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Introduction

This report is about my research works from the beginning of my career at the Paris Descartes

University where I had my first assistant professor position during year 2000 to now at the

Montpellier 2 University, since my transfer in 2007.

These works deals with nonparametric estimation of different functions of interest and the

crucial question of model selection in the particular application field of survival data.

I give some perspectives on how to take advantage of model selection tools for adaptive

estimation in survival models. Censoring stands for the distinctive feature of such data and

different schemes can appear. In all cases, it requires specific procedures to take into account

the presence of censoring. Covariables are sometimes of great interest in the context of survival

data and statisticians need to consider conditional models.

The report will address the following three issues: first, we consider estimators of the haz-

ard rate, density or cumulative distribution functions in various sampling situations such as

right-censoring, interval censoring or selection bias; secondly, our study includes the presence

of covariables via the estimation of conditional mean and conditional distributions; thirdly, we

explore different regression functions such as conditional mean residual life or conditional hazard

rate. Finally, the concluding part of the document presents recent works, some of them are more

or less successfully completed and give pathes that have not yet been explored.

Here, I don’t take again the results of my Phd thesis supervised by Pr. Alain Berlinet

which dealt with optimal choice of bins for modified histograms introduced by Barron in the

sense of the Kullbak-Leibler divergence (publications [2], [3], [4]). Nevertheless, I have envisaged

applications of Barron density estimators for estimating hazard rate and it seems to me the

beginning of my interest in survival analysis.

Survival data

In many biomedical applications, the variable of interest is often a time which cannot be directly

observed. Right-censoring constitutes the common illustration of such incomplete data. In fact,

let us denote by X the time of interest, namely the time which goes by from the start of the

observation to the realisation of a terminal event of interest. If for some individuals, we observe a
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time C before the terminal event happens (such that X > C), we say the data are right-censored .

More formally, let us denote the pair (Z, δ) where Z = min(X,C) and δ = 1I(X≤C) stands for the

non-censoring indicator. The mechanism of censoring can depend on observations or not, can

be random or not... In general, the random times X and C are supposed to be independent. In

addition, we consider only random variables admitting a probability density with respect to the

Lebesgue mesure on R.

Interval censoring is another important feature. Let us introduce the following example: we

have to follow children until the aquisition of fluent reading. Some of them are already able to

read at the beginning of the shool year, others are going to learn during the period, whereas a few

of them will not read at the end year. We say the data are interval censored because the event of

interest is never observed. We just know that the event has happened or not. Interval-censoring

is frequent in epidemic studies, where the contamination time cannot be exactly known.

In the presence of censoring, estimation problems need specific statistical tools. Since the

famous product-limit estimator of Kaplan & Meier (1958) for the survival function P(X ≥ t) =:

1 − F (t), many nonparametric methods have been developed for censored data.

Following Aalen (1978)’s works, statistical inference in survival models expand rapidly, es-

pecially thanks to the point processes theory. As an example, the Nelson-Aalen estimator of the

cumulative hazard rate H(t) =
∫ t
0 h(u)du has been introduced by involving the point process

N(t) = 1I(Z≤t,δ=1) where h(t) is the intensity or hazard rate function. For details, we refer to

Andersen et al. (1993). The distribution of the time of interest can be indifferently defined

from the survival function, density probability function or hazard rate, but the last one is often

prefered by praticians who aim to interpret its form.

The first part of the report is devoted to different proposals of nonparametric hazard rate

estimators under right-censoring. Our contribution is to provide completely data-driven and

optimal procedures for estimating hazard curves.

Next, we envisage sampling situations where, in addition to the right-censoring, the data

suffer from selection bias. This is often the case in epidemiology studies. We propose different

nonparametric density and hazard rate estimators for data with both censoring and bias.

In the second part, we aim to take into account one or more covariables. We are interested

in various regression functions such as conditional mean, conditional (cumulative) distribution,

conditional density, hazard rate or mean residual life. We provide new and flexible alternatives

to the proportional hazard model introduced by Cox (1972), which states that the hazard rate

h has the following form:

h(t, x) = h0(t) exp(β′0x), t ≥ 0, x ∈ R
d

where h0 is a determinist function, called the baseline hazard, and the vector β0 ∈ R
d stands
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for the unknown multivariate parameter. In this set-up, the coefficient coefficient eβ
j
0 quantifies

the relative risk associated to the prognostic covariate xj .

Adaptive nonparametric estimation

The common thread of my works can be found in the development of nonparametric methods for

estimating adaptively various functionals of interest appearing in survival models. We adopt the

minimax risk point of view, as usual in functional estimation, namely the one that is the most

pessimistic over a given class of functions F . Optimal estimation in the minimax sens has known

a booming in the 90’s with the works by Donoho et al. (1995) or Birgé & Massart (1997). Most

often, we just give convergence rates by providing upper bound of the (L2)-risk, seeing that the

minimax rate have already been established in the literature. Unfortunately, optimal estimators

do depend on the regularity of the function to be estimated, and this regularity is described by

the considered class F of functions (Hölder, Sobolev, Besov,...). For being sure, we are able to

build an estimator which achieves the best possible rate of convergence over the class F , one

should know the regularity of the function. Such ”estimators” are often referred as oracles but

they cannot be computed from the data since they depend on unknown quantities. Adaptive

estimation solve this problem by providing data-driven estimators, which achieve automatically

the optimal rate of convergence with respect to the unknown regularity of the function to be

estimated. Oracle inequalities constitute the main tool to obtain such adaptive results and

are very attractive in a non-asymptotic point of view. Our contribution falls within the model

selection paradigm developped by Barron et al. (1999), using penalised contrast estimators.

Let s ∈ S an unknown function to be estimated from the observations X1, . . . , Xn. An

empirical γ(X1, · · · , Xn; t) := γn(t) is called a contrast for s, if t 7→ E[γn(t)] is minimum at the

point t = s over the set S. The minimisation of a contrast over a collection of finite-dimensional

approximation spaces called models (cf. Appendice A), provides a collections of estimators. Ap-

pendice A is devoted to the description of model collections and their approximation properties.

Then, we have to choose one estimator in the collection and model selection allows to make this

choice in an optimal way. To realize the usual trade-off between the squared bias term and the

variance, we have to determine a penalty term, which has to become greater the more complex

the model is. We define estimation strategies for the fonctions of interest presented above, fol-

lowing this line. Our works show how to take advantage of model selection tools, in addition

with specific technicalities to deal with survival data. Nuisance effects due to censoring or other

sampling situations do not affect convergence rates, compared to the i.i.d case. But there is a

price to pay for fixed sample sizes and we illustrate in our publications, as often as possible the

deterioration due to the sampling schemes.



Chapter 1

Adaptive Estimation in various

sampling situations

Publications [5] , [8], [10], [11], [12]

In this part, I present the results obtained for estimation of the probability density function

f , the hazard rate h and the cumulative distribution function F of a random time X in different

sampling situations: right-censoring, bias selection (with known and unknown bias) and interval-

censoring of type I (also referred as current status data). Here are also the first published papers.

We do not consider in these works the presence of covariates.

The first section 1.1 is devoted to different poroposals for estimating the hazard rate. This

also constitutes the first works with Fabienne Comte when we met in Paris Descartes University

in 2001-2002. Next, with Agathe Guilloux, who had submitted us the problem of data suffering

from selection bias, we interested ourselves to this problem and the section 1.2 presents these

works. The last section 1.3 introduces the estimator of the cumulative distribution function for

type I interval-censored data.

1.1 Hazard rate Estimators

Publications [5], [8]

Many density or hazard rate estimators have been proposed in the literature of survival

data taking into account right-censoring; among others, we can cite: Marron & Padgett (1987),

Dabrowska (1987), Stute (1995), Dabrowska et al. (1999), Efromovich (2001) or Antoniadis &

Grégoire (1990), Patil (1997), Antoniadis et al. (1999). In these papers, the proposed procedures

are not adaptive, in the sense that a regularity assumption on the unknown distribution of

the sample is required. However, the estimators (kernel or wavelet-type) achieve the optimal

6
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convergence rate associated to the Mean Integrated Squared Error.

More recently, the general study done by Reynaud-Bouret (2006) includes the adaptive

hazard rate estimation as a particular case of the intensity of a Poisson process one. Our

estimators are close to this work (in the same spirit), by the fact they use, as well as ours,

penalized contrast estimators with histogram bases.

Our goal is to propose data-driven estimators that automatically realize the trade-off between

bias and variance without any assumption on the unknown regularity of the hazard rate. Note

that, the same procedure failed to exist for kernel approaches, which are often applied for twice

differentiable functions, until the recent works by Goldenshluger & Lepski (2011).

1.1.1 Right-censoring model

Here are the main notations for describing the right-censoring model. Let X1, · · · , Xn be a n-

sample of positive random variables, which are the times of interest, independent with common

cumulative distribution function (c.d.f) F and let C1, · · · , Cn, be the censoring random variables,

independent with c.d.f G. In addition, suppose that the Ci’s are independent of the Xi’s. The

hazard rate h is defined as follows:

h(x) = lim
u→0

P(x ≤ X ≤ X + u|X ≥ x)

u

Moreover, if F has a probability density f , then we can write:

h(x) =
d

dx
H(x) =

f(x)

F̄ (x)
, if F (x) < 1.

where H = − log(F̄ ) is the cumulative hazard function and F̄ = 1 − F is the survival function.

In the right-censoring scheme, one observes the pairs (Z1, δ1), . . . , (Zn, δn) where

Zi = Xi ∧ Ci, δi = 1I(Xi≤Ci),

with the notation a ∧ b = min(a, b). Roughly speaking, the indicator δi equals 1 if the survival

time of individual i is observed. Otherwise δi = 0 and the observation is said to be censored.

Let L denote the common c.d.f of Z1, · · · , Zn and L̄ := 1−L = (1− F )(1−G) their associated

survival function.

Our estimation procedure is only valid on an interval [0, τ ] with τ < τL = min{τF , τG} and

τF = sup{x : F (x) < 1} for any c.d.f F . Without loss of generality, we set τ = 1 in the sequel,

up to a scaling change. From Antoniadis et al. (1999), since Z(n) → τL p.s as n→ ∞ where Z(n)

stands for the n-th order statistic, one can choose the value of τ greater than Z(n).

The Kaplan and Meier (1958) estimator of the survival function F̄ , is defined as follows:

KMn(x) =





n∏

i=1,Z(i)≤x

(
n− i

n− i+ 1

)δ(i)
if x ≤ Z(n)

0 if x > Z(n).
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With a slight abuse of notation, the indicator δ(i) is the one associated to the observation Z(i).

But, this definition needs the largest Z(n) to be non-censored. Moreover, we have to assume the

estimator does not go to zero and we use a slight modification of the Kaplan-Meier estimator

proposed by Lo et al. (1989):

F̄n(x) =





n∏

i=1, Z(i)≤x

(
n− i+ 1

n− i+ 2

)δ(i)
si x ≤ Z(n)

F̄n(Z(n)) if x > Z(n).

(1.1)

This estimator has good properties, in particular it satisfies F̄n(x) ≥ (n + 1)−1 for all x and

sup0≤x≤T |KMn(x) − F̄n(x)| = O(n−1) a.s for all 0 < T < min{τF , τG}, see Lo et al. (1989).

1.1.2 Hazard rate estimator based on strong representation of Kaplan-Meier

estimator

Here, we give the presentation of the estimator proposed and studied in [8]. Let (ϕλ)λ∈Λm be

an orthonormal basis of L
2(A) (with A = [0, 1]), described in Appendix A. The hazard rate

estimator h = h1IA is defined by:

ĥm =
∑

λ∈Λm

âλϕλ ; âλ =

∫ 1

0
ϕλ(x)dHn(x), (1.2)

where Hn = − ln(F̄n) and F̄n defined by (1.1). We can write for x ∈ A :

ĥm(x) = −
∑

i/Z(i)<1

δ(i) Km(Z(i), x) ln

(
1 − 1

n− i+ 2

)

with Km(Z(i), x) =
∑

λ∈Λm
ϕλ(Z(i))ϕλ(x). This last expression underlines the similarity with

the kernel estimator replacing Km( . , x) with a standard kernel. We define our estimator as a

projection estimator on different bases such as Fourier basis [T], piecewise polynomial basis [DP]

or wavelet [W]. In model selection, we call model the finite-dimensional linear subspace Sm of

L
2([0, 1]) generated by the basis (ϕλ)λ∈Λm ,

Sm := span(ϕλ, λ ∈ Λm)

Its dimension is denoted by Dm := |Λm|. Let us also introduce the orthogonal projection hm on

Sm of h restricted to [0, 1]. For one estimator ĥm, we obtain the following upper bound of the

L
2-risk:

Proposition 1 Let ĥm ∈ Sm defined by (1.2), with collection [T], [DP] or [W], see Appendix

A, then,

E(‖h− ĥm‖2) ≤ ‖h− hm‖2 +
2Φ2

0Dm

n

∫ 1

0

h(x)

1 − L(x)
dx+ κ

D2
m ln2(n)

n2
, (1.3)

where κ is a numerical constant that does not depend on the basis choice.
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The key argument of Proposition 1 relies on the decomposition of the variance term based on the

representation of the Kaplan-Meier estimator as a sum of independent variables plus a remainder

term. Lemma 3.1 in [8] gives such a decomposition and uses influence curves obtained by Reid

(1981), and also Lo et al. (1989). Note that we also consider spline basis in [8]. We deduce easily

from Proposition 1, convergence rates for the estimator provided that the function h satisfies a

regularity assumption, namely h belongs to a Besov space Bα,2,∞([0, 1]) and for some α > 0. In

fact, Lemma 12 in Barron et al. (1999) implies that the approximation term ‖h−hm‖ is of order

D−α
m for collection [T], [DP] and [W], pour tout réel α > 0. The minimum in (1.3) is achieved

for a model Smn such that Dmn = O([n1/(1+2α)]). Then, if h ∈ Bα,2,∞([0, 1]), with α > 0, we

recover the usual nonparametric convergence rate n−2α/(1+2α).

The next step consists in finding an automatic procedure which allows an optimal choice of

the dimension Dm without any knowledge of the regularity α. For this purpose, we write our

estimator defined by (1.2) as the minimizer of the following contrast:

γn(t) = ‖t‖2 − 2

∫ 1

0
t(x)dHn(x) (1.4)

for a function t ∈ L
2([0, 1]), and with ‖t‖2 =

∫ 1
0 t

2(x)dx. Then,

∫ 1

0
t(x)dHn(x) = −

∑

i/Z(i)<1

δ(i) t(Z(i)) ln

(
1 − 1

n− i+ 2

)
,

and we have

ĥm = arg min
t∈Sm

γn(t).

Finally, we proceed by penalization of the contrast as follows:

m̂ = arg min
m∈Mn

[γn(ĥm) + pen(m)] (1.5)

where pen(m) is a penalty term to be defined. Our result gives the form of an adequate (but

theoretical) penalty:

pen(m) = κΦ2
0

(∫ 1

0

h(x)

1 − L(x)
dx

)
Dm

n
,

with κ a numerical constant satisfying the following oracle inequality:

E(‖ĥm̂ − h‖2) ≤ inf
m∈Mn

(
3‖h− hm‖2 + 4pen(m)

)
+
K ln2(n)

n
. (1.6)

Since the penalty term depends on unkown quantity E

(
1I(δ1=1,Z1≤1)

(1−L(Z1))2

)
=
∫ 1
0

h(x)
1−L(x)dx we have to

replace it by:

ŝ2 =
1

n

n∑

i=1

1I(Zi≤1)1I(δi=1)

(1 − L̂n(Zi))2
, L̂n(x) =

1

n+ 1

n∑

i=1

1I(Zi≤x).
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We can also prove an oracle inequality for the random penalty, see Theorem 4.1 and 4.2 in [8]

for details.

1.1.3 Hazard rate estimator as a ratio

Another quantity of interest in the right-censoring model is the subdensity ψ of the uncensored

data δiZi. Let us define

ψ(x) = f(x)(1 −G(x))

As a consequence, we have:

h(x) =
f(x)

1 − F (x)
=

ψ(x)

1 − L(x)
if L(x) < 1.

The estimation of the subdensity ψ gives another way for estimating the hazard rate as a ratio

and without the use of the Kaplan-Meier estimator. We assume that:

∃cL > 0, ∀x ∈ [0, 1], cL ≤ 1 − L(x) < 1, (1.7)

with cL = infx∈[0,1](1 − L(x)) = 1 − L(1).

Then, we are in position to define the following contrast, which is just the application of the

usual density contrast:

γψn (t) = ‖t‖2 − 2

n

n∑

i=1

1I(Zi≤1)δit(Zi) (1.8)

for a function t ∈ L
2([0, 1]) and ψ̂m = arg mint∈Sm γ

ψ
n (t).

Let us define the penalized estimator ψ̂m̂ with m̂ such that:

m̂ = arg min
m∈Mn

[γψn (ψ̂m) + p̂enψ(m)] (1.9)

p̂enψ(m) = κΦ2
0

(
1

n

n∑

i=1

1I(Xi≤1)1I(δi=1)

)
Dm

n

for κ a numerical constant. We can prove an adaptive result for the function ψ belonging to

some Besov space Bαψ ,2,∞(R), see Theorem 3.2 in [5].

Next, we make use of the adaptive estimator of the subdensity ψ to define an estimator of

the hazard rate h:

h̃ψ =
ψ̂m̂

1 − L̂n
with L̂n(x) =

1

n+ 1

n∑

i=1

1I(Zi≤x). (1.10)

With the following decomposition of the risk:

h̃ψ − h =

(
ψ̂m̂ − ψ

1 − L̂n
+ ψ(

1

1 − L̂n
− 1

1 − L
)

)
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we obtain the bound:

E‖h̃ψ − h‖2 ≤ 24

c2L
E‖ψ̂m̂ − ψ‖2 +

C(cL, ‖ψ‖)
n

, (1.11)

where C(cL, ‖ψ‖) is a constant depending on cL and ‖ψ‖. From (1.28), we deduce that h̃ψ is an

adaptive estimator of the function h provides h and ψ have the same regularity α = αh = αψ.

We can compare our result with the one of Antoniadis et al. (1999) (without adaptation). It is

well-known that methodologies using ratio are not optimal if the regularity αh is greater that

αψ; in this case the resulting rate is the worst one, namely h̃ψ = n−αψ/(1+2αψ), instead of the

optimal one n−αh/(1+2αh). Nevertheless, in the ”good” case, we recover the minimax rate proved

by Huber & MacGibbon (2004). In practice, simulation study (see [5]) shows that this strategy

is not always satisfactory even if the estimation of ψ is nearly perfect! For this reason, we aim

to explore a direct mean-square strategy.

1.1.4 Direct mean-square contrast estimator

In [5], we also propose the following contrast:

ĥm = arg min
t∈Sm

γhn(t) où γhn(t) = ‖t‖2 − 2

n

n∑

i=1

1I(Zi≤1)
δit(Zi)

1 − L̂n(Zi)
(1.12)

with L̂n(x) defined above by (1.10). For a model Sm generated by a basis (ϕλ)λ∈Λm , we define:

ĥm =
∑

λ∈Λm

âλϕλ où âλ =
1

n

n∑

i=1

1I(Zi≤1)
δiϕλ(Zi)

1 − L̂n(Xi)
. (1.13)

We propose the to select the dimension as:

m̂ = arg min
m∈Mn

(
γhn(ĥm) + penh(m)

)
. (1.14)

with

p̂enh(m) = κΦ2
0

(
1

n

n∑

i=1

1I(Zi≤1)δi

(1 − L̂n(Zi))2

)
Dm

n
, (1.15)

and κ a numerical constant. Under some assumptions (see Theorem 4.1 and Corollary 4.1

in [5]), we prove adaptive results for the mean-square estimator. The proof is based on an

adequate decomposition of the contrast, leading to a centred linear empirical process whose

supremum on balls is controlled thanks to Talagrand (1996) Inequality. In addition a non-linear

remainder term is also proved to be negligeable by using arguments of Baraud (2002). Then, we

prove that the penalized estimator h̃ = ĥm̂ is adaptive without any restriction, contrary to the

quotient estimator h̃ψ: the estimator h̃ achieves automatically the minimax rate in all the cases.

Surprisingly, simulations give a slight advantage to the quotient strategy. This is perhaps due to

our choice of hazard functions that are quite smooth. But, the deterioration of the estimation

at the end of the interval is the same whatever the strategy. Note that in [5], we also deal with

non-regular collection of piecewise polynomial, see Section 4.4 in [5].



12

1.2 Estimation under the presence of both bias and censoring

1.2.1 Sampling with known bias

In publication [11], we consider data suffering from bias selection. The relevance of selection bias

in statistical inference has been first pointed out by Fisher (1934). Since then, many authors

noticed its presence in data from a wide range of fields. We refer to Cox (1969) for industrial

applications, Chakraborty and Rao (2000) for biomedical applications, and Heckman (1985) in

Economics, among many others. The review by Patil and Rao (1977) gives numerous practical

examples of weighted distributions. Instead of observing the time of interest X, on observes the

random variable Xw whose density probability is given by:

fw(x) =
w(x)f(x)

µ
, and µ =

∫
w(u)f(u)du , (1.16)

The weight function w(.) is determinist and supposed to be known in this set-up. We shall say

that X is suffering from selection bias. In addition, the data can also be right-censored, in this

case we just observe

Xw ∧ C and δw = 1I(Xw≤C).

The Ci’s are i.i.d. random variables and are independent of the Xw,i’s. The special case where

w(x) = x for all x > 0, called “length-biased sampling”, has received a particular attention, see

Vardi (1982), de Uña-Àlvarez (2002), Marron and de Uña-Àlvarez (2004) and Asgharian et al.

(2002).

1.2.2 Adaptive estimation of the density and of the hazard rate functions

with known bias

Many papers are devoted to the estimation of the density or cumulative distribution functions

in this context but without considering censoring. We mention Gill et al. (1988) and Efromovich

(2004a)for the estimation of biased data and also Vardi (1982) in the particular case of length-

bias w(x) = x. In Efromovich (2004a), the distribution function is estimated by projection on

trigonometric polynomial spaces. Optimal results are given for class of functions admitting a

trigonometric serie development with rate of order O(log(n)/n).

In Efromovich (2004b), the conditions are less restrictive and the results can be compared

with ours. In [11], we also have the problem of the estimation on the whole support due to

the presence of censoring. Again, we restrict our attention on an interval A = [0, τ ] with

τ = sup{x ∈ R
+ : (1−Fw)(1−G)(x) > 0}, and Fw stands for the cumulative distribution function

of Xw. We set A = [0, 1] for simplicity. The estimation contrast is defined for t ∈ L
2([0, 1]), par

γn(t) = ‖t‖2 − 2

n
µ̂

n∑

i=1

δw,it(Xw,i)

w(Xw,i
ˆ̄G(Xw,i)

avec µ̂

(
1

n

n∑

i=1

δw,i

w(Xw,i)
ˆ̄G(Xw,i)

)−1

. (1.17)
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Note that we use the modified version (1.1) of the Kaplan-Meier estimator of Ḡ.

Let {Sm : m ∈ Mn} be the collection of projection spaces. For each m, the space Sm, of

dimension Dm is generated by an orthonormal basis on [0, 1], described in Appendix A.

Our projection estimator of the density f is defined by:

f̂m = argmin
t∈Sm

γn(t) (1.18)

and the penalized criterion is:

m̂ = arg min
m∈Mn

[γn(f̂m) + p̂en(m)] with p̂en(m) = κΦ2
0µ̂

2


 1

n

n∑

i=1

δw,i

w2(Xw,i)
ˆ̄G

2
(Xw,i)


 Dm

n

κ a numerical constant and Φ0 a basis dependent constant. We need the following assumption

on the weight function w:

∃w2 > 0, 0 < w(x) ≤ w2 < +∞, ∀x ∈ A.

This technical assumption excludes the case of length-bias. We prove in [11] that the penalized

estimator f̂m̂ achieves the optimal minimax rate of convergence for densities belonging to Besov

classes.

1.2.3 Sampling in a Lexis diagram

Consider, in a population of individuals I, the random variables of their birth dates (σi)i∈I , and

the non-negative random variables of their lifetimes (Xi)i∈I . In the Lexis (1875) diagram, an

individual can be represented by his life-line, L(σ,X),

L(σ,X) = {(σ + y, y), 0 ≤ y ≤ X},

which is a unit-slope line whose points have as coordinates the calendar time (σ + y) and the

age (y), see Figure 1.1. The individual i with birth date σi and lifetime Xi is included in the

sample if:

L(σi, Xi) ∩ S 6= ∅ ⇔ aS(σi) <∞ and Xi ≥ aS(σi). (1.19)

Lexis diagrams have been considered for such modelization purpose by Keiding (1990), Lund

(2000) and Guilloux (2007). For example, time-window studies or cohort studies can be described

by the following sampling patterns. If S is a deterministic Borel set in the Lexis diagram, then

only individuals with life-lines intersecting S can be included in the study, i.e. only pairs (σ,X)

such that L(σ,X) ∩ S 6= ∅.
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Time

Age
S

s1

aS(s1)

x1

s2

x2

aS(s2)

s3

Figure 1.1: Diagramme de Lexis

Let σS denotes the birth time and XS the lifetime for the included individuals. From now on,

the pair (σS , XS) will be referred to the observation opposed to the unobservable pair (σ,X).

Let the point process η =
∑

i∈I εσi , with the birth times as occurrence times, be a non-

homogeneous Poisson process on R with intensity ϕ (where εa is the Dirac measure at point a).

Assume furthermore, that the lifetimes Xi, for i ∈ I, are i.i.d. with common probability density

(p.d.f.) function f . The marking theorem ensures that the point process µ =
∑

i∈I ε(σi,Xi) is a

nonhomogenous Poisson process with intensity ϕf .

Here, we are interested in the individuals whose life-lines intersect the Borel set S. In other

words, we are interested in the restriction µ|S of the process µ to the Borel set S. The restriction

theorem ensures that the restriction µ|S is a Poisson process with mean measure
∫
B∩S ϕf/

∫
S ϕf,

for any Borel set B in BR×R+ . Given the number µ(S) of points in the Borel set S, the points of

Poisson process µ|S look exactly like independent random variables, with common probability

measure P(·) =
∫
·∩S ϕf/

∫
S ϕf on Borel subsets of R × R+.

As a consequence, using Equation (1.19), we have, for all s ∈ R and x ∈ R+ :

P (σS ≤ s,XS ≤ x) =

∫∫
]−∞,s]×[0,x] 1I{(u,v)∈S}ϕ(u)f(v)dudv
∫∫

R×R+
1I{(u,v)∈S}ϕ(u)f(v)dudv

=
1

µS

∫ ∫

]−∞,s]×[0,x]
ϕ(u)f(v)1I{aS(u)<∞}1I{aS(u)≤v}dudv, (1.20)

where µS =
∫∫

R×R+
1I{aS(u)<∞}1I{aS(u)≤v}ϕ(u)f(v)dudv. Hence the marginal distribution of the

XS is given, for all x ∈ R+, by :

FS(x) = P (XS ≤ x) =
1

µS

∫ x

0
w(v)f(s)ds, (1.21)
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with

w(x) =

∫ ∞

−∞
1I{aS(u)≤x}ϕ(u)du. (1.22)

For example, in the time-window study, the weight function w is given, for x ≥ 0, by:

w(x) =

∫ t2

t1−x
ϕ(u)du.

In the particular case where t1 = t2 and ϕ is a constant, such a sample is called a “length-biased

sample”, see Asgharian et al. (2002) and de Uña-Àlvarez (2002).

In the example of the cohort study, the weight function w is constant and given, for x ≥ 0,

by

w(x) =

∫ t2

t1

ϕ(u)du.

Censoring

The lifetimes can also be subject to right-censoring. In this model, we can thus address the

question of estimating the density f or the hazard rate λ of the underlying X, without knowing

the bias function.

Now only the individuals whose life-lines intersect the Borel set S are included in the study.

For an included individual i, with birth date σS,i and lifetime XS,i, we assume that its age at

inclusion aS(σS,i) is observable. The lifetime XS,i can straightforwardly be written as follows:

XS,i = aS(σS,i)︸ ︷︷ ︸ + (XS,i − aS(σS,i))︸ ︷︷ ︸ .

age at inclusion time spent in the study

As the time spent in the study is given by XS,i−aS(σS,i), we shall assume that this time can be

censored. It would be the case, for example, if an individual i leaves the study before his death.

For that matter, we introduce a non-negative random variable C with density function h and

c.d.f. H, independent of XS and aS(σS), such that the observable time for individual i is

Zi = aS(σS,i) + (XS,i − aS(σS,i)) ∧ Ci.

As usual, we assume furthermore that the r.v. 1I{XS,i−aS(σS,i)≤C} is observable. As a consequence,

the available data are i.i.d. replications of:





σS,i

Zi = aS(σS,i) + (XS,i − aS(σS,i)) ∧ Ci, for i=1,. . . ,n.

1I{XS,i−aS(σS,i)≤Ci}

(1.23)
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Counting processes for the estimation

In this context, Guilloux (2007) introduces the following counting processes. For all x ≥ 0, let

D(x) =
n∑

i=1

1I{Zi≤x,XS,i−aS(ζi)≤Ci}. (1.24)

For x ≥ 0, the random variable D(x) is the ”number of observed deaths before age x” in the

sample. Let furthermore the process O be defined, for all x ≥ 0, by:

O(x) =
n∑

i=1

1I{aS(σS,i)≤x≤Zi} =
n∑

i=1

1I{aS(σS,i)≤x≤XS,i,x≤aS(σS,i)+Ci}

The random variable O(x) represents the ”number of individuals at risk at age x”. In the

sampling situation considered here, to be at risk at age x for an individual means that it was

included in the study at an age less than x and is neither dead nor censored before age x.

Let Λ denote the cumulative hazard function of X and be defined as:

Λ(x) =

∫ x

0

f(s)ds

1 − F (s)
,

for all x ≥ 0. As usual in survival analysis, it seems natural to define its estimator Λ̂ by:

Λ̂n(x) =

∫ x

0

dD(s)

O(s) + nǫn
, (1.25)

for all x ≥ 0, where (ǫn)n≥1 is a sequence of positive numbers such that ǫn → 0 and
√
nεn → 0

as n→ ∞, see Guilloux (2007).

We can also define the estimator F̂n for the cumulative distribution function F of X. Mim-

icking the construction of the Kaplan-Meier estimator, we define, for all x ≥ 0:

F̂n(x) = 1 −
∏

i:Z(i)≤x

(
1 −

1I{XS,i−aS(σS,i)≤Ci}
O(Z(i)) + nǫn

)
,

where
(
Z(i)

)
i=1,...,n

are the ordered statistics of the sample (Zi)i=1,...,n.

Here, it is useful to mention the following result proved by Guilloux (2007):

Theorem 1 Assume that there exists w1 such that, for all x ≥ 0, w1 ≤ w(x). For all u > 0:

P

(√
n sup
x≥0

∣∣∣
(
F̂n(x) − F (x)

)
(1 −H)(x)w1

∣∣∣ > u

)
≤ 2.5 exp(−2u2 + Cu),

where C is an universal constant.

The following consequence of Theorem 1, is also useful in the sequel.
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Lemma 1 Assume that there exists w1 such that, for all x ≥ 0, w1 ≤ w(x). For all k ∈ N
∗,

there exists a constant CF (k) depending on k, w, µS and cG such that

E

(
sup
x∈A

|F̂n(x) − F (x)|2k
)

≤ CF (k)n−k.

Remark: The condition w1 ≤ w(x) holds for the window study case and for the cohort study

as soon as the interior of S ∩ {(x, 0), x ∈ R} is non empty. It means that a death cannot occur

immediatly at the inclusion of an individual.

1.2.4 Adaptative estimation of the density and the hazard rate functions

with unknown bias

In publication [10], we propose estimators of both density and hazard rate functions of X. We

consider models Sm with dimensionDm = m generated by trigonometric bases [T ] (see Appendix

A). To avoid repetition, we present here only our methodology to estimate the hazard aret and

we refer to [10] for the density estimation. Let us introduce the following contrast:

γn(t) = ‖t‖2 − 2

n

n∑

i=1

δit(Zi)

O(Zi)/n
. (1.26)

The criterion γn(t) is the empirical counterpart of ‖t‖2 − 2〈t, λ〉 = ‖t− λ‖2 − ‖λ‖2, with ‖t‖2 =
∫ 1
0 t

2(x)dx. By writing

γn(t) = ‖t‖2 − 2

∫ 1

0
t(x)dΛ̂n(x)

with Λ̂n defined by (1.25) and taking ǫn = 0. This contrast can be compared with the one

proposed in [5] and with the works of Reynaud-Bouret (2006) for the Aalen’s multiplicative

intensity model.

Thus, the estimator built for one model Sm is defined by λ̂m = arg mint∈Sm γn(t), and the

penalized estimator λ̂m̂ by choosing m̂ as follows:

m̂ = arg min
m∈Mn

{
γn(λ̂m) + pen(m)

}
where pen(m) = κ

(
1

n

n∑

i=1

δi
O2(Zi)/n2

)
m

n
.

We give in Theorem 3.1 in [10] an oracle inequality for the L
2-risk, from which we can deduce

the minimax convergence rate. We refer to [10] for details about the theoretical results.

1.3 Estimation of the cumulative distribution function for cur-

rent status data

Let X be a survival time with unknown cumulative distribution function (c.d.f) F . In the

interval censoring case 1 model, we are not able to observe the survival time X. Instead, an
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observation consists of the pair (U, δ) where U is an examination time and δ is the indicator

function of the event (X ≤ U). Roughly speaking, the only knowledge about the variable of

interest X is wether it has occurred before U or not. Early examples of such interval censoring

can be found in demography studies. In epidemiology, these censoring schemes also arise for

instance in AIDS studies or more generally in the study of infectious diseases when the infection

time is an unobservable event. We assume that U is independent of X, that F has density

f and that the c.d.f G of U has density g. Such data, also known as current status data,

may remind us right-censored data where the observed data is the pair (min(X,C), 1I(X ≤ C))

where C is a censoring variable. However, the estimation procedure in these two censoring

models is substantially different. Current status data have been studied by many authors in

the last two decades, see Jewell & van der Laan (2004) for a state of the art. In the interval

censoring model, the nonparametric maximum likelihood estimator (NPMLE) of the survival

function is proved to be uniformly consistent, pointwise convergent to a nonnormal asymptotic

distribution at the rate n−1/3 in Groeneboom & Wellner (1992). In van de Geer (1993), it is

also established that the NPMLE converges at rate n−1/3 in L
2-norm. Recent extensions take

two directions. First, more general contexts are considered. For example, van der Vaart &

van der Laan (2006) build nonparametric estimates of the survival function for current status

data in presence of time dependent and high dimensional covariates: they provide limit central

theorems with rate n−1/3 and nonstandard limiting processes. The second direction aims at

proposing smooth estimates that may take into account the possible smoothness of the survival

function. Indeed, the NPMLE estimator is a piecewise constant function. The locally linear

smoother proposed by Yang (2000), contrary to the NPMLE may be non monotone, but it has a

better convergence rate than the NPMLE when the density f is smooth and the kernel function

and the bandwidth are properly chosen. In the same spirit, Ma & Kosorok (2006) introduce

an adaptive modified penalized least square estimator built with smoothing splines but their

main objective is the study of semiparametric models. They have in mind the same type of

penalization device that we present here, but their penalty functions contain many complicated

terms that would be difficult to estimate. Here, we also pursue the search for smooth (or

piecewise smooth) adaptive estimators. We present two different penalized minimum contrast

estimators built on trigonometric, polynomial or wavelet spaces whose associated penalty terms

are really simple; the minimization of the penalized contrast function allows to choose a space

that leads to both a non asymptotic automatic squared bias/variance compromise and to an

asymptotic optimal convergence rate according to the regularity of the function F in term of

Besov spaces. An interesting feature of the procedure is that the estimators and their study is

made straightforward by the most powerful Talagrand (1996) inequality for empirical centered

processes. We also use technical properties proved in a regression framework by Baraud et al.

(2001) and Baraud. (2002) for the mean-square estimator. Globally, the available tools and
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algorithms for adaptive density and regression estimation make our solution easy to study and

to implement.

We have to mention extensions with multivariate or time-dependent covariates in van der

Vaart & van der Laan (2006) or recently Plancade (2011) who proposes a generalization of our

work.

Quotient strategy

We define the density ψ of the Ui’s such that δi = 1. As X and U are independent, we get:

P(U ≤ X, δ = 1) = P(U ≤ X,X ≤ U) =

∫ x

0
F (u)g(u)du

and thus,

ψ(x) = F (x) g(x). (1.27)

This expression suggests a quotient estimator of ψ as follows:

Step 1 : Build an adaptive estimator of g:

ĝm = arg min
t∈Sm

γgn(t) with γgn(t) = ‖t‖2 − 2

n

n∑

i=1

t(Ui).

and g̃ = ĝm̂g with m̂g = arg minm∈Mn [γ
g
n(ĝm) + κΦ2

0Dm/n].

Step 2 : Build an adaptive estimator ψ̃ of the density ψ :

ψ̂m = arg min
t∈Sm

γψn (t) withγψn (t) = ‖t‖2 − 2

n

n∑

i=1

δit(Ui),

and take ψ̃ = ψ̂m̂ by choosing m̂ = arg minm∈Mn [γ
ψ
n (ψ̂m) + p̂enψ(m)], with

p̂enψ(m) = κΦ2
0

(
1

n

n∑

i=1

δi

)
Dm

n
.

Step 3 : Define the estimator of the c.d.f F by:

F̃ (x) =





0 if ψ̃(x)/g̃(x) < 0

ψ̃(x)

g̃(x)
if 0 ≤ ψ̃(x)/g̃(x) ≤ 1

1 if ψ̃(x)/g̃(x) > 1

Proposition 2 If the density g of U satisfies g(u) ≥ g0 > 0, for all u ∈ [0, 1] and under some

assumptions described in Lemma 3.1 in [12], then

E‖F̃ − F‖2 ≤ 24

g2
0

(
E‖ψ̃ − ψ‖2 + E‖g̃ − g‖2

)
+
C(g0, ‖ψ‖)

n
, (1.28)

with C(g0, ‖ψ‖) a constant depending on g0 and ‖ψ‖.
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Next with regularity assumptions g ∈ Bαg ,2,∞([0, 1]) and ψ ∈ Bαψ ,2,∞([0, 1]), we deduce from

Proposition 2, the rate of convergence of the estimator F̃ . As a quotient strategy, if the regularity

αF is greater than the one of ψ = Fg, namely αψ,then we do not recover the optimal rate.

Direct strategy

The censoring mechanism is such that δ = I(X≤U) given U = u is a Bernoulli random variable

with parameter F (u):

E(δ|U = u) = F (u) (1.29)

We can consider a standard mean-square regression contrast:

γMS
n (t) =

1

n

n∑

i=1

[δi − t(Ui)]
2

to define an estimator F̂m = arg mint∈Sm γ
MS
n (t). Then, we obtain the penalized esimator F̂m̂0

with:

m̂0 = arg min
m∈Mn

{γMS
n (F̂m) + κ0

Dm

n
}.

and κ0 a numerical constant. We prove an adaptive result for F̂m̂0 and globally it appears

that the regression estimation is better than the quotient estimator, from both theoretical and

empirical points of view, as shown in the simulation study in [12].



Chapter 2

Conditional distribution for

right-censored data

Publications [6], [7], [9] and [13]

In the previous chapter, we consider only curves associated with the marginal probability

law of the time of interest. Herafter, we investigate conditional models to take into account the

presence of covariables. Let us denote the time of interest Y , possibly right-censored, and ~X a

covariate which is completely observed.

2.1 Regression in presence of one or more covariates

The model

However, for modeling the relationship between a response and a multivariate regressor, new

methodologies have to be found especially to solve the problem of practical implementation in

higher dimension. The main objective of the article is to propose a multivariate method of

model selection for an additive regression function of a low-dimensional covariate vector. In

fact, the particular case of additive models seems to be more realistic in practice and may

constitute a way to make the dimension of the covariate greater than one. Suppose that ~Xi is a

d-dimensional covariate in a compact set, without loss of generality we assume that ~Xi is taking

value into [0, 1]d. Let ( ~X1, Y1), ( ~X2, Y2), . . . , ( ~Xn, Yn) be independent identically distributed

random variables. Let T > 0 be a fixed time for collecting the data. Therefore, the response

variables before censoring are denoted by Yi,T = Yi ∧ T , where a ∧ b denotes the infimum of a

and b. Then, the model is defined for i = 1, . . . , n, by :

E(Yi,T | ~Xi) = rT ( ~Xi) = rT,1(X
(1)
i ) + · · · + rT,d(X

(d)
i ). (2.1)

with ~Xi = (X
(1)
i , . . . , X

(d)
i ). For identifiability we suppose that E(rT,j(X

(j)
1 )) = 0 for j =

2, . . . , d. A comment on the model is required. The setting is analogous to Kohler et al. (2003)

21
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and the constant T time is due to the fact that functionals of the survival function under

censoring cannot be estimated on the complete support as mentioned by Gross and Lai (1996).

Note that the fixed time T is not considered in the empirical setting and the procedure does work

without any truncation. This fixed bound is introduced for technical and theoretical purposes.

Of course, it is often mentioned that the function of interest would be r in the regression model

E(Yi| ~Xi) = r( ~Xi), instead of its biased version rT . In addition, we suppose the Ci’s to be

independent of the ( ~Xi, Yi,T )’s for i = 1, · · · , n and that the c.d.f F and G are supported on

the whole half-line R
+. This assumption is not too restrictive since most of parametric survival

models share it. Consequently,

P(Yi ≥ T ) = P(Yi,T = T ) > 0 and P(Ci > T ) > 0.

Thus, we state 



∀i = 1, . . . , n, 1 −G(Yi,T ) ≥ 1 −G(T ) := cG,

∀t ∈ [0, T ], 1 − F (t) ≥ 1 − F (T ) := cF > 0.

The method consists in building projection estimators of the d components rT,1, . . . , rT,d

on different projection spaces. The strategy is based on a standard mean-square contrast as in

Baraud (2002) together with an optimized version of the data transformation proposed by Fan

& Gijbels (1996).

The multivariate setting of additive models

For estimating additive regression function, the approximation spaces can be described as

Sm =

{
t(x(1), . . . , x(d)) = a+

d∑

i=1

ti(x
(i)), (a, t1, . . . , td) ∈ R × Πd

i=1Smi

}

where Smi is chosen as a piecewise polynomial space with dimension Dmi .

The method of estimation

As usual in regression problems, a mean-square contrast can lead to an estimator of rT . But we

need first to transform the data to take the censoring mechanism into account.

We consider the following transformation of the censored data

ϕα(Z) = (1 + α)

∫ Z

0

dt

1 −G(t)
− α

δZ

1 −G(Z)
. (2.2)

The main interest of the transformation is the following property: E(ϕα(Z1)| ~X1) = E(Y1,T | ~X1).

Indeed,

E

[
δ1Z1

Ḡ(Z1)
| ~X1

]
= E

[(
δ1Y1,T

Ḡ(Y1,T )
| ~X1, ε1)

)
| ~X1

]
= E

[
E

(
δ1| ~X1, ε1

) Y1,T

Ḡ(Y1,T )
| ~X1

]
= E

(
Y1,T | ~X1

)
,
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E

[∫ Z1

0

dt

1 −G(t)
| ~X1

]
= E

[∫ +∞

0

E(1IY1,T∧C1≥t| ~X1, ε1)

1 −G(t)
dt| ~X1

]

= E

[∫ +∞

0

1IY1,T≥tE(1IC1≥t| ~X1, ε1)

1 −G(t)
dt| ~X1

]

= E

[∫ +∞

0
1IY1,T≥tdt| ~X1

]
= E(Y1,T | ~X1).

The transformation ϕα was considered by Koul et al. (1981) for α = −1 and this case is often

the only one studied in most of theoretical results. Leurgans (1987) proposed the transformation

corresponding to α = 0 and the general form (2.2) is described in Fan & Gijbels (1996). The main

problem then lies in the choice of the parameter α. We experimented the proposition of Fan &

Gijbels (1996) for this choice, but we did not find it really satisfactory. Therefore, we performed

a choice of α in order to minimize the variance Var(ϕα(Z)) of the resulting transformed data

and took the empirical version of

α̂ = −cov(ϕ1(Z), ϕ1(Z) − ϕ2(Z))

Var(ϕ1(Z) − ϕ2(Z))
, (2.3)

with

ϕ1(Z) =

∫ Z

0

dt

Ḡ(t)
, ϕ2(Z) = ϕ1(Z) − δZ

Ḡ(Z)
. (2.4)

In all cases, the transormed data are unobservable since we need to define ˆ̄G, a relevant estimator

of Ḡ. We propose to take the Kaplan-Meier (1958) product-limit estimator ˆ̄G, modified in the

way suggested by Lo et al. (1989). Finally, by substituting Ḡ by its estimator ˆ̄G, we obtain the

empirical version of the transformed data :

ϕ̂α̂(Z) = (1 + α̂)

∫ Z

0

dt

ˆ̄G(t)
− α̂

δZ

ˆ̄G(Z)
. (2.5)

The mean-square contrast

The mean-square strategy leads to study the following contrast:

γn(t) =
1

n

n∑

i=1

[ϕ̂α̂(Zi) − t( ~Xi)]
2. (2.6)

In this context, it is useful to consider the empirical norm associated with the design

‖t‖2
n =

1

n

n∑

i=1

t2( ~Xi).

Here we define

r̂m = arg min
t∈Sm

γn(t). (2.7)

The function r̂m may be uneasy to define but the vector (r̂m( ~X1), . . . , r̂m( ~Xn))
′ is always well

defined since it is the orthogonal projection in R
n of the vector (ϕ̂α̂(Z1), . . . , ϕ̂α̂(Zn))

′ onto the
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subspace of Rn defined by {(t( ~X1), . . . , t( ~Xn))
′, t ∈ Sm}. This explains why the empirical norms

are particularly suitable for the mean-square contrast.

Next, model selection is performed by selecting the model m̂ such that:

m̂ = arg min
m∈Mn

{γn(r̂m) + pen(m)} , (2.8)

where we have to determine the relevant form of pen(.) for r̂m̂ to be an adaptive estimator of r.

Main result for the adaptive mean-square estimator

The automatic selection of the projection space can be performed via penalization and the

following theoretical result is proved in [6], for the particular choice of α̂ = α = −1 i.e. for a

contrast γn defined by (2.6) with variables ϕ̂−1(Zi) = δiZi/(1 − Ĝ(Zi)).

Assume that the common density f of the covariate vector ~Xi is such that ∀x ∈ [0, 1]d, 0 <

f0 ≤ f(x) < f1 < +∞ and that the Yi’s admit moments of order 8. Consider the collection of

models [DP] (defined in Appendix A) with Nn ≤ n/(16f1Kϕ) for [DP] where Kϕ is a (known)

constant depending on the basis. Let r̂m be the adaptive estimator defined by (2.6) with α̂ = −1

and (2.8) with

pen(m) = κΦ2
0E

[(
δ1Z1

Ḡ(Z1)

)2
]
Dm

n
,

where κ is a numerical constant. Then

E(‖r̂m̂ − rT ‖2
n) ≤ C inf

m∈Mn

(
‖rm − rT ‖2 + pen(m)

)
+ C ′

√
ln(n)

n
, (2.9)

where rm is the orthogonal projection of rT onto Sm and C and C ′ are constants depending on

Φ0, ‖f‖ and cG.

The unknown expectation therein has to be replaced by

p̂en(m) = κσ̂2Φ2
0

Dm

n
, with σ̂2 =

1

n

n∑

i=1

(
δiZi
ˆ̄G(Zi)

)2

(2.10)

where the constant κ is a universal numerical constant, determined by simulations experiments.

It can be proved that the estimator obtained by random penalization still satisfies Inequality

(2.9).

The left-hand side term of Inequality (2.9) shows that an automatic and non asymptotic

trade-off is automatically performed between an unavoidable squared bias term ‖rm − rT ‖2

and a term having a variance order pen(m). The nonasymptotic properties of the estimation

algorithm can be appreciated when the selected model has small dimension but allows a good

adequation between the true function and the estimate.

The asymptotic rates can be deduced, if a regularity assumption is set on the function to estimate
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rT . It is worth emphasizing here that the rates recovered in the addivitive d-dimensional model

correspond to the one-dimensional rates (d = 1), whatever the number d of covariates. Indeed,

when rT has regularity β, the resulting minimax rates should be n−2β/(2β+d), see [6], with the

standard loss due to the high dimension of the problem (Stone (1982)). The additive model has

therefore undeniable virtues from a theoretical point of view and is illustrated through some

simulations, see [9] .

Recently, single-index models have been explored by Lopez et al. (2013) for the estimation

of the distribution of the pair (Y, ~X). This appoach is an alternative to additive models for

dimension reduction.

2.2 Conditional density and cumulative distribution functions

Publications [7] and [13].

Now, I explain how we get estimators for both conditional density and cumulative distribution

functions. These papers are not specific to the context of censored data. However, we have those

applications in mind and we always propose corrections to take censoring into account, but this

does not constitutes the main contribution of publications [7] and [13].

First, we aim to estimate the conditional density π(x, y) on a compact set A = A1×A2 from

observations of (X1, Y1), . . . , (Xn, Yn), i.i.d. pairs of random variables. The estimation of the

conditional density of Y given X = x brings more information than the regression model studied

in the previous section, that only deals with the conditional expectation of the probability law.

We can write:

π(x, y) =
fX,Y (x, y)

fX(x)
when fX(x) > 0

with the usual notations fX,Y and fX standing respectively for the density of (X,Y ) and the

marginal density of X. Few references in the literature contribute to that subject, even in a non

adaptive setting. We can cite: Györfi & Kohler (2007) for histogram estimators, Faugeras (2009)

for kernel methods using copula, De Gooijer & Zerom (2003) for dependent data and we refer to

the review in Lacour (2007) for the particular case of Markov chain with Yi = Xi+1. Adaptive

estimators have been proposed by Efromovich (2007) and Efromovich (2008). These works, as

ours, deal with a possible anisotropy of the conditional density, that is different regularity in

each direction.

2.2.1 Contrast stories

Density contrast

If our goal wa to estimate a univariate density fY of Y (on a bounded interval A1) from obser-

vations Y1, . . . , Yn, the usual contrast, associated to the loss function ℓ(fY , t) = ‖fY − t‖2 would
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be

γ(1)
n (t) = ‖t‖2 − 2

n

n∑

i=1

t(Yi).

In fact, the function f̂m1 minimizing γ
(1)
n on the model S

(1)
m1 , described below or in Appendix

A, is directly obtained as:

f̂m1 =
∑

j∈Jm1

âjϕ
m1
j , où âj =

1

n

n∑

i=1

ϕm1
j (Yi).

Now, let us denote fm1 =
∑

j∈Jm1
ajϕ

m1
j the orthogonal projection of the function fY on

S
(1)
m1 (for the scalar product in L

2). Pythagora’s theorem allows to write:

‖fY − f̂m1‖2 = ‖fY − fm1‖2 + ‖fm1 − f̂m1‖2

= ‖fY − fm1‖2 +
∑

j∈Jm1

(âj − aj)
2,

and then

E(‖fY − f̂m1‖2) = ‖fY − fm1‖2 +
1

n

∑

j∈Jm1

Var(ϕm1
j (Y1))

≤ ‖fY − fm1‖2 +
1

n

∑

j∈Jm1

E[(ϕm1
j (Y1))

2]

≤ ‖fY − fm1‖2 + φ1
D

(1)
m1

n
.

where the constant φ1 depends on the basis (ϕj)j∈Jm1
and D

(1)
m1 is the dimension of the model

S
(1)
m1 .

Regression Contrast

Now, let us examine the case of a regression function r given by E(Y |X = x) =: r(x). From i.i.d.

observations (Xi, Yi)1≤i≤n, one can define a mean-square contrast associated to the loss function

‖b − t‖2
fX

with ‖t‖2
fX

=
∫
t2(x)fX(x)dx. This L

2-norm weighted by fX the marginal density

of the design is the natural reference norm appearing in regression problems. The mean-square

contrast is:

γ(2)
n (t) =

1

n

n∑

i=1

(Yi − t(Xi))
2

or equivalently

γ(3)
n (t) =

1

n

n∑

i=1

(t2(Xi) − 2Yit(Xi)).

As in the density case, the decomposition of the risk gives a bias term and a variance term

of order φ1D
(1)
m1/n.
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Density/regression mixed contrast

For the estimation of the conditional density π(x, y) of Y givenX = x, a mixed strategy is setting

up. Before going further, we need to define model collection {Sm,m ∈ Mn} for functions defined

in R
2 with Mn a multiple index set (see Appendix A). For each pair of index m = (m1,m2), Sm

is a subspace of functions with support in A = A1 × A2 defined as a product space S
(1)
m1 ⊗ S

(2)
m2

with S
(i)
mi ⊂ (L2 ∩L∞)(R), for i = 1, 2, each one generated by two different (or not) orthonomal

bases (ϕm1
j )j∈Jm1

with dimension |Jm1 | = D
(1)
m1 and (ψm2

k )k∈Km2
with |Km2 | = D

(2)
m2 . Thus, we

have

S(1)
m1

= {t / t(x) =
∑

j∈Jm1

am1
j ϕm1

j (x)},

S(2)
m2

= {t / t(y) =
∑

k∈Km2

am2
k ψm2

k (y)}

and

Sm = S(1)
m1

⊗ S(2)
m2

= {T / T (x, y) =
∑

j∈Jm1

∑

k∈Km2

Amj,kϕ
m1
j (x)ψm2

k (y), Amj,k ∈ R}.

From i.i.d. observations (Xi, Yi)1≤i≤n, we define the contrast

γ(4)
n (T ) =

1

n

n∑

i=1

(∫
T 2(Xi, y)dy − 2T (Xi, Yi)

)
.

Comparing this contrast to γ
(1)
n and γ

(2)
n or γ

(3)
n , it can be interpreted as a density contrast

with respect to the y-direction and as a regression contrast with respect to the x-direction.

2.2.2 Contrast for the estimation of the conditional density in presence of

censoring

If the time Y id right-censored, we have to modify the contrast by using a similar transformation

as in section 2.1, and this gives:

γ(4)
n (T ) =

1

n

n∑

i=1

(∫
T 2(Xi, y)dy − 2ŵiT (Xi, Zi)

)
with ŵi =





1 if no censoring occurs
δi

ˆ̄G(Zi)
otherwise

The existence of the minimizer of this constrast on a model Sm is not always guaranteed. But,

we refer to proposition 2.1 in [7] which ensures that the function π̂m(., .) at point (Xi, y):

(π̂m(Xi, y))1≤i≤n = PW



(∑

k

ψk(Zi)ψk(y)

)

1≤i≤n




is well-defined, where PW is the orthogonal projector on W = {(t(Xi, y))1≤i≤n, t ∈ Sm} for the

euclidean scalar product in R
n. Moreover, the natural empirical norm appearing in this problem



28

is:

‖t‖n =

(
1

n

n∑

i=1

∫

R

t2(Xi, y)dy

)1/2

We prove in [7] that the empirical risk gives a bias term plus a variance term upper bounded

by φ1φ2D
(1)
m1D

(2)
m2/n with φ1 (resp. φ2) basis-dependent constants. Then, the dimensions D

(1)
m1 et

D
(2)
m2 have to be chosen in an optimal way and the resulting rate of convergence depends on both

regularities of the function π(x, y) in the x- and y-directions. The penalized estimator π̃ = π̂m̂ is

defined by π̂m = argmint∈Sm γ
(4)
n (t), with m̂ = argminm∈Mn γ

(4)
n (π̂m) + pen(m) and the penalty

term is

pen(m) = κ
‖π‖∞
cG

Dm1Dm2/n or pen(m) = κ
Φ0

f0
E

(
δ1

Ḡ2(Z1)

)
Dm1Dm2/n

where we set

f0 = inf
x∈A1

fX(x) and cG = inf
y∈A2

Ḡ(y). (2.11)

For both choices of the penalty, we prove an oracle inequality with assumptions slightly restric-

tive for the second one. Nevertheless, the latter is preferable in practice since it involves the

empirical moment of the squared δ1/Ḡ(Z1) instead of the constant cG. Here, I refer to [7] for the

detailed statement of the results. Note that our penalized estimator achieves the minimax rate

thanks to a lower bound of the risk obtained by mimicking arguments developed in Lacour (2007).

Endly, Akakpo & Lacour (2011) aim at considering inhomogenous functions, namely π ∈
Bαp,∞ and 0 < p < 2), whereas we have only considered p = 2 in [7]. Cohen & Lepennec (2011)

explore model selection for maximum likelihood criterion associated with Kullback-Leibler loss.

These recent contributions show the interest of the statistical community for the conditional

density estimation.

2.2.3 Adaptive estimation of the conditional cumulative distribution function

Nonparametric methods for estimating the conditional c.d.f. F (y|x) are most of the time not

adaptive. Stute (1986), in the setting of completely observed data, or Dabrowska (1989), for

censored data have studied the properties of the Beran’s estimator, which is a generalisation of

the Kaplan-Meier estimator in presence of covariates. These works consider kernel approaches,

under the usual assumption that the unknown c.d.f is twice differentiable with respect to the

variable x and the choice of the optimal bandwidth is not adaptive. On the contrary, we propose

in [13], adaptive estimation procedure for the unknown c.d.f. by using a penalized contrast.

For the understanding of the contrast, let us examine first the case of the estimation of the

c.d.f without any covariate. We just modify the density contrast γ
(1)
n as follows :

γ(5)
n (t) = ‖t‖2 − 2

n

n∑

i=1

∫
t(y)1I(Yi≤y)dy,
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which gives by minimization over S
(2)
m2 the estimator

F̂Y,m2(y) =
∑

j∈Jm2

âjψ
m2
j (y) with âj =

1

n

n∑

i=1

∫
ψm2
j (y)1I(Yi≤y)dy =

∫
ψm2
j (y)Fn(y)dy.

This expression makes appear the estimator F̂Y,m2(y) as the orthogonal projection on S
(2)
m2 of the

standard empirical function c.d.f. Fn(y) = (1/n)
∑n

i=1 1I(Yi≤y). This remark explains why we do

obtain a smoother estimator than the empirical c.d.f provided the projection basis is smooth.

However, there is no gain to hope regarding the rate of convergence since the empirical c.d.f.

has already the parametric rate n−1/2.

This behavior is still true in the y-direction when we add a covariable. We porpose the

following contrast defined for a function T ∈ Sm = S
(1)
m1 ⊗ S

(2)
m2 :

Γ0
n(T ) =

1

n

n∑

i=1

∫

R

(T 2(Xi, y) − 2T (Xi, y)1I(Yi≤y))dy.

We can remark that the contrast Γ0
n(T ) behaves like a mean-square contrast in the x-direction.

As in the univariate setting, the variance term does not depend on the dimension D
(2)
m2 (the one

associated with the y-direction) but only on the dimension D
(1)
m1 of the covariate. This is why the

compromise between the (squared) bias and variance term only involves one dimension, namely

D
(1)
m1 , while dimension D

(2)
m2 has to be chosen the largest as possible, exactly as in the univariate

setting described above.

By computing the expectation of the contrast, we get

E(Γ0
n(T )) = ‖T − F‖2

fX
− ‖F‖2

fX

where ‖T‖2
fX

=
∫∫
A T

2(x, y)fX(x)dxdy. By the strong law of large numbers, Γ0
n(T ) is the

empirical counterpart of ‖T−F‖2
fX

−‖F‖2
fX

and thus minimizing it leads to minimize ‖T−F‖2
fX

in mean.

As before in the density case, we need to take right-censoring effect into account and we

define, in the same way the following weighting of the contrast:

ŵi =
δi

ˆ̄G(Zi)

where the estimator ˆ̄G of the survival function Ḡ = 1 − G of the censoring variable C, has

already been defined by (1.1). The contrast becomes in presence of censoring:

Γn(T ) =
1

n

n∑

i=1

∫

R

(T 2(Xi, y) − 2ŵiT (Xi, y)1I(Zi≤y))dy.

Then, the penalized estimator is given by F̃ = F̂m̂ with

m̂ = arg min
m1∈Mn

{Γn(F̂m1) + pen(m1)} (2.12)
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pen(m) ≥ K0ℓ(A2)ξ
D

(1)
m1

n
, with ξ =

φ1

f0
E

(
δ1

Ḡ2(Z1)

)
or ξ =

1

cG
,

K0 is a numerical constant and the constants f0 and cG are defined in the following assumptions

[A1] and [A2], under which we are able to establish our Theorem 2:

[A1 ] The density fX satisfies ‖fX‖∞ := supx∈A1
|fX(x)| < ∞ and there exists a constant

f0 > 0 such that, ∀x in A1, fX(x) ≥ f0,

[A2 ] ∀y ∈ A2, 1 −G(y) ≥ cG > 0.

For any function h and a given subspace S of L
2(A), we set

d(h, S) = inf
g∈S

‖h− g‖ = inf
g∈S

(∫∫
|h(x, y) − g(x, y)|2dxdy

)1/2

.

Theorem 2 (see Theorem 4.1 in [13]) Under assumptions [A1] and [A2], consider the penal-

ized estimator F̃ of the conditional c.d.f F1IA restricted to a compact A, with model collection

described in Appendix A satisfying D(1)
n ≤ √

n, then, we have:

E‖F1IA − F̃‖2
n ≤ C inf

m1∈Mn

{d2(F1IA, S
(1)
m1

⊗ S(2)
n ) + pen(m1)} +

C ′

n

with C and C ′ constants depending on the problem.

Our method does not guarantee that we obtain a strict estimator (that is a c.d.f), in particular,

the penalized estimator F̃ is not increasing. To rectify this drawback, we use the a posteriori

rearrangement method proposed by Chernozhukov et al. (2009). For Xi, i = 1, . . . , n,

F̃ ∗(Xi, y) = inf

{
z ∈ R,

∫
1I{F̃ (Xi,u)≤z}du ≥ y

}
.

This gives an estimator that is a c.d.f with respect to the variable y. Then, the estimator F̃ ⋆ is

a c.d.f:

F̃ ⋆(x, y) =





0 if F̃ ∗(x, y) < 0

F̃ ∗(x, y) if 0 ≤ F̃ ∗(x, y) ≤ 1

1 if F̃ ∗(x, y) > 1



Chapter 3

Estimation of regression functions by

mean-square-type contrasts

Publications [14], [15].

After the work on conditional density and c.d.f functions, we overviewed in Chapter 2, new

perspectives rise to other regression-type functions such the Mean Residual Life (MRL) and the

hazard rate in presence of a covariable.

3.1 Conditional Mean Residual Life

In randomized clinical trials, survival times are often measured from randomization or treatment

implementations. But studying survival functions or hazard rates may be inadequate to answer

a patient asking during the trial, how much more time he still has or whether the new treatment

improves his life expectancy. To correctly address these questions, life expectancy must be

studied as a function of time, via the so-called mean residual life (MRL) function: We use the

same notations as in Section 2.2 of Chapter 2 for the conditional c.d.f. and we introduce the

MRL as:

e(y) = E(Y − y|Y > y) , y > 0,

with E(Y ) < +∞.

The MRL e(y) can also be written:

e(y) =

{ ∫ +∞
y F̄ (u)du/F̄ (y) if F̄ (y) > 0

0 otherwise.

This equality leads to several proposals of nonparametric estimators, built by plug-in of Kaplan-

Meier survival estimators, see Hall & Wellner (1981), Csörgo & Zitikis (1996) and the references

31
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therein. Under adequate assumptions, these estimators inherit the parametric rates of the

Kaplan-Meier estimator, but unfortunately they are not smooth. To circumvent this drawback,

regularized estimators based on kernel smoothing have been proposed by Chaubey & Sen (1999)

or Abdous & Berred (2005).

To measure the combined effect of a covariate X on the MRL, we shall rather define and

study the conditional MRL:

e(y|x) = E(Y − y|Y > y,X = x) =

{ ∫ +∞
y F (u|x)du/F (y|x) if F (y|x) > 0

0 otherwise,
(3.1)

where F̄ (y|x) is the conditional survival function of Y given X = x:

F̄ (y|x) = P(Y > y|X = x) =

∫ +∞
y f(X,Y )(x, u)du

fX(x)
.

Here f(X,Y ) denotes the joint probability density of (X,Y ) and fX denotes the marginal density

of X. In semi-parametric regression analysis, Oakes & Dasu (1990) propose a proportional mean

residual life model to study the association with related covariates, when the response is com-

pletely observed: e(y|X) = e0(y) exp(βtX) where e0(y) is a baseline MRL and β is the regression

parameter to be estimated. This model is studied in Maguluri & Zhang (1994). Then, Chen

& Cheng (2005) and Chen et al. (2005) have developed strategies in this model for censored

response.

Our goal is rather to develop purely nonparametric method to estimate the conditional MRL

e(y|x) on a compact set A = A1 × A2. For this purpose, we have to find a mean-square-type

contrast. Let T : (x, y) 7→ T (x, y) be a bivariate mesurable function with compact support

A = A1 ×A2 and define:

Γn(T ) =
1

n

n∑

i=1

(∫
T 2(Xi, y)1I(Yi≥y)dy − 2ΨT (Xi, Yi)

)

with

ΨT (x, y) =

∫ y

0
(y − u)T (x, u)du.

We also introduce the two functions

F̄1(x, y) =

∫ +∞

y
f(X,Y )(x, u)du and F̄2(x, y) =

∫ +∞

y
F̄1(x, u)du

supposed to be mesurable. Then, we can write:

e(y|x) =
F̄2(x, y)

F̄1(x, y)
if F̄1(x, y) > 0.

Let the functions S and T be such that
∫∫

S2(x, y)F̄1(x, y)dxdy < +∞ and

∫∫
T 2(x, y)F̄1(x, y)dxdy < +∞.
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We define a µ-scalar product between S and T by:

〈S, T 〉µ =

∫∫
S(x, y)T (x, y)dµ(x, y) where dµ(x, y) = F̄1(x, y)dxdy

and the associated norm is denoted by ‖.‖µ.

E(Γn(T )) = E

(∫
T 2(X1, y)1I(Y1≥y)dy − 2ΨT (X1, Y1)

)
. (3.2)

By computing separately the expectations involved in (3.2), we get on the one hand:

E

[∫
T 2(X1, y)1I(Y1≥y)dy

]
=

∫∫ (∫
T 2(x, y)1I(u≥y)dy

)
f(X,Y )(x, u)dxdu

=

∫∫
T 2(x, y)F̄1(x, y)dxdy = ‖T‖2

µ,

on the other hand, since E [ΨT (X1, Y1)] < +∞

E [ΨT (X1, Y1)] =

∫∫ ∫ y

0
(y − u)T (x, u)du f(X,Y )(x, y)dxdy

=

∫∫ (∫
1I(u≤y)(y − u)f(X,Y )(x, y)dy

)
T (x, u)dxdu

Here we need the assumption lim
y→+∞

yF̄1(x, y) = 0, for all x ∈ A1 to make an integration by

part:

E [ΨT (X1, Y1)] =

∫∫
T (x, u)F̄2(x, u)dxdu =

∫∫
T (x, u)e(u|x)F̄1(x, u)dxdu = 〈T, e〉µ.

We have proved that: E(Γn(T )) = ‖T‖2
µ − 2〈T, e〉µ and thus

E(Γn(T )) = ‖T − e‖2
µ − ‖e‖2

µ.

Note that the assumption lim
y→+∞

yF̄1(x, y) = 0 is not too restrictive.

We define a collection of models {Sm : m ∈ Mn} such that for each m, the subspace Sm is

compactly supported on A = A1 ×A2, more precisely:

Sm = Sm1 ⊗Hn =
{
T, T (x, z) =

∑

j∈Jm

∑

k∈Kn
aj,kϕ

m
j (x)ψk(z), aj,k ∈ R

}
,

where Sm1 and Hn ⊂ (L2 ∩L
∞)(R) are spanned by orthonormal bases (ϕmj )j∈Jm and (ψk)k∈Kn .

The dimension |Jm| = Dm has to be properly chosen while |Kn| = D(2)
n is fixed the largest as

possible. The behavior is the same as in the conditional c.d.f: no model selection is required in

the y-direction because the conditional MRL behaves like a conditional c.d.f. As a consequence,

the dimension D(2)
n is fixed and corresponds to the dimension of the greatest subspace Hn. On

the contrary, the dimension Dm of Sm1 has to be chosen in an optimal way. In [14], we proved

results for piecewise polynomial collections but we could consider other bases as well.

We have the following assumptions:



34

(A0) ∀x ∈ A1, lim
y→+∞

yF̄1(x, y) = 0,

(A1) ∃F̄0, f1 > 0 such that ∀(x, y) ∈ A1 ×A2, F̄1(x, y) ≥ F̄0 and fX(x) ≤ f1.

(A2) ∀(x, y) ∈ A1 ×A2, e(y|x) ≤ ‖e‖∞,A < +∞.

The procedure for computing the estimator has to be described.

Step 1 : We define one model for each dimension. By equating the gradient of the contrast to

zero, êm = arg minT∈Sm Γn(T ) leads to:

∀j0 ∈ Jm, ∀k0 ∈ Kn,
∂Γn(T )

∂aj0,k0
= 0

for any function T in Sm, we have T (x, y) =
∑

j∈Jm
∑

k∈Kn aj,kϕ
m
j (x)ψk(y). We can write

equivalently:

GmÂm = Υm,

where

• Âm stands for vec((âj,k)j∈Jm,k∈Kn) the coefficients of the estimator in the basis,

• Gm :=
( 1

n

n∑

i=1

ϕmj (Xi)ϕ
m
ℓ (Xi)

∫
ψk(z)ψp(z)1I{Yi≥z}dz

)
(j,k),(ℓ,p)∈(Jm×Kn)2

• Υm := vec

(( 1

n

n∑

i=1

ϕmj (Xi)

∫ Yi

0
(Yi − u)ψk(u)du

)
j∈Jm,k∈Kn

)
.

vec(.) is the operator that stacks the columns of a matrix into a vector. Step 2: To solve the

minimization problem, the matrix Gm has to be inversible. We easily verify that its eigenvalues

are non negative. We refer to [14] for the details on algebra. We modify the definition of our

estimator as follows:

êm :=
{ arg minT∈Sm Γn(T ) on Ĥm

0 on Ĥc
m

,

with the random set Ĥm :=
{

minSp(Gm) ≥ max( ˆ̄F0/3, n
−1/2)

}
and with Sp(Gm) the spectrum

of Gm. For each m, on the set Ĥm, the matrix Gm is inversible. The estimator ˆ̄F0 of the bound

F̄0 defined by (A1) satisfy the condition:

(A3) For all integer k ≥ 1, P(| ˆ̄F0 − F̄0| > F̄0/2) ≤ Ck/n
k.

Assumption (A3) allows to substitute ˆ̄F0 to F̄0 and to study the risk on the random set on which

the eigenvalues of Gm are positive. The precise definition of ˆ̄F0 is given in [14]. This procedure

is rather technical than the one we used in Section 2.2 for the condtional density or c.d.f. but

our estimator of the conditional MRL e is well-defined on the whole compact A, instead to be
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defined only at the points (Xi, y). As a consequence, we can consider the L
2(A)-risk (and not

only the empirical risk as for the conditional c.d.f).

Step 3: Model selection has to be performed to obtain an optimal procedure: We chose m̂ such

that

m̂ = arg min
m∈Mn

(
Γn(êm) + pen(m)

)
,

where

pen(m) = κφ1
E(Y 3

1 ) + ℓ(A2)E(Y 2
1 )

F̄0

Dm

n
,

Our estimator of e on the compact A is defined by ẽ := êm̂. With additional assumptions on the

model collections (and in particular their maximal dimension), we can prove that our estimator

is adaptive and achieves automatically the optimal rate of convergence, see Theorem 3.1 and

Corollary 3.1 in [14].

Figure 3.1: MRL Estimator as a function of the time and the age (left-top) and time and

autonomy score (right-top). Estimator of the MRL given for different fixed values of age 41, 54

and 68 (left-bottom) and for autonomy score 35 and 79 (right-bottom).
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Application

Let us conclude this section with an example. As an illustration, we consider data from the

Veterans Administration Lung Cancer Trial presented by Prentice (1973), in which males with

advanced inoperable lung cancer received chemotherapy. Several covariates were observed for

each patient. Hereafter, we study the survival times of 128 uncensored patients which range

from 1 to 587 and we focus on the patients age as a covariate. These data were also studied in
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Figure 3.2: MRL Estimator in logarithmic scale, as a function of the age (left) and autonomy

score (right).
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Chen & Cheng (2005) but only for a subgroup of 97 patients with no prior therapy, and for two

other covariates: a categorical covariate which gives the tumor type, which we cannot handle

with our method and the performance status which is a therapeutic score ranging from 0 to 100

and evaluating the autonomy of the patient. The curve shows three parts with respect to the

age, with change points corresponding somehow to early, middle and old ages. This behaviour

also appears on Figure 3.1 where the estimated MRL is shown for three fixed values of ages

41, 54 and 68. While the MRL is quite the same for ages 41 and 68, it is of interest that the

MRL is twice better for middle age 54. We could think that there is an optimal age (the middle

age) to receive the treatment. We also estimate the MRL conditionally to the performance

status as a continuous covariate with the subgroup of 97 patients with no prior therapy. The

estimated MRL is shown in Figure 3.1. For the performance status, we detect as for the age two

parts in the curve corresponding to low and high status. Moreover, our purely nonparametric

estimator gives a new graphical method to check whether the proportionality assumption of the

Oakes-Dasu model is true or not. Then, in log-scale, the curves in Figure 3.2 should be parallel

to each other for any fixed value of the covariate. But, it seems that for the covariate age,

the Oakes-Dasu model cannot be reasonably considered. Besides, for the covariate performance

status, as mentioned in the work by Chen & Cheng (2005), after an initial period from 0 to 150

days, the curves corresponding, respectively, to statuses 35 and 79 appear quite parallel, which

may suggest the adequacy of the proportionality assumption.

3.2 Conditional hazard rate

Publication [15]

We consider in [15] the problem of estimation from right-censored data in presence of co-

variates, when the censoring indicator is missing. Let T be a random variable representing the

time to death from the cause of interest. Let C denote a right-censoring random time. Under

usual random censorship, the observation is Y = T ∧ C and δ = 1I(T ≤ C). Let X denote
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a real covariate. In what follows, it is assumed that T , C and X admit densities respectively

denoted by fT , g and fX . In addition, C is assumed to be independent of T conditionally to X.

When the cause of death is not recorded, the censoring indicator is missing: this is the missing

censoring indicator (MCI) model, see Subramanian (2004), which is defined as follows. Let ξ be

the missingness indicator, that is ξ = 1 if δ is observed and ξ = 0 otherwise. The observed data

are then given for individual i ∈ {1, . . . , n}:

(Yi, Xi, δi, ξi = 1) or (Yi, Xi, ξi = 0).

We shall say that the model is:

• MCAR under the assumption that the indicator are Missing Completely At Random, i.e.

ξ is independent of T , C and X.

• MAR under the assumption that the indicator is Missing At Random i.e. ξ and δ are

independent conditionally to Y , X.

In [15], we mainly concentrate on the MAR model. This model has been considered by several

authors in the last decade. Most papers are interested in survival function and cumulative

hazard rate estimation. In particular, van der Laan and McKeague (1998) improve Lo (1991)’s

paper and build a sieved nonparametric maximum likelihood estimator of the survival function

in the MAR case. Their estimator is a generalization of the Kaplan & Meier (1958) estimator

to this context and is the first proposal reaching the efficiency bound. Subramanian (2004)

also proposes an efficient estimator of the survival function in the MAR case; he proves his

estimate to be efficient as well. Gijbels el al. (2007) study semi-parametric and nonparametric

Cox regression analysis in several contexts.

Kernel methods have also been used to build different estimators in the MAR context. Subra-

manian (2006) estimates the cumulative hazard rate with a ratio of kernel estimators. Recently,

Wang et al. (2009) proposed density estimator based on kernels and Kaplan Meier-type correc-

tions of censoring. They prove a CLT and suggest a bandwidth selection strategy. Extensions

of these works to conditional functions (both cumulative hazard and survival functions) in the

presence of covariates is developed in Wang & Shen (2008).

Note that several authors (Dikta (1998), and more recently Subramanian (2009), Subrama-

nian (2011)) study semiparametric models for the missing process and imputation methods –

but for Kaplan-Meier estimator – while we remain in pure nonparametric setting.

Both our method and our aim are rather different. We indeed consider the estimation of

the conditional hazard rate given a covariate. Moreover, we provide a nonparametric mean

square strategy by considering approximations of the target function on finite dimensional lin-

ear spaces spanned by convenient and simple orthonormal (functional) bases. A collection of
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estimators is thus defined, indexed by the dimension of the multidimensional projection space,

and a penalization device allows us to select a “good” space among all the proposals.

Contrary to standard kernel methodology, our estimator has the advantage of being defined

as a contrast minimizer and not a ratio of two estimators, see Wang & Shen (2008), Subramanian

(2006). It depends on an unknown function, in its definition, which has to be replaced by an

estimator; this step is shared by the kernel approach. However, our precise study of the plug-in

estimator allows us to non-asymptotically control the mean square risk. From an asymptotic

point of view, we provide anisotropic rates corresponding to the regularity of the function under

estimation, plus the rate of the intermediate plug-in estimator.

3.2.1 Construction of the estimator in the MAR case

We aim at estimating the conditional hazard function on a compact A = A1 × [0, τ ]:

λ(x, y) = λY |X(x, y) =
fY |X(x, y)

1 − FY |X(x, y)
,

with fY |X and FY |X the conditional density and c.d.f. of Y given X. We define two functions ξ

and δ playing the role of ”nuisance” parameters:

π(x, y) = E(ξ|X = x, Z = y)

ζ(x, y) = E(δ|X = x, Z = y).

Construction of the contrast with no covariable

For simplicity, we explain the construction of the contrast without any covariable. The hazard

rate is simply

λ(y) =
fY (y)

1 − FY (y)
.

If ζ(y) = E[δ|Z = y] was known, a contrast to estimate λ would be:

Γthn (h) =
1

n

n∑

i=1

∫ τ

0
h2(y)1I(Zi≥y)dy −

2

n

n∑

i=1

(ξiδi + (1 − ξi)ζ(Zi))h(Zi).

In fact, under the MAR assumption,

E(δiξi + (1 − ξi)ζ(Zi)|Zi) = E(δi|Zi)E(ξi|Zi) + E[(1 − ξi)E(δi|Zi)|Zi]
= E(E(δi|Zi)(ξi + (1 − ξi))|Zi)
= ζ(Zi)

and the expectation of the contrast is

E
(
Γthn (h)

)
=

∫
h2(y)dµ(y) − 2

∫
h(y)λ(y)dµ(y)

= ‖h‖2
µ − 2〈h, λ〉µ = ‖h− λ‖2

µ − ‖λ‖2
µ.
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where we set dµ(y) = (1 − L)(y)dy and (1 − L)(y) = (1 − FY )(1 −G)(y) = P(Z ≥ y).

But, as ζ is unknown, we have to substitute an estimator ζ̃ and the contrast Γthn becomes:

Γ0
n(h) =

1

n

n∑

i=1

∫ τ

0
h2(y)1I(Zi≥y)dy −

2

n

n∑

i=1

(
ξiδi + (1 − ξi)ζ̃(Zi)

)
h(Zi). (3.3)

Extension of the contrast with a covariable

The contrast (3.3) can be extend to the presence of a covariable:

Γn(h) =
1

n

n∑

i=1

∫ τ

0
h2(Xi, y)1I(Zi≥y)dy −

2

n

n∑

i=1

(
ξiδi + (1 − ξi)ζ̃(Xi, Zi)

)
h(Xi, Zi), (3.4)

for the ”reference” norm
∫∫

h2(x, y)dµ(x, y) =
∫∫

h2(x, y)(1 − LZ|X(y, x))fX(x)dxdy and

1 − LZ|X(y, x) := P(Z ≥ y|X = x) = (1 − FY |X(x, y))(1 −GC|X(x, y)).

Estimation of ζ

Now, we come back to the estimation of the auxiliary function ζ. That is the key of our

estimation strategy. In [15], we propose a mean-square criterion for the estimation of ζ(x, y) =

E(δ|X = x, Z = y) on A:

ζ̂m = arg min
T∈Sm

γ̃n(T ) =
1

n

n∑

i=1

[ξiT
2(Xi, Zi) − 2ξiδiT (Xi, Zi)].

Then, we obtain the penalized estimator ζ̃ := ζ̂m̃ with:

m̃ = arg min
m∈Mn

γ̃n(ζ̂m) + κ̃
dim(Sm)

n
.

The estimator ζ̃ can be substituted to ζ in Γn. We control the L
2-risk (or equivalent norm) of

ζ̃.

The lack of this procedure is to apply in two steps, with a plug-in of the estimator of ζ in

Γn. As a consequence, we prove an oracle inequality where both errors of λ and ζ add up. The

resulting rate of convergence is thus, see Corollary 2 in [15]:

E

(
‖λ− λ̂m̂‖2

A

)
= O(n−

2ᾱ
2ᾱ+2 ) +O(n

− 2β̄
2β̄+2 ),

that is the estimator λ̂m̂ would achieve the optimal rate provided the function ζ is most regular

than λ.
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MCAR case

Under the MCAR assumption, that is ξ independent of T , C (and possibly the covariable X if

there is any), we can consider the following contrast:

γ(1)
n (h) =

1

n

n∑

i=1

∫ 1

0
h2(y)ξi1I(Yi ≥ y)dy − 2

n

n∑

i=1

δiξih(Yi),

here the ”reference” measure is dµ(y) = E(ξ)(1 − L(y))dy. This contrast doesn’t need the esti-

mation step of ζ but it uses only the observations such that ξi = 1.

3.2.2 Extensions

We envisage other proposals of contrasts based on the function π(x, y) = E(ξ|X = x, Z = y):

Γest

n (h) =
1

n

n∑

i=1

∫ 1

0
h2(Xi, y)π̃(Xi, y)1I(Zi ≥ y)dy − 2

n

n∑

i=1

δiξih(Xi, Yi). (3.5)

Here, we also have to estimate the function π. The function π is just a regression function

E(ξ|X,Z) and an estimator can be obtained directly from the complete sample.

We are interested in comparison of imputation versus regression approaches. Let γi be a

Bernoulli random variable with parameter ζ(Yi) given ξi = 0. The quantity ζ(Yi) has to be

estimated as well as in the estimation approach.

Then, we define a contrast where the missing value are substituted by imputation:

Γimp

n (h) =
1

n

n∑

i=1

∫ 1

0
h2(y)1I(Zi ≥ y)dy − 2

n

n∑

i=1

(ξiδi + (1 − ξi)γi)h(Zi). (3.6)

We study this strategy in [18].



Chapter 4

Works in progress, perspectives

In this last chapter, I expose recent works and perspectives. Functional data and more generally

high-dimension methods have initiated the working group ”ADONF” (Analyse des Données

Fonctionnelles in french) in Montpellier. This group aim at encouraging interactions between the

researchers of the Institute of Mathematics at University and our colleagues at INRA/SupAgro.

From now on, I turn my works towards functional data. Since 2011, I supervise with André

Mas, the Phd thesis of Angelina Roche on Model selection for functional data. There are many

connexions with regression models I have studied before and future works could be devoted to

fonctional covariables in survival analysis; I give a brief overview in the sequel. I’m going on

with other themes like inference for recurrent events or confidence bands.

Functional data

Prépublications [16], [17]

Functional data analysis have known recent advances in the past two decades. In many

practical situations, we aim to predict values of a scalar response by using functional predictors,

or roughly speaking, curves. Many fields of applications are concerned with this kind of data,

such as medicine, chemometrics or econometrics. This is especially the case when people have to

predict electric consumption from a daily temperature curve, or in medicine when spectrometric

signals are used to detect abnormality. We refer to Ferraty & Vieu (2006) and Ramsay &

Silverman (2005) for detailed examples. In [16], we focuse on the functional linear model, where

the dependence between a scalar response Y and the functional random predictor X is given by:

Y =

∫ 1

0
β(t)X(t)dt+ ε, (4.1)

where the centred random variable ε stands for a noise term with variance σ2 and is independent

of X. Our aim is to estimate the unknown slope function β from an independent and identically

41
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distributed (i.i.d.) sample (Xi, Yi), for i = 1, · · · , n. In the sequel, we suppose that the random

function X takes value in L2(A) with A a compact set and for sake of simplicity, we fix A = [0, 1].

We recall that the usual inner product 〈., .〉 in L2[0, 1] is defined by 〈f, g〉 =
∫ 1
0 f(u)g(u)du for

all f, g ∈ L2[0, 1]. The random curve X will be supposed to be centred and periodic, that is

to say the function s 7→ E[X(s)] is identically equal to zero and X(0) = X(1). This context

matches the description of circular data considered in Comte & Johannes (2010).

By multiplying both sides of Equation (4.1) by X(s) and by taking expectation, we easily

obtain:

E[Y X(s)] =

∫ 1

0
β(t)E[X(t)X(s)]dt =: Γβ(s), for all s ∈ [0, 1], (4.2)

where Γ is the covariance operator associated to the random function X. Then, the problem of

the estimation of β is related to the inversion of the covariance operator Γ or of its empirical

version:

Γn :=
1

n

n∑

i=1

〈Xi, .〉Xi.

Many authors have studied the functional linear model. Strategies using regression on func-

tional principal components have been proposed by Cardot et al. (2003) or Cardot et al. (2007)

among others. The estimator of the slope function is usually obtained on the linear space

spanned by the first eigenfunctions associated to the greatest eigenvalues of the empirical co-

variance operator Γn. Although the resulting estimator is shown to be convergent, its behaviour

is often erratic in simulation studies. Smoothing splines estimator minimizing a standard least

squares criterion has been improved by Crambes et al. (2009) with a slight modification of the

usual penalty. The authors have shown that rates of convergence for the risk defined by the

mean squared prediction error depend on both the smoothness of the slope function and the

structure of the covariance operator (in particular, the decreasing rate of the eigenvalues). They

also prove that the obtained rates are minimax over large classes of slope functions. In a differ-

ent way, Cardot & Johannes (2010) propose a thresholded projection estimator to circumvent

instability problems, which can reach optimal convergence rate for the risk associated with the

mean squared prediction error. Their techniques based on dimension reduction follow inverse

problems ideas starting from Efromovich & Koltchinskii (2001) and covered more recently by

Hoffmann & Reiss (2008). But all theses procedures depend on one or more tuning parameters,

which is a difficult problem to solve in practice.

Recently, Verzelen (2010) has proposed an adaptive estimation procedure for the slope

coefficient, say θ ∈ Rp, in the context of high dimensional regression models. He has obtained

an oracle-inequality for the risk associated with the prediction error on Rp, which remains true

when p >> n. Any knowledge on the covariance matrix of the design is required but his results

are obtained under the assumption that both the design and the noise are gaussian. We can

also mention the different but related works of the inverse problem community such as Cavalier
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& Hengartner (2005) among others.

Cai & Hall (2006) addressed the problem of prediction from an estimator of the slope func-

tion. In this work, the choice of the tuning parameter plays an important role in the performance

of the estimators. The usual practical strategy of empirically choosing the smoothing parameter

value is performed through the generalized cross validation.

But nonasymptotic results providing adaptive data-driven estimators were missing up to the

recent paper by Comte & Johannes (2012). They have proposed a model selection procedure

for the orthogonal series estimator introduced by Cardot & Johannes (2010). The resulting

estimator is completely data-driven and it is shown to achieve optimal minimax rates for general

weighted L2-risks. The dimension is selected by minimization of a penalized contrast which

requires the knowledge of the sequence of weights defining the risk, the aim being to estimate

accurately the slope function and its derivatives. In this sense their work is more general than

ours. Nevertheless, we explain hereafter why their data-driven estimation procedure cannot

encompass the prediction error, which can be seen as a particular weighted risk whose weights

are the unknown eigenvalues of the covariance operator.

At a first sight, our penalized estimator may look like a special case of the Comte and

Johannes’s one in the case of the prediction error, but it is definitely not since their penalty term

involves the weights defining the risk, that is to say the unknown eigenvalues. In our paper,

even though a less general risk is handled, we propose a very simple data-driven procedure to

select the adequate dimension of the functional space over which the standard mean square

contrast is minimized. We want to emphasize that the prediction error is of particular interest

in applications and thus takes an important place in most of the papers related to functional

linear models. Though, our goal differs mainly from Comte & Johannes (2010) but the tools

are those of model selection as well. Our penalized estimator is proved to satisfy an oracle-type

inequality for the risk associated to the prediction error and to reach optimal rates for slope

functions belonging to Sobolev classes.

A second part of the work, more ambitious, consists in using the eigen elements of the em-

pirical covariance operator. In [17], we do not deal with fixed bases anymore, but wit random

bases and the control of the bias term of the estimator becomes difficult to handle. Thanks to

perturbation theory, we obtain in this context an oracle inequality for the functional principal

component estimator. Our proposal gives an adaptive estimator which achieves the optimal and

minimax rates over Sobolev classes.

There are numerous perspectives around functional data. In particular, regression functions

in survival analysis can possibly involve functional covariables (mass spectrometry for the renal

impairment, medical imaging, blood sugar or blood pressure curves,...). I think that the single

index model, could have interesting developments for functional covariable X: Y = g(〈β,X〉)+ε.
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A recent paper by Chen et al. (2011) consider this context, but up to my knowledge, adaptive

procedures do not exist for estimating simultaneaously both functions g and β.

Recurrent events (work in progress)

With Segolen Geffray, we are working on nonparametric estimation for cumulative distribution

functions for recurrent events in presence of right-censoring. In epidemiology, the patients can

suffer from recurrent events, like tumoral recidives or opportunist diseases, asthma crisis or

heart failure. We refer to Schaubel & Cai (2004) or Cook & Lawless (2008) for examples of such

data. We consider situations where the death of a patient occur with high probability. Roughly

speaking, the observation of a recurrent event or death can be observed or not if censoring occurs.

An illustration is given in figure 4.1 for 6 patients S1, ..., S6. The observation of a patient is

represented by a line and our aim is to study the second recurrent event.

S6

censoring

S5

RE RE death

S4

RE death

S3

death

S2

RE RE censoring

S1

RE censoring

Figure 4.1: Recurrent Events (RE = event of interest).

In addition, we assume that recurrent events of interest, terminal events (death) and censor-

ing events cannot occur at the same time. The statistical scheme is as follows:

• Let K be the total number of observed events for one individual.

• For k = 1, . . . ,K, Y [k] is the time between the (k − 1)th and the kth event.

• For k = 1, . . . , N , C
[k] is the indicator of the type of the kth event:

C
[k] =





1 for a recurrent event,

2 for a death.
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• For k = 1, . . . ,K, Z [k] = min(Y [k], C−∑k−1
l=0 Y

[l]) stands for the time between the (k−1)th

and the kth observed event (with Y [0] = 0).

• For k = 1, . . . ,K, J [k] = C
[k]I(

∑k
l=1 Y

[l] ≤ C) is the indicator for the kth event.

Our goal is to provide an adaptive estimation, inspired from Section 2.2, of the cumulative dis-

tribution function P
[
Y [2] ≤ y2|Y [1] = y1

]
in this context.

Confidence intervals (work in progress)

With O. Bouaziz and F. Comte, we would look into confidence bands for survival curves. A

drawback of the methods described in all the previous works is that they are built to be com-

patible with L
2-risk (or L

p). In fact, model selection approaches make ”global” estimation of

functions (namely estimation of the coefficients of the unknown function on a given basis). In

the contrary, kernel methods give ”local” estimation and one can often dispose of ponctual or

uniform CLT from which it is easy to derive confidence bounds. Recent and very general works

by Giné and Nickl (2010) deal with the construction of confidence bands for the density. The

key tool is to provide control of uniform risk (instead of L
p ones). In the same spirit as Picard &

Tribouley (2000) or Tribouley (2004) for wavelet bases, we propose to define confidence bands

for the estimator of the hazard rate described in [5], with piecewise polynomial bases.



Appendix A

Choix des bases et propriétés

d’approximation

Les bases (ϕλ)λ∈Λm orthonormales utilisées pour définir les collections de modèles (Sm)m∈Mn

sont construites sur A = [0, 1]. On peut facilement se ramener à n’importe quel intervalle

A = [a, b] par un changement d’échelle, puisque si {ϕλ}λ∈Λm est une base orthonormale de

L
2([0, 1]) alors

{
1√
b−aϕλ

(
.−a
b−a

)}
est une base orthonormale de L

2([a, b]).

La notation Λm de l’ensemble d’indices, possiblement multiples, est une notation générique

qui permet d’uniformiser l’écriture des bases. On explicite dans les exemples ci-dessous la sig-

nification de cette notation et on donne la dimension Dm = |Λm| de chacun des espaces Sm

engendré par la base (ϕλ)λ∈Λm .

[T ] Base Trigonométrique : {ϕ0, ..., ϕm−1} avec ϕ0(x) = 1I[0,1](x),

ϕ2j(x) =
√

2 cos(2πjx)1I([0, 1])(x) ; ϕ2j−1(x) =
√

2 sin(2πjx)1I([0, 1])(x)

pour j ≥ 1. Cette base engendre un modèle Sm de dimension Dm = m.

[DP ] Base de Polynômes par morceaux dyadiques : l’ensemble d’indices Λm = {λ =

(k, d), 1 ≤ k ≤ 2m, 0 ≤ d ≤ r} est un ensemble de couples indexant des polynômes de

degré 0, · · · , r (le degré maximal r est fixé), définis sur les intervalles [(k − 1)/2m, k/2m]

avec k = 1, · · · , 2m d’une partition (dyadique) de [0, 1]. L’espace Sm engendré est alors de

dimension Dm = (r + 1)2m.

[W ] Base d’ondelettes sur [0, 1] : {Ψj,k, j = −1, · · · ,m et k ∈ K(j)}, avec Ψj,k(x) =

2j/2ψ(2jx− k), ψ est l’ondelette mère. L’ensemble K(j) = {0, · · · ,K2j − 1}, pour j ≥ 0,

où K est une constante qui ne dépend que de ψ. Par exemple, pour la base de Haar,

construite avec ψ(x) = 1I[0,1/2[(x) − 1I[1/2,1[(x), on a K = 1. L’espace Sm engendré par la

base d’ondelettes est de dimension Dm =
∑m

j=1 |K(j)| = |K(−1)| +K(2m+1 − 1).
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Par construction, les éléments de cette base ont leur support inclus dans [0, 1].

[H] Base d’histogramme : ϕ1, · · · , ϕ2m avec ϕj = 2m/21I([(j − 1)/2m, j/2m[) pour j =

1, · · · , 2m. Dans ce cas, la dimension est Dm = 2m. La base d’histogramme est un

exemple particulier de bases [DP] et [W] qui sont des bases localisées.

Toutes ces bases engendrent, pour chaque m ∈ Mn, un sous-espace vectoriel de L
2(A)∩L∞(A)

(ou L
2([0, 1]) ∩ L∞([0, 1])), qui possède les propriétés suivantes :

(M1) ∀m ∈ Mn, dim(Sm) = Dm ≤ n.

(M2) Il existe une constante Φ0 > 0 telle que ∀t ∈ Sm, ‖t‖∞ ≤ Φ0

√
Dm‖t‖.

C’est une propriété importante qui permet de relier la norme infinie à la norme dans L
2(A),

introduite sous cette forme par Barron et al. (1999).

Enfin, pour les résultats d’adaptation, nous avons besoin que les modèles soient embôıtés :

(M3) ∀m,m′ ∈ Mn, Dm ≤ Dm′ =⇒ Sm ⊂ Sm′ .

Extension des modèles en dimension 2

Dans les chapitres 2 et 3, nous estimons des fonctions de deux variables sur A = A1 × A2

un compact de R
2. Une base orthonormale de L

2(A1 × A2) peut être construite en prenant

simplement le produit tensoriel de deux bases de L
2(A1) et de L

2(A2).

Pour chaque couple d’indices m = (m1,m2), Sm est un espace de fonctions à support dans

A = A1 × A2 défini comme un espace produit de S
(1)
m1 ⊗ S

(2)
m2 avec S

(i)
mi ⊂ (L2 ∩ L∞)(R), pour

i = 1, 2, engendrés par deux bases orthonormales (ϕm1
j )j∈Jm1

avec |Jm1 | = D
(1)
m1 et (ψm2

k )k∈Km2

avec |Km2 | = D
(2)
m2 . Les indices j et k peuvent désigner des couples d’entiers comme nous l’avons

décrit pour la base de polynômes par morceaux. Ainsi, on a :

S(1)
m1

= {t / t(x) =
∑

j∈Jm1

am1
j ϕm1

j (x)},

S(2)
m2

= {t / t(y) =
∑

k∈Km2

am2
k ψm2

k (y)}

et

Sm = S(1)
m1

⊗ S(2)
m2

= {T / T (x, y) =
∑

j∈Jm1

∑

k∈Km2

Amj,kϕ
m1
j (x)ψm2

k (y), Amj,k ∈ R}.

On peut utiliser la même base dans les deux directions ou au contraire autoriser des bases

différentes. La dimension de chaque modèle Sm = Sm1 ⊗ Sm2 est alors égale à Dm1Dm2 .
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Propriétés d’approximation

Les méthodes d’estimation par projection sur des bases orthonormales, consistent à estimer

une fonction s (ou s1IA sa restriction sur un compact A) par approximation de sa projection

orthogonale Sm sur un espace de dimension finie, le modèle Sm. Le résultat suivant nous fournit

l’ordre de l’erreur d’approximation et se déduit de Hochmuth (2002) pour les bases localisées

(polynômes ou ondelettes) et de Nikol’skii (1975) pour les bases trigonométriques.

Proposition 3 Soit s une fonction de Bα2,∞(A), avec A ⊂ R, et α > 0. Considérons un modèle

Sm décrit ci-dessus de dimension Dm. Si sm est la projection orthogonale de s1IA sur Sm, alors

il existe une constante C > 0 telle que

‖s1IA − sm‖A =

(∫

A
(s− sm)2

)1/2

≤ CD−α
m

où la constante C dépend uniquement de la base et de la norme de s dans l’espace de Besov.

En dimension 2, le résultat de la proposition précédente devient :

Proposition 4 Soit s une fonction de Bα2,∞(A), avec A = A1 × A2 ⊂ R
2 et α = (α1, α2).

Considérons un modèle Sm = Sm1 ⊗ Sm2 décrit ci-dessus de dimension Dm1Dm2. Si sm est la

projection orthogonale de s1IA sur Sm, alors il existe une constante C ′ > 0 telle que

‖s1IA − sm‖A =

(∫

A
(s− sm)2

)1/2

≤ C ′[D−α1
m1

+D−α2
m2

]

où la constante C dépend uniquement de la base et de la norme de s dans l’espace de Besov.
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Birgé, L. (1999). Interval censoring: a nonasymptotic point of view. Math. Methods Statist. 8,

285–298.
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