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Abstract. In addition to the right-censoring of the lifetimes, sampling bias pos-

sibly occurs in many situations while collecting the data. In practical situations,

the form of the bias function is always assumed to be known, but if no information

is available on the selection bias this can turn out to be unbearable. We provide

a model selection strategy for estimating the hazard and the density functions in

presence of both censoring and unknown sampling bias. We use a new sampling

scheme description based on the Lexis diagram including time-window or cohort

studies. Adaptive projection estimators on trigonometric bases are developed by

contrast penalization and optimal nonparametric rates of convergence are given.

Both estimators are practically studied through simulation experiments in the case

of the time-window study.
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1. Introduction

We consider here the problem of estimating the probability density function
(p.d.f.) f and the hazard rate λ = f/(1 − F ), where F is the distribution func-
tion (c.d.f) F , associated with a random variable (r.v.) X. Our nonparametric
estimates are built on a compact set A, and we often take A = [0, 1] for simplic-
ity. If independent and identically distributed (i.i.d.) observations X1, . . . , Xn were
available, the p.d.f. f may be estimated by usual penalized projection methods
developed by Barron & Cover (1991), Barron et al. (1999). Here we assume that
it is impossible to draw a direct sample from the distribution of X. Instead the
observable r.v. has p.d.f. given by w(x)f(x)/

∫
w(u)f(u)du, for all x > 0. In this

case, the r.v. is said to suffer from a “selection bias” and one may heuristically say
that selection bias arises when the event {X = x} is observed with a probability
proportional to w(x).

Bias may occur in the following kind of model. Consider, in a population of
individuals I, the r.v.’s of their birth dates (σi)i∈I , and the non-negative r.v.’s of
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their lifetimes (Xi)i∈I . In the Lexis (1875) diagram, an individual can be represented
by his life-line, L(σ,X) = {(σ + y, y), 0 ≤ y ≤ X}, which is a unit-slope line whose
points have as coordinates the calendar time (σ+y) and the age (y). Lexis diagrams
have been recently considered for such modelization purpose by Keiding (1990),
Lund (2000) and Guilloux (2006). Let S be a deterministic Borel set in the Lexis
diagram. Individuals with life-lines intersecting S are included in the study, i.e.
only pairs (σ,X) such that L(σ,X)∩S 6= ∅. Time-window or cohort studies can be
described by such a sampling pattern with a particular choice of S.

Let σS denote the birth time and XS the lifetime for the included individuals.
From now on, the pair (σS , XS) will be referred to as the observable r.v.’s as opposed
to the unobservable pair (σ,X). Straightforwardly, we have for all s ∈ R and x ≥ 0:

P(σS ≤ s,XS ≤ x) = P (σ ≤ s,X ≤ x|L(σ,X) ∩ S 6= ∅)
6= P(σ ≤ s,X ≤ x).

More precisely, we know from Guilloux (2006) that, under some condition on the
birth-dates (σi)i∈I , we have, for all x ≥ 0:

FS(x) = P (XS ≤ x) =

∫ x

0
w(v)dF (v)

µS
,(1)

where F is the c.d.f. of the r.v. X and w is a non-negative weight function, which
depends only on the distribution of the r.v. σ and µS =

∫∞
0
w(v)dF (v).

The lifetimes can also be subject to right-censoring. In this model, we can thus ad-
dress the question of estimating the density f or the hazard rate λ of the underlying
r.v. X, without knowing the bias function.

The relevance of selection bias in statistical inference has been first pointed out
by Fisher (1934). Since then, many authors noticed its presence in data from a wide
range of fields. We refer to Chakraborty & Rao (2000) for biomedical applications,
and Heckman (1985) in Economics, among many others. The review by Patil & Rao
(1977) gives numerous practical examples of weighted distributions.

The problem of estimating the cumulative distribution function (c.d.f.) F of X
given an i.i.d. biased sample Xw,1, . . . , Xw,n has been widely studied. We refer to
Gill et al. (1988) and Efromovich (2004a) for theoretical results in the general case.
The special case where w(x) = x for all x > 0, called “length-biased sampling”,

has received a particular attention, see Vardi (1982), de Uña-Àlvarez (2002) and
Asgharian et al. (2002). Efromovich (2004b) dealt with the problem of nonparamet-
ric estimation of f . He considered a minimax estimation procedure with a known
weight function w and states asymptotic results for several estimators. Brunel et
al. (2005) have also considered this problem with additional right-censoring of the
observations.

Nonparametric methods for the estimation of the density function and the hazard
rate under censorship have also been widely studied, see Tanner & Wong (1983),
Mielniczuk (1985), Marron & Padgett (1987) and Lo et al. (1989) for kernel estima-
tors and more recently Antoniadis et al. (1999) for wavelet methods. In the setting
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of both biased and censored data, we have to mention de Uña-Àlvarez (2002) who
introduced a suitable correction of the Kaplan-Meier estimator for taking the length
bias problem into account. The kernel density (or hazard) estimator is directly
obtained by convolution of a kernel function with this corrected estimator of the
survival function see Marron & de Uña-Àlvarez (2004). But, it is worth noticing
that more general selection bias models with censoring have rarely been simultane-
ously investigated up to now.

In what follows, we construct and study adaptive estimators of the hazard rate λ
and the density f in the general model described above. This means that we propose
and study an estimation procedure under bias and censoring without assuming that
the bias is known. Nonparametric projection methods are developed as in Brunel et
al. (2005), by taking advantage of the Dvorestky-Kiefer-Wolfowitz type inequalities
proved by Guilloux (2006).

The paper is organized as follows. In Section 2, the bias and censoring model is
described, some of its properties are recalled (see Guilloux (2006)). Section 3 defines
the penalized estimators of the functions λ and f , and provides nonasymptotic
bounds for their respective mean integrated squared errors (MISE). In Section 4,
simulation experiments illustrate the penalized estimators in the case of the time-
window study. Most proofs are gathered in Section 5.

2. Bias and censoring model

2.1. The sampling model.

Time

Age
S

σ1

aS(σ1)

x1

σ2

x2

aS(σ2)

σ3

Figure 2.1. Sampling scheme

Let S be a Borel set and let us denote by aS(σ) the age at inclusion for a birth-time
σ: {

aS(σ) = inf{y ≥ 0, (σ + y, y) ∈ S}
aS(s) = ∞ if the infimum does not exist.
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The individual i with birth date σi and lifetime Xi is included in the sample if:

L(σi, Xi) ∩ S 6= ∅ ⇔ aS(σi) <∞ and Xi ≥ aS(σi).(2)

Figure 2.1 gives a representation of the Lexis diagram and the sampling process
described above : individual 1 is included in the sample, individual 2 could have
been included but died before his inclusion since x2 < aS(σ2), whereas individual 3
is not included because aS(σ3) = ∞.

2.2. Two examples for S. Before going on in the presentation, let us give two
examples of sampling patterns, which can be described through a Borel set in BR×R+ :
the time-window and cohort studies.

Time-window study. The individuals
alive at time t1 or born between t1 and
t2 are included in the study, t1 and t2 are
fixed. The Borel set to consider is :

Stw = {(s, y), t1 ≤ s ≤ t2, y ∈ R+}.

The age aStw
at inclusion is given by:





aStw
(σ) = t1 − σ if −∞ < σ ≤ t1

aStw
(σ) = 0 if t1 < σ ≤ t2

aStw
(σ) = +∞ if σ > t2.

t1 t2

Example 1: Time-window study

Cohort study. The individuals born
between times t1 and t2 are included in
the study, t1 and t2 are fixed. In case, the
Borel set Sc is given by:

Sc = {(s+ u, u), t1 ≤ s ≤ t2, u ∈ R+}.

The age aSc
at inclusion is then given by:





aSc
(σ) = +∞ if −∞ < σ ≤ t1

aSc
(σ) = 0 if t1 < σ ≤ t2

aSc
(σ) = +∞ if σ > t2.

t1 t2

Example 2: Cohort study

We refer to Lund (2000) for an extensive review of studies described through the
Lexis diagram.

2.3. Theoretical representation of the model and results on the involved

counting processes. In this subsection, we recall some results obtained by Guil-
loux (2006) useful for the present purpose.
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2.3.1. Bias. Following Lund (2000), we consider the following modelization associ-
ated with the Lexis diagram. Let the point process η =

∑
i∈I εσi

, with the birth times
as occurrence times, be a non-homogeneous Poisson process on R with intensity ϕ
(where εa is the Dirac measure at point a). Assume furthermore, that the lifetimes
Xi, for i ∈ I, are i.i.d. with common probability density function f . The marking
theorem (see Kingman (1993)) ensures that the point process µ =

∑
i∈I ε(σi,Xi) is a

nonhomogeneous Poisson process with intensity ϕf .
Here, we are interested in the individuals whose life-lines intersect the Borel set S.

In other words, we are interested in the restriction µ|S of the process µ to the Borel
set S. The restriction theorem (see Kingman (1993)) ensures that the restriction
µ|S is a Poisson process with mean measure

∫
B∩S ϕf/

∫
S ϕf, for any Borel set B

in BR×R+ . Finally, by the order statistics property for Poisson processes, given
the number µ(S) of points in the Borel set S, the points of Poisson process µ|S
look exactly like independent random variables, with common probability measure
P(·) =

∫
·∩S ϕf/

∫
S ϕf on Borel subsets of R × R+.

As a consequence, using (2), we have, for all s ∈ R and x ∈ R+:

P (σS ≤ s,XS ≤ x) =

∫∫
]−∞,s]×[0,x]

1I{(u,v)∈S}ϕ(u)f(v)dudv
∫∫

R×R+
1I{(u,v)∈S}ϕ(u)f(v)dudv

=
1

µS

∫ ∫

]−∞,s]×[0,x]

ϕ(u)f(v)1I{aS(u)<∞}1I{aS(u)≤v}dudv,(3)

where 1I{.} stands for the indicator function and

µS =

∫ ∫

R×R+

1I{aS (u)<∞}1I{aS(u)≤v}ϕ(u)f(v)dudv.

Hence the marginal distribution of the r.v. XS is given, for all x ∈ R+, by :

FS(x) = P (XS ≤ x) =
1

µS

∫ x

0

w(v)f(s)ds,(4)

with

w(x) =

∫ ∞

−∞
1I{aS (u)≤x}ϕ(u)du.(5)

For example, in the time-window study (see Section 2.2), the weight function w is
given, for x ≥ 0, by:

w(x) =

∫ t2

t1−x

ϕ(u)du.

In the particular case where t1 = t2 and ϕ is a constant, such a sample is called a
“length-biased sample”, see Asgharian et al. (2002) and de Uña-Àlvarez (2002).

In the example of the cohort study (see Section 2.2), the weight function w is

constant and given, for x ≥ 0, by w(x) =
∫ t2

t1
ϕ(u)du.
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2.3.2. Censoring. Now only the individuals whose life-lines intersect the Borel set
S are included in the study. For an included individual i, with birth date σS,i and
lifetime XS,i, we assume that his age at inclusion aS(σS,i) is observable. The lifetime
XS,i can straightforwardly be written as follows:

XS,i = aS(σS,i)︸ ︷︷ ︸ + (XS,i − aS(σS,i))︸ ︷︷ ︸ .
age at inclusion time spent in the study

As the time spent in the study is given by XS,i − aS(σS,i), we shall assume that this
time can be censored. It is the case, for example, if an individual i leaves the study
before his death, see Asgharian (2003) and Winter & Földes (1988).

For that matter, we introduce a non-negative r.v. C with p.d.f. h and c.d.f. H ,
independent of XS and aS(σS), such that the observable time for individual i is

Zi = aS(σS,i) + (XS,i − aS(σS,i)) ∧ Ci.

As usual, we assume furthermore that the r.v. 1I{XS,i−aS(σS,i)≤C} is observable. As a
consequence, the available data are i.i.d. replications of:





σS,i

Zi = aS(σS,i) + (XS,i − aS(σS,i)) ∧ Ci, for i=1,. . . ,n.
1I{XS,i−aS(σS,i)≤Ci}

(6)

We seek to estimate the density function f and the hazard rate λ = f/(1 − F ) of
the unbiased r.v. X with the available data described by (6).

2.3.3. Counting processes for the estimation. In this context, Guilloux (2006) intro-
duces the following counting processes. For all x ≥ 0, let

D(x) =
n∑

i=1

1I{Zi≤x,XS,i−aS(σS,i)≤Ci}.(7)

For x ≥ 0, the r.v. D(x) is the “number of observed deaths before age x” in the
sample. Let furthermore the process O be defined, for all x ≥ 0, by:

O(x) =

n∑

i=1

1I{aS (σS,i)≤x≤Zi} =

n∑

i=1

1I{aS (σS,i)≤x≤XS,i,x≤aS(σS,i)+Ci}(8)

The r.v. O(x) represents the“number of individuals at risk at age x”. In the sampling
situation considered here, to be at risk at age x for an individual means that he was
included in the study at age less than x and is neither dead nor censored before age
x.

Let Λ denote the cumulative hazard function of the r.v. X and be defined as:

Λ(x) =

∫ x

0

f(s)ds

1 − F (s)
,
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for all x ≥ 0. As in classical survival analysis, it seems natural to define the estimator

Λ̂ε
n by:

(9) Λ̂ε
n(x) =

∫ x

0

dD(s)

O(s) + nε
,

for all x ≥ 0. Guilloux (2006) studies Λ̂εn
n (.) where (εn)n≥1 is a sequence of positive

numbers such that εn → 0 and
√
nεn → 0 as n→ ∞.

We can also define the estimator F̂n for the c.d.f. F of the r.v. X. Mimicking the
construction of the Kaplan-Meier estimator in classical survival analysis, we define,
for all x ≥ 0:

F̂n(x) = 1 −
∏

i:Zi≤x

(
1 − 1I{XS,i−aS(σS,i)≤Ci}

O(Zi) + nεn

)
.(10)

Let us define

(11) τ = inf(τF , τH) with τL = {x ∈ R+ : (1 − L)(x) = 0}, for any c.d.f. L.

It is useful to mention the following result proved in Guilloux (2006).

Theorem 2.1. Assume that there exist w1 and w2 such that w1 ≤ w(x) ≤ w2, for
all x ≥ 0. Then, for all u > 0:

P

(
√
n sup

x∈[0,τ ]

∣∣∣
(
F̂n(x) − F (x)

)
(1 −H)2(x)w1

∣∣∣ > u

)
≤ 2.5 exp(−2u2 + Cu),

where C is an universal constant (which does not depend on F , H nor w).

3. Estimation procedure

3.1. Assumptions on the model. Let A ( [0, τ ] with τ defined by (11). Up to a
scaling change, we set A = [0, 1] without loss of generality. First, we assume that

(12) ∃w1, w2 > 0, such that 0 < w1 ≤ w(x) ≤ w2 < +∞, ∀x ∈ A.

This is a very mild condition since A is a compact set.
It follows from (1) that FS(x) =

∫ τF ∧x

0
w(s)f(s)ds/µS with µS =

∫ τF

0
w(s)f(s)ds,

so that τFS ≤ τF . Moreover, the function w is nondecreasing and by (12) it is lower
bounded, thus τF = τFS .
Secondly, the following property holds for H :

(13) ∃cH > 0, ∀x ∈ A, cH ≤ 1 −H(x) ≤ 1,

by taking cH = infx∈A[1 −H(x)].
Lastly, the same property as (13) holds also for F with cH replaced by cF .
In the following, estimates are computed over the compact set A ( [0, τ ]. Note that
this does not imply any practical restriction since, for estimation purpose, we can
choose the interval A such that the largest uncensored XS,i belongs to it.
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3.2. Description of the projection bases. Let ψ0(x) = 1, ψ2j(x) =
√

2 cos(2πjx),

ψ2j−1(x) =
√

2 sin(2πjx) and consider

Sm = Span(ψj(x), j = 0, . . . , m− 1).

Then Sm is a finite dimensional subspace with dimension m of L2([0, 1]) endowed

with the scalar product 〈u, v〉 =
∫ 1

0
u(x)v(x)dx. The functions (ψj)0≤j≤m−1 consti-

tute an orthonormal basis of Sm so that t =
∑m−1

j=0 ajψj , for any function t in Sm

and with aj = 〈t, ψj〉. A key property of the trigonometric basis relies on the link
between the supremum norm and the L2 norm:

(14) ∀m, ∀t ∈ Sm, ‖t‖∞ ≤
√

2m‖t‖ and ‖
m−1∑

j=0

ψ2
j‖∞ ≤ 2m.

For m,m′ ∈ Mn, m ≤ m′ implies that Sm ⊂ Sm′ which means that the subspaces
are nested. Then Sn = ∪m∈Mn

Sm stands for the largest subspace of the collection
and we denote by Nn the dimension of Sn.

3.3. Definition of the estimators. Using the observations described by (6), we
can define contrast functions to estimate both the density f and the hazard rate λ.

3.3.1. Estimation of the hazard rate. Let us define

Φ(x) = P(aS(σS,1) ≤ x ≤ Z1),

which stands for the probability for an individual to be at risk at age x. This means
clearly that the individual was included in the study at age less than x and is neither
dead nor censored before x, so that we can write

(15) Φ(x) = P(aS(σS,1) ≤ x ≤ XS,1, x ≤ aS(σS,1) + C1).

From definition (8) of the process O(x), it is obvious that E(O(x)/n) = Φ(x). This
is why we take

(16) Φn(x) =
O(x)

n
,

as an estimator of Φ(x). Note that

(17) ∀n ∈ N∗, Φn(Zi) ≥ 1/n , for i = 1, . . . , n.

The following lemma states useful properties of Φ and Φn with first a useful conse-
quence of Theorem 2.1.

Lemma 3.1. 1) Assume that there exists w1 such that, for all x ≥ 0, w1 ≤ w(x).
For all k ∈ N∗, there exists a constant CF (k) depending on k, w and cH such that

E

(
sup
x∈A

|F̂n(x) − F (x)|2k

)
≤ CF (k)n−k.
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2) There exists a constant cΦ such that, for all x ∈ A, Φ(x) ≥ cΦ.
3) For all k ∈ N∗, there exists a constant CΦ(k) such that

E

(
sup
x∈R+

|Φn(x) − Φ(x)|2k

)
≤ CΦ(k)n−k.

Remark 3.1. The condition w1 ≤ w(x) holds for the time-window and the cohort
studies as soon as the interior of S ∩ {(x, 0), x ∈ R} is non empty. It means that a
death can occur immediately at the inclusion of an individual.

Moreover, the definition of the contrast for estimating λ is deduced from the
following property:

Proposition 3.1. For any function t in Sm,

E

(
δ1t(Z1)

Φ(Z1)

)
= 〈t, λ〉 where 〈u, v〉 =

∫ 1

0

u(x)v(x)dx.

Therefore, by replacing Φ(x) by its natural estimator, we obtain the following
projection contrast function, for t ∈ Sm,

(18) γn(t) = ‖t‖2 − 2

n

n∑

i=1

δit(Zi)

Φn(Zi)
.

Clearly, γn(t) is the empirical version of ‖t‖2 − 2〈t, λ〉 = ‖t − λ‖2 − ‖λ‖2, where

‖t‖2 =
∫ 1

0
t2(x)dx. Moreover, the contrast function can also be seen as

γn(t) = ‖t‖2 − 2

∫ 1

0

t(x)dΛ̂0
n(x)

where Λ̂0
n is defined by (9).

Then we can define the projection estimator

λ̂m = arg min
t∈Sm

γn(t)

which gives an estimator of λm, the orthogonal projection of λ on Sm. Lastly, we
select

m̂ = arg min
m∈Mn

{
γn(λ̂m) + pen(m)

}

which gives an estimator λ̂m̂ of λ on a random space Sm̂. Here, pen(.) is a penalty
function that ensures the squared-bias variance compromise, it is given by

(19) pen(m) = κ

(
1

n

n∑

i=1

δi
Φ2

n(Zi)

)
m

n
.

Note that

λm =

m−1∑

j=0

ajψj with aj = 〈λ, ψj〉,
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and

λ̂m =

m−1∑

j=0

âjψj , with âj =
1

n

n∑

i=1

δiψj(Zi)

Φn(Zi)
.

Moreover γn(λ̂m) = −∑m−1
j=1 â2

j .

3.3.2. Estimation of the density. We can deduce from Proposition 3.1 and from
f = λ(1 − F ) = λF̄ , the following projection contrast for the estimation of f :

(20) γ̃n(t) = ‖t‖2 − 2

n

n∑

i=1

δit(Zi)
1 − F̂n(Zi)

Φn(Zi)
,

where F̂n and Φn are the estimators of F and Φ defined by (10) and (16). Again

γ̃n(t) is an empirical version of ‖t‖2 − 2
∫ 1

0
t(x)f(x)dx = ‖t− f‖2 − ‖f‖2. Then we

can define

f̂m = arg min
t∈Sm

γ̃n(t)

and m̃ = arg min γ̃n(f̂m) + p̃en(m). As previously, p̃en(.) is a penalty function that
ensures the squared-bias variance compromise, it is given by

(21) p̃en(m) = κ

(
1

n

n∑

i=1

δi(1 − F̂n(Zi))
2

Φ2
n(Zi)

)
m

n
.

We also have, fm =
∑m−1

j=0 bjψj with bj = 〈f, ψj〉, and f̂m =
∑m−1

j=0 b̂jψj , with

b̂j = (1/n)
∑n

i=1 δi(1 − F̂n(Zi))ψj(Zi)/Φn(Zi). Moreover γ̃n(f̂m) = −∑m−1
j=1 b̂

2
j .

3.4. MISE bounds for the adaptive estimators of the hazard rate and the

density. The study of the estimator relies on the following decompositions. For λ,
we have

γn(t) − γn(s) = ‖t− λ‖2 − ‖s− λ‖2 − 2νn(t− s) − 2Rn(t− s)

where

νn(t) =
1

n

n∑

i=1

[
δit(Zi)

Φ(Zi)
− 〈t, λ〉

]
, Rn(t) =

1

n

n∑

i=1

δit(Zi)
Φ(Zi) − Φn(Zi)

Φ(Zi)Φn(Zi)
.

For f , we have

(22) γ̃n(t)− γ̃n(s) = ‖t− f‖2 − ‖s− f‖2 − 2ν̃n(t− s)− 2Rn,1(t− s)− 2Rn,2(t− s)

where ν̃n is a centered empirical process

ν̃n(t) =
1

n

n∑

i=1

[
δit(Zi)F̄ (Zi)

Φ(Zi)
− 〈t, f〉

]
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and Rn,1 and Rn,2 are residual terms:
(23)

Rn,1(t) =
1

n

n∑

i=1

δit(Zi)
F (Zi) − F̂n(Zi)

Φn(Zi)
, Rn,2(t) =

1

n

n∑

i=1

δit(Zi)F̄ (Zi)
Φ(Zi) − Φn(Zi)

Φn(Zi)Φ(Zi)
.

By proving that the residual terms are negligible and applying Talagrand (1996)
inequality to νn or ν̃n, we obtain the following results.

Theorem 3.1. Consider the estimators λ̂m̂ and f̂m̃ defined in Section 3.3.1 and 3.3.2
and the collection of models (Sm)m∈Mn

with Nn ≤ c/
√
n. Assume that f(x) ≤ f1

and that w1 ≤ w(x) ≤ w2 for all x ∈ A, then

(24) E(‖ĝm̂ − g‖2) ≤ Cg inf
m∈{1,...,n}

(
‖g − gm‖2 +

m

n

)
+
C ′

g

√
ln(n)

n
,

where Cg and C ′
g are constant depending on f , w, h and g, gm and ĝm̂ stands

successively for λ, λm and λ̂m̂ and for f , fm and f̂m̃.

Theorem 3.1 states that the adaptive estimator automatically realizes a compro-
mises between the squared-bias ‖f − fm‖2 (or ‖λ − λm‖2) and the variance order
m/n, given by the penalties.

Moreover, when the function g (i.e. λ or f) has regularity α (for instance belongs
to a Besov space on the interval with indexes α,∞) then it is well known that
‖g − gm‖ is of order m−α. Therefore, the automatic optimization performed in
infm∈{1,...,n} (‖g − gm‖2 +m/n) yields an order n−2α/(2α+1). This is the standard
optimal rate in the minimax sense for hazard or density estimation.

4. Simulations

4.1. Simulated sampling pattern. We consider the time-window study with fixed
values t1 and t2, for the implementation of the algorithm. We have to build a n-
sample of (σS , Z, δ) and for this purpose, the steps are the following:

1 ) Given t1, t2 > 0 with t1 < t2, draw N birth-times (σi)i=1,...,N on R+ as real-
izations of a Poisson process with given intensity ϕ(s) ∝ 1 (homogeneous Poisson
process) which corresponds to unbiased case (denoted by UB hereafter) or linear
bias (denoted by LB) or ϕ(s) ∝ s−2/3 (inhomogeneous Poisson process) resulting
in a power bias (denoted by PB) w(t) ∝ t1/3. For the simulations of inhomoge-
neous Poisson process, we refer to Devroye (1986). Moreover, the intensity ϕ is
“calibrated” in function of the values t1 and t2 such that the generated birth-times
satisfy both conditions: with probability near of 1, at least n lifetimes Xi’s fall in
the time-window [t1, t2] and the largest simulated birth-time σN would exceed t2.
Note that N >> n, but for example, N = 1000 ensure that n = 200 biased lifetimes
will be included in the study after step 4).

2 ) For each birth-time σi, draw the associated lifetime Xi with given c.d.f F .
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Figure 4.1. Choice of κ: the dimension (solid line) and the
MSE2∗104 (dashed line) in function of κ, the two curves correspond
to unbiased and power-biased cases.

3 ) Inclusion in the study: the age at inclusion ξi in the study is given by ξi = t1−σi

if σi ≤ t1 and ξi = 0 if t1 ≤ σi ≤ t2. So, choose the Xi = XS,i such that ξi ≤ t1 and
Xi ≥ ξi. This mechanism of inclusion in the study involves a bias selection and we
keep only selected couples (ξi, XS,i).

4 ) Draw a n-sample (σS,1, XS,1), . . . , (XS,n, σS,n) by uniform random sampling
among all the individuals falling in the time-window and selected in step 3).

5 ) Draw the censoring variables C1, . . . , Cn with exponential c.d.f. Exp(c) for
several values of c > 0 involving different censoring proportions.

6 ) Put Zi = (t1 − σS,i) + (XS,i − (t1 − σS,i))∧Ci if σS,i ≤ t1 and Zi = XS,i ∧Ci if
t1 ≤ σS,i ≤ t2.
Note that in the UB case, the step 3) is skipped.

4.2. Practical implementation of the estimators. Two models are investigated
as in Antoniadis et al. (1999), Reynaud-Bouret (2006) and Brunel & Comte (2005):

(a) The first example is the Gamma case: the Xi’s are generated following a
Gamma distribution with shape parameter 5 and scale 1. The hazard rate
is a monotone curve.

(b) The second data set is called the Bimodal case: The Xi’s are distributed
from a bimodal density defined by f = 0.8u + 0.2v where u is the p.d.f of
exp(Z/2) with Z ∼ N (0, 1) and v = 0.17Z + 2.

The expression of the hazard estimator on A = [a, b] is the following:

λ̂m(x) =
â0√
b− a

+

√
2

b− a




[(m−1)/2]∑

j=1

â2j−1 sin(
2πj(x− a)

b− a
) +

[m/2]∑

j=1

â2j cos(
2πj(x− a)

b− a
)



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Figure 4.2. Penalized estimators of λ and f with power bias.
Model (a): (a1) n = 200, no censure; (a2) n = 500, no censure; (a3)
n = 500, censure 38%. Model (b): (b1) n = 500, no censure; (b2)
n = 500, censure 33%; (b3) n = 1000, no censure. For each picture,

on the left, the estimator of λ and on the right the estimator of f , D̂λ

and D̂f denote the selected dimension for λ and f respectively. True
curve (full) and estimate (dotted).
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Gamma Bimodal
n 200 500 200 500

Censoring 0% 40-50% 0% 40-50% 0% 40-50% 0% 40-50%

UB
MSE 0.11 0.11 0.12 0.13 1.65 1.80 1.18 1.50
MSE2 0.0018 0.004 0.011 0.029 0.19 0.17 0.11 0.08

LB
MSE 0.12 0.11 0.13 0.12 1.45 1.50 1.11 1.27
MSE2 0.0014 0.0017 0.0008 0.0013 0.15 0.09 0.08 0.04

PB
MSE 0.12 0.101 0.13 0.10 1.37 1.32 1.02 1.07
MSE2 0.0012 0.0014 0.0007 0.0009 0.17 0.05 0.08 0.02

Table 4.1. Monte-Carlo results for the estimator of λ, for J = 200 replications.

Gamma Bimodal
n 200 500 200 500

Censoring 0% 40-50% 0% 40-50% 0% 40-50% 0% 40-50%

UB
MSE 0.0008 0.0011 0.0004 0.0008 0.02 0.02 0.01 0.01
MSE2 0.0005 0.0003 0.0003 0.0002 0.01 0.01 0.008 0.004

LB
MSE 0.0005 0.0005 0.0002 0.0003 0.01 0.01 0.005 0.003
MSE2 0.0002 0.0003 0.0001 0.0002 0.007 0.008 0.003 0.002

PB
MSE 0.0006 0.0005 0.0003 0.0004 0.01 0.009 0.005 0.003
MSE2 0.0002 0.0003 0.0001 0.0002 0.006 0.006 0.003 0.002

Table 4.2. Monte-Carlo results for the estimator of f , for J = 200 replications

with â0 =
n∑

i=1

δi/n and for Z̃i = (Zi − a)/(b− a),

â2j =

√
2

n
√
b− a

n∑

i=1

δi cos(2πjZ̃i)

Φn(Z̃i)
, â2j+1 =

√
2

n
√
b− a

n∑

i=1

δi sin(2πjZ̃i)

Φn(Z̃i)
.

The optimal dimension m̂ is chosen to minimize the penalized contrast −∑m−1
j=0 â

2
j+

κ (n−1
∑n

i=1 δi/Φ
2
n(Zi))m/n. Here, the universal constant has been approximated by

simulation experiments as shown in Figure 4.1 and taken as κ = 0.15. We also took
a modified version of the estimator 1/Φn(x) = max(1.5; min(1/(1+ (O(x)−n)/(n+
5));

√
n)) for numerical reasons.

Plots of both estimators are given in Figure 4.2. The estimators are only illus-
trated in the PB case since Tables 4.1 and 4.2 show that the estimation errors are
quite the same whatever the form of the bias is. As expected, the behaviour of the
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hazard estimator at the end of the interval is erratic due to the sparsity of the obser-
vations there. This problem vanishes when considering the density estimator. Note
that the dimensions selected by the algorithm for both λ and f are much smaller in
the Gamma case (a) than in the Bimodal case (b). This reflects that the algorithm
makes automatically the squared Bias/Variance compromise and is able to adapt
to various forms of curves. Now, to study the quality of the estimation procedure,
we compute over J replications of samples of size n = 200 and n = 500 the mean
squared errors (MSE) over a grid of K = 64 regularly spaced points t1, . . . , tK of
[a, b]:

MSEj =
1

n

K∑

k=1

[g(tk) − ĝm̂j
(tk)]

2

where ĝm̂j
(tk) is the penalized estimator of λ or f computed for the jth replication

for j = 1, . . . , J . Then, the MSE given in Table 4.1 is the arithmetic mean of the J
MSEj . In order to take into account the sparsity of the observations at the end of the
interval, (P(X > 6) = 0.25 in the Gamma case and P(X > 2) = 0.16 in the Bimodal
case), we also compute an error MSE2 defined by the same kind of mean squared
error but with a truncated mean over the tk’s less than 6 in the Gamma case and 2
in the Bimodal case. In the unbiased case with censoring, we get very conforming
results to those in Brunel & Comte (2005) so that we can consider the estimator as
a generalized version of the estimator therein. We can also compare our results to
those in Brunel et al. (2005) for density estimation in presence of bias but without
censoring. Indeed, the Gamma case is also studied therein and the MSE’s up to the
interval length factor (b−a is about 15 here) are of the same order. The MSE2’s for
the hazard estimators are really better than the full MSE’s (from 10 to 100 times
smaller) which is not very surprising since the estimation breaks up at the end of
the interval. This improvement still occurs for the density but in a less striking way.
Besides, the censoring effect for both density and hazard does not seem to degrade
the estimation error. We can even notice that for hazard estimation in the Bimodal
case, the censoring (with significant rate about 40 − 50%) systematically seems to
improve the MSE2’s.

5. Proofs

5.1. Proof of Lemma 3.1. Proof of 1). The result follows by simply integrating
the deviation given in Theorem 2.1.

E



(

sup
x∈[0,1]

|F̂n(x) − F (x)|
)2k

 = 2k

∫ +∞

0

u2k−1 P( sup
x∈[0,1]

|F̂n(x) − F (x)| > u) du

≤ 2k

∫ +∞

0

u2k−1 P(
√
n‖(1 −H)2 (F̂n − F )w1‖∞ > c2Hw1

√
nu) du
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≤ 5keC2/8

∫ ∞

0

u2k−1 exp

(
−2(c2Hw1)

2n

[
u− C

4
√
nc2Hw1

]2
)
du

≤ 5eC2/8k

2k(c2Hw1)2k

(∫ +∞

−C/(2
√

2)

(
z +

1

2
√

2

)2k−1

e−z2

dz

)
n−k = CF (k)n−k.

Proof of 2). First, using the definition of Φ given by (15) and the expression of the
density probability fσS ,XS of (σS , XS) deduced from (3), we write that

Φ(x) =

∫∫∫
1I{aS(σ)≤x}1I{y≥x}1I{x≤aS(σ)+c}fσ,XS (σ, y)h(c)dσdydc

=
1

µS

∫
1I{y≥x}f(y)

[∫
h(c)

(∫
1I{x−c≤aS(σ)≤x}ϕ(σ)dσ

)
dc

]
dy.

By reminding that w(x) =
∫

1I{aS(u)≤x}ϕ(u)du, we get

∫
1I{x−c≤aS(σ)≤x}ϕ(σ)dσ =

{
w(x) − w(x− c) if x− c > 0
w(x) otherwise,

since w(0−) = 0. It follows that

Φ(x) =
F̄ (x)

µS

[∫ x

0

h(c)(w(x) − w(x− c))dc+

∫ +∞

x

h(c)w(x)dc

]

=
F̄ (x)

µS

(
w(x) −

∫ x

0

h(c)w(x− c)dc

)
.(25)

For x ≥ s, we have w(x) − w(s) =
∫

1I{s<aS(σ)≤t}ϕ(σ)dσ ≥ 0. Thus, for c in [0, x],
we have w(x− c) ≤ w(x) and

Φ(x) ≥ F̄ (x)

µS
w(x)

(
1 −

∫ x

0

h(c)dc

)
=
F̄ (x)

µS
w(x)H̄(x).

This implies that ∀x ∈ A, Φ(x) ≥ cF cHw1/µS := cΦ.
Proof of 3). We just have to write that Φ(x) = P(aS(σS,1) ≤ x ≤ Z1) is a difference
of two distribution functions Φ(x) = P(aS(σS,1) ≤ x)−P(Z1 ≤ x). Then we can use
the exponential deviation inequality between theoretical and empirical distribution
functions for i.i.d. random variables, as given in Massart (1990) (which gives that

∀λ > 0,P(
√
n‖Fn,Z −FZ‖∞ ≥ λ) ≤ 2e−2λ2

, where Fn,Z(x) = (1/n)
∑n

i=1 1I{Zi≤x} and
FZ(x) = P(Z1 ≤ x)). Then we can integrate the resulting exponential probabilities
as above (see the proof of 1)).



NONPARAMETRIC ESTIMATION UNDER UNKNOWN BIAS AND CENSORING 17

5.2. Proof of Proposition 3.1. Using equations (6) and (3), we obtain:

E

(
δ1t(Z1)

Φ(Z1)

)
= E

(
1I{XS,1−aS(σS,1)≤C1}

t(XS,1)

Φ(XS,1)

)

=

∫∫∫
1I{x−aS(σ)≤c}1I{aS (σ)≤x}

t(x)

Φ(x)
h(c)ϕ(σ)

f(x)

µS
dcdσdx

=

∫
t(x)f(x)

µSΦ(x)

[∫
h(c)

(∫
1I{x−c≤aS(σ)≤x}ϕ(σ)dσ

)
dc

]
dx.

Then it follows from (25) that

∫
h(c)

(∫
1I{x−c≤aS(σ)≤x}ϕ(σ)dσ

)
dc =

Φ(x)

F̄ (x)
µS .

Thus

E

(
δ1t(Z1)

Φ(Z1)

)
=

∫
t(x)f(x)

Φ(x)µS

Φ(x)µS
F̄ (x)

dx =

∫
t(x)

f(x)

1 − F (x)
dx = 〈t, λ〉.

5.3. Proof of Theorem 3.1. For the sake of brevity, we prove the result only in the
more complicated case, that is for the estimation of f . The proof for the estimation
of λ would follow the same line.

For the sake of simplicity, we also prove the result with a deterministic penalty
function,

p̃en(m) = κE

(
δ1F̄

2(Z1)

Φ2(Z1)

)
m

n
.

Going from the above penalty to the random one given in the definitions of the
estimators is now standard (see Comte and Brunel (2005, p.465)).

Step 1: Decomposition of the L2 risk . Let Bm,m′(0, 1) = {t ∈ Sm + Sm′ , ‖t‖ = 1}.
We deduce from (22) and the definition of f̂m̃ that

‖f̂m̃ − f‖2 ≤ ‖f − fm‖2 + 2ν̃n(f̂m̃ − fm) + 2Rn,1(f̂m̃ − fm) + 2Rn,2(f̂m̃ − fm)

+p̃en(m) − p̃en(m̃)

≤ ‖f − fm‖2 + 2‖f̂m̃ − fm‖
(

sup
t∈Bm,m̃(0,1)

(|ν̃n(t)| + |Rn,1(t)| + |Rn,2(t)|)
)

+p̃en(m) − p̃en(m̃)
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We use that for x, y ≥ 0, 2xy ≤ (1/4)x2 + 4y2 and (x + y + z)2 ≤ 2x2 + 4y2 + 4z2

and we obtain

‖f̂m̃ − f‖2 ≤ ‖f − fm‖2 +
1

4
‖f̂m̃ − fm‖2 + 8 sup

t∈Bm,m̃(0,1)

ν̃2
n(t) + 16 sup

t∈Bm,m̃(0,1)

R2
n,1(t)

+16 sup
t∈Bm,m̃(0,1)

R2
n,2(t) + p̃en(m) − p̃en(m̃)

≤ ‖f − fm‖2 +
1

4
‖f̂m̃ − fm‖2 + 8

(
sup

t∈Bm,m̃(0,1)

(ν̃n)2(t) − p(m, m̃)

)

+

+16 sup
t∈Bm,m̃(0,1)

R2
n,1(t) + 16 sup

t∈Bm,m̃(0,1)

R2
n,2(t)

+8p(m, m̃) + p̃en(m) − p̃en(m̃)

Next p(m,m′) is chosen such that

(26) E

(
sup

t∈Bm,m̃(0,1)

ν̃2
n(t) − p(m, m̃)

)

+

≤ C

n
,

and the penalty function p̃en(m) is deduced from p(., .) by setting the constraint

(27) ∀m,m′ ∈ Mn, 8p(m,m′) ≤ p̃en(m) + p̃en(m′).

Step 2: Use of Talagrand (1996)’s Inequality . From the linear centered empirical
process ν̃n(t), we compute the following constants in view of applying Talagrand’s
Inequality. The connection between the norms stated in (14) is very useful in all the
following.

E

(
sup

t∈Bm,m′ (0,1)

ν̃2
n(t)

)
≤ 1

n

m∨m′−1∑

j=0

Var

(
ψj(XS,1)F̄ (XS,1)

Φ(XS,1)

)

≤ 1

n
E

(∑m∨m′−1
j=0 ψ2

j (XS,1)F̄
2(XS,1)

Φ2(XS,1)

)
≤ 2(m ∨m′)

n
sup
x∈A

F̄ 2(x)

Φ2(x)
(28)

≤ 2µ2
S

w2
1c

2
H

m ∨m′

n
:= H2.(29)

Indeed, it follows from (25) that Φ(t)/F̄ (t) ≥ w(t)H̄(t)/µS .

sup
t∈Bm,m′ (0,1)

Var

(
t(XS,1)F̄ (XS,1)

Φ(XS,1)

)
≤ sup

t∈Bm,m′

∫
t2(x)F̄ 2(x)

Φ2(x)

w(x)f(x)

µS
dx

≤ µSw2f1

c2Hw
2
1

sup
t∈Bm,m′

∫

A

t2(x)dx ≤ µSw2f1

c2Hw
2
1

:= v(30)
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sup
t∈Bm,m′ (0,1)

sup
x∈A

∣∣∣∣
t(x)F̄ (x)

Φ(x)

∣∣∣∣ ≤
µS
w1cH

√
2(m ∨m′) := M1.(31)

Thus, we obtain, with C(ε) = (
√

1 + ε − 1) ∧ 1 and K1 standing for numerical
constant,

E

(
sup

t∈Bm,m′ (0,1)

ν̃2
n(t) − 2(1 + 2ε)H2

)

+

≤ 6

K1

(
v

n
e−K1εnH2/v +

8M2
1

K1n2C2(ε)
e
−K1C(ε)

√
ε√

2
nH
M1

)

Now, by taking ε = 1/2 and with the values of H2, v and M1 computed above, we
can write the resulting upper bound in this context, for all m,m′

E

(
sup

t∈Bm,m′ (0,1)

ν̃2
n(t) − 4H2

)

+

≤ 6/K1

n

(
ae−b(m∨m′) + ce−d

√
n
)

with a = µSw2f1/(c
2
Hw

2
1), b = K1µS/(w2f1), c = 16µ2

S/(K1w
2
1c

2
HC

2(1/2)) and d =
K1C(1/2)/2. Finally, with the choice p(m,m′) = 4H2

E

(
sup

t∈Bm,m̃(0,1)

ν̃2
n(t) − p(m, m̃)

)

+

≤
∑

m′≤n

E

(
sup

t∈Bm,m′ (0,1)

ν̃2
n(t) − p(m,m′)

)

+

≤ C

n
.

Then, if (26) and (27) hold, then we have, since ‖f̂m̃−fm‖2 ≤ 2‖f̂m̃−f‖2+2‖fm−f‖2,

1

2
E(‖f̂m̃ − f‖2) ≤ 3

2
‖f − fm‖2 + 2p̃en(m) +

8C

n

+16E

(
sup

t∈Bm,m̃(0,1)

R2
n,1(t)

)
+ 16E

(
sup

t∈Bm,m̃(0,1)

R2
n,2(t)

)

Then, for nested model collections described in Section 3.2, Sm + Sm′ ⊂ Sn for all
m,m′ implies that the supremun taken over the unit ball Bm,m̃(0, 1) is lower than
the supremun over Bn(0, 1) = {t ∈ Sn, ‖t‖ ≤ 1}. As a consequence, it remains to
study the residual terms involving Rn,1 and Rn,2.

Step 3: Study of the two residual terms.

Lemma 5.1. Let ΩΦ = {ω,Φn(x) ≥ cΦ/2, ∀x ∈ [0, 1]}. Assume that f(x) ≤ f1 and
w1 ≤ w(x) ≤ w2, for all x ∈ [0, 1],

Ln(ϕ) ≤ N2
n with Nn = dimSn,(32)

then, for i = 1, 2, we have

E

(
sup

t∈Bn(0,1)

R2
n,i(t)1IΩΦ

)
≤ Ki+1

√
ln(n)

n
(33)

with Bn(0, 1) = {t ∈ Sn, ‖t‖ = 1} and for numerical constants K2 > 0 and K3 > 0.
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On the complementary of ΩΦ, we use that Φn(x) ≥ 1/n for all i, and that
supx∈[0,1] |Φn(x) − Φ(x)| > cΦ/2, to obtain with Lemma 3.1,

E

(
sup

t∈Bn(0,1)

R2
n,1(t)1IΩc

Φ

)
≤ c/n.

Indeed, on Ωc
Φ, we can write

E

(
sup

t∈Bn(0,1)

R2
n,1(t)1IΩc

Φ

)
≤ 2n2NnE

(
‖F − F̂n‖21IΩc

Φ

)

≤ 2n2NnE1/2
(
‖F − F̂n‖4

)
P1/2(Ωc

Φ).

With Lemma 3.1 1), we have E(‖F − F̂n‖4
∞) ≤ CF (2)/n2 and as Nn ≤ n,

P(Ωc
Φ) ≤ P(‖Φn − Φ‖∞ > cΦ/2) ≤ E

[(
2

cΦ

)2k

‖Φn − Φ‖2k
∞

]
≤
(

2

cΦ

)2k
CΦ(k)

nk

by using Lemma 3.1 2). Then choosing k ≥ 12 gives the result.
The same approach gives the same order for E

(
supt∈Bn(0,1)R

2
n,2(t)1IΩc

Φ

)
.

5.4. Proof of Lemma 5.1.

E

(
sup

t∈Bn(0,1)

R2
n,1(t)IΩΦ

)
≤ 1

c2Φ
E


 sup

x∈[0,1]

|F̂n(x) − F (x)|2 sup
t∈Bn(0,1)

(
1

n

n∑

i=1

|t(XS,i)|
)2



≤ 1

c2Φ
E

{
sup

x∈[0,1]

|F̂n(x) − F (x)|2
[

sup
t∈Bn(0,1)

[|ν∗n(t2)| + E(t2(XS,1))]

]}

≤ 1

c2Φ
E

{
sup

x∈[0,1]

|F̂n(x) − F (x)|2
[

sup
t∈Bn(0,1)

|ν∗n(t2)| + f1w2

µS

]}
,

with ν∗n(t) = 1
n

∑n
i=1[t(XS,i) − E(t(XS,i))]. Now, by applying Schwartz Inequality

and Lemma 3.1 1) with k = 2, we obtain

E

(
sup

t∈Bn(0,1)

R2
n,1(t)IΩΦ

)
≤ C

1/2
F (2)

c2Φ

1

n

[
E1/2 sup

t∈Bn(0,1)

[ν∗n(t2)]2 +
f1w2

µS

]

From Baraud (2002), we have the following exponential inequality, for all ρ > 0,

P

(
sup

t∈Bn(0,1)

|ν∗n(t2)| ≥ ρ

)
≤ |Λn|2 exp

(
− nρ2

4f̃1Ln(ϕ)

)

where we denote by f̃1 = f1w2/µS and Ln(ϕ) is a quantity associated to the orthonor-
mal basis ψ = (ψj)j∈{0,...,Nn−1} of the largest space Sn =

⋃
m∈Mn

Sn of the (nested)
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collection satisfying (32). Moreover, in the proof of Theorem 4.2. by Brunel &
Comte (2005), it is checked that

E

(
sup

t∈Bn(0,1)

[ν∗n(t2)]2

)
≤ 2 ln(n) for n ≥ 2,

as soon as Ln(ϕ) ≤ n/(16f̃1). Therefore, if Nn ≤ √
n/(4

√
f̃1), we easily deduce

Inequality (33).
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