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Abstract. In this paper, we consider the problem of estimating a regression function when

the outcome is censored. Two strategies of estimation are proposed: a two-step strategy where

the ratio of two projection estimators is used to estimate the regression function; a direct

strategy based on a standard mean-square contrast for censored data. For both estimators,

non-asymptotic bounds for the integrated mean-square risk are provided and data-driven model

selection is performed. In most cases, asymptotically optimal minimax rates of convergence are

obtained, when the regression function belongs to a class of Besov functions.
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1. Introduction

It is most natural to use regression techniques to explore the relationship between a response

and covariates. A vast literature deals with nonparametric methods for completely observed data

and provide a very flexible tool in a prospective study. But, some of the responses, typically

lifetimes and/or covariates may be censored. Our aim is to introduce new projection estimators

of the regression function when the response is censored while the covariate is a multivariate

completely observed vector.

First, estimators of the regression function based on Nadaraya-Watson [26], [32] kernel-type

estimators were studied and improved by local linear regression smoothers in Fan [15] or by

adaptive mean-square methods in Baraud [1]. The optimal rates for such estimators have been

established by Stone [30] and are known to be of order n−k/(k+d) when an n sample is available,

d-dimensional covariates are considered and the regression function is k times differentiable.

However, in the setting of censored data, the previous methods are not directly applicable.

Linear models have been first mainly considered (see Miller [25], Buckley and James [6], Kool

et al. [22], Zhou [34], among others). See also Heuchenne and Van Keilegom [18] for a nonlin-

ear semiparametric regression model with censored data. But the flexibility of nonparametric
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regression provides an interesting tool when a general relationship between covariate and re-

sponse is first to be explored. For instance, Dabrowska [10] studied nonparametric estimators

of the conditional survival function. Zheng [33] generalized Stone’s regression estimators to the

censored case. The consistency of the resulting estimator has also been studied in Györfi et

al. [16], Chapter 26. Fan and Gijbels [15] studied a local linear smoothers adaptive to the data

and in particular to the scarcity at the end of the interval. Park [29] has extended a procedure

suggested in Gross and Lai [17] to a general nonparametric model in presence of left-truncation

and right-censoring, by using B-splines developments. Recently, Kohler et al. [21] have pro-

posed an adaptive mean-square estimator built with polynomial splines. Asymptotic optimal

rates of convergence are given up to a logarithmic factor for regression functions belonging to

Hölder-type spaces. We consider more general functional spaces (anisotropic Besov spaces).

Our nonparametric method is adaptive in the sense that the dimension of the approximation

spaces can be relevantly chosen without knowing the regularity of the unknown function to esti-

mate. A data-driven criterion of selection is introduced for this purpose and then, the estimator

achieves automatically the optimal rate without any loss. Two methods are investigated in this

paper. First, the projection method provides a quotient estimator which is easy to compute

and can reach the optimal rate in many cases. On the other hand, the mean-square regression

method developed in Baraud [1] is suitable for the censored case: it gives a direct adaptive

estimator which automatically reaches the optimal rate.

A particular attention is paid to the additive model even if multivariate regression functions

can be estimated with both proposed estimators. Indeed, in the particular case of the additive

model, the practical implementation of the mean-square estimator can be conducted by using

a mean-square regression algorithm described in Comte and Rozenholc [9] and is successfully

investigated through simulated as well as real data sets in Brunel and Comte [8].

The plan of the paper is the following. In Section 2, we first describe the regression model

and the censoring mechanism. Then, the approximation spaces with their key properties are

introduced and the orders of the bias terms are given. More precisely the L2-distance between

a function belonging to a Besov space and its orthogonal projection on a given approximation

space of the collection is evaluated. Section 3 presents the two strategies of estimation: the

quotient estimator, which is studied in term of its Mean Integrated Squared Error (MISE) in

Section 4 and the mean-square estimator, whose MISE is studied in Section 5. Most proofs are

gathered in Section 6.

2. Preliminaries on the model and on the collection of approximation spaces

2.1. Nonparametric regression model with censored data. As mentionned by Gross and

Lai [17], when right-censoring is present, functionals of the survival function cannot be estimated

on the complete support.
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Suppose that ~Xi is a d-dimensional covariate in a compact set, without loss of generality

we would assume that ~Xi is taking value into [0, 1]d. Let ( ~X1, Y1), ( ~X2, Y2), . . . , ( ~Xn, Yn) be

independent identically distributed random variables.

We consider a setting analogous to Kohler et al. [21] corresponding to a fixed time T for

collecting the data. Therefore, the variables before censoring are denoted by Yi,T = Yi ∧ T ,

where a ∧ b denotes the infimum of a and b. Then the regression model is

E(Yi,T | ~Xi) = rT ( ~Xi), i = 1, . . . , n .

Next, let C1, C2, . . . , Cn be n censoring times independent of the ( ~Xi, Yi). Then, the censoring

mechanism is as follows: the ~X ′
is and the pairs (Zi, δi)’s are observed where

Zi = Yi,T ∧ Ci, δi = 1I{Yi,T≤Ci}

δi indicates if the observed time Zi is a lifetime or a censoring time both occuring in the interval

[0, T]. Of course, it is often mentionned that the function of interest would be r in the regression

model E(Yi| ~Xi) = r( ~Xi), but only its biased version rT is reachable.

Now, set G(.) the cumulative distribution function (c.d.f.) of the Ci’s and by FY the marginal

c.d.f. of the Yi’s with F̄Y = 1−FY and Ḡ = 1−G the associated survival functions. We suppose

moreover:

(A) The distribution functions of the Yi’s and Ci’s are R+-supported.

Under (A), the three following conditions are immediately satisfied:

P(Yi ≥ T ) = P(Yi,T = T ) > 0(2.1)

Moreover, we suppose that P(Ci > T ) > 0 which is satisfied for most well-known parametric

survival models where the Ci’s are R+-supported. This implies

1−G(Yi,T ) ≥ 1−G(T ) := cG, i = 1, . . . , n.(2.2)

The c.d.f FY is upper bounded on [0, T ] so there exists cF > 0,

∀t ∈ [0, T ], 1− FY (t) ≥ 1− FY (T ) := cF > 0.(2.3)

Any condition ensuring (2.2) and (2.3) can be substituted to (A).

2.2. Description of the approximation spaces in the univariate case. In the one-dimensioal

case, the projection spaces (Sm)m∈Mn are standard and described hereafter.

[T] Trigonometric spaces: Sm is generated by {1,
√

2 cos(2πjx),
√

2 sin(2πjx) for j = 1, . . . ,m},
Dm = 2m+ 1 and Mn = {1, . . . , [n/2]− 1}.
[P] Regular piecewise polynomial spaces: Sm is generated by m(r+1) polynomials, r+1 polyno-

mials of degree 0, 1, . . . , r on each subinterval [(j− 1)/m, j/m], for j = 1, . . .m, Dm = (r+ 1)m,

m ∈ Mn = {1, 2, . . . , [n/(r + 1)]}. Usual examples are the orthogonal collection in L2([−1, 1])

of the Legendre polynomials or the histogram basis. Dyadic collection of piecewise polynomials
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denoted by [DP] correspond to dyadic subdivisions with m = 2q and Dm = (r + 1) 2q.

[W] Dyadic wavelet generated spaces with regularity r and compact support, as described in

Donoho and Johnstone [14]. The generating basis is of cardinality Dm = 2m+1 and m ∈ Mn =

{1, 2, . . . , [ln(n)/2]− 1} see Brunel and Comte [7] for details.

All the spaces above satisfy the same property:

(H1) (Sm)m∈Mn is a collection of finite-dimensional linear sub-spaces of L2([0, 1]), with di-

mension dim(Sm) = Dm such that Dm ≤ n, ∀m ∈Mn and satisfying:

(2.4) ∃Φ0 > 0,∀m ∈Mn,∀t ∈ Sm, ‖t‖∞ ≤ Φ0

√
Dm‖t‖.

where ‖t‖2 =
∫ 1
0 t

2(x)dx, for t in L2([0, 1]).

An orthonormal basis of Sm is denoted by (ϕλ)λ∈Λm where |Λm| = Dm. Birgé and Massart [4]

proved that Property (2.4) in the context of (H1) is equivalent to

(2.5) ∃Φ0 > 0, ‖
∑
λ∈Λm

ϕ2
λ‖∞ ≤ Φ2

0Dm.

Moreover, for the results concerning the adaptive estimators, we need the following additional

assumption:

(H2) (Sm)m∈Mn is a collection of nested models, we denote by Sn the space belonging to

the collection, such that ∀m ∈ Mn, Sm ⊂ Sn. We denote by Nn the dimension of Sn:
dim(Sn) = Nn (∀m ∈Mn, Dm ≤ Nn).

Assumption (H1) is satisfied with for instance Φ0 =
√

2 for collection [T] and Φ0 =
√

2r + 1

for collection [P]. Moreover, [T], [DP] and [W] satisfy (H2).

2.3. The general multivariate setting and the particular case of additive models.

Consider the general case of a regression function r : [0, 1]d → R where r(x) = r(x(1), . . . , x(d)).

Here m = (m1, . . . ,md) is multivariate and models Sm := S(m1,...,md) are linearly spanned by the

basis functions ϕλ1(x
(1))×· · ·×ϕλd(x(d)). Here λ = (λ1, . . . , λd) ∈ Λm := Λm1×· · ·×Λmd where

all (ϕλk)’s correspond to the one dimensional case. For instance for d = 2, the corresponding

function t ∈ Sm can be written

t(x, y) =
∑
λ∈Λm

aλϕλ(x, y) =
∑

λ1∈Λm1

∑
λ2∈Λm2

aλ1,λ2ϕλ1(x)ϕλ2(y) ,

with ∀λ ∈ Λm , aλ = aλ1,λ2 ∈ R and ϕλ(x, y) = ϕλ1(x)ϕλ2(y) for (x, y) ∈ [0, 1]2. Clearly, the

dimension of such a product space Sm is the product Dm = Dm1×· · ·×Dmd of the cardinalities of

the Λmi ’s. It would not be realistic with standard sample sizes to think of more than two or three

covariates (see [8]). If the underlying one-directional spaces Sm1 , . . . , Smd satisfy (H1) and (H2),

then the resulting product space also satisfies these conditions. We also need to denote the space

Sn = Sn1,...,nd with the associated spaces Sni be such that ∀m = (m1, . . . ,md) ∈Mn, Smi ⊂ Sni
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for all i = 1, . . . , d. We also denote by Nni the dimension of each Sni and as previously the

resulting dimension of Sn is defined by Nn = Nn1 × · · · ×Nnd .

The particular case of additive models constitutes a way to make the dimension d of the

covariate higher. This amounts to consider the following multivariate regression function:

(2.6) rT (x) = rT (x(1), . . . , x(d)) = eT + rT,1(x(1)) + · · ·+ rT,d(x(d)).

For identifiability, we assume moreover that
∫
[0,1] rT,i(x

(i)) dx(i) = 0. It is then possible to build

estimators of rT,1, . . . , rT,d on different spaces, when the mean-square estimator is considered.

In that case, the models can be described as

Sm =

{
t(x(1), . . . , x(d)) = a+

d∑
i=1

ti(x(i)), (a, t1, . . . , td) ∈ R×Πd
i=1S

g(i)

m(i)

}
where g(i) = 1 if the space S1

mi is chosen as a trigonometric space with dimension Dmi and

g(i) = 2 if S2
mi is chosen as a piecewise polynomial space with dimension Dmi , for instance.

Those collections also satisfy (H1) and (H2) with Dm = 1 +
∑d

i=1(Dmi − 1) in the inequalities

(2.4) or (2.5).

2.4. Order of the bias in Besov spaces and resulting rates.

Given a function h (where h stands for the regression function rT or its product ψ = rT f where f

denotes the density of the ~Xi’s) belonging to a class of smooth functions F , the L2-norm denoted

by ‖.‖ on F and a collection (Sm)m∈Mn of linear subspaces of L2(A) described in section 2.2

with dimension Dm, elementary approximation theory implies that ‖h− hm‖ = inft∈Sm ‖h− t‖
where hm is the orthogonal projection of h on Sm. The set A is the compact set of estimation

and is taken equal to [0, 1]d for simplicity. The general goal of model selection is to build a

collection of estimators ĥm of h belonging to Sm, then to select a model m̂ in Mn and to bound

the quadratic risk of the resulting estimator h̃ = ĥm̂ with the following type of inequality:

(2.7) E‖h− h̃‖2 ≤ C inf
m∈Mn

(
‖h− hm‖2 +

Dm

n

)
.

Both terms in the above upper bound depends on Dm, the former being decreasing and the latter

increasing. As a consequence, the infimum automatically makes the usual squared bias/variance

compromise and therefore minimizes the risk. The way of illustrating this minimization problem

is to put a smoothness assumption on h. This regularity assumption associated to the choice of

the spaces Sm leads to a known order of the squared bias term depending on Dm and the index

of regularity, and therefore to an explicit rate.

a) Univariate case.

In fact, it is well-known that for all three collections [T], [P] or [W], the L2 projection hm on the
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linear subspace Sm achieves the best rate of approximation in L2 for the Besov class of functions

F = Bα2,∞(A) with A = [0, 1] (see Lemma 12, Barron et al. [3]) i.e.

‖h− hm‖2 ≤ C(α) |h|α,2D−α
m , for h ∈ Bα2,∞(A),

where C(α) is a constant depending on α and also on the basis. The semi-norm of h in Bα2,∞(A)

is denoted by |h|α,2 = supy>0 y
−αω`(h, y)2 < +∞ with ` = [α] + 1 and with the modulus of

smoothness defined by

ω`(h, y)2 = sup
0<u≤y

‖
∑̀
k=0

(
`

k

)
(−1)`−k h(x+ ku)‖ .

For more details, the approximation properties of these spaces can be found in DeVore and

Lorentz [12]. Therefore, balancing the approximation and variance terms leads to choose m∗

such that Dm∗ = O(n1/(2α+1)) and it provides the optimal rate of order O(n−2α/(2α+1)). An

inequality such as (2.7) means in that context that the model selection procedure leads not

only to a nonasymptotic squared bias/variance compromise but also that the adaptive estima-

tor automatically reaches an asymptotic rate of order O(n−2α/(2α+1)) which in most problems

is known to be the minimax rate.

b) General multivariate case.

In the case of multivariate functions, the previous definitions of Besov spaces can be generalized

in a possibly anisotropic way, i.e. we can consider F = Bα2,∞(A) with A = [0, 1]d and α =

(α1, . . . , αd) standing for the regularity of the function in the different directions. What is

known as the isotropic case corresponds to α1 = · · · = αd. In that case, general definitions of

the corresponding Besov spaces Bα2,∞(A) with α real and A = [0, 1]d can be found in DeVore [13].

For the general anisotropic case, it is proved in Hochmuth [19] for [P] and [W] and Nikol’skĭı

[28] for [T] that the orthogonal projection hm on Sm = S(m1,...,md), leads to a squared bias term

of order,

(2.8) ‖h− hm‖2 ≤ C0

d∑
i=1

D−2αi
mi , ∀m ∈Mn.

for a positive constant C0. This leads, still with (2.7), and variance order Πd
i=1Dmi/n, to the

rate :

(2.9) E‖h− h̃‖2 ≤ O(n−2ᾱ/(2ᾱ+d))

where ᾱ = d/
∑d

i=1 α
−1
i is the harmonic average of the smoothness coefficients αi’s. Inequality

(2.9) is proved in Section 6. Note that this order is achieved for Dm∗
i

= O(n1/[αi(d/ᾱ+2)]) and

with this choice of the Dm∗
i
’s, so that Dm∗ = Πd

i=1Dm∗
i
, the bias term is of order O(D−2ᾱ/d

m∗ ). The

same order is obtained by Neumann [27], who also proves that the resulting rates are minimax.
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c) Additive models.

For additive models described in section 2.3, the proof of Proposition 5 in Baraud et al. [2] im-

plies that ‖r−rm‖2 is of order D−2α
m where α = min(α1, . . . , αd) and Dm = min(Dm1 , . . . , Dmd).

In that case, the resulting rate remains a one-dimensional-type rate because the variance is of

order [1 +
∑d

i=1(Dmi − 1)]/n instead of Πd
i=1Dmi/n. This produces a rate of order n−2α/(2α+1),

as if the dimension of the space were equal to one and the function had the regularity α.

3. Two general methods of estimation

As usual in regression problems, two different strategies are available. First, projection con-

trasts allow to estimate ψ = rT f and f separately; then the estimator of rT is obtained as the

quotient of those estimators. Secondly, a mean-square contrast can lead to a direct estimator

of rT . The first estimator is in some sense easier to study and in any case very easy to com-

pute; but its theoretical properties are sometimes less satisfactory than those of the mean-square

estimator. On the other hand, the latter is more difficult to implement.

3.1. Useful tools. In all the following, we consider the standard transformation of the obser-

vations:

ŶiG =
δiZi

1− Ĝ(Zi)
=

δiZî̄G(Zi)

where Ĝ is a relevant estimator of G. Moreover, we denote by

YiG =
δiZi

1−G(Zi)
=

δiZi
Ḡ(Zi)

the (unobserved) theoretical counterpart of the ŶiG’s.

We propose to take the Kaplan-Meier [20] product-limit estimator ˆ̄G, modified in the way

suggested by Lo et al. [24], and defined by

(3.1) ̂̄G(y) =
∏

Z(i)≤y

(
n− i+ 1
n− i+ 2

)1−δ(i)
.

Then, we have the following useful properties: ̂̄G(y) ≥ 1/(n + 1), ∀y and compared to the

standard Kaplan-Meier estimator

̂̄G0(y) =
∏

Z(i)≤y

(
n− i

n− i+ 1

)1−δ(i)

we have

(3.2) sup
0≤y≤T

| ̂̄G0(y)− ̂̄G(y)| = O(n−1), a.s.

for 0 < T < sup{t ≥ 0 / G(t) = 1}. The following lemma is useful to control the probability of

the uniform deviation of the estimator of the survival distribution function ˆ̄G.
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Lemma 3.1. For all k ∈ N∗, there exists a constant Ck depending on k and cF such that

E

(
sup

y∈[0,T ]
| ˆ̄G(y)− Ḡ(y)|2k

)
≤ Ck
nk
.

3.2. The projection contrasts. Let ψ = rT f . The minimization of the contrast:

(3.3) γn(t) = ‖t‖2 − 2
n

n∑
i=1

ŶiGt( ~Xi)

by setting ψ̂m = arg mint∈Sm γn(t) leads to an estimator of ψ. Then we have to determine the

adequate penalization function pen(m) to select the relevant projection space via the standard

method:

(3.4) m̂ = arg min
m∈Mn

[
γn(ψ̂m) + pen(m).

]
Let us mention that

ψ̂m =
∑
λ∈Λm

âλϕλ with âλ =
1
n

n∑
i=1

ŶiGϕλ( ~Xi)

and that γn(ψ̂m) = −
∑

λ∈Λm
â2
λ.

A standard estimator of the density f of the ~Xi’s is obtained by minimization of the contrast:

γ̆n(t) = ‖t‖2 − 2
n

n∑
i=1

t( ~Xi).

Then,

(3.5) f̂m = arg min
t∈Sm

γ̆n(t)

is known to give a good estimator of f . As previously, f̂m is very easy to compute since

f̂m =
∑

λ∈Λm
β̂λϕλ with β̂λ = (1/n)

∑n
i=1 ϕλ( ~Xi). Moreover, the penalized estimator f̂m̆ by

setting m̆

(3.6) m̆ = arg min
m∈Mn

γ̆n(f̂m) + κΦ2
0

Dm

n
,

reaches the optimal minimax rate (see Barron et al. [3]). Here κ denotes a universal constant.

Let f̃ = f̂m̆ and ψ̃ = ψ̂m̂ be the penalized estimators of f and ψ defined above, then it is natural

to consider the following estimator of r:

r̃P =

(
ψ̃

f̃

)(an)

where
(
x

y

)(`)

=

 ` sign
(
x
y

)
if |x| ≥ `|y|

x
y else.

with (an) a sequence of positive real numbers.
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3.3. The mean-square contrast. The mean-square strategy leads to study the following con-

trast:

(3.7) γMS
n (t) =

1
n

n∑
i=1

[t( ~Xi)− ŶiG]2.

In this context, it is useful to consider the empirical norm associated with the design

‖t‖2
n =

1
n

n∑
i=1

t2( ~Xi), 〈s, t〉n =
1
n

n∑
i=1

s( ~Xi)t( ~Xi).

Here we define

(3.8) r̂m = arg min
t∈Sm

γMS
n (t).

The function r̂m may be uneasy to define but the vector (r̂m( ~X1), . . . , r̂m( ~Xn))′ is always well

defined since it is the orthogonal projection in Rn of the vector (Ŷ1G, . . . , ŶnG)′ onto the subspace

of Rn defined by {(t( ~X1), . . . , t( ~Xn))′, t ∈ Sm}. This explains why the empirical norms are

particularly suitable for the mean-square contrast.

Next, model selection is performed as usual via:

(3.9) m∗ = arg min
m∈Mn

{
γMS
n (r̂m) + penMS(m)

}
,

and we have to determine the relevant form of penMS for r̂m∗ to be an adaptive estimator of r.

4. Study of the quotient method

4.1. Estimation of ψ = rT f . The following decomposition holds

γn(t)− γn(s) = ‖t− ψ‖2 − ‖s− ψ‖2 + 2〈t− s, ψ〉 − 2
n

n∑
i=1

ŶiG(t− s)( ~Xi)

= ‖t− ψ‖2 − ‖s− ψ‖2 − 2
n

n∑
i=1

(ŶiG − YiG)(t− s)( ~Xi)

− 2
n

n∑
i=1

[YiG(t− s)( ~Xi)− 〈t− s, ψ〉]

= ‖t− ψ‖2 − ‖s− ψ‖2 − 2νn(t− s)− 2Rn(t− s),

where

νn(t) =
1
n

n∑
i=1

[
δiZi
Ḡ(Zi)

t( ~Xi)− 〈ψ, t〉
]
,

is a centered empirical process specific to the projection method, and

(4.1) Rn(t) =
1
n

n∑
i=1

[
1

ˆ̄G(Zi)
− 1
Ḡ(Zi)

]
δiZit( ~Xi)

is a residual term common to both strategies.
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Writing that γn(ψ̂m) ≤ γn(ψm) where ψm is the orthogonal projection of ψ on Sm, we obtain

‖ψ̂m − ψ‖2 ≤ ‖ψm − ψ‖2 + 2νn(ψ̂m − ψm) + 2Rn(ψ̂m − ψm).

Let Bm(0, 1) = {t ∈ Sm, ‖t‖ = 1} denote the unit ball of Sm.

2E|νn(ψ̂m − ψm)| ≤ 1
8

E(‖ψ̂m − ψm‖2) + 8E

(
sup

t∈Bm(0,1)
ν2
n(t)

)

E

(
sup

t∈Bm(0,1)
ν2
n(t)

)
≤

∑
λ∈Λm

E(ν2
n(ϕλ)) ≤

1
n2

∑
λ∈Λm

Var

(
n∑
i=1

δiZi)
Ḡ(Zi)

ϕλ( ~Xi)

)

≤ 1
n

∑
λ∈Λm

E
(

δ21Z
2
1

(Ḡ(Z1))2
ϕ2
λ( ~X1)

)
≤ Φ2

0Dm

c2Gn
E(Y 2

1,T ).

Thus

2E|νn(ψ̂m − ψm)| ≤ 1
4

E(‖ψ̂m − ψ‖2) +
1
4
‖ψm − ψ‖2 +

8Φ2
0E(Y 2

1 )
c2G

Dm

n
.

A rough bound for the residual term can be found in an analogous manner:

Lemma 4.1. There exists a constant C = 210
√
C8 where C8 is defined in Lemma 3.1, such that

2E|Rn(ψ̂m − ψm)| ≤ 1
4

E(‖ψ̂m − ψ‖2) +
1
4
‖ψm − ψ‖2 +

25Φ2
0E1/2(Y 4

1 )
c4G

Dm

n
+
CΦ2

0E1/2(Y 4
1 )

nc8G
.

By gathering all terms, we find, under very mild conditions the following result.

Proposition 4.1. Under assumptions (H1) and (H2) for the collection of models and if Y1

admits moments of order 4, then the estimator ψ̂m = arg mint∈Sm γn(t) for γn defined by (3.3)

satisfies:

E(‖ψ̂m − ψ‖2) ≤ 7‖ψm − ψ‖2 +K
Φ2

0 E1/2(Y 4
1 )

c4G

Dm

n
+K ′Φ

2
0E1/2(Y 4

1 )
c8G

1
n
.

for positive constants K and K ′.

This leads to standard rates on Besov spaces provided that the dimensionDm of the projection

space is relevantly chosen in function of the index of regularity of the function, by using the bias

orders given in Section 2.3. Since this index is unknown, an automatic data-driven choice has

to be performed and is obtained for ψ̂m̂ defined by (3.4).

Theorem 4.1. Assume that f is upper bounded on [0, 1]d by f1 and that the Yi’s admit moments

of order 8. Consider the collection of models built on [T], [DP] or [W] with Nn defined in Section

2.3 and satisfying Nn ≤ n/(16f1Kϕ) for [DP] and [W] where Kϕ is a basis-dependent constant,

or Nn ≤
√
n/(4

√
f1) for [T]. Let ψ̂m̂ be the adaptive estimator of ψ defined by (3.4) with

pen(m) = κΦ2
0E

[(
δ1Z1

Ḡ(Z1)

)2
]
Dm

n
,
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where κ is a numerical constant. Then

(4.2) E(‖ψ̂m̂ − ψ‖2) ≤ C inf
m∈Mn

(
‖ψm − ψ‖2 + pen(m)

)
+
C ′
√

ln(n)
n

,

where C and C ′ are constants depending on Φ0, f1, T and cG.

Note that the penalty depends on constants which do not have the same status. Indeed, the

constant Φ0 is known, but the constant E[(δ1Z1/Ḡ(Z1))2] is unknown and has to be replaced by

an estimator. The true penalty is therefore random and equal to

(4.3) p̂en(m) = κσ̂2Φ2
0

Dm

n
, with σ̂2 =

1
n

n∑
i=1

(
δiZi
ˆ̄G(Zi)

)2

where the constant κ is usually determined by simulations experiments. It is easy to extend the

nonasymptotic bound in (4.2) to the case of the random penalty given by (4.3) (see e.g. Brunel

and Comte [7]).

Theorem 4.2. Assume that assumptions of Theorem 4.1 hold, consider the estimator ψ̂m̂ be the

adaptive estimator defined by (3.4) with penalty p̂en(m) defined by (4.3), where κ is a numerical

constant. Then

(4.4) E(‖ψ̂m̂ − ψ‖2) ≤ C inf
m∈Mn

(
‖ψm − ψ‖2 + pen(m)

)
+
C ′
√

ln(n)
n

,

where C and C ′ are constants depending on Φ0, ‖ψ‖ and cG.

The proof of this result, being standard, is omitted.

4.2. Quotient estimation of r. On the other hand, the standard adaptive estimator of the

density f of the ~Xi’s given by (3.5) and (3.6) is known (see Birgé and Massart [4]) to satisfy

also an inequality of type (2.7).

The quadratic risk of r̃P is bounded by the sum of the risks of ψ̃ and f̃ , under adequate

conditions. In term of asymptotic rates, this means that the resulting rate for r̃P is the worst

one between the rate of ψ̃ and the rate of f̃ . The optimal minimax rate can then be recovered

only if r is more regular than f . More precisely, we can prove for isotropic Besov spaces the

following result:

Proposition 4.2. Assume that f ∈ Bαf2,∞(A) and ψ ∈ Bαψ2,∞(A), αf , αψ real (isotropic case) and

αf > 1/2, αψ > 1/2 and that 0 < f0 ≤ f(x) ≤ f1 < +∞ for all x ∈ A = [0, 1]d. Moreover

assume that the Yi’s admit moments of order 8. Consider the collections described in Section

2.2 with dimensions Dm such that ln(n) ≤ Dm ≤ O(
√
n/ ln(n)) and such that for all m ∈Mn,

supx∈[0,1]d |fm(x) − f(x)| ≤ cD
−αf+1/2
m , for a positive constant c. Then for an � exp(nξ) for

0 < ξ < 1/2 and n large enough,

E
(
‖r̃P − rT ‖2

)
≤ O

(
n
−

2αf
2αf+d ∨ n

−
2αψ

2αψ+d

)
.



12 E. BRUNEL AND F. COMTE

Remark 4.1. The assumption supx∈[0,1]d |fm(x)− f(x)| ≤ cD
−αf+1/2
m ,∀m ∈Mn is fulfilled for

any collection for d = 1 and for collection of piecewise polynomials when d ≥ 1 (see DeVore [13],

Section 6).

This method produces an estimator easy to compute. Moreover, we found out in Brunel

and Comte [7] when running practical implementations that a quotient estimator could be

surprisingly very competitive as compared to a direct estimator which was expected from the

theory to be better.

5. Study of the mean-square estimator

In the mean-square strategy, the contrast decomposition is the following

(5.1) γMS
n (t)− γMS

n (s) = ‖t− rT ‖2
n − ‖s− rT ‖2

n − 2Rn(t− s)− 2νMS
n (t− s)

where Rn is defined by (4.1) and

νMS
n (t) =

1
n

n∑
i=1

[
δiZi
Ḡ(Zi)

− rT ( ~Xi)
]
t( ~Xi).

Note that

E
{[

δ1Z1

Ḡ(Z1)
− rT ( ~X1)

]
t( ~X1)

}
= E

{
E
[(

δ1Y1,T

Ḡ(Y1,T )
− rT ( ~X1)

)
t( ~X1)|X1, Y1,T

]}
= E

{(
E(δ1|X1, Y1,T )Y1,T

Ḡ(Y1,T )
− rT ( ~X1)

)
t( ~X1)

}
= E

{(
Y1,T − rT ( ~X1)

)
t( ~X1)

}
= E

{
E
[
Y1,T − rT ( ~X1)| ~X1

]
t( ~X1)

}
= 0.

Therefore, νMS
n (t) is centered. Then decomposition (5.1) yields to a result similar to Proposition

4.1 with νn(t) replaced by νMS
n (t). We give directly the result concerning the adaptive estimator.

The automatic selection of the projection space can be performed via penalization:

Theorem 5.1. Assume that the density f is such that ∀x ∈ [0, 1]d, 0 < f0 ≤ f(x) < f1 < +∞
and that the Yi’s admit moments of order 8. Consider the collection of models built on [T], [DP]

or [W] with Nn ≤ n/(16f1Kϕ) for [DP] and [W] where Kϕ is a constant depending on the basis,

and Nn ≤
√
n/(4

√
f1) for [T]. Let r̂m∗ be the adaptive estimator defined by (3.7) and (3.9) with

pen(m) = κ
Φ2

0

f0
E

[(
δ1Z1

Ḡ(Z1)

)2
]
Dm

n
,

where κ is a numerical constant. Then

(5.2) E(‖r̂m∗ − rT ‖2
n) ≤ C inf

m∈Mn

(
‖rm − rT ‖2 + pen(m)

)
+ C ′

√
ln(n)
n

,
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where rm is the orthogonal projection of rT onto Sm and C and C ′ are constants depending on

Φ0, ‖f‖ and cG.

Note that the unknown expectation in the penalty has to be replaced by the same estimator

as in (4.3) and that f0 must also be known or estimated (using f̃ for instance). Again, it can be

proved that the estimator obtained by random penalization would still satisfy Inequality (5.2)

under the assumptions of Theorem 5.1 mainly. Since this implies tedious computations, we refer

to Birgé and Massart [4] to find the technical elements of this type of proofs in the univariate

setting. Nevertheless, we mention that, as explained in Section 2.4, Theorem 5.1 leads to the

following adaptive rates.

Proposition 5.1. Assume that r ∈ Bα2,∞(A) with α = (α1, . . . , αd) and A = [0, 1]d and that an

estimator r̃MS of r defined by (3.8) and (3.9) satisfies Inequality (5.2), then

E(‖r̃MS − rT ‖2
n) = O

(
n−

2ᾱ
2ᾱ+d

)
where ᾱ is the harmonic mean of the αi’s.

6. Proofs

6.1. Proof of Inequality (2.9).

∀i0 ∈ {1, . . . , d} ,
∂

∂mi0

(
d∑
i=1

D−2αi
mi +

Πd
i=1Dmi

n

)
= −2αi0D

−2αi0−1
mi0

+
Πd
i6=i0Dmi

n
.

Writing that all the derivatives equal zero, implies that Dm∗
k

= (α1/αk)D
α1/αk
m∗

1
, for all 2 ≤ k ≤ d

and D−2α1
m∗

1
= (1/2α1)Dm∗/n. It follows that for all i ∈ {1, . . . , d},

Dm∗
i

= O([n]1/[αi(d/ᾱ+2)])

and Dm∗/n = O(n−2ᾱ/2ᾱ+d). Thus, it ensures that n = D
2ᾱ/d+1
m∗ and we find that D−2αi

m∗
i

=

Dm∗/n = D
1−(2ᾱ/d+1)
m∗ = D

2ᾱ/d
m∗ , ∀i ∈ {1, . . . , d} which gives the announced order of the bias in

function of Dm∗ .

6.2. Proof of Lemma 3.1. First note that with the remark (3.2), it is enough for Ḡn,1 to prove

the result for Ḡn,0. We use a nonasymptotic exponential bound for the Kaplan-Meier estimator

which can be formulated as follows (see Bitouzé et al., [5]), there exists a constant c > 0 such

that for any positive λ

P
(√

n‖(1− FY ) ( ˆ̄Gn,0 − Ḡ)‖∞ > λ
)
≤ 2.5 e−2λ2+cλ
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and so

E

( sup
y∈[0,T ]

| ˆ̄Gn,1(y)− Ḡ(y)|

)2k
 ≤ 2k

∫ +∞

0
u2k−1 P( sup

y∈[0,T ]
| ˆ̄Gn,1(y)− Ḡ(y)| > u) du

= 2k
∫ +∞

0
u2k−1 P(c−1

F sup
y∈[0,T ]

|(1− FY ) ( ˆ̄Gn,1 − Ḡ)(y)| > u) du

≤ 2k
∫ +∞

0
u2k−1 P(

√
n‖(1− FY ) ( ˆ̄Gn,1 − Ḡ)‖∞ > cF

√
nu) du

≤ 5kec
2/8

∫ ∞

0
u2k−1 exp

(
−2c2Fn

[
u− c

4
√
ncF

]2
)
du

≤ 5ec
2/8k

2kc2kF

∫ +∞

−c/(2
√

2)

(
z +

1
2
√

2

)2k−1

e−z
2
dz n−k = Ckn

−k.�

6.3. Proof of Lemma 4.1. Write as in the other cases that

2E|Rn(ψ̂m − ψm)| ≤ 1
8

E(‖ψ̂m − ψm‖2) + 8E

(
sup

t∈Bm(0,1)
R2
n(t)

)
(6.1)

Let ΩG = {ω, 1 − Ĝ(y) ≥ cG/2,∀y ∈ [0, T ]} and define ‖G − Ĝ‖∞,T = supy∈[0,T ] |G(y) − Ĝ(y)|.
On the set ΩG, we have

E

(
sup

t∈Bm(0,1)
R2
n(t)1IΩG

)
≤ 4

nc4G

∑
λ∈Λm

n∑
i=1

E
(
‖G− Ĝ‖2

∞,TY
2
i,Tϕ

2
λ( ~Xi)

)

≤ 4Φ2
0Dm

nc4G

n∑
i=1

E
(
‖G− Ĝ‖2

∞,TY
2
i,T

)
Then by using Lemma 3.2, E(‖G − Ĝ‖4

∞,T ) ≤ c/n2 and since E(Y 4
1,T ) ≤ E(Y 4

1 ) < +∞, we find

that

E

(
sup

t∈Bm(0,1)
R2
n(t)1IΩG

)
≤ 4Φ2

0E1/2(Y 4
1 )

c4G

Dm

n
.(6.2)

On the complementary Ωc
G, we use that 1 − Ĝ(Zi) ≥ 1/(n + 1) and that ‖G − Ĝ‖∞,T > cG/2.

Then, with Markov Inequality and Lemma 3.1, we obtain

E

(
sup

t∈Bm(0,1)
R2
n(t)1IΩcG

)
≤ Φ2

0Dm(n+ 1)2

c2G
E

(
‖G− Ĝ‖2

∞,T 1I{‖G−Ĝ‖∞,T>cG/2}
1
n

n∑
i=1

Y 2
i,T

)

≤ Φ2
0Dm(n+ 1)2

c2G
E1/2

(
‖G− Ḡ‖4

∞,T 1I{‖G−Ĝ‖∞,T>cG/2}
)

E1/2(Y 4
1 )

≤ 26Φ2
0Dm(n+ 1)2c−8

G E1/2
(
‖G− Ĝ‖16

∞,T

)
E1/2(Y 4

1 )

≤ 27
√
C8Φ2

0E1/2(Y 4
1 )

nc8G
(6.3)
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The result follows by gathering (6.1), (6.2) and (6.3). �

6.4. A key result. Most proofs are based on the use of Talagrand’s Inequality (see Talagrand

[31]):

Lemma 6.1. Let U1, . . . , Un be independent random variables and define

νn(h) = (1/n)
n∑
i=1

[h(Ui)− E(h(Ui))]

for h belonging to a countable class H of uniformly bounded measurable functions. Then for

ε > 0

(6.4) E
[
sup
h∈H

|νn(h)|2 − 2(1 + 2ε)H2

]
+

≤ 6
K1

(
v

n
e−K1ε

nH2

v +
8M2

1

K1n2C2(ε)
e
−K1C(ε)

√
ε√

2
nH
M1

)
,

with C(ε) =
√

1 + ε− 1, K1 is a universal constant, and where

sup
h∈H

sup
x∈[0,1]d

|h(x)| ≤M1, E
(

sup
h∈H

|νn(h)|
)
≤ H, sup

h∈H

1
n

n∑
i=1

Var(h(Ui)) ≤ v.

The inequality (6.4) is a straightforward consequence of Talagrand’s [31] inequality given in

Ledoux [23] (or Birgé and Massart [4]) with f replaced by h = f − Ef( ~X1) and M1 by 2M1,

and by taking η = (
√

1 + ε− 1)∧ 1 = C(ε) ≤ 1. Moreover, standard density arguments allow to

apply it to unit balls of finite dimensional spaces, instead of countable sets.

This inequality can be a fortiori applied to identically distributed variables and in that case, v

is more simply defined by suph∈HVar(h( ~X1)) ≤ v.

6.5. Proof of Theorem 4.1. Let us denote by Bm,m′(0, 1) = {t ∈ Sm + Sm′ , ‖t‖ ≤ 1}. Since

the spaces Sm are nested, Bm,m′(0, 1) = Bm(0, 1) ∨ Bm′(0, 1). By writing that ∀m ∈ Mn,

γn(ψ̂m̂) + pen(m̂) ≤ γn(ψm) + pen(m), we obtain that:

1
2
‖ψ̂m̂ − ψ‖2 ≤ 3

2
‖ψm − ψ‖2 + pen(m)− pen(m̂) + 8 sup

t∈Bm,m̂(0,1)
[νn(t)]2

+8 sup
t∈Bm,m̂(0,1)

R2
n(t)IΩG + 8 sup

t∈Bm,m̂(0,1)
R2
n(t)IΩcG

≤ 3
2
‖ψm − ψ‖2 + pen(m)− pen(m̂) + 8p(m, m̂)

+8

(
sup

t∈Bm,m̂(0,1)
[νn(t)]2 − p(m, m̂)

)
+

+8 sup
t∈Bm,m̂(0,1)

R2
n(t)IΩG + 8 sup

t∈Bm,m̂(0,1)
R2
n(t)IΩcG .

Then the penalty is chosen such that ∀m′ ∈Mn,

(6.5) 8p(m,m′) ≤ pen(m) + pen(m′)

and p(m,m′) is determined in order to have
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(6.6)
∑

m′∈Mn

E

(
sup

t∈Bm,m′ (0,1)
(νn(t))2 − p(m,m′)

)
+

≤ c

n
.

for a positive contant c. Then (6.6) is obtained by using Talagrand’s Theorem recalled in

Lemma 6.1, applied in the i.i.d. case to the process νn, where it is easy to compute H2 =

σ2
TΦ2

0(Dm ∨Dm′)/n with σ2
T = E(δ21Y

2
1,T /Ḡ

2(Y1,T )). Moreover

sup
t∈Bm,m′ (0,1)

sup
x∈[0,1]d

|δ1Y1,T t(x)/Ḡ(Y1,T )| ≤ Φ0

√
Dm′ ∨DmT/cG := M1

and

sup
t∈Bm,m′ (0,1)

Var(δ1Y1,T t( ~X1)/Ḡ(Y1,T )) ≤ (T 2/c2G) sup
t∈Bm∨m′ (0,1)

∫
t2(x) f(x) dx

≤ (T 2/c2G) f1 := v.

Finally, with C(ε) = (
√

1 + ε− 1) ∧ 1 and K1 standing for a universal constant,

E

(
sup

t∈Bm,m′ (0,1)
ν2
n(t)− p(m,m′)

)
+

≤ 6
K1

(
v

n
e−K1ε

nH2

v +
8M2

1

K1 n2C2(ε)
e
−K1C(ε)

√
ε√

2
nH
M1

)
,

with p(m,m′) = 2(1 + 2ε)H2.

Now replacing M1, v and H2 by the values derived above, we obtain for ε = 1/2,

(6.7) p(m,m′) = 4Φ2
0E

(
δ21Y

2
1,T

Ḡ2(Y1,T )

)
Dm ∨Dm′

n
= 4H2,

and the following upper bound,

E

(
sup

t∈Bm∨m′ (0,1)
ν2
n(t)− p(m,m′)

)
+

≤ 6/K1

n

(
α0e

−α1Dm′∨Dm + α2 e
−α3

√
n
)

where the constants are α0 = T 2f1/c
2
G, α1 = K1σ

2
TΦ2

0c
2
G/(2f1T

2), α2 = 8T 2/(K1c
2
GC

2(1/2))

and α3 = K1C(1/2)σTΦ0cG/(2T ). For |Mn| ≤ n, we obtain∑
m′∈Mn

E

(
sup

t∈Bm,m′ (0,1)
ν2
n(t)− p(m,m′)

)
+

≤ 6/K1

n

 ∑
m′∈Mn

α0 e
−α1Dm′ + α2 card(Mn) e−α3

√
n

 ≤ c1
n

(S(α1) + c2) .

for constants c1 and c2 and with S(α1) =
∑+∞

k=1 e
−α1 k < +∞. This ends the proof of (6.6).

It results from the proof of Lemma 4.1 that E(supt∈Bm,m̂(0,1)R
2
n(t)IΩcG) ≤ c/n. This yields

E(‖ψ̂m̂ − ψ‖2) ≤ 3‖ψm − ψ‖2 + 4pen(m) +
C

n
+ 16E

(
sup

t∈Bn(0,1)
R2
n(t)IΩG

)
.
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Then the result follows if the following Lemma is proved

Lemma 6.2. If Nn ≤ n/(16f1Kϕ) for [DP] and [W], where Kϕ is a basis-dependent constant,

or if Nn ≤
√
n/(4

√
f1) for [T], and if Y1 admits moments of order 8, then

E

(
sup

t∈Bn(0,1)
R2
n(t)IΩG

)
≤ C

√
ln(n)
n

for a constant C depending on f1.

The proof of this lemma is postponed to Section 6.6.

Then by gathering the dimension conditions of Lemma 6.2, the moment condition of Y1, and

the definition of p(m,m′) in (6.7), we find the result, where pen is defined by inequality (6.5).

�

6.6. Proof of Lemma 6.2.

E

(
sup

t∈Bn(0,1)
R2
n(t)IΩG

)
≤ 4
c4G

E

‖ ˆ̄G− Ḡ‖2
∞,T sup

t∈Bn(0,1)

(
1
n

n∑
i=1

|Yi,T t( ~Xi)|

)2


≤ 4
c4G

E1/2
[
‖ ˆ̄G− Ḡ‖4

∞,T

]
E1/2

( 1
n

n∑
i=1

Y 2
i,T sup

t∈Bn(0,1)

1
n

n∑
i=1

t2( ~Xi)

)2


≤ 4
√
C2

nc4G
E1/2


[

1
n

n∑
i=1

Y 2
i,T

(
sup

t∈Bn(0,1)
ν ′n(t

2) + E(t2( ~X1))

)]2
 ,

where

(6.8) ν ′n(t) = (1/n)
n∑
i=1

[t( ~Xi)− E(t( ~Xi))]

and Bn(0, 1) = {t ∈ Sn, ‖t‖ = 1}.

E

(
sup

t∈Bn(0,1)
R2
n(t)IΩG

)
≤ 4

√
C2

nc4G
E1/2


[

1
n

n∑
i=1

Y 2
i,T

(
sup

t∈Bn(0,1)
ν ′n(t

2) + f1

)]2
 ,

≤ 211/4
√
C2

nc4G
E1/4

( 1
n

n∑
i=1

Y 2
i,T

)4


E

(
sup

t∈Bn(0,1)
ν ′n(t

2)

)4

+ f4
1

1/4
 .

Then

E

( 1
n

n∑
i=1

Y 2
i,T

)4
 ≤ 1

n
E

(
n∑
i=1

Y 8
i,T

)
≤ E(Y 8

1 ).
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It follows from Baraud [1] that for any ρ > 0,

P

(
sup

t∈Bn(0,1)
|ν ′n(t2)| ≥ ρ

)
≤ c|Λn|2 exp

(
− nρ2

4f1Ln(ϕ)

)
where c is a constant and Ln(ϕ) is a quantity associated to the orthonormal basis of the largest

space Sn of the (nested) collection and (ϕλ)λ∈Λn denote the orthonormal basis of Sn, dim

Sn = Nn = |Λn|. We know from Baraud [1] that Ln(ϕ) ≤ KϕNn for the basis [DP] and [W], and

Ln(ϕ) ≤ N2
n for [T]. Moreover, it can be checked as in Brunel and Comte [7] that, by integration

of the previous inequality, we find

E( sup
t∈Bn(0,1)

[ν ′n(t
2)]4) ≤ 4 ln(n)2 + 4

∫ +∞

√
ln(n)

x3P

(
sup

t∈Bn(0,1)
|ν ′n(t2)| ≥ x

)
dx

and by integration by parts, we get for a positive constant K

E

(
sup

t∈Bn(0,1)
[ν ′n(t

2)]4
)
≤ ln2(n) +Kf1Nn ln(n)Ln(ϕ) exp

(
− n ln(n)

4f1Ln(ϕ)

)
.

It follows that if Ln(ϕ) ≤ n/(16f1),

E

(
sup

t∈Bn(0,1)
[ν ′n(t

2)]4
)
≤ ln2(n) +

K
n2

≤ (K + 1) ln2(n) if n ≥ 2.

Therefore, if Nn ≤ n/(16f1Kϕ) for [DP] and [W] and if Nn ≤
√
n/(4

√
f1) for [T], then

E

(
sup

t∈Bn(0,1)
R2
n(t)IΩG

)
≤ C1

n
+
C2

√
ln(n)
n

.

�

6.7. Proof of Proposition 4.2. Let Ωf = {ω/f̃(x) > f0/2,∀x ∈ [0, 1]} and ψ̃ = ψ̂m̂. Note

that |rT (x)| = |E(Y1,T | ~X1)| ≤ T . Write that

‖r̃P − rT ‖2 ≤ 2

∥∥∥∥∥ ψ̃ − ψ

f̃
IΩf

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ψ f̃ − f

f̃f
IΩf

∥∥∥∥∥
2

+ 2 sup
x∈[0,1]d

|r̃(x)− rT (x)|2IΩcf

≤ 8
f2
0

‖ψ̃ − ψ‖2 +
8T 2

f2
0

‖f̃ − f‖2 + 2(a2
n + T 2)IΩcf .

Thus,

E(‖r̃P − rT ‖2) ≤ 8
f2
0

(1 ∨ T 2)
(
‖ψ̃ − ψ‖2 + ‖f̃ − f‖2

)
+ 2(a2

n + T 2)P(Ωc
f ).

Therefore, the result follows if a2
nP(Ωc

f ) = o(1/n). Note that P(Ωc
f ) ≤ P(supx∈[0,1]d |f̃(x) −

f(x)| > f0/2). Then for αf > 1/2, supx∈[0,1]d |fm̂(x) − f(x)| ≤ cD
−αf+1/2
m̂ ≤ C(ln(n)−αf+1/2),

as Dm ≥ ln(n), ∀m ∈ Mn. Therefore, for n great enough, supx∈[0,1]d |fm̂(x)− f(x)| ≤ f0/4. As

supx∈[0,1]d |f̃(x)− f(x)| ≤ supx∈[0,1]d |f̃(x)− fm̂(x)|+ supx∈[0,1]d |fm̂(x)− f(x)|, it follows that
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P(Ωc
f ) ≤ P( sup

x∈[0,1]d
|f̂m̂(x)− fm̂(x)| > f0/4) ≤ P(‖f̂m̂ − fm̂‖ > f0/(4

√
Dm̂))

≤
∑

m∈Mn

P(‖f̂m − fm‖ > f0/(4
√
Dm)).

Then note that

‖f̂m − fm‖2 =
∑
λ∈Λm

(âλ(f)− aλ(f))2 =
∑
λ∈Λ

[νfn(ϕλ)]2 = sup
t∈Bm(0,1)

[νfn(t)]2

where aλ(f) = 〈ϕλ, f〉 and âλ(f) = (1/n)
∑n

i=1 ϕλ( ~Xi). Then Talagrand’s inequality can be

written

P

(
sup

t∈Bm(0,1)
|νfn(t)| ≥ 2Hf + λ

)
≤ 3 exp

(
K1n

(
λ2

vf
∧ λ

Mf

))
where we have E(supt∈Bm(0,1)[ν

f
n(t)]2) ≤ Φ2

0Dm/n = H2
f , supt∈Bm(0,1) Var(t( ~X1)) ≤ f1 = vf

and supt∈Bm(0,1) supx∈[0,1]d |t(x)| ≤ Φ0

√
Dm = Mf . Then choose λ = Φ0

√
Dm/n and if

2Φ0

√
Dm/n ≤ f0/(2

√
Dm) which holds since Dm ≤ O(

√
n/ ln(n)), then the following inequality

holds:

P(Ωc
f ) ≤ 3

∑
m∈Mn

exp
(
−K1n

(
Φ2

0Dm

nf1
∧ 1√

n

))
≤ 3|Mn| exp(−K1

√
n)

so that a2
nP(Ωc

f ) ≤ na2
n exp(−K1

√
n) = o(1/n2). �

6.8. Proof of Theorem 5.1. We start by writing that, ∀m ∈Mn,

γn(r̂m∗) + pen(m∗) ≤ γn(rm) + pen(m)

and by using the decomposition (5.1). It follows that

‖r̂m∗ − rT ‖2
n ≤ ‖rm − rT ‖2

n + 2Rn(r̂m∗ − rm) + 2νMS
n (r̂m∗ − rm) + pen(m)− pen(m∗).

Let us introduce, in the same way as Baraud et al. [2], for ‖t‖2
f =

∫
[0,1]d t

2(x)f(x)dx, the ball

Bf
m,m′(0, 1) = {t ∈ Sm + Sm′ , ‖t‖f = 1} and the set:

(6.9) Ωn =

{
ω /

∣∣∣∣∣‖t‖2
n

‖t‖2
f

− 1

∣∣∣∣∣ ≤ 1
2
,∀t ∈ ∪m,m′∈Mn(Sm + Sm′)/{0}

}
.

On the complementary of Ωn, a separate study leads to the following Lemma:

Lemma 6.3. P(Ωc
n) ≤ c/n2 and for any m, E(‖r̂m−rT ‖2

nIΩcn) ≤ c′/n, where c and c′ are positive

constants.
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Therefore, we focus on the study of the bounds on Ωn, where we have ‖t‖2
f ≤ 2‖t‖2

n.

‖r̂m∗ − rT ‖2
nIΩn ≤ ‖rm − rT ‖2

n +
1
8
‖r̂m∗ − rm‖2

f IΩn + 16 sup
t∈Bm∗,m(0,1)

R2
n(t)

+16 sup
t∈Bf

m∗,m(0,1)

[νMS
n ]2(t) + pen(m)− pen(m∗)

≤ (1 +
1
2
)‖rm − rT ‖2

n +
1
2
‖r̂m∗ − rT ‖2

nIΩn + 16 sup
t∈Bm∗,m(0,1)

R2
n(t)

+16

 sup
t∈Bf

m∗,m(0,1)

[νMS
n ]2(t)− p̃(m,m∗)


+

+pen(m) + 16p̃(m,m∗)− pen(m∗)

The supremum of R2
n(t) has already been studied in Lemma 6.2, and it is easy to see that

E

 sup
t∈Bf

m′,m(0,1)

[νMS
n ]2(t)

 ≤ 1
f0

∑
λ∈Λm∪Λm′

1
n

Var
{[

δ1Y1,T

Ḡ(Y1,T )
− rT ( ~X1)

]
ϕλ( ~X1)

}

≤ Φ2
0(Dm ∨Dm′)

nf0
E
[
δ1Y1,T

Ḡ(Y1,T )
− rT ( ~X1)

]2

.

Therefore, we obtain by applying Talagrand’s Inequality

∑
m′∈Mn

E

(
sup

t∈Bm′,m((0,1)
[νMS
n ]2(t)− p̃(m,m′)

)
+

≤ c

n
.

with

p̃(m,m′) = 4
Φ2

0(Dm ∨Dm′)
nf0

E
[
δ1Y1,T

Ḡ(Y1,T )
− rT ( ~X1)

]2

:= 4H2

v = f1T
2/c2G and M1 = 2(Φ0T/cG)

√
Dm′ ∧Dm. Note that

p̃(m,m′) = 4
Φ2

0(Dm ∨Dm′)
nf0

E

[
δ1Y

2
1,T

Ḡ2(Y1,T )
− 2

δ1Y1,T rT ( ~X1)
Ḡ(Y1,T )

+ rT ( ~X1)2
]

= 4
Φ2

0(Dm ∨Dm′)
nf0

{
E

(
δ1Y

2
1,T

Ḡ2(Y1,T )
+ rT ( ~X1)2

)
− 2E

[
E

(
δ1Y1,T rT ( ~X1))

Ḡ(Y1,T )
|Y1,T , ~X1

)]}

= 4
Φ2

0(Dm ∨Dm′)
nf0

E

[
δ1Y

2
1,T

Ḡ2(Y1,T )
+ r2T ( ~X1)− 2Y1,T rT ( ~X1)

]

= 4
Φ2

0(Dm ∨Dm′)
nf0

{
E

[
δ1Y

2
1,T

Ḡ2(Y1,T )

]
− E(r2T ( ~X1))

}
≤ 4

Φ2
0(Dm ∨Dm′)

f0
nE
[
δ1Z

2
1

Ḡ2(Z1)

]
which explains that we can choose pen(m) = κΦ2

0f
−1
0 E

(
δ1Z

2
1/Ḡ

2(Z1)
)
(Dm/n). �
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6.9. Proof of Lemma 6.3. Let us denote by Πm the orthogonal projection in Rn on the sub-

space {(t( ~X1), . . . , t( ~Xn))′, t ∈ Sm} and by ŶG = (Ŷ1G, . . . , ŶnG)′, rT (X) = (rT ( ~X1), . . . , rT ( ~Xn))

and more generally by u = (u1, . . . , un)′. The empirical norm corresponds then to the Eu-

clidean norm in Rn up to the multiplicative factor 1/n. We have already mentionned that

r̂m(X) = ΠmŶG so that

‖r̂m − rT ‖2
n = ‖ΠmŶG − rT (X)‖2

n ≤ 2‖Πm(ŶG − YG)‖2
n + 2‖ΠmYG − rT (X)‖2

n

≤ 2‖Πm(ŶG − YG)‖2
n + 2‖ΠmYG‖2

n + 2‖rT (X)‖2
n

≤ 2‖ŶG − YG‖2
n + 2‖YG‖2

n + 2‖rT (X)‖2
n

by using that ‖Πmu‖2
n ≤ ‖u‖2

n. First, on the complementary of ΩG = {ω, ˆ̄G(y) ≥ cG/2,∀y ∈
[0, T ]} defined in Lemma 4.1, E(‖ŶG−YG‖2

nIΩcn) is bounded by 4T 2(n+1)2/c2GE(‖ ˆ̄G−G‖2
∞,T IΩcn)

which can be proved to be of order (1/n) mimicking the bound in (6.3). Then, ‖YG‖2
n ≤ T/c2G

implies that E[‖YG‖2
nIΩcn ] is of order 1/n as soon as P1/2(Ωc

n) ≤ c/n. Moreover,

E[‖rT (X)‖2
nIΩcn ] ≤

√
E(rT ( ~X1)4)P 1/2(Ωc

n) ≤
√

E[E(rT (Y1,T )| ~X1)4]P 1/2(Ωc
n)

≤
√

E(Y 4
1,T )P 1/2(Ωc

n) ≤
√

E(Y 4
1 )P 1/2(Ωc

n) is of order 1/n as soon as P1/2(Ωc
n) ≤ c/n.

Next, we have

P(Ωc
n) ≤ P

(
sup

t∈Bfn(0,1)

|ν ′n(t2)| ≥ 1/2

)
with ν ′n(t) defined by (6.8). This probability is proved to be of order 1/n2, as soon as the

dimension constraint on Nn given in Lemma 6.2 is satisfied, see the proof of Proposition 7 in

[2]. �
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