particular by computing our projection estimator in the piecewise

polynomial basis, with local selection of the degree on each bin. But this is beyond

the scope of the present work.
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As a conclusion, it appears that the estimator h̃ψ is a very good estimator, at

least for the regular functions h considered here. Moreover h̃ obtains quite good

results that may be improved by regularization of F̂ .

6. Proofs

6.1. Preliminary results.

6.1.1. A useful Lemma. First, we give a lemma used several times in the paper.

Lemma 6.1. For all k ∈ N∗, E
(
‖F̂n − F‖2k

∞

)
≤ Ck

nk
, with Ck = 2k−1 (1 + 2 k!)

and where F̂n(x) = n/(n + 1)Fn(x) and Fn(x) stands for the standard empirical

distribution function of the Xi’s.

Proof. E
(
‖Fn − F‖2k

∞
)
≤ 2k

∫ +∞

0

x2k−1 P(‖Fn − F‖∞ > x) dx. Now, it follows

from Massart (1990) that ∀λ > 0,P(
√
n‖Fn − F‖∞ ≥ λ) ≤ 2e−2λ2

, where Fn(x) =

(1/n)
∑n

i=1 1I{Xi≤x}. This gives after successive changes of variables

E
(
‖Fn − F‖2k

∞
)
≤ 4k

∫ +∞

0

x2k−1 e−2nx2

dx =
4k

(2n)k

∫ +∞

0

x2k−1 e−x
2

dx

=
2k

(2n)k

∫ +∞

0

xk−1 e−x dx =
2k

(2n)k
Γ(k) =

2 k!

(2n)k
.

Moreover,

E(‖F̂n − F‖2k
∞) ≤ 22k−1 E

(
‖F̂n − Fn‖2k

∞ + ‖Fn − F‖2k
∞

)
≤ 22k−1

((
1

n+ 1

)2k

+
2 k!

(2n)k

)
≤ 22k−1 1 + 2 k!

(2n)k
. �

6.1.2. Talagrand’s Theorem. Most of the proofs are based on the use of the following

version of Talagrand’s Inequality (see Talagrand (1996)):

Theorem 6.1. Let Z1, . . . , Zn be i.i.d. random variables and νn(g) be defined by

νn(g) = (1/n)
∑n

i=1[g(Zi)− E(g(Zi))] for g belonging to a countable class G of uni-

formly bounded measurable functions. Then for ε > 0

(6.1)

E
[
sup
g∈G

|νn(g)|2 − 2(1 + 2ε)H2

]
+

≤ 6

K1

(
v

n
e−K1ε

nH2

v +
8M2

1

K1n2C2(ε)
e
−K1C(ε)

√
ε√

2
nH
M1

)
,



PENALIZED CONTRAST ESTIMATOR OF DENSITY AND HAZARD RATE 23

with C(ε) = (
√

1 + ε− 1) ∧ 1, K1 is a universal constant, and where

sup
g∈G

‖g‖∞ ≤M1, E
(

sup
g∈G

|νn(g)|
)
≤ H, sup

g∈G
Var(g(X1)) ≤ v.

6.2. Proofs of Theorem 3.1 and 3.2.

6.2.1. Proof of a preliminary Lemma. First, we prove the following lemma which is

useful for the proofs of the first two Theorems:

Lemma 6.2. Assume that (H1) and (H2) are fulfilled and denote by Bm,m′(0, 1) =

{t ∈ Sm+Sm′ , ‖t‖ = 1}. Let νn(gt) be the centered empirical process with gt(x, y) =

1I{y=1}∩{x≤1}t(x)−
∫ 1

0
t(x)ψ(x)dx, then for ε > 0

(6.2) E

(
sup

t∈Bm,m′ (0,1)

ν2
n(gt)− pψ(m,m′)

)
+

≤ κ1

n

(
e−κ2ε (Dm+Dm′ ) +

e−κ3ε3/2
√
n

C(ε)2

)
,

with pψ(m,m′) = 2(1+2ε)Φ2
0

∫ 1

0
ψ(x)dx (Dm +Dm′)/n and C(ε) = (

√
1 + ε− 1)∧ 1.

The constants κi for i = 1, 2, 3 depend on Φ0, ψ and F .

We apply Talagrand’s inequality (6.1) by taking Zi = (Xi, δi) for i = 1, . . . , n and

g(x, y) = gt(x, y) defined by νn(t) = νn(gt) := (1/n)
∑n

i=1 gt(Xi, δi). Usual density

arguments show that this result can be applied to the class of functions G = {gt, t ∈
Bm,m′(0, 1)}. Then we find for the present empirical process the following bounds:

supg∈G ‖g‖∞ = supt∈Bm,m′ (0,1) ‖gt‖∞ ≤ Φ0

√
D(m′) := M1 with D(m′) denoting the

dimension of Sm+Sm′ . Then supg∈G Var(g(X1, δ1)) = supt∈Bm,m′ (0,1) Var(gt(X1, δ1)) ≤
1 := v. Lastly,

E
(

sup
g∈G

ν2
n(g)

)
= E

(
sup

t∈Bm,m′ (0,1)
ν2
n(gt)

)
≤

∑
λ∈Λm,m′

1

n
Var(1I{X1≤1}δ1ϕλ(X1))

≤ Φ2
0D(m′)

n

∫ 1

0

ψ(x)dx = C1
D(m′)

n
:= H2.

with the natural notation Λm,m′ = Λm ∪ Λm′ . Then it follows from (6.1) that

E

(
sup

t∈Bm,m′ (0,1)

ν2
n(gt)− pψ(m,m′)

)
≤ κ1

(
1

n
e−κ2εD(m′) +

1

nC2(ε)
e−κ3ε3/2

√
n

)
,

where κi for i = 1, 2, 3 are constants depending on K1 and C1 and pψ(m,m′) =

2(1 + 2ε)C1(Dm +Dm′)/n. �
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6.2.2. Proof of Theorem 3.1. It follows from the definition of ψ̂m̂ that: ∀m ∈Mn,

(6.3) γψn (ψ̂m̂) + penψ(m̂) ≤ γψn (ψm) + penψ(m).

Then, by using the decomposition γψn (t)− γψn (s) = ‖t− ψ‖2 − ‖s− ψ‖2 − 2νn(gt−s),

it follows that

γn(ψ̂m̂)− γn(ψm) = ‖ψ̂m̂ − ψ‖2 − ‖ψm − ψ‖2 − 2νn(gψ̂m̂−ψm),

where the process νn(gt) is the same as previously. Then, by applying (6.3) and by

noticing that t 7→ νn(gt) is linear, we get that:

‖ψ̂m̂ − ψ‖2 ≤ ‖ψm − ψ‖2 + 2νn(gψ̂m̂−ψm) + penψ(m)− penψ(m̂)

≤ ‖ψm − ψ‖2 + 2‖ψ̂m̂ − ψm‖ sup
t∈Bm,m̂(0,1)

νn(gt) + penψ(m)− penψ(m̂)

≤ ‖ψm − ψ‖2 +
1

x
‖ψ̂m̂ − ψm‖2 + x sup

t∈Bm,m̂(0,1)

ν2
n(gt) + penψ(m)− penψ(m̂)(6.4)

where we use that for a, b positive, 2ab ≤ xa2 + x−1b2 for any positive x. We

recall that Bm,m̂(0, 1) = {t ∈ Sm + Sm̂ / ‖t‖ ≤ 1}. Note that the norm con-

nection as described by (2.2) still holds for any element t of Sm + Sm′ as follows:

‖t‖∞ ≤ Φ0 max(Dm, Dm′)‖t‖. Indeed, under (H2), we restrict our attention to

nested collections of models, so that Sm + Sm̂ is equal to the largest of the two

spaces. For a fixed integer m, we denote by D(m′) the dimension of Sm + Sm′ , for

all m′ ∈Mn. Note that D(m′) = max(Dm, Dm′) ≤ Dm +Dm′ .

Let pψ(m,m′) be such that

xpψ(m,m′) ≤ penψ(m) + penψ(m′) for all m, m′ in Mn.(6.5)

We have ‖ψ̂m̂ − ψm‖2 ≤ (1 + y−1)‖ψ̂m̂ − ψ‖2 + (1 + y)‖ψm − ψm‖2 for any positive

y. Then by choosing y = (x+ 1)/(x− 1) and x > 1, we find that: ∀m ∈Mn,

‖ψ̂m̂ − ψ‖2 ≤ C2
x‖ψ − ψm‖2 + 2Cxpenψ(m) + xCx

(
sup

t∈Bm,m̂(0,1)

ν2
n(gt)− pψ(m, m̂)

)
,

where Cx = (x+ 1)/(x− 1). Then if we prove

(6.6)

E

(
sup

t∈Bm,m̂(0,1)

ν2
n(gt)− pψ(m, m̂)

)
+

≤
∑

m′∈Mn

E

(
sup

t∈Bm,m′ (0,1)
ν2
n(gt)− pψ(m,m′)

)
+

≤ C

n
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we have the following result, which proves the theorem: ∀m ∈Mn,

E(‖ψ̂m̂ − ψ‖2) ≤ C2
x‖ψ − ψm‖2 + 2Cxpenψ(m) +

C

n
.

Therefore by using equation (6.5) and the definition of pψ(m,m′) in Lemma 6.2, we

choose penψ(m) = 2x(1+2ε)
∫ 1

0
ψ(u)du(Dm/n). Inequality (6.6) is a straightforward

consequence of Lemma 6.2 since

∑
m′∈Mn

E

(
sup

t∈Bm,m′ (0,1)

ν2
n(gt)− pψ(m,m′)

)
+

≤κ1


∑

m′∈Mn

e−κ2εD(m′)

n
+
|Mn|
n

e−κ3ε3/2
√
n

 .

Then by taking ε = 1/2 and assuming that |Mn| ≤ n and since, under (H2),∑
m∈Mn

e−aDm ≤
∑n

k=1 e
−ka < +∞,∀a > 0, and this ensures (6.6). �

6.3. Proof of Theorem 3.2. Let

Ωb =

{∣∣∣∣∣
(

1

n

n∑
i=1

1I{Xi≤1}δi

)
/

(∫ 1

0

ψ(u)du

)
− 1

∣∣∣∣∣ < b

}
, 0 < b < 1.

Then on Ωb, the proof is quite similar to the proof of Theorem 3.1 and is omitted.

It is based on the following inequalities:

1

n

n∑
i=1

1I{Xi≤1}δi < (b+ 1)

∫ 1

0

ψ(u)du,

∫ 1

0

ψ(u)du <
1

1− b

1

n

n∑
i=1

1I{Xi≤1}δi .

We obtain for Cx = (x+ 1)/(x− 1), that ∀m ∈Mn,

E
(
‖ψ̂m̂ − ψ‖21IΩb

)
≤ C2

x ‖ψm − ψ‖2 +
2CxΦ

2
0

(1− b)

(∫ 1

0

ψ(u)du

)
Dm

n
+
K

n
,

for p̂enψ(m) = 2x(1 + 2ε)/(1− b)Φ2
0((1/n)

∑n
i=1 1I{Xi≤1}δi)(Dm/n). Next we need to

prove that

(6.7) E
(
‖ψ̂m̂ − ψ‖21IΩcb

)
≤ K ′

n
.

By analogy with (6.4), it follows from γψn (ψ̂m̂) ≤ γψn (ψm̂) that ‖ψ̂m̂ − ψ‖2 ≤ ‖ψ −
ψm̂‖2 +2νn(gψ̂m̂−ψm̂) ≤ ‖ψ−ψm̂‖2 +(1/4)‖ψ̂m̂−ψm̂‖2 +4 supt∈Sm̂,‖t‖=1 ν

2
n(gt) that is

‖ψ̂m̂ − ψ‖2 ≤ 3‖ψ‖2 + 8 sup
t∈Sm̂,‖t‖=1

ν2
n(gt).(6.8)
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Then supt∈Sm̂,‖t‖=1 ν
2
n(gt) ≤

∑
m∈Mn

(
supt∈Sm,‖t‖=1 ν

2
n(gt)− penψ(m)

)
+

+ penψ(m̂).

We know by Lemma 6.2 that, for some well chosen κ in penψ(m),

E

( ∑
m∈Mn

(
sup

t∈Sm,‖t‖=1

(ν2
n(gt)− penψ(m))

)
+

1IΩcb

)
≤ K

n
.

On the other hand, ∀m ∈ Mn, penψ(m) ≤ K ′, with K ′ = κΦ2
0

∫ 1

0
ψ(u) du, so that

E
(
penψ(m̂)1IΩcb

)
≤ K ′ P(Ωc

b). Therefore

(6.9) E

(
sup

t∈Sm̂,‖t‖=1

νn(gt)
21IΩcb

)
≤ K

n
+K ′P(Ωc

b),

so that, by gathering (6.8) and (6.9), Inequality (6.7) holds provided that P(Ωc
b) ≤

1/n. Let B = b
∫ 1

0
ψ(u)du, then by Tchebychev Inequality, we can write

P(Ωc
b) = P

(∣∣∣∣∣ 1n
n∑
i=1

1I{Xi≤1}δi −
∫ 1

0

ψ(u)du

∣∣∣∣∣ > B

)

≤ 1

B2
Var

(
1

n

n∑
i=1

1I{Xi≤1}δi

)
=

(∫ 1

0
ψ(u)du

)−1

n b2

and we prove the result. �

6.4. Proof of Inequality (3.12). It follows from (3.11) and the definition of ΩcF

that

‖h̃ψ − h‖ ≤ 2

cF
‖ψ̂m̂ − ψ‖+

2

c2F
‖ψ(F̂n − F )‖+ (n+ 1)

(
(‖ψ̂m̂‖+ ‖ψ‖) +

‖ψ‖
cF

)
1IΩccF .

By noting that

‖ψ̂m̂‖2 =
∑
λ∈Λm̂

â2
λ ≤

1

n2

∑
1≤i,j≤n

√∑
λ∈Λm̂

ϕ2
λ(Xi)

∑
λ∈Λm̂

ϕ2
λ(Xj) ≤ Φ2

0Dm̂ ≤ Φ2
0n,

and by taking the expectation

E‖h̃ψ − h‖2 ≤ 4

(
2

cF

)2

E‖ψ̂m̂ − ψ‖2 + 4

(
2

c2F

)2

‖ψ‖2E(‖F̂n − F‖2
∞)

+
4(n+ 1)2

c2F
(Φ2

0n+ 4‖ψ‖2)P
(
‖F − F̂n‖∞ > cF/2

)
By applying Lemma 6.1, it follows that E(‖F̂n − F‖2

∞) ≤ C1/n and that

P
(
‖F − F̂n‖∞ > cF/2

)
≤
(

2

cF

)8

E(‖F̂n − F‖8
∞) ≤

(
2

cF

)8
C4

n4
.�
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6.5. Proof of Theorem 4.1 and of Corollary 4.1. We apply Talagrand’s inequal-

ity given by theorem 6.1 to Zi = (Xi, δi) , i = 1, . . . , n and now g(x, y) = kt(x, y) =

1I{x≤1,y=1}t(x)/(1− F (x)), so hereafter, ν ′n(t) = νn(kt). Then supt∈Bm,m′ (0,1) ‖kt‖∞ ≤
(Φ0/cF )

√
D(m′) := M1, with Bm,m′(0, 1) defined as in Lemma 6.2 and

sup
t∈Bm,m′ (0,1)

Var(kt(X1, δ1)) ≤ sup
t∈Bm,m′ (0,1)

E(t2(X1)1I{X1≤1})

c2F
≤ f1

c2F
:= v,

E

(
sup

t∈Bm,m′ (0,1)

[ν ′n(t)]
2

)
≤

∑
λ∈Λm,m′

1

n
Var

(
1I{X1≤1}δ1

ϕλ(X1)

1− F (X1)

)

≤ Φ2
0D(m′)

n

∫ 1

0

h(x)

1− F (x)
dx := H2.

Then it follows from Theorem 6.1 (in an analogous manner as for Lemma 6.2) that

(6.10)

E

(
sup

t∈Bm,m′ (0,1)

[ν ′n(t)]
2 − ph(m,m′)

)
≤ κ′1

(
1

n
e−κ

′
2εD(m′) +

1

nC2(ε)
e−κ

′
3ε

3/2√n
)
,

where κ′i for i = 1, 2, 3 are constants depending onK1 and f1, cF , Φ0 and
∫ 1

0
h(x)/(1−

F (x))dx, and

(6.11) ph(m,m′) = 2(1 + 2ε)Φ2
0

∫ 1

0

h(x)

1− F (x)
dx
Dm +Dm′

n
.

As for the study of ψ̂m̂, we can write that ĥm̂ satisfies: ∀m ∈Mn,

(6.12) γhn(ĥm̂) + penh(m̂) ≤ γhn(hm) + penh(m).

Then by using decomposition (4.4), it follows from (6.12) and from the definition of

the process ν ′n(t) = νn(kt) that:

‖ĥm̂ − h‖2 ≤ ‖hm − h‖2 + 2ν ′n(ĥm̂ − hm) + penh(m)− penh(m̂) + 2Rn(ĥm̂ − hm)

≤ ‖hm − h‖2 +
1

8
‖ĥm̂ − hm‖2 + 8 sup

t∈Bm,m̂(0,1)

[ν ′n(t)]
2

+penh(m)− penh(m̂) + 2|Rn(ĥm̂ − hm)|1IΩcF + 2|Rn(ĥm̂ − hm)|1IΩccF(6.13)

where we recall that Bm,m̂(0, 1) = {t ∈ Sm + Sm̂ / ‖t‖ ≤ 1} and ΩcF is defined by

(4.9). On Ωc
cF

, it follows from (4.11) that

(6.14) 2E(|Rn(ĥm̂ − hm)|1IΩccF ) ≤ 1

4
E(‖ĥm̂ − h‖2) +

1

4
‖hm − h‖2 +

211C4Φ
2
0

nc8F
.
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On the other hand, for νn”(t) = (1/n)
∑n

i=1[t(Xi)1I{Xi≤1}−E(t(Xi))] and Bn(0, 1) =

{t ∈ Sn, ‖t‖ = 1}, we find

2 |Rn(ĥm̂ − hm)|1IΩcF ≤ 2

c2F
‖ĥm̂ − hm‖‖F̂n − F‖∞ sup

t∈Bm,m̂(0,1)

1

n

n∑
i=1

|t(Xi)|1I{Xi≤1}

≤ 1

8
‖ĥm̂ − hm‖2 +

8

c4F
‖F̂n − F‖2

∞ sup
t∈Bn(0,1)

1

n

n∑
i=1

t2(Xi)1I{Xi≤1}

≤ 1

4
‖ĥm̂ − h‖2 +

1

4
‖hm − h‖2 +

8f1

c4F
‖F̂n − F‖2

∞
8

c4F
‖F̂n − F‖2

∞ sup
t∈Bn(0,1)

|νn”(t2)|.

Then it follows from Baraud (2002) (see also Baraud et al. (2001)) that

P

(
sup

t∈Bn(0,1)

|νn”(t2)| ≥ ρ

)
≤ |Λn|2 exp

(
− nρ2

4f1L(ϕ)

)

where L(ϕ) is a quantity associated with the orthonormal basis of the largest space

of the collection. Moreover, let Sn denote this space and (ϕλ)λ∈Λn denote its or-

thonormal basis, then |Λn| = dim(Sn) := Nn. We know from Baraud (2002) that

L(ϕ) ≤ KϕNn for the basis [DP] and [W] and L(ϕ) ≤ N2
n for the basis [T ]. Conse-

quently

E

(
sup

t∈Bn(0,1)

[ν”n(t
2)]2

)

≤ 2

∫ √ln(n)

0

xP

(
sup

t∈Bn(0,1)

|νn”(t2)| ≥ x

)
dx+ 2

∫ +∞

√
ln(n)

xP

(
sup

t∈Bn(0,1)

|νn”(t2)| ≥ x

)
dx

≤ ln(n) +
8f1N

2
nL(ϕ)

n

∫ +∞

√
n ln(n)

2
√
f1L(ϕ)

ue−u
2

du ≤ ln(n) + 4f1NnL(ϕ) exp

(
− n ln(n)

4f1L(ϕ)

)
.

It follows that if L(ϕ) ≤ n/(16f1), which holds if Nn ≤ n/(16f1Kϕ) for [DP] and

[W] and if Nn ≤
√
n/(4

√
f1) for [T], then

E

(
sup

t∈Bn(0,1)

[νn”(t2)]2

)
≤ ln(n) +

1

4n2
≤ 2 ln(n) if n ≥ 2.
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This leads to

2E(|Rn(ĥm̂ − hm)|1IΩcF )

≤ 1

4
E(‖ĥm̂ − h‖2) +

1

4
‖hm − h‖2 +

8f1C2

nc4F
+

8

c4F
E1/2(‖F̂n − F‖4

∞)E1/2( sup
t∈Bn(0,1)

|νn”(t2)|)

≤ 1

4
E(‖ĥm̂ − h‖2) +

1

4
‖hm − h‖2 +

8f1C2

nc4F
+

8C
1/2
4

nc4F

√
2 ln(n) .

By gathering (6.13), (6.14) and the inequality above, we obtain

1

4
E(‖ĥm̂ − h‖2) ≤ 7

4
‖hm − h‖2 + penh(m) + 8E(ph(m, m̂)− penh(m̂))

+8
∑

m′∈Mn

E
(
[ν ′n(t)]

2 − ph(m,m′)
)
+

+
K
√

ln(n)

n
.(6.15)

We take penh(m) such that

8ph(m,m′) ≤ penh(m) + penh(m′) for all m, m′ in Mn.(6.16)

A straightforward consequence of (6.10) is that the sum over m ∈ Mn is O(1/n),

so that Inequality (4.13) holds if Nn ≤ n/(16Kϕf1) for [DP] and [W] and if N2
n ≤

n/(16f1) for [T]. This ensures the result of Theorem 4.1.

The proof of Corollary 4.1 is similar to the proof of Theorem 3.2 with now

Ω̃b =

{∣∣∣∣∣
(

1

n

n∑
i=1

1I{Xi≤1}δi

(1− F̂n(Xi))2

)
/

(∫ 1

0

h(x)

1− F (x)
dx

)
− 1

∣∣∣∣∣ < b

}
,

for 0 < b < 1. The result holds because we can prove that P(Ω̃c
b) ≤ 1/n, by iterated

but simple use of Lemma 6.1. �

6.6. Proof of Theorem 4.2. The problem now is that the norm connection ‖t‖∞ ≤
Φ0

√
Dm‖t‖ no longer holds for t ∈ Sm but is replaced by ‖t‖∞ ≤ Φ0

√
Nn‖t‖.

Preliminary 1. The first point is to take into account that, as the collection contains

a great number of models, some weights are required in order to find convergent

series. Indeed, note that, for Ln = ln(n)/(r + 1),∑
m∈Mn

e−LnDm =
Kn−1∑
`=1

(
Kn − 1

`

)
e−Ln(`+1)(r+1) = e−Ln(r+1)

[
(1 + e−Ln(r+1))Kn−1 − 1

]
≤

(
1 + e−Ln(r+1)

)Kn ≤ (1 +
1

n

)n
≤ e,
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by using that Kn ≤ n. Taking Ln = L simply leads in that case to an exponentially

divergent sum.

Preliminary 2. We can prove that there exists a real function θ on Sn such that for

all t ∈ Sn and m ∈Mn, ‖tm‖∞ ≤ θ(t), satisfying

(6.17) |θ(h̄n)− θ(ĥn)| ≤ Φ
√
Nn sup

λ∈Λn

|ν ′n(ϕλ) +Rn(ϕλ)|,

where h̄n is the projection of h on Sn and ĥn the projection estimator of h on Sn.
Indeed, we can simply choose θ(t) = (r + 1)‖t‖∞ and use Inequality (2.8) of Birgé

and Massart (1997). Then supn θ(h̄n) = θ(h) = (r + 1)‖h1I[0,1]‖∞ and

|θ(h̄n)− θ(ĥn)| = (r + 1)|‖h̄n‖∞ − ‖ĥn‖∞| ≤ (r + 1)‖h̄n − ĥn‖∞

≤ (r + 1)

∥∥∥∥∥∑
λ∈Λn

[
< h, ϕλ > −

1

n

n∑
i=1

1I{Xi≤1}
δiϕλ(Xi)

1− F̂n(Xi)

]
ϕλ

∥∥∥∥∥
∞

≤ (r + 1)

∥∥∥∥∥∑
λ∈Λn

(ν ′n(ϕλ) +Rn(ϕλ))ϕλ

∥∥∥∥∥
∞

≤ (r + 1) sup
λ∈Λn

|ν ′n(ϕλ) +Rn(ϕλ)|

∥∥∥∥∥∑
λ∈Λn

ϕλ

∥∥∥∥∥
∞

≤ (r + 1)2
√
Nn sup

λ∈Λn

|ν ′n(ϕλ) +Rn(ϕλ)|

using (2.8) of Birgé and Massart (1997) again. Then we have (6.17) with Φ = (r+1)2.

Then we split the probability space Ω = Ω1 ∪ Ωc
1, with

Ω1 = {|θ(ĥn)− θ(h̄n)| ≤ ‖h1I[0,1]‖∞}.

Then we bound E(‖h− ĥm̂‖21IΩ1). Now, we proceed in two steps :

Step 1. On Ω1,

sup
m,m′

‖hm − ĥm′‖∞ ≤ θ(h̄n) + θ(ĥn) ≤ |θ(ĥn)− θ(h̄n)|+ 2θ(h̄n)

≤ ‖h1I[0,1]‖∞ + 2θ(h) := C(h).

Let Wn(m
′) =

 ∑
t∈S∗

m′ ,0 6=‖t−hm‖∞≤C(h)

∣∣∣∣ν ′n( t− hm
‖t− hm‖ ∨ x(m′)

)∣∣∣∣
2

− p(m,m′)


+

then we have

2|ν ′n(h̃− hm)| ≤ 1

4
‖hm− h‖2 +

1

4
‖h− ĥm̂‖2 +

1

8
x(m̂)2 + 8

∑
m′∈Mn

Wn(m
′) + 8p(m, m̂),
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with x(m′)2 = 8 ln(n)(Dm + D′
m)/n. Then we apply inequality (6.1) with v =

‖h1I[0,1]‖∞/cF ,M1 = C(h)/(cFx(m
′)),H2 = [supx∈[0,1] h(x)/(1−F (x))](Dm+Dm′)/n,

and bounding
∑

λ E(ϕ2
λ(X1)/(1−F (X1))

2) by supx∈[0,1][h(x)/(1−F (x))]D(m′) since∫
ϕ2
λ(x)dx = 1. By applying Theorem 6.1 again, this gives the bound

E(Wn(m
′)1IΩ1) ≤ C1

(
1

n
e−C2εDm′ +

1

nC2(ε)
e−C3C(ε)

√
ε
√

ln(n)Dm′

)
,

where Ci, i = 1, 2, 3 are constants depending on ‖h1I[0,1]‖∞, C(h), supx∈[0,1] h(x)/(1−
F (x)) and cF for the choice: p(m,m′) = 2(1 + 2ε) supx∈[0,1] h(x)/(1 − F (x))(Dm +

Dm′)/n. Therefore, choosing ε = KLn with K > max(1/C2, 1/[(r + 1)C2
3 ]) and

C(ε) = 1 we find that all terms are of order less than (1/n)e− ln(n)Dm′/(r+1). We

find a global order less than 1/n since we have checked in Preliminary 1 that∑
m′∈Mn

e− ln(n)Dm′/(r+1) is bounded, for a penalty given by (4.15). The other terms

of (6.13) are bounded as previously.

Step 2. On the complement of Ω1, we use (6.17). Since h̃ can be seen as the

orthogonal projection of ĥn on Sm̂, we have

‖h̃‖ ≤ θ(ĥn) ≤ θ(h̄n) + |θ(ĥn)− θ(h̄n)| ≤ θ(h) + Φ
√
Nn sup

λ∈Λn

|ν ′n(ϕλ) +Rn(ϕλ)|

≤ θ(h) + C(Φ,Φ0, cF ,

∫ 1

0

h(x)dx)nNn

using that ‖ϕλ‖∞ ≤ Φ0

√
Nn and some rough bounds as: ‖F − F̂n‖∞ ≤ 2, 1/(1 −

F̂n(x)) ≤ (n+ 1). Therefore

E
[
‖h− h̃‖21IΩc1

]
≤ 2‖h‖2P(Ωc

1) + 2E
[
‖h̃‖21IΩc1

]
≤

[
2‖h‖2 + 4(θ(h)2 + C2(Φ,Φ0, cF ,

∫ 1

0

h(x)dx)n2N2
n)

]
P(Ωc

1).

Therefore, we need to prove that P(Ωc
1) ≤ C/n5 for Nn ≤ n. With obvious notations,

we write

P(Ωc
1) = P(|θ(ĥn)− θ(h̄n)| ≥ ‖h1I[0,1]‖∞) ≤ P

(
sup
λ∈Λn

|ν ′n(ϕλ) +Rn(ϕλ)| ≥
‖h1I[0,1]‖∞

Φ
√
Nn

)
≤

∑
λ∈Λn

P
(
|ν ′n(ϕλ)| ≥

‖h1I[0,1]‖∞
2Φ
√
Nn

)
+ P

(
|Rn(ϕλ)| ≥

‖h1I[0,1]‖∞
2Φ
√
Nn

)
.
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For the first term, we use Bernstein inequality: let Sn =
∑n

i=1 Zi and Zi i.i.d.,

with |Zi| ≤ B, for all i = 1, . . . , n and Var(Z1) = σ2, P(Sn − E(Sn) ≥ nη) ≤
exp (−(nη2/2)/(σ2 +Bη)) .We apply it withB = 2Φ0

√
Nn/cF and σ2 = supx∈[0,1](h(x)/(1−

F (x))) and we find

P
(
|ν ′n(ϕλ)| ≥ ‖h1I[0,1]‖∞/(2Φ

√
Nn)

)
≤ 2 exp (−Kn/Nn) ≤ 2n−6

if Nn ≤ (K/6)(n/ ln(n)). Here K is a constant depending on Φ, Φ0, ‖h1I[0,1]‖∞, cF

and supx∈[0,1](h(x)/(1− F (x))). The same kind of inequality is obtained for Rn by

using again the decomposition involving ΩcF :

P
(
|Rn(ϕλ)| ≥ ‖h1I[0,1]‖∞/(2Φ

√
Nn)

)
≤ P1 + P2

where P1 is the probability of the intersection of event of interest with ΩcF and P2

with Ωc
cF

. For P2, it is easy to write P2 ≤ P(Ωc
cF

) ≤ P(‖F − F̂n‖∞ > cF/2) ≤(
2c−1
F

)12
C6n

−6. On ΩcF , we write

Rn(ϕλ) ≤ 2

c2F
‖F̂n − F‖∞

1

n

n∑
i=1

1I{Xi≤1}δi|ϕλ(Xi)|

≤ 2

c2F
‖F̂n − F‖∞

[
ν̃n(ϕλ) + E(1I{X1≤1}δ1|ϕλ(X1)|)

]
≤ 2

c2F

[
‖F̂n − F‖∞E(1I{X1≤1}δ1|ϕλ(X1)|) +

1

2
ν̃2
n(ϕλ) +

1

2
‖F̂n − F‖2

∞

]
,

where ν̃n(t) = (1/n)
∑n

i=1

(
1I{Xi≤1}δi|ϕλ(Xi)| − E(1I{X1≤1}δ1|ϕλ(X1)|)

)
. Then the re-

sult follows if Nn ≤ Kn/ ln(n) for some well chosen constant K, by using the

exponential inequality recalled in Lemma 6.1 for the terms involving ‖F − F̂n‖∞
and with Bernstein Inequality as previously for the terms involving ν̃n. �
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[1] Antoniadis, A., Grégoire, G. and Nason, G. (1999). Density and hazard rate estimation

for right-censored data by using wavelet methods. J. R. Stat. Soc., Ser. B Stat. Methodol. 61,

63-84.



PENALIZED CONTRAST ESTIMATOR OF DENSITY AND HAZARD RATE 33

[2] Baraud, Y. (2002) Model selection for regression on a random design. ESAIM P&S 6, 127-

146.

[3] Baraud, Y., Comte, F. and Viennet, G. (2001). Adaptive estimation in autoregression or

β-mixing regression via model selection. Ann. Statist 29, 839-875.
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