A component-based regularised Cox Regression: SC-COXR

X. Bry IMAG, Univ. Montpellier

Joint work with: *T. Simac*, *S. El Ghachi and P. Antoine*

1. Data

1.1. The Data

A right-censored survival time *y*, to be modelled through many possibly redundant time-dependent explanatory variables.

1. Data

1.1. The Data

A right-censored survival time y, to be modelled through many possibly redundant time-dependent explanatory variables.

1.2. The conceptual model

A few additional

(right-censored)

time-to-event

y

2. Problem

2. Problem

2.2. Exploratory + explanatory situation

The explanatory dimensions must be **found** AND **easy to interpret**.

2. Problem

2.3. How to tackle both issues

We shall look for "**strong**" orthogonal components in each *X*-theme...

A few

additional

2. Problem

2.3. How to tackle both issues

We shall look for "**strong**" orthogonal components in each *X*-theme...

A few

additional

2. Problem

2.3. How to tackle both issues

... so as to build a component-based Cox Proportional Hazard Model:

 $f_{(i,t)} := (f_{(i,t)}^1, f_{(i,t)}^2, \dots, g_{(i,t)}, h_{(i,t)}^1, \dots)' : h(t; x_{(i,t)}, z_{(i,t)}) = h_0(t) e^{\delta' f_{(i,t)} + \gamma' z_{(i,t)}}$ With

Statistical model

1. The classical Cox Proportional hazard Model

Regressor-set $X \rightarrow$ semi-parametric hazard function: $h(t; x_{(i,t)}) = h_0(t) e^{\beta' x_{(i,t)}}$

Statistical model

1. The classical Cox Proportional hazard Model

Regressor-set $X \rightarrow$ semi-parametric hazard function: $h(t; x_{(i,t)}) = h_0(t) e^{\beta' x_{(i,t)}}$

2. The component-based Cox-Model

2.1. The single-X-theme component Model

Explanatory theme $X \to \text{components } F = [f^1, ..., f^k]$, where $f^k = X u^k$ Let $f_{(i,t)} := (f^1_{(i,t)}, ..., f^k_{(i,t)})'$

 \rightarrow semi-parametric hazard function of the component-model: $h(t; x_{(i,t)}, z_{(i,t)}) = h_0(t) e^{\alpha' f_{(i,t)} + \gamma' z_{(i,t)}}$

Statistical model

1. The classical Cox Proportional hazard Model

Regressor-set $X \rightarrow$ semi-parametric hazard function: $h(t; x_{(i,t)}) = h_0(t) e^{\beta' x_{(i,t)}}$

2. The component-based Cox-Model

2.1. The single-X-theme component Model

Explanatory theme $X \to \text{components } F = [f^1, \dots, f^k]$, where $f^k = X u^k$ Let $f_{(i,t)} := (f^1_{(i,t)}, \dots, f^k_{(i,t)})'$

 \rightarrow semi-parametric hazard function of the component-model: $h(t; x_{(i,t)}, z_{(i,t)}) = h_0(t) e^{\alpha' f_{(i,t)} + \gamma' z_{(i,t)}}$

2.2. The general component Model

Explanatory theme $X_r \to \text{components } F_r = [f_r^1, \dots, f_r^{k_r}], \text{ where } f_r^k = X_r u_r^k$ Let $f_{r(i,t)} := (f_{r(i,t)}^1, \dots, f_{r(i,t)}^{k_r})'$

 \rightarrow semi-param. hazard function of the component-model: $h(t; x_{(i,t)}, z_{(i,t)}) = h_0(t) e^{\sum_{r=1}^{\kappa} \alpha_r' f_{r(i,t)} + \gamma' z_{(i,t)}}$

1. The notion of Structural Relevance

Components must capture *interpretable* variable structures

- ⇒ Components must be *structurally relevant*, i.e.:
 - close to *bundles of observed variables*

1. The notion of Structural Relevance

Components must capture *interpretable* variable structures

- ⇒ Components must be *structurally relevant*, i.e.:
 - close to *bundles of observed variables*

1. The notion of structural relevance

Components must capture interpretable variable structures

⇒ Components must be *structurally relevant*, i.e.:

• or close to bundles of interpretable subspaces (e.g. embodying theory-based constraints)

2. The expression of Structural Relevance

• Component in a theme X: f = Xu

2. The expression of Structural Relevance

• Component in a theme X: f = Xu

• Identification / regularisation constraint : $u' M^{-1} u = 1$ with $M^{-1} = \tau A^{-1} + (1 - \tau) X' W X$, where A is such that PCA of (X, A, W) is relevant to X's data, and $\tau \in [0,1]$ is a parameter tuning regularisation:

- $\tau = 0$ means no regularisation;
- $\tau = 1$ means PLS-strong regularisation.

2. The expression of Structural Relevance

• Component in a theme X: f = Xu

• Identification / regularisation constraint : $u' M^{-1} u = 1$ with $M^{-1} = \tau A^{-1} + (1 - \tau) X' W X$, where A is such that PCA of (X, A, W) is relevant to X's data, and $\tau \in [0,1]$ is a parameter tuning regularisation:

- $\tau = 0$ means no regularisation;
- $\tau = 1$ means PLS-strong regularisation.

• The Structural Relevance Indicator:

$$\phi_{\mathbf{N},\Omega,l}(u) := \left(\sum_{j=1}^{J} \omega_j (u'N_j u)^l\right)^{\frac{1}{l}} \quad \text{s.t. constraint} \quad u'M^{-1}u = 1$$
weights N_j 's code the directions components should focus on

2. The expression of Structural Relevance

• Purpose of N_i 's = ?

$$\phi_{\mathbf{N},\mathbf{\Omega},l}(u) := \left(\sum_{j=1}^{J} \omega_j (u'N_j u)^l\right)^{\frac{1}{l}}$$

The N_j 's are coding *directions of concern* Examples: \succ Component's variance: $\phi(u) = V(f) = ||Xu||_W^2 = u'(X'WX)u$ $(W = \text{matrix of line-weights}) ||u||^2 = 1 \Rightarrow M = I$ \rightarrow directions of discrepancy of observations

2. The expression of Structural Relevance

• Purpose of N_i 's = ?

$$\phi_{\mathbf{N},\mathbf{\Omega},l}(u) := \left(\sum_{j=1}^{J} \omega_j (u'N_j u)^l\right)^{\frac{1}{l}}$$

The N'_{i} 's are coding *directions of concern* Examples: > Component's variance: $\phi(u) = V(f) = ||Xu||_{W}^{2} = u'(X'WX)u$ (W = matrix of line-weights) $||u||^2 = 1 \Rightarrow M = I$ \rightarrow directions of discrepancy of observations

> Variable Powered Inertia:
$$\phi(u) = \left(\sum_{j=1}^{p} \omega_{j} \rho^{2l}(f, x^{j})\right)^{\frac{1}{l}} \qquad \text{locality parameter}$$
$$= \left(\sum_{j=1}^{p} \omega_{j} (u' \underbrace{X'Wx^{j}x^{j'}WXu}_{N_{j}})^{l}\right)^{\frac{1}{l}}$$
$$\|f\|_{W}^{2} = 1 \implies M = (X'WX)^{-1}$$

\ 1

 \rightarrow directions of observed variables.

2. The expression of Structural Relevance

• Purpose of N_i 's = ?

$$\phi_{\mathbf{N},\mathbf{\Omega},l}(u) := \left(\sum_{j=1}^{J} \omega_j (u'N_j u)^l\right)^{\frac{1}{l}}$$

The N'_{i} 's are coding *directions of concern* Examples:

Variable Powered Inertia can be extended to:

$$\Rightarrow Variable Powered Covariance: \ \phi(u) = \left(\sum_{j=1}^{p} \omega_j \langle f | x^j \rangle_W^{2l}\right)^{\frac{1}{l}} \\ = \left(\sum_{j=1}^{p} \omega_j (u X' W x^j X^j W X u)^l\right)^{\frac{1}{l}} \\ M_j^{-1} = \tau A^{-1} + (1 - \tau)(X' W X) \quad \text{where } A = \text{suitable metric matrix for } X^2 \text{s PCA}$$

// //

Regularisation parameter:

 $\tau = 0$: no regularisation.

 $\tau = 1$: PLS-strong regularisation.

2. The expression of Structural Relevance

• Purpose of *l* = ?

$$\phi_{\mathbf{N},\mathbf{\Omega},l}(u) := \left(\sum_{j=1}^{J} \omega_j (u'N_j u)^l\right)^{\frac{1}{l}}$$

l : tunes the "locality" of the bundles of directions to focus on

locality = \pm the "narrowness" of the bundles of directions of structural interest.

2. The expression of Structural Relevance

• Purpose of *l* = ?

$$\phi_{\mathbf{N},\mathbf{\Omega},l}(u) := \left(\sum_{j=1}^{J} \omega_j (u'N_j u)^l\right)^{\frac{1}{l}}$$

l : tunes the "locality" of the bundles of directions to focus on

locality = \pm the "narrowness" of the bundles of directions of structural interest.

2. The expression of Structural Relevance

• Purpose of *l* = ?

$$\phi_{\mathbf{N},\mathbf{\Omega},l}(u) := \left(\sum_{j=1}^{J} \omega_j (u'N_j u)^l\right)^{\frac{1}{l}}$$

l : tunes the "locality" of the bundles of directions to focus on

locality = \pm the "narrowness" of the bundles of directions of structural interest.

2. The expression of Structural Relevance

• Purpose of *l* = ?

$$\phi_{\mathbf{N},\mathbf{\Omega},l}(u) := \left(\sum_{j=1}^{J} \omega_j (u'N_j u)^l\right)^{\frac{1}{l}}$$

l : tunes the "locality" of the bundles of directions to focus on

locality = \pm the "narrowness" of the bundles of directions of structural interest.

2. The expression of Structural Relevance

• Purpose of *l* = ?

$$\phi_{\mathbf{N},\mathbf{\Omega},l}(u) := \left(\sum_{j=1}^{J} \omega_j (u'N_j u)^l\right)^{\frac{1}{l}}$$

l : tunes the "locality" of the bundles of directions to focus on

locality = \pm the "narrowness" of the bundles of directions of structural interest.

... four bundles? $(l \uparrow \uparrow)$

2. The expression of Structural Relevance

• Purpose of *l* = ?

$$\phi_{\mathbf{N},\mathbf{\Omega},l}(u) := \left(\sum_{j=1}^{J} \omega_j (u'N_j u)^l\right)^{\frac{1}{l}}$$

l : tunes the "locality" of the bundles of directions to focus on

locality = \pm the "narrowness" of the bundles of directions of structural interest.

Would this set of directions rather be considered...

... eight bundles, each one being a single direction? $(l \rightarrow \infty)$

2. The expression of Structural Relevance

• Purpose of *l* = ?

$$\phi_{\mathbf{N},\mathbf{\Omega},l}(u) := \left(\sum_{j=1}^{J} \omega_j (u'N_j u)^l\right)^{\frac{1}{l}}$$

l : tunes the "locality" of the bundles of directions to focus on

locality = \pm the "narrowness" of the bundles of directions of structural interest.

Would this set of directions rather be considered...

This ultimately depends on the data \Rightarrow Best *l* to be found through cross-validation.

... eight bundles, each one being a single direction? $(l \rightarrow \infty)$

2. The expression of Structural Relevance

l: tunes the "locality" of the bundles of directions to focus on

Example: 4 variables in a plane...

• VPI: $\phi_X^l(u)$ plotted in polar coordinates:

2. The expression of Structural Relevance

l: tunes the "locality" of the bundles of directions to focus on

Example: 4 variables in a plane...

• VPI: $\phi_X^l(u)$ plotted in polar coordinates:

1. Estimation of a standard Cox-model

1.1. Partial likelihood

Let :

- R(t) denote the set of all individuals at risk at time t;
- δ denote the censoring indicator:
 - $\forall i: \delta_i = 1$ if for individual *i*, the event occurs at time y_i

 $\delta_i = 0$ if individual *i* is censored at time y_i

Cox (1979) suggested to get $\hat{\beta}$ by maximising on β the following conditional likelihood: (which is rid of the $h_0(t)$ baseline terms)

$$l_p(\beta) = \prod_{i=1}^n \left[\frac{e^{\beta' x_{i,y_i}}}{\sum_{j \in R(y_i)} e^{\beta' x_{j,y_i}}} \right]^{\delta_i}$$

1. Estimation of a standard Cox-model

1.1. Partial likelihood

Let :

- R(t) denote the set of all individuals at risk at time t;
- δ denote the censoring indicator:
 - $\forall i: \delta_i = 1$ if for individual *i*, the event occurs at time y_i

 $\delta_i = 0$ if individual *i* is censored at time y_i

Cox (1979) suggested to get $\hat{\beta}$ by maximising on β the following conditional likelihood: (which is rid of the $h_0(t)$ baseline terms)

$$l_p(\beta) = \prod_{i=1}^n \left[\frac{e^{\beta' x_{i,y_i}}}{\sum_{j \in R(y_i)} e^{\beta' x_{j,y_i}}} \right]^{\delta_i}$$

1.2. Estimation of the baseline hazard

Given $\hat{\beta}$, [Kalbfleisch et al. 1973], [Breslow 1974], among others, proposed an estimation of the Baseline Survival Function, based on it.

2. Estimation of the single-X component-based Cox Model

2.1. The single-X component-based Cox Model

• In the Cox model, X is replaced by F = XU, $U = [u_1, ..., u_k]$ where X has been standardised column-wise :

 $h(t; x_{i,t}, z_{i,t}) = h_0(t) e^{\alpha' f_{i,t} + \gamma' z_{i,t}}$ $= h_0(t) e^{\alpha' U' x_{i,t} + \gamma' z_{i,t}}$

2. Estimation of the single-X component-based Cox Model

2.1. The single-X component-based Cox Model

• In the Cox model, X is replaced by F = XU, $U = [u_1, ..., u_k]$ where X has been standardised column-wise :

$$h(t; x_{i,t}, z_{i,t}) = h_0(t) e^{\alpha' f_{i,t} + \gamma' z_{i,t}}$$
$$= h_0(t) e^{\alpha' U' x_{i,t} + \gamma' z_{i,t}}$$

both unknown ⇒ non-linear / parameters

2. Estimation of the single-X component-based Cox Model

2.2. Calculating components

• Component $f^{1} = Xu_{1}$ is sought as the solution of:

$$u_1 = \arg \max_{\substack{u \ \alpha, \gamma \\ u'M^{-1}u = 1}} \left[\left(l_p(u, \alpha, \gamma) \right)^{1-s} \left(\phi_X(u) \right)^s \right]$$

Goodness of fit

2. Estimation of the single-X component-based Cox Model

2.2. Calculating components

• Component $f^{1} = Xu_{1}$ is sought as the solution of:

$$u_1 = \arg \max_{\substack{u \ u'M^{-1}u=1}} \left[\left(l_p(u, \alpha, \gamma) \right)^{1-s} \left(\phi_X(u) \right)^s \right]$$

Goodness of fit

 $s \in [0, 1]$ tunes the importance of the SR with respect to the GOF so that, at the maximum, *relative* variations of GOF and SR compensate:

$$\frac{\nabla l_p(u)}{l_p(u)} = -\frac{s}{1-s} \frac{\nabla \phi(u)}{\phi(u)}$$

2. Estimation of the single-X component-based Cox Model

2.2. Calculating components

• Component $f^{1} = Xu_{1}$ is sought as the solution of:

$$u_1 = \arg \max_{\substack{u \ \alpha, \gamma \\ u'M^{-1}u = 1}} \left[\left(l_p(u, \alpha, \gamma) \right)^{1-s} \left(\phi_X(u) \right)^s \right]$$

Goodness of fit

 $s \in [0, 1]$ tunes the importance of the SR with respect to the GOF so that, at the maximum, *relative* variations of GOF and SR compensate:

$$\frac{\nabla l_p(u)}{l_p(u)} = -\frac{s}{1-s} \frac{\nabla \phi(u)}{\phi(u)}$$

• A continuum-approach:

> s = 0: the criterion is equal to l_p ; its maximisation leads to the classical Cox Regression

- > s = 1: the criterion is equal to $\phi_x(u)$; its maximisation leads to PCA for SR = component-variance and VPI.
- > 0 < s < 1: the criterion is a trade-off between these extremes, and provides a supervised component-based Cox regression.
2. Estimation of the single-X component-based Cox Model

2.2. Calculating components

• Calculating the first component:

$$u_{1} = \arg \max_{\substack{u \\ u'M^{-1}u=1}} \left[(1-s) \ln \left(\prod_{i=1}^{n} \left[\frac{e^{\alpha u' x_{i,y_{i}} + \gamma' z_{i,y_{i}}}}{\sum_{j \in R(y_{i})} e^{\alpha u' x_{j,y_{i}} + \gamma' z_{j,y_{i}}}} \right]^{\delta_{i}} \right] + s \ln \phi_{X}(u) \right]$$

2. Estimation of the single-X component-based Cox Model

2.2. Calculating components

• Calculating the first component:

$$u_{1} = \arg \max_{\substack{u \ u' M^{-1} u = 1}} \left[(1-s) \ln \left(\prod_{i=1}^{n} \left[\frac{e^{\alpha u' x_{i,y_{i}} + \gamma' z_{i,y_{i}}}}{\sum_{j \in R(y_{i})} e^{\alpha u' x_{j,y_{i}} + \gamma' z_{j,y_{i}}}} \right]^{\delta_{i}} \right] + s \ln \phi_{X}(u) \right]$$

can be done by alternating, until convergence:

1) With a given *u*: Cox regression on f = Xu and $Z \rightarrow$ update of α , γ

2. Estimation of the single-X component-based Cox Model

2.2. Calculating components

• Calculating the first component:

$$u_{1} = \arg \max_{\substack{u \ u'M^{-1}u = 1}} \left[(1-s) \ln \left| \prod_{i=1}^{n} \left[\frac{e^{\alpha u' x_{i,y_{i}} + \gamma' z_{i,y_{i}}}}{\sum_{j \in R(y_{i})} e^{\alpha u' x_{j,y_{i}} + \gamma' z_{j,y_{i}}}} \right]^{\delta_{i}} \right] + s \ln \phi_{X}(u) \right]$$

can be done by alternating, until convergence:

- 1) With a given *u*: Cox regression on f = Xu and $Z \rightarrow$ update of α , γ
- 2) With given α , γ : solving

$$u_1 = \arg \max_{u'M^{-1}u=1} [(1-s) \ln l_p(u, \alpha, \gamma) + s \ln \phi_X(u)]$$

 \rightarrow update of *u*

(this step uses the dedicated PING algorithm, detailed later)

2. Estimation of the single-X component-based Cox Model

2.2. Calculating components

• Calculating further components:

1) Every new component f^{k} must be uncorrelated with the former ones: $F^{k-1} = [f^{1}, \dots, f^{k-1}]$

N = number of lines of X = number of individuals-at-risk at time-points (*i*,*t*) W = (N, N) diagonal line-weighting matrix

$$\langle f^k | F^{k-1} \rangle_W = 0 \implies D_k' u_k = 0 \text{ with } D_k = X' W F^{k-1}$$

2. Estimation of the single-X component-based Cox Model

2.2. Calculating components

• Calculating further components:

1) Every new component f^{k} must be uncorrelated with the former ones: $F^{k-1} = [f^{1}, \dots, f^{k-1}]$

N = number of lines of X = number of individuals-at-risk at time-points (i,t)W = (N, N) diagonal line-weighting matrix

$$\langle f^k | F^{k-1} \rangle_W = 0 \implies D_k' u_k = 0 \text{ with } D_k = X' W F^{k-1}$$

Note on individual-weighting:

• Uniform weighting \Rightarrow each line of an individual \leftarrow weight inversely proportional to the number of the individual's lines.

• Weighting proportional to the individual's duration of follow-up \Rightarrow The weight of each line = proportional to the line's time span.

2. Estimation of the single-X component-based Cox Model

2.2. Calculating components

• Calculating further components:

2) Former components $F^{k-1} = [f^1, ..., f^{k-1}]$ must now be included into the extra covariates in order to remove their effect.

$$Z^{k} := [Z; F^{k-1}]$$

$$u_{k} = \underset{\substack{u \in \mathcal{A}, y \\ u'M^{-1}u=1 \\ D_{k}'u=0}}{nax} \left[(1-s) \ln \left| \prod_{i=1}^{n} \left[\frac{e^{\alpha u'x_{i,y_{i}} + \gamma'z_{i,y_{i}}^{k}}}{\sum_{j \in R(y_{i})} e^{\alpha u'x_{j,y_{i}} + \gamma'z_{j,y_{i}}^{k}}} \right]^{\delta_{i}} \right] + s \ln \phi_{X}(u) \right] \quad \text{performed as for } u_{1}, \text{ with additional constraint:}} D_{k}' u = 0$$

3. The PING algorithm

 $\max_{\substack{u \in \mathbb{R}^{p}, u' M^{-1}u = 1 \\ D'u = 0}} h(u)$

At the solution: $u = M \prod_{D^{\perp}} \Gamma(u)$, M^{-1} -normed with $\prod_{D^{\perp}} := I - D(D'MD)^{-1}D'M$

Hence an iteration:
$$\tilde{u}^{[t+1]} = \frac{M \prod_{D^{\perp}} \Gamma(u^{[t]})}{\|M \prod_{D^{\perp}} \Gamma(u^{[t]})\|_{M^{-1}}} \quad ; \quad u^{[t+1]} = \arg \max_{arc(u^{[t]}, \tilde{u}^{[t+1]})} h(u) \quad (\text{unidimensional})$$

We proved that this iteration follows a direction of ascent.

4. Estimating the Multiple-X model

Iterate over themes until overall convergence:

5. Assessing the Component Cox model

• Cross-Validation techniques for the Cox Model are provided by [van Houwelingen et al. (2006)] K-fold subsampling :

Cross-validation quality coefficient of model M: $C_k(M)$

$$C_{k}(M) = l(\theta_{-k}, M) - l_{-k}(\theta_{-k}, M)$$

k^{ieth} sub-sample

calculated without the k^{ieth} sub-sample

$$C(M) = \frac{1}{K} \sum_{k=1}^{K} C_k(M)$$

5. Assessing the Component Cox model

• Cross-Validation techniques for the Cox Model are provided by [van Houwelingen et al. (2006)] K-fold subsampling :

Cross-validation quality coefficient of model M: $C_{k}(M)$

$$C_{k}(M) = l(\theta_{-k}, M) - l_{-k}(\theta_{-k}, M)$$

 k^{ieth} sub-sample

calculated without the k^{ieth} sub-sample

$$C(M) = \frac{1}{K} \sum_{k=1}^{K} C_k(M)$$

- More simply, one can assess the significance of the components by :
 - a) calculating the vectors $\{U_r\}_{r=1,R}$ on a calibration sample C;
 - b) calculating the components' values on a spare test-sample *T*;
 - c) performing a Cox Regression on *T*, with the associated classical significance-tests.

6. Outputs

• Correlations of components with variables in each theme \rightarrow correlation scatterplots

 \rightarrow component thematic interpretation

6. Outputs

• Correlations of components with variables in each theme \rightarrow correlation scatterplots

• Cox Regression on components \rightarrow components' effects ; P-values / confidence interval on test-sample *T*, or boostrap confidence interval

6. Outputs

• Correlations of components with variables in each theme \rightarrow correlation scatterplots

- Cox Regression on components \rightarrow components' effects ; P-values / confidence interval on test-sample *T*, or boostrap confidence interval
- Components' effects + vectors U
 - \rightarrow (regularised) coefficients of original variables in linear predictor
 - + boostrap confidence interval

1. Simulation scheme

- Time-span : [0,30], divided in 30 unit-length elementary intervals.
- Baseline hazard function:

 $h_0(t) = a + b(t - t_m)^2$ with $t_m = 12$, a = .2, $b = 10^{-3}$

1. Simulation scheme

- Time-span : [0,30], divided in 30 unit-length elementary intervals.
- Baseline hazard function:

$$h_0(t) = a + b(t - t_m)^2$$
 with $t_m = 12$, $a = .2$, $b = 10^{-3}$

• 75 subjects simulated with bundle-structures:

Variables at subject level : $\psi_i^j \sim N(0;1), j \in \{1,2,3\}, i \in \{1,...,75\}$ Variables at subject-time level : $\phi_{it}^j \sim N(0;1), j \in \{1,2,3\}, i \in \{1,...,75\}, t \in \{1,...,30\}$ Combination : $\forall (i,t,j) : \xi_{it}^j = \psi_i^j + \phi_{it}^j$

1. Simulation scheme

- Time-span : [0,30], divided in 30 unit-length elementary intervals.
- Baseline hazard function:

$$h_0(t) = a + b(t - t_m)^2$$
 with $t_m = 12$, $a = .2$, $b = 10^{-3}$

• 75 subjects simulated with bundle-structures:

Variables at subject level : $\psi_i^j \sim N(0;1), j \in \{1,2,3\}, i \in \{1,...,75\}$ Variables at subject-time level : $\phi_{it}^j \sim N(0;1), j \in \{1,2,3\}, i \in \{1,...,75\}, t \in \{1,...,30\}$ Combination : $\forall (i,t,j) : \xi_{it}^j = \psi_i^j + \phi_{it}^j$

$$\xi^{1}, \xi^{2}, \xi^{3} \rightarrow 3$$
 explanatory variable-bundles:
 $B_{1}: 4$ variables $x^{i} = \xi^{1} + \varepsilon^{i}$;
 $B_{2}: 6$ variables $x^{j} = \xi^{2} + \varepsilon^{j}$;

> B_3 : 10 variables $x' = \xi^3 + \varepsilon^7$; where $\varepsilon' = N(0;\sigma^2)$ noise with $\sigma = 0.3$

+
$$B_4$$
: 20 noise-variables $x^j \sim N(0;1)$

1. Simulation scheme

- Time-span : [0,30], divided in 30 unit-length elementary intervals.
- Baseline hazard function:

$$h_0(t) = a + b(t - t_m)^2$$
 with $t_m = 12$, $a = .2$, $b = 10^{-3}$

• 75 subjects simulated with bundle-structures:

Variables at subject level : $\psi_i^j \sim N(0;1), j \in \{1,2,3\}, i \in \{1,...,75\}$ Variables at subject-time level : $\phi_{it}^j \sim N(0;1), j \in \{1,2,3\}, i \in \{1,...,75\}, t \in \{1,...,30\}$ Combination : $\forall (i,t,j) : \xi_{it}^j = \psi_i^j + \phi_{it}^j$

$$\xi^{1}, \xi^{2}, \xi^{3} \rightarrow 3$$
 explanatory variable-bundles:
> $B_{1}: 4$ variables $x^{j} = \xi^{1} + \varepsilon^{j}$;
> $B_{2}: 6$ variables $x^{j} = \xi^{2} + \varepsilon^{j}$;
> $B_{3}: 10$ variables $x^{j} = \xi^{3} + \varepsilon^{j}$;
where $\varepsilon^{j} = N(0; \sigma^{2})$ noise with $\sigma = 0.3$

+
$$B_4$$
: 20 noise-variables $x^j \sim N(0;1)$

1. Simulation scheme

2. Results

Cox-regression on the components :

 f^{1} : coefficient = -0.03 ; p=0.830 f^{2} : coefficient = -0.42; p=0.004

2. Results

Cox-regression on the components :

 f^{1} : coefficient = -0.03 ; p=0.830 f^{2} : coefficient = -0.42; p=0.004

(= PCA)

 f^{3} : coefficient = -1.60 ; p<10⁻¹⁶ f^{4} : coefficient = -0.09; p=0.49

2. Results

Cox-regression on the components (on test sample):

 f^{1} : coefficient = -1.69 ; p<2.00 10⁻¹⁶ f^{2} : coefficient = 0.69; p=1.49 10⁻⁵

2. Results

Cox-regression on the components (on test sample):

 f^{1} : coefficient = -1.69 ; p<2.00 10⁻¹⁶ f^{2} : coefficient = 0.69; p=1.49 10⁻⁵ f^{3} : coefficient = -0.19 ; p=0.19 f^{4} : coefficient = -0.09; p=0.56

2. Results

Cox-regression on the components (on test sample):

$$f^{1}$$
: coefficient = -1.92 ; p<2.00 10⁻¹⁶
 f^{2} : coefficient = -0.27; p=0.068

2. Results

Cross-validation performance according to the number of components retained Right!

2. Results

C W Va

		parameter τ tuning regularization										
		τ =	= 0	au =	0.1	au =	0.3	au = 0.5		au = 0.7		
				I		С	ompone	nts f^1, j	f^2			
			f^1	f^2	f^1	f^2	\hat{f}^1	f^2	f^1	f^2	f^1	f^2
	bundle B_1	x^1	-0.19	0.04	-0.22	0.09	-0.26	0.08	-0.30	0.08	-0.35	0.09
		x^2	-0.26	0.00	-0.25	0.05	-0.27	0.06	-0.31	0.07	-0.35	0.08
oefficients		<i>x</i> ³	-0.38	0.00	-0.31	0.05	-0.30	0.05	-0.32	0.07	-0.36	0.08
		<i>x</i> ⁴	-0.13	0.03	-0.22	0.04	-0.26	0.06	-0.30	0.07	-0.35	0.09
h unstable	bundle B_2	<i>x</i> ⁵	0.18	0.02	0.11	0.19	0.07	0.20	0.07	0.02	0.07	0.02
		x^6	0.20	-0.02	0.10	0.17	0.07	0.19	0.07	0.02	0.07	0.02
lues and signs		<i>x</i> ⁷	0.43	0.05	0.19	0.21	0.11	0.21	0.08	0.02	0.08	0.03
		x^8	-0.12	-0.02	-0.03	0.15	0.01	0.18	0.03	0.02	0.05	0.02
		<i>x</i> ⁹	-0.31	-0.02	-0.09	0.14	-0.01	0.17	0.02	0.02	0.04	0.02
		x^{10}	-0.16	0.00	-0.03	0.16	0.02	0.18	0.03	0.02	0.05	0.02
	bundle B_3	x^{11}	0.20	-0.13	0.13	0.02	0.06	0.02	0.04	0.01	0.03	0.01
		x^{12}	0.24	-0.10	-0.17	-0.02	-0.07	-0.01	0.04	-0.01	-0.02	-0.01
		x^{13}	-0.42	-0.14	-0.04	0.00	-0.02	0.00	-0.01	0.00	0.00	0.00
		x^{14}	-0.10	-0.13	-0.06	0.01	-0.03	0.00	-0.02	0.00	-0.01	0.00
		x ¹⁵	-0.15	-0.13	-0.05	-0.01	-0.02	0.00	-0.01	0.00	0.00	0.00
		x ¹⁶	-0.15	-0.14	0.10	0.00	0.04	0.01	0.03	0.00	0.01	0.00
		x^{17}	0.19	-0.13	0.11	0.01	0.05	0.01	0.03	0.00	0.02	0.00
		x^{18}	0.23	-0.11	-0.06	0.02	-0.06	0.01	-0.06	0.01	-0.06	0.01
		x^{19}	-0.06	0.00	-0.03	0.25	-0.03	0.01	-0.03	0.00	-0.02	-0.01
		x^{20}	-0.03	0.00	-0.03	-0.02	-0.03	0.01	-0.03	-0.01	-0.02	-0.01
		correlation of the linear predictor with its estima										
	$oldsymbol{ ho}(oldsymbol{\eta}, oldsymbol{\hat{\eta}})$	0.9	48	0.965		0.972		0.977		0.982		

The impact of τ (for s = 0.95, l = 4):

2. Results

The impact of τ (for s = 0.95, l = 4):

		parameter τ tuning regularization										
		$\tau = 0$ $\tau = 0.1$ $\tau = 0.3$ $\tau = 0.5$ $\tau = 0.7$										
		components f^1, f^2										
		f^1	f^2	f^1	f^2	f^{1}	f^2	f^1	f^2	f^1	f^2	
	bundle $B_1 x^1$	-0.19	0.04	-0.22	0.09	-0.26	0.08	-0.30	0.08	-0.35	0.09	
	x^2	-0.26	0.00	-0.25	0.05	-0.27	0.06	-0.31	0.07	-0.35	0.08	
	x^3	-0.38	0.00	-0.31	0.05	-0.30	0.05	-0.32	0.07	-0.36	0.08	Coefficients with
Coefficients	x ⁴	-0.13	0.03	-0.22	0.04	-0.26	0.06	-0.30	0.07	-0.35	0.09	stable & even
with unstable	bundle $B_2 = x^5$	0.18	0.02	0.11	0.19	0.07	0.20	0.07	0.02	0.07	0.02	values and signs
	x ⁶		-0.02	0.10	0.17	0.07	0.19	0.07	0.02	0.07	0.02	values and signs
values and signs	x ⁷	0.43	0.05	0.19	0.21	0.11	0.21	0.08	0.02	0.08	0.03	
	x ⁸	-0.12	-0.02	-0.03	0.15	0.01	0.18	0.03	0.02	0.05	0.02	
<hr/>	<u>x9</u>		-0.02	-0.09	0.14	-0.01	0.17	0.02	0.02	0.04	0.02	
	x ¹⁰	-0.16	0.00	-0.03	0.16	0.02	0.18	0.03	0.02	0.05	0.02	
	bundle $B_3 x^{11}$	0.20	-0.13	0.13	0.02	0.06	0.02	0.04	0.01	0.03	0.01	
	x ¹²	0.24	-0.10	-0.17	-0.02	-0.07	-0.01	0.04	-0.01	-0.02	-0.01	
	x ¹³	-0.42	-0.14	-0.04	0.00	-0.02	0.00	-0.01	0.00	0.00	0.00	
	x ¹⁴	-0.10	-0.13	-0.06	0.01	-0.03	0.00	-0.02	0.00	-0.01	0.00	
	x ¹⁵	-0.15	-0.13	-0.05	-0.01	-0.02	0.00	-0.01	0.00	0.00	0.00	
	x ¹⁶	-0.15	-0.14	0.10	0.00	0.04	0.01	0.03	0.00	0.01	0.00	
	x ¹⁷	0.19	-0.13	0.11	0.01	0.05	0.01	0.03	0.00	0.02	0.00	
	x ¹⁸	0.23	-0.11	-0.06	0.02	-0.06	0.01	-0.06	0.01	-0.06	0.01	
	x ¹⁹	-0.06	0.00	-0.03	0.25	-0.03	0.01	-0.03	0.00	-0.02	-0.01	
	x ²⁰	-0.03	0.00	-0.03	-0.02	-0.03	0.01	-0.03	-0.01	-0.02	-0.01	
	correlation of the linear predictor with its estimate											
	$oldsymbol{ ho}(oldsymbol{\eta}, oldsymbol{\hat{\eta}})$	0.9	948	0.9	965	0.9	072	0.9	77	0.9	082	

2. Results

The impact of τ (for s = 0.95, l = 4):

		parameter τ tuning regularization								0.7		
		$\tau = 0$ $\tau = 0.1$ $\tau = 0.3$ $\tau = 0.5$ $\tau = 0.7$										
		components f^1, f^2										
		f^1	f^2	f^1	f^2	f^1	f^2	f^1	f^2	f^1	f^2	
		x^1 -0.19	0.04	-0.22	0.09	-0.26	0.08	-0.30	0.08	-0.35	0.09	
		x^2 -0.26	0.00	-0.25	0.05	-0.27	0.06	-0.31	0.07	-0.35	0.08	
		x^3 -0.38	0.00	-0.31	0.05	-0.30	0.05	-0.32	0.07	-0.36	0.08	Coefficients with
Coefficients		x^4 -0.13	0.03	-0.22	0.04	-0.26	0.06	-0.30	0.07	-0.35	0.09	stable & even
with unstable		x^5 0.18	0.02	0.11	0.19	0.07	0.20	0.07	0.02	0.07	0.02	values and signs
		x^{6}_{7} 0.20	-0.02	0.10	0.17	0.07	0.19	0.07	0.02	0.07	0.02	values and signs
values and signs		x^{7} 0.43	0.05	0.19	0.21	0.11	0.21	0.08	0.02	0.08	0.03	
		x^8 -0.12	-0.02	-0.03	0.15	0.01	0.18	0.03	0.02	0.05	0.02	
	bundle B_3	$\frac{x^9}{10}$ -0.31	-0.02	-0.09	0.14	-0.01	0.17	0.02	0.02	0.04	0.02	
		x^{10} -0.16	0.00	-0.03	0.16	0.02	0.18	0.03	0.02	0.05	0.02	
		x^{11} 0.20	-0.13	0.13	0.02	0.06	0.02	0.04	0.01	0.03	0.01	
Ň		x^{12} 0.24	-0.10	-0.17	-0.02	-0.07	-0.01	0.04	-0.01	-0.02	-0.01	
	,	x^{13} -0.42	-0.14	-0.04	0.00	-0.02	0.00	-0.01	0.00	0.00	0.00	
	,	x^{14} -0.10	-0.13	-0.06	0.01	-0.03	0.00	-0.02	0.00	-0.01	0.00	
	~	x ¹⁵ -0.15	-0.13	-0.05	-0.01	-0.02	0.00	-0.01	0.00	0.00	0.00	
		$x^{16} - 0.15$	-0.14	0.10	0.00	0.04	0.01	0.03	0.00	0.01	0.00	
		x^{17} 0.19	-0.13	0.11	0.01	0.05	0.01	0.03	0.00	0.02	0.00	
		x^{18} 0.23	-0.11	-0.06	0.02	-0.06	0.01	-0.06	0.01	-0.06	0.01	
		x^{19} -0.06	0.00	-0.03	0.25	-0.03	0.01	-0.03	0.00	-0.02	-0.01	
	ر	x^{20} -0.03	0.00	-0.03	-0.02	-0.03	0.01	-0.03	-0.01	-0.02	-0.01	
	,	correlation of the linear predictor with its estimate										
	$oldsymbol{ ho}(oldsymbol{\eta}, oldsymbol{\hat{\eta}})$	0.9	948	0.9	065	0.9	072	0.9	77	0.9	82	Better fit

63

2. Results

Correlation with supervised component 2 1.0 direction of the regularised linear predictor 0.5 $x^{1}x^{2}$ $x^5 x^6$ x⁷ x⁸ x⁹ x¹⁰ 0.0**x**⁴ B₁ B_{2} -0.5 -1.0 -0.5 -1.0 0.0 0.5 1.0 Correlation with supervised component 1

Cox-regression on the components (test sample):

```
f^{1}: coefficient = -1.85 ; p<2.00 10<sup>-16</sup>
f^{2} : coefficient = -0.12; p=0.35
```

s = 0.00

2. Results

Cox-regression on the components (test sample):

```
f^{1}: coefficient = -1.85 ; p<2.00 10<sup>-16</sup>
f^{2} : coefficient = -0.12; p=0.35
```

 f^{1} : coefficient = -1.83 ; p<2.00 10⁻¹⁶ f^{2} : coefficient = -0.11; p=0.40

1. The data :

- From the 2001 retrospective survey conducted by Antoine and Fall: Crisis, passage to adult age, and family in poor and middle classes in Dakar.
- The subjects: 222 married men born before 1967 and residing in Dakar, Senegal.
- The event under study: the shift from monogamy to polygamy.
 - \rightarrow 55 events (marriages to a second wife).

1. The data :

- From the 2001 retrospective survey conducted by Antoine and Fall: Crisis, passage to adult age, and family in poor and middle classes in Dakar.
- The subjects: 222 married men born before 1967 and residing in Dakar, Senegal.
- The event under study: the shift from monogamy to polygamy.
 - \rightarrow 55 events (marriages to a second wife).
- Covariates: 107 time-varying variables, some of which highly correlated.

 \Rightarrow direct Cox regression impossible.

• 0.95-confidence intervals obtained by bootstrap.

2. Results

s=1 , l=1 (PC-CoxR)

Components 4 and 5 have the smallest p-values. Only component 5 has a p-value < 0.05 (0.002).

2. Results

s=1 , l=1 (PC-CoxR)

Components 4 and 5 have the smallest p-values. Only component 5 has a p-value < 0.05 (0.002).

2. Results

2. Results

2. Results

2. Results

Best values : s = 0.9 ; l = 8 ; $\tau = 1$

2. Results

Best values : s = 0.9 ; l = 8 ; $\tau = 1$

2. Results

Variable β $\beta^{(5)}$	nation: Senegal -0.009 [-0.022;0.004]	nation: Bissau-Guinea 0.062 [-0.222;0.347]	nation: Guinea 0.022 [-0.030;0.075]	nation: Mali -0.044 [-0.202;0.113]
β(3)	0.006 [-0.003;0.016]	0.087 [-0.126;0.300]	-0.014 [-0.035;0.007]	-0.089 [-0.247;0.068]
Variable	nation: Benin	father deceased	mother deceased	parents divorced
	-0.050 [-0.113;0.013]	-0.020 [-0.352;0.312]	0.128 [-0.388;0.644]	-0.056 [-0.489;0.377]
$\beta^{(5)}$	-0.023 [-0.086;0.040]	-0.033 [-0.647;0.580]	0.150 [-0.490;0.790]	-0.072 [-0.232;0.089]
Variable	marriage-rank	consent	age gap	education: none
$\beta^{(5)}$	0.000 [-0.030;0.030]	-0.112 [-1.148;0.923]	age gap -0.208* [-0.237;-0.179]	0.037 [-0.582;0.655]
β ⁽⁵⁾	0.000 [-0.035;0.035]	-0.075 [-1.265;1.116]	-0.414* [-0.450;-0.378]	0.063 [-0.022;0.149]
Variable	education: coranic	education: primary	education: secondary	father education: none
$\beta^{(5)}$	0.054 [-0.434;0.542]	0.033 [-0.583;0.649]	-0.099 [-0.342;0.144]	-0.089 [-0.398;0.220]
β(3)	0.056 [-0.049;0.161]	0.061 [-0.323;0.445]	-0.143* [-0.273;-0.013]	-0.103 [-0.685;0.478]
Variable	father education: coranic	father education: primary	father education: secondary	father education: non-available
$\beta^{(5)}$	0.200 [-0.157;0.557]	-0.060 [-0.589;0.468]	-0.047 [-0.635;0.541]	-0.115 [-0.551;0.320]
$\beta^{(5)}$	0.154 [-0.338;0.645]	-0.024 [-0.477;0.429]	-0.025 [-0.125;0.076]	-0.077 [-0.247;0.093]
Variable	mother education: none	mother education: coranic	mother education: primary	mother education: secondary
$\beta^{(5)}$	-0.127 [-0.402;0.147]	0.069 [-0.590;0.728]	0.051 [-0.985;1.086]	0.061 [-0.974;1.097]
$\beta^{(5)}$	-0.109 [-0.424;0.205]	-0.014 [-0.574;0.547]	0.101 [-0.343;0.544]	0.094 [-0.349;0.538]
Variable	mother education: non-available	ethnic group: Wolof	ethnic group: Pular	ethnic group: Serer
	0.065 [-0.710;0.839]	0.078 [-0.303;0.459]	-0.043 [-0.594;0.507]	0.014 [-0.693;0.721]
$\beta^{(5)}$	0.113 [-0.738;0.964]	0.093 [-0.116;0.303]	-0.084 [-0.324;0.156]	0.029 [-0.822;0.880]
Variable	ethnic group: Diola	ethnic group: other	religion: tidjan	religion: murid
$\beta_{\beta^{(5)}}$	-0.071 [-0.548;0.406]	-0.017 [-0.368;0.333]	-0.070 [-0.331;0.192]	0.067 [-0.204; 0.339]
$\beta^{(5)}$	-0.053 [-0.545;0.439]	-0.022 [-0.425;0.381]	-0.091 [-0.506;0.324]	0.043 [-0.414;0.500]
Variable	religion: other muslim	religion: christian	age at first marriage: 16 to 24	age at first marriage: 25 to 29
$\beta^{(5)}$	0.121 [-0.450;0.693]	-0.133* [-0.205;-0.061]	0.176 [-0.289;0.642]	0.102 [-0.298;0.502]
$\beta^{(5)}$	0.141 [-0.465;0.746]	-0.085* [-0.156;-0.015]	0.221 [-0.156;-0.015]	0.134 [-0.147;0.415]
Variable	age at first marriage: 30 to 34	age at first marriage: 35 to 46	choice of first marriage: ego	choice of first marriage: mutual
$\beta_{\beta^{(5)}}$	-0.201* [-0.395;-0.007]	-0.154* [-0.288;-0.021]	-0.020 [-0.371;0.330]	-0.048 [-0.304;0.208]
$\beta^{(5)}$	-0.176 [-0.567;0.215]	-0.300* [-0.563;-0.037]	-0.004 [-0.149;0.142]	-0.037 [-0.274;0.201]
Variable	choice of first marriage: parents	first wife related to ego's father	first wife related to ego's mother	first wife unrelated to ego
	0.087 [-0.394;0.568]	0.080 [-0.260;0.420]	0.155* [0.071;0.239]	-0.201* [-0.343;-0.058]
$\beta^{(5)}$	0.052 [-0.336;0.439]	0.136 [-0.497;0.769]	0.196 [-0.152;0.543]	-0.283* [-0.312;-0.254]
Variable	age of first wife at marriage: non-available	age of first wife at marriage: 13 to 16	age of first wife at marriage; 17 to 19	age of first wife at marriage: 20 to
	-0.086 [-0.581;0.409]	0.140 [-0.128;0.409]	0.010 [-0.265;0.285]	-0.067 [-0.536;0.402]
$\beta^{(5)}$	-0.107 [-0.226;0.012]	0.089 [-0.377;0.555]	-0.030 [-0.437;0.376]	-0.046 [-0.529;0.436]
Variable	age of first wife at marriage: 25 to 37	place of birth: Dakar	place of birth: rural area	place of birth: other city
-	-0.053 [-0.522;0.415]	-0.087 [-0.263;0.088]	0.139* [0.022;0.256]	-0.053* [-0.103;-0.003]
$\beta^{(5)}$	0.040 [-0.425;0.505]	-0.011 [-0.328;0.307]	0.062* [0.011;0.114]	-0.056 [-0.418;0.306]
Variable	place of infancy: Dakar	place of infancy: rural area	place of infancy: other city	first wife never married
annone	-0.160* [-0.292;-0.029]	0.132* [0.009;0.254]	0.043 [-0.284;0.370]	0.027 [-0.410;0.463]
β	-0.100 [-0.2920.029]			

2. Results

Variable-coefficients (with 0.95 IC) :

• The younger ego's wife is relative to him, the lower the risk.

Variable B	nation: Senegal -0.009 [-0.022;0.004]	nation: Bissau-Guinea 0.062 [-0.222;0.347]	nation: Guinea 0.022 [-0.030;0.075]	nation: Mali -0.044 [-0.202;0.113]
$\beta^{(5)}_{(5)}$	0.006 [-0.003;0.016]	0.087 [-0.126;0.300]	-0.014 [-0.035;0.007]	-0.089 [-0.247;0.068]
Variable	nation: Benin	father deceased	mother deceased	parents divorced
$\beta^{(5)}$	-0.050 [-0.113;0.013] -0.023 [-0.086;0.040]	-0.020 [-0.352;0.312] -0.033 [-0.647;0.580]	0.128 [-0.388;0.644] 0.150 [-0.490;0.790]	-0.056 [-0.489;0.377] -0.072 [-0.232;0.089]
p	-0.025 [-0.080,0.040]	-0.035 [-0.047,0.380]	0.130 [-0.490,0.790]	-0.072 [-0.232,0.089]
Variable	marriage-rank	consent	age gap -0.208* [-0.237;-0.179]	education: none
$\beta^{(5)}$	0.000 [-0.030;0.030] 0.000 [-0.035;0.035]	-0.112 [-1.148;0.923] -0.075 [-1.265;1.116]	-0.208* [-0.237;-0.179] -0.414* [-0.450;-0.378]	0.037 [-0.582;0.655] 0.063 [-0.022;0.149]
F				
Variable	education: coranic 0.054 [-0.434;0.542]	education: primary 0.033 [-0.583;0.649]	education: secondary -0.099 [-0.342;0.144]	father education: none -0.089 [-0.398;0.220]
$\beta^{(5)}$	0.056 [-0.049;0.161]	0.061 [-0.323;0.445]	-0.143* [-0.273;-0.013]	-0.103 [-0.685;0.478]
Variable	father education: coranic	father education: primary	father education: secondary	father education: non-available
$\beta^{(5)}$	0.200 [-0.157;0.557] 0.154 [-0.338;0.645]	-0.060 [-0.589;0.468] -0.024 [-0.477;0.429]	-0.047 [-0.635;0.541] -0.025 [-0.125;0.076]	-0.115 [-0.551;0.320] -0.077 [-0.247;0.093]
p	0.134 [-0.338;0.043]	-0.024 [-0.477,0.429]	-0.025 [-0.125,0.076]	-0.077 [-0.247;0.095]
Variable	mother education: none	mother education: coranic	mother education: primary	mother education: secondary
$\beta^{(5)}$	-0.127 [-0.402;0.147] -0.109 [-0.424;0.205]	0.069 [-0.590;0.728] -0.014 [-0.574;0.547]	0.051 [-0.985;1.086] 0.101 [-0.343;0.544]	0.061 [-0.974;1.097] 0.094 [-0.349;0.538]
Ρ	0.107 [0.424,0.205]	-0.014[0.574,0.547]	0.101 [-0.545,0.544]	0.094[0.949,0.990]
Variable	mother education: non-available	ethnic group: Wolof	ethnic group: Pular	ethnic group: Serer
$\beta^{(5)}$	0.065 [-0.710;0.839] 0.113 [-0.738;0.964]	0.078 [-0.303;0.459] 0.093 [-0.116;0.303]	-0.043 [-0.594;0.507] -0.084 [-0.324;0.156]	0.014 [-0.693;0.721] 0.029 [-0.822;0.880]
Variable	ethnic group: Diola	ethnic group: other	religion: tidjan	religion: murid
$\beta^{(5)}$	-0.071 [-0.548;0.406] -0.053 [-0.545;0.439]	-0.017 [-0.368;0.333] -0.022 [-0.425;0.381]	-0.070 [-0.331;0.192] -0.091 [-0.506;0.324]	0.067 [-0.204; 0.339] 0.043 [-0.414;0.500]
per	-0.035 [-0.343,0.439]	-0.022 [-0.425;0.581]	-0.091 [-0.306;0.324]	0.045 [-0.414;0.500]
Variable	religion: other muslim	religion: christian	age at first marriage: 16 to 24	age at first marriage: 25 to 29
$\beta^{(5)}$	0.121 [-0.450;0.693] 0.141 [-0.465;0.746]	-0.133 [*] [-0.205;-0.061] -0.085* [-0.156;-0.015]	0.176 [-0.289;0.642] 0.221 [-0.156;-0.015]	0.102 [-0.298;0.502] 0.134 [-0.147;0.415]
P	0.111[0.102,0.110]	0.000 [0.100, 0.010]	0.227 [0.120, 0.075]	0.15 ([0.1 (),0.115]
Variable	age at first marriage: 30 to 34	age at first marriage: 35 to 46	choice of first marriage: ego	choice of first marriage: mutual
$\beta^{(5)}$	-0.201* [-0.395;-0.007] -0.176 [-0.567;0.215]	-0.154* [-0.288;-0.021] -0.300* [-0.563;-0.037]	-0.020 [-0.371;0.330] -0.004 [-0.149;0.142]	-0.048 [-0.304;0.208] -0.037 [-0.274;0.201]
Variable	choice of first marriage: parents	first wife related to ego's father	first wife related to ego's mother	first wife unrelated to ego
0	0.087 [-0.394;0.568]	0.080 [-0.260;0.420]	0.155* [0.071;0.239]	-0.201* [-0.343;-0.058]
$\beta^{(5)}$	0.052 [-0.336;0.439]	0.136 [-0.497;0.769]	0.196 [-0.152;0.543]	-0.283* [-0.312;-0.254]
Variable	age of first wife at marriage: non-available		age of first wife at marriage: 17 to 19	age of first wife at marriage: 20 to
$\beta^{(5)}$	-0.086 [-0.581;0.409]	0.140 [-0.128;0.409] 0.089 [-0.377;0.555]	0.010 [-0.265;0.285] -0.030 [-0.437;0.376]	-0.067 [-0.536;0.402]
per	-0.107 [-0.226;0.012]	0.089 [-0.377;0.555]	-0.030 [-0.437;0.376]	-0.046 [-0.529;0.436]
Variable	age of first wife at marriage: 25 to 37	place of birth: Dakar	place of birth: rural area	place of birth: other city
$\beta^{(5)}$	-0.053 [-0.522;0.415] 0.040 [-0.425;0.505]	-0.087 [-0.263;0.088] -0.011 [-0.328;0.307]	0.139*[0.022;0.256] 0.062*[0.011;0.114]	-0.053* [-0.103;-0.003] -0.056 [-0.418;0.306]
	0.040[-0.425,0.505]	-0.011 [-0.526,0.507]	0.002 [0.011,0.114]	-0.050 [-0.418,0.500]
B ⁽³⁾				
$\beta^{(5)}$ Variable $\beta^{(5)}$	place of infancy: Dakar -0.160* [-0.292;-0.029]	place of infancy: rural area 0.132* [0.009;0.254]	place of infancy: other city 0.043 [-0.284:0.370]	first wife never married 0.027 [-0.410;0.463]

2. Results

- The younger ego's wife is relative to him, the lower the risk.
- The older ego is at first marriage, the lower the risk.

Variable β $\beta^{(5)}$	nation: Senegal -0.009 [-0.022;0.004]	nation: Bissau-Guinea 0.062 [-0.222;0.347]	nation: Guinea 0.022 [-0.030;0.075]	nation: Mali -0.044 [-0.202;0.113]
$\beta^{(5)}$	0.006 [-0.003;0.016]	0.087 [-0.126;0.300]	-0.014 [-0.035;0.007]	-0.089 [-0.247;0.068]
Variable	nation: Benin	father deceased	mother deceased	parents divorced
	-0.050 [-0.113;0.013]	-0.020 [-0.352;0.312]	0.128 [-0.388;0.644]	-0.056 [-0.489;0.377]
$\beta^{(5)}$	-0.023 [-0.086;0.040]	-0.033 [-0.647;0.580]	0.150 [-0.490;0.790]	-0.072 [-0.232;0.089]
Variable	marriage-rank	consent	den ene	education: none
	0.000 [-0.030;0.030]	-0.112 [-1.148;0.923]	age gap -0.208* [-0.237;-0.179]	0.037 [-0.582;0.655]
$\beta^{(5)}$	0.000 [-0.035;0.035]	-0.075 [-1.265;1.116]	-0.414* [-0.450;-0.378]	0.063 [-0.022;0.149]
Variable	education: coranic	education: primary	education: secondary	father education: none
	0.054 [-0.434:0.542]	0.033 [-0.583;0.649]	-0.099 [-0.342;0.144]	-0.089 [-0.398;0.220]
$\beta^{(5)}$	0.056 [-0.049;0.161]	0.061 [-0.323;0.445]	-0.143* [-0.273;-0.013]	-0.103 [-0.685;0.478]
Variable	father education: coranic	father education: primary	father education: secondary	father education: non-available
	0.200 [-0.157;0.557]	-0.060 [-0.589;0.468]	-0.047 [-0.635;0.541]	-0.115 [-0.551;0.320]
$\beta^{(5)}$	0.154 [-0.338;0.645]	-0.024 [-0.477;0.429]	-0.025 [-0.125;0.076]	-0.077 [-0.247;0.093]
Variable	mother education: none	mother education: coranic	mother education: primary	mother education: secondary
	-0.127 [-0.402;0.147]	0.069 [-0.590;0.728]	0.051 [-0.985;1.086]	0.061 [-0.974;1.097]
$\beta^{(5)}$	-0.109 [-0.424;0.205]	-0.014 [-0.574;0.547]	0.101 [-0.343;0.544]	0.094 [-0.349;0.538]
Variable	mother education: non-available	ethnic group: Wolof	ethnic group: Pular	ethnic group: Serer
$\beta^{(5)}$	0.065 [-0.710;0.839]	0.078 [-0.303;0.459]	-0.043 [-0.594;0.507]	0.014 [-0.693;0.721]
$\beta^{(5)}$	0.113 [-0.738;0.964]	0.093 [-0.116;0.303]	-0.084 [-0.324;0.156]	0.029 [-0.822;0.880]
Variable	ethnic group: Diola	ethnic group: other	religion: tidian	religion: murid
$\beta_{\beta^{(5)}}$	-0.071 [-0.548;0.406]	-0.017 [-0.368;0.333]	-0.070 [-0.331;0.192]	0.067 [-0.204; 0.339]
$\beta^{(5)}$	-0.053 [-0.545;0.439]	-0.022 [-0.425;0.381]	-0.091 [-0.506;0.324]	0.043 [-0.414;0.500]
Variable	religion: other muslim	religion: christian	age at first marriage: 16 to 24	age at first marriage: 25 to 29
$\beta^{(5)}_{\beta^{(5)}}$	0.121 [-0.450;0.693]	-0.133* [-0.205;-0.061]	0.176 [-0.289;0.642]	0.102 [-0.298;0.502]
$\beta^{(5)}$	0.141 [-0.465;0.746]	-0.085* [-0.156;-0.015]	0.221 [-0.156;-0.015]	0.134 [-0.147;0.415]
Variable	age at first marriage: 30 to 34	age at first marriage: 35 to 46	choice of first marriage: ego	choice of first marriage: mutual
$\beta_{\beta^{(5)}}$	-0.201* [-0.395;-0.007]	-0.154* [-0.288;-0.021]	-0.020 [-0.371;0.330]	-0.048 [-0.304;0.208]
$\beta^{(5)}$	-0.176 [-0.567;0.215]	-0.300* [-0.563;-0.037]	-0.004 [-0.149;0.142]	-0.037 [-0.274;0.201]
Variable	choice of first marriage: parents	first wife related to ego's father	first wife related to ego's mother	first wife unrelated to ego
$\beta^{(5)}$	0.087 [-0.394;0.568]	0.080 [-0.260;0.420]	0.155* [0.071;0.239]	-0.201* [-0.343;-0.058]
$\beta^{(5)}$	0.052 [-0.336;0.439]	0.136 [-0.497;0.769]	0.196 [-0.152;0.543]	-0.283* [-0.312;-0.254]
Variable	age of first wife at marriage: non-available	age of first wife at marriage: 13 to 16	age of first wife at marriage: 17 to 19	age of first wife at marriage: 20 to
$\beta^{(5)}$	-0.086 [-0.581;0.409]	0.140 [-0.128;0.409]	0.010 [-0.265;0.285]	-0.067 [-0.536;0.402]
β ⁽³⁾	-0.107 [-0.226;0.012]	0.089 [-0.377;0.555]	-0.030 [-0.437;0.376]	-0.046 [-0.529;0.436]
Variable	age of first wife at marriage: 25 to 37	place of birth: Dakar	place of birth: rural area	place of birth: other city
$\beta^{(5)}$	-0.053 [-0.522;0.415]	-0.087 [-0.263;0.088]	0.139* [0.022;0.256]	-0.053* [-0.103;-0.003]
β ⁽⁵⁾	0.040 [-0.425;0.505]	-0.011 [-0.328;0.307]	0.062* [0.011;0.114]	-0.056 [-0.418;0.306]
Variable	place of infancy: Dakar	place of infancy: rural area	place of infancy: other city	first wife never married
$\beta^{\beta}_{(5)}$	-0.160* [-0.292;-0.029]	0.132* [0.009;0.254]	0.043 [-0.284;0.370]	0.027 [-0.410;0.463]
B(S)	-0.123* [-0.238;-0.008]	0.059* [0.009;0.109]	0.078 [-0.232;0.388]	0.021 [-0.425;0.466]

2. Results

- The younger ego's wife is relative to him, the lower the risk.
- The older ego is at first marriage, the lower the risk.
- A wife unrelated to ego lowers the risk.
- A wife related to ego's mother increases the risk.

Variable	nation: Senegal	nation: Bissau-Guinea	nation: Guinea	nation: Mali
β	-0.009 [-0.022;0.004]	0.062 [-0.222;0.347]	0.022 [-0.030;0.075]	-0.044 [-0.202;0.113]
$\beta^{(5)}$	0.006 [-0.003;0.016]	0.087 [-0.126;0.300]	-0.014 [-0.035;0.007]	-0.089 [-0.247;0.068]
Variable	nation: Benin	father deceased	mother deceased	parents divorced
β	-0.050 [-0.113;0.013]	-0.020 [-0.352;0.312]	0.128 [-0.388;0.644]	-0.056 [-0.489;0.377]
$\beta^{(5)}$	-0.023 [-0.086;0.040]	-0.033 [-0.647;0.580]	0.150 [-0.490;0.790]	-0.072 [-0.232;0.089]
Variable	marriage-rank	consent	age gap	education: none
β	0.000 [-0.030;0.030]	-0.112 [-1.148;0.923]	-0.208* [-0.237;-0.179]	0.037 [-0.582;0.655]
$\beta^{(5)}$	0.000 [-0.035;0.035]	-0.075 [-1.265;1.116]	-0.414* [-0.450;-0.378]	0.063 [-0.022;0.149]
$\beta_{\beta}^{(5)}$	education: coranic	education: primary	education: secondary	father education: none
	0.054 [-0.434;0.542]	0.033 [-0.583;0.649]	-0.099 [-0.342;0.144]	-0.089 [-0.398;0.220]
	0.056 [-0.049;0.161]	0.061 [-0.323;0.445]	-0.143* [-0.273;-0.013]	-0.103 [-0.685;0.478]
$\beta^{(5)}_{\beta}$	father education: coranic	father education: primary	father education: secondary	father education: non-available
	0.200 [-0.157;0.557]	-0.060 [-0.589;0.468]	-0.047 [-0.635;0.541]	-0.115 [-0.551;0.320]
	0.154 [-0.338;0.645]	-0.024 [-0.477;0.429]	-0.025 [-0.125;0.076]	-0.077 [-0.247;0.093]
$\beta^{(5)}$	mother education: none	mother education: coranic	mother education: primary	mother education: secondary
	-0.127 [-0.402;0.147]	0.069 [-0.590;0.728]	0.051 [-0.985;1.086]	0.061 [-0.974;1.097]
	-0.109 [-0.424;0.205]	-0.014 [-0.574;0.547]	0.101 [-0.343;0.544]	0.094 [-0.349;0.538]
$\beta^{(5)}$	mother education: non-available	ethnic group: Wolof	ethnic group: Pular	ethnic group: Serer
	0.065 [-0.710;0.839]	0.078 [-0.303;0.459]	-0.043 [-0.594;0.507]	0.014 [-0.693;0.721]
	0.113 [-0.738;0.964]	0.093 [-0.116;0.303]	-0.084 [-0.324;0.156]	0.029 [-0.822;0.880]
$\beta^{(5)}$	ethnic group: Diola	ethnic group: other	religion: tidjan	religion: murid
	-0.071 [-0.548;0.406]	-0.017 [-0.368;0.333]	-0.070 [-0.331;0.192]	0.067 [-0.204; 0.339]
	-0.053 [-0.545;0.439]	-0.022 [-0.425;0.381]	-0.091 [-0.506;0.324]	0.043 [-0.414;0.500]
$\beta^{(5)}$	religion: other muslim	religion: christian	age at first marriage: 16 to 24	age at first marriage: 25 to 29
	0.121 [-0.450;0.693]	-0.133* [-0.205;-0.061]	0.176 [-0.289;0.642]	0.102 [-0.298;0.502]
	0.141 [-0.465;0.746]	-0.085* [-0.156;-0.015]	0.221 [-0.156;-0.015]	0.134 [-0.147;0.415]
$\beta^{(5)}$	age at first marriage: 30 to 34	age at first marriage: 35 to 46	choice of first marriage: ego	choice of first marriage: mutual
	-0.201* [-0.395;-0.007]	-0.154* [-0.288;-0.021]	-0.020 [-0.371;0.330]	-0.048 [-0.304;0.208]
	-0.176 [-0.567;0.215]	-0.300* [-0.563;-0.037]	-0.004 [-0.149;0.142]	-0.037 [-0.274;0.201]
$\beta^{(5)}$	choice of first marriage: parents	first wife related to ego's father	first wife related to ego's mother	first wife unrelated to ego
	0.087 [-0.394;0.568]	0.080 [-0.260;0.420]	0.155* [0.071;0.239]	-0.201* [-0.343;-0.058]
	0.052 [-0.336;0.439]	0.136 [-0.497;0.769]	0.196 [-0.152;0.543]	-0.283* [-0.312;-0.254]
$\beta^{(5)}$	age of first wife at marriage: non-available	age of first wife at marriage: 13 to 16	age of first wife at marriage: 17 to 19	age of first wife at marriage: 20 to
	-0.086 [-0.581;0.409]	0.140 [-0.128;0.409]	0.010 [-0.265;0.285]	-0.067 [-0.536;0.402]
	-0.107 [-0.226;0.012]	0.089 [-0.377;0.555]	-0.030 [-0.437;0.376]	-0.046 [-0.529;0.436]
$\beta^{(5)}$	age of first wife at marriage: 25 to 37	place of birth: Dakar	place of birth: rural area	place of birth: other city
	-0.053 [-0.522;0.415]	-0.087 [-0.263;0.088]	0.139* [0.022;0.256]	-0.053* [-0.103;-0.003]
	0.040 [-0.425;0.505]	-0.011 [-0.328;0.307]	0.062* [0.011;0.114]	-0.056 [-0.418;0.306]
$\beta_{\beta^{(5)}}^{ariable}$	place of infancy: Dakar	place of infancy: rural area	place of infancy: other city	first wife never married
	-0.160* [-0.292;-0.029]	0.132* [0.009;0.254]	0.043 [-0.284;0.370]	0.027 [-0.410;0.463]
	-0.123* [-0.238;-0.008]	0.059* [0.009;0.109]	0.078 [-0.232;0.388]	0.021 [-0.425;0.466]

2. Results

- The younger ego's wife is relative to him, the lower the risk.
- The older ego is at first marriage, the lower the risk.
- A wife unrelated to ego lowers the risk.
- A wife related to ego's mother increases the risk.
- Infancy in Dakar lowers the risk.
- Birth and infancy in a rural area increases the risk.

Variable	nation: Senegal	nation: Bissau-Guinea	nation: Guinea	nation: Mali
β	-0.009 [-0.022;0.004]	0.062 [-0.222;0.347]	0.022 [-0.030;0.075]	-0.044 [-0.202;0.113]
$\beta^{(5)}$	0.006 [-0.003;0.016]	0.087 [-0.126;0.300]	-0.014 [-0.035;0.007]	-0.089 [-0.247;0.068]
Variable	nation: Benin	father deceased	mother deceased	parents divorced
β	-0.050 [-0.113;0.013]	-0.020 [-0.352;0.312]	0.128 [-0.388;0.644]	-0.056 [-0.489;0.377]
$\beta^{(5)}$	-0.023 [-0.086;0.040]	-0.033 [-0.647;0.580]	0.150 [-0.490;0.790]	-0.072 [-0.232;0.089]
${\scriptstyle egin{smallmatrix} Variable \ eta \ e$	marriage-rank	consent	age gap	education: none
	0.000 [-0.030;0.030]	-0.112 [-1.148;0.923]	-0.208* [-0.237;-0.179]	0.037 [-0.582;0.655]
	0.000 [-0.035;0.035]	-0.075 [-1.265;1.116]	-0.414* [-0.450;-0.378]	0.063 [-0.022;0.149]
Variable	education: coranic	education: primary	education: secondary	father education: none
β	0.054 [-0.434;0.542]	0.033 [-0.583;0.649]	-0.099 [-0.342;0.144]	-0.089 [-0.398;0.220]
$\beta^{(5)}$	0.056 [-0.049;0.161]	0.061 [-0.323;0.445]	-0.143* [-0.273;-0.013]	-0.103 [-0.685;0.478]
Variable	father education: coranic	father education: primary	father education: secondary	father education: non-available
β	0.200 [-0.157;0.557]	-0.060 [-0.589;0.468]	-0.047 [-0.635;0.541]	-0.115 [-0.551;0.320]
$\beta^{(5)}$	0.154 [-0.338;0.645]	-0.024 [-0.477;0.429]	-0.025 [-0.125;0.076]	-0.077 [-0.247;0.093]
${\cal B}^{(5)}_{{\cal B}}$	mother education: none	mother education: coranic	mother education: primary	mother education: secondary
	-0.127 [-0.402;0.147]	0.069 [-0.590;0.728]	0.051 [-0.985;1.086]	0.061 [-0.974;1.097]
	-0.109 [-0.424;0.205]	-0.014 [-0.574;0.547]	0.101 [-0.343;0.544]	0.094 [-0.349;0.538]
$\beta^{(5)}$	mother education: non-available	ethnic group: Wolof	ethnic group: Pular	ethnic group: Serer
	0.065 [-0.710;0.839]	0.078 [-0.303;0.459]	-0.043 [-0.594;0.507]	0.014 [-0.693;0.721]
	0.113 [-0.738;0.964]	0.093 [-0.116;0.303]	-0.084 [-0.324;0.156]	0.029 [-0.822;0.880]
Variable $\beta^{(5)}$	ethnic group: Diola	ethnic group: other	religion: tidjan	religion: murid
	-0.071 [-0.548;0.406]	-0.017 [-0.368;0.333]	-0.070 [-0.331;0.192]	0.067 [-0.204; 0.339]
	-0.053 [-0.545;0.439]	-0.022 [-0.425;0.381]	-0.091 [-0.506;0.324]	0.043 [-0.414;0.500]
$\beta^{(5)}$	religion: other muslim	religion: christian	age at first marriage: 16 to 24	age at first marriage: 25 to 29
	0.121 [-0.450;0.693]	-0.133* [-0.205;-0.061]	0.176 [-0.289;0.642]	0.102 [-0.298;0.502]
	0.141 [-0.465;0.746]	-0.085* [-0.156;-0.015]	0.221 [-0.156;-0.015]	0.134 [-0.147;0.415]
$\beta^{(5)}$	age at first marriage: 30 to 34	age at first marriage: 35 to 46	choice of first marriage: ego	choice of first marriage: mutual
	-0.201* [-0.395;-0.007]	-0.154* [-0.288;-0.021]	-0.020 [-0.371;0.330]	-0.048 [-0.304;0.208]
	-0.176 [-0.567;0.215]	-0.300* [-0.563;-0.037]	-0.004 [-0.149;0.142]	-0.037 [-0.274;0.201]
$\beta^{(5)}$	choice of first marriage: parents	first wife related to ego's father	first wife related to ego's mother	first wife unrelated to ego
	0.087 [-0.394;0.568]	0.080 [-0.260;0.420]	0.155* [0.071;0.239]	-0.201* [-0.343;-0.058]
	0.052 [-0.336;0.439]	0.136 [-0.497;0.769]	0.196 [-0.152;0.543]	-0.283* [-0.312;-0.254]
$\beta^{(5)}$	age of first wife at marriage: non-available	age of first wife at marriage: 13 to 16	age of first wife at marriage: 17 to 19	age of first wife at marriage: 20 to
	-0.086 [-0.581;0.409]	0.140 [-0.128;0.409]	0.010 [-0.265;0.285]	-0.067 [-0.536;0.402]
	-0.107 [-0.226;0.012]	0.089 [-0.377;0.555]	-0.030 [-0.437;0.376]	-0.046 [-0.529;0.436]
${\scriptstyle \substack{ \substack{ \beta \ \beta^{(5)} } }}$	age of first wife at marriage: 25 to 37	place of birth: Dakar	place of birth: rural area	place of birth: other city
	-0.053 [-0.522;0.415]	-0.087 [-0.263;0.088]	0.139* [0.022;0.256]	-0.053* [-0.103;-0.003]
	0.040 [-0.425;0.505]	-0.011 [-0.328;0.307]	0.062* [0.011;0.114]	-0.056 [-0.418;0.306]
$\beta_{\beta^{(5)}}$	place of infancy: Dakar	place of infancy: rural area	place of infancy: other city	first wife never married
	-0.160* [-0.292;-0.029]	0.132* [0.009;0.254]	0.043 [-0.284;0.370]	0.027 [-0.410;0.463]
	-0.123* [-0.238;-0.008]	0.059* [0.009;0.109]	0.078 [-0.232;0.388]	0.021 [-0.425;0.466]

2. Results

$Variable \ eta \ eta \ eta^{(5)}$	first wife once married	occupation of first wife: house-wife	occupation of first wife: student	occupation of first wife: employee
	-0.027 [-0.463;0.410]	0.024 [-0.283;0.332]	-0.092 [-0.385;0.202]	-0.065 [-0.441;0.311]
	-0.021 [-0.466;0.425]	0.012 [-0.283;0.308]	-0.093 [-0.803;0.617]	-0.050 [-0.487;0.387]
Variable $\beta^{(5)}$	occupation of first wife: artisan	occupation of first wife: trade	occupation of first wife: agriculture	occupation of first wife: non-availab
	0.071 [-0.985;1.128]	0.058 [-0.862;0.978]	0.250 [-0.807;1.306]	-0.063 [-0.983;0.858]
	0.066 [-0.709;0.841]	0.081 [-0.435;0.598]	0.188 [-0.457;0.834]	-0.053 [-0.623;0.517]
Variable β $\beta^{(5)}$	occupation: informal -0.004 [-0.309;0.300] -0.010 [-0.295;0.275]	occupation: employee 0.133 [-0.142;0.408] 0.159 [-0.123;0.440]	occupation: apprentice -0.088 * [-0.162;-0.015] -0.071 [-0.542;0.400]	occupation: independent -0.051 [-0.527;0.424] -0.105 [-0.357;0.148]
Variable	occupation: student	occupation: retired	occupation: unemployed	occupation: other inactive
β	-0.039 [-0.371;0.293]	-0.091 [-0.583;0.400]	0.003 [-0.594;0.600]	-0.071 [-1.004;0.863]
$\beta^{(5)}$	-0.062 [-0.284;0.159]	-0.046 [-0.248;0.156]	0.022 [-0.163;0.207]	-0.042 [-0.264;0.180]
${\scriptstyle \begin{array}{c} {\cal B} \\ {\cal B} \\ {\cal B}^{(5)} \end{array}}$	occupation: other with no income	residence: owner	residence: lodger	residence: family
	-0.097 [-0.818;0.625]	0.021 [-0.333;0.376]	-0.0862 [-0.389;0.216]	0.014 [-0.390;0.418]
	-0.078 [-0.325;0.169]	0.028 [-0.095;0.151]	-0.076 [-0.340;0.188]	0.060 [-0.207;0.327]
Variable	residence: husband's parents	residence: other parents	residence: other	number of sons
β	0.040 [-0.363;0.444]	0.114 [-0.290;0.517]	-0.089 [-0.493;0.315]	-0.055 [-0.170;0.060]
$\beta^{(5)}$	0.062 [-0.160;0.284]	0.076 [-0.361;0.513]	-0.133 [-0.400;0.134]	-0.040 [-0.095;0.014]
Variable	number of daughters	no son	1 son	2 sons
β	-0.040 [-0.114;0.034]	0.010 [-0.212;0.419]	-0.054 [-0.352;0.244]	-0.059 [-0.582;0.465]
$\beta^{(5)}$	-0.039 [-0.127;0.050]	0.060 [-0.185;0.306]	-0.062 [-0.258;0.134]	-0.025 [-0.470;0.419]
Variable	3 sons	4 sons	5 sons or more	no daughter
β	-0.023 [-0.850;0.805]	-0.039 [-0.490;0.411]	0.051 [-0.399;0.501]	0.015 [-0.267;0.297]
$\beta^{(5)}$	0.031 [-0.393;0.454]	-0.022 [-0.144;0.101]	0.014 [-0.109;0.137]	-0.003 [-0.130;0.124]
Variable	1 daughter	2 daughters	3 daughters	4 daughters
β	-0.121 [-0.493;0.252]	0.164 [-0.228;0.557]	0.051 [-0.690;0.793]	-0.084 [-0.806;0.638]
$\beta^{(5)}$	-0.076 [-0.245;0.092]	0.141 [-0.003;0.285]	0.037 [-0.603;0.676]	-0.084 [-0.458;0.289]
Variable	5 daughters or more	number of children	no child	1 child
β	-0.085 [-0.807;0.637]	-0.058* [-0.110;-0.007]	0.049 [-0.112;0.210]	0.012 [-0.388;0.411]
$\beta^{(5)}$	-0.072 [-0.569;0.426]	-0.048* [-0.090;-0.006]	-0.009 [-0.279;0.262]	0.014 [-0.491;0.520]
Variable $\beta^{(5)}$	2 children -0.044 [-0.599;0.512] -0.023 [-0.501;0.455]	3 children 0.098 [-0.524;0.720] 0.129 [-0.286;0.544]	4 children -0.144 [-1.049;0.761] -0.135 [-0.799;0.529]	5 children or more 0.003 [-0.423;0.430] 0.007 [-0.427;0.441]
Variable	no child out of marriage	child out of marriage	age gap: 0 to 3	age gap: 4 to 7
β	-0.017 [-0.692;0.657]	0.017 [-0.657;0.692]	0.121* [0.015;0.227]	-0.053 [-0.363;0.257]
$\beta^{(5)}$	-0.035 [-0.644;0.575]	0.035 [-0.575;0.644]	0.196* [0.018;0.374]	0.025 [-0.354;0.404]
Variable	age gap: 8 to 12	age gap: 13 to 24	marriage certificate	
β	0.147 [-0.359;0.654]	-0.221* [-0.410;-0.032]	-0.138 [-0.571;0.294]	
$\beta^{(5)}$	0.137 [-0.367;0.642]	-0.381* [-0.739;-0.023]	-0.155 [-0.769;0.458]	

2. Results

Variable-coefficients (with 0.95 IC) :

• A high number of children lowers the risk.

${\scriptstyle \begin{array}{c} Variable \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	first wife once married	occupation of first wife: house-wife	occupation of first wife: student	occupation of first wife: employee
	-0.027 [-0.463;0.410]	0.024 [-0.283;0.332]	-0.092 [-0.385;0.202]	-0.065 [-0.441;0.311]
	-0.021 [-0.466;0.425]	0.012 [-0.283;0.308]	-0.093 [-0.803;0.617]	-0.050 [-0.487;0.387]
$\beta^{(5)}$	occupation of first wife: artisan	occupation of first wife: trade	occupation of first wife: agriculture	occupation of first wife: non-availabl
	0.071 [-0.985;1.128]	0.058 [-0.862;0.978]	0.250 [-0.807;1.306]	-0.063 [-0.983;0.858]
	0.066 [-0.709;0.841]	0.081 [-0.435;0.598]	0.188 [-0.457;0.834]	-0.053 [-0.623;0.517]
$\beta^{(5)}$	occupation: informal	occupation: employee	occupation: apprentice	occupation: independent
	-0.004 [-0.309;0.300]	0.133 [-0.142;0.408]	-0.088 * [-0.162;-0.015]	-0.051 [-0.527;0.424]
	-0.010 [-0.295;0.275]	0.159 [-0.123;0.440]	-0.071 [-0.542;0.400]	-0.105 [-0.357;0.148]
Variable	occupation: student	occupation: retired	occupation: unemployed	occupation: other inactive
β	-0.039 [-0.371;0.293]	-0.091 [-0.583;0.400]	0.003 [-0.594;0.600]	-0.071 [-1.004;0.863]
$\beta^{(5)}$	-0.062 [-0.284;0.159]	-0.046 [-0.248;0.156]	0.022 [-0.163;0.207]	-0.042 [-0.264;0.180]
$\beta^{(5)}$	occupation: other with no income	residence: owner	residence: lodger	residence: family
	-0.097 [-0.818;0.625]	0.021 [-0.333;0.376]	-0.0862 [-0.389;0.216]	0.014 [-0.390;0.418]
	-0.078 [-0.325;0.169]	0.028 [-0.095;0.151]	-0.076 [-0.340;0.188]	0.060 [-0.207;0.327]
Variable	residence: husband's parents	residence: other parents	residence: other	number of sons
β	0.040 [-0.363;0.444]	0.114 [-0.290;0.517]	-0.089 [-0.493;0.315]	-0.055 [-0.170;0.060]
$\beta^{(5)}$	0.062 [-0.160;0.284]	0.076 [-0.361;0.513]	-0.133 [-0.400;0.134]	-0.040 [-0.095;0.014]
$\beta^{(5)}$	number of daughters	no son	1 son	2 sons
	-0.040 [-0.114;0.034]	0.010 [-0.212;0.419]	-0.054 [-0.352;0.244]	-0.059 [-0.582;0.465]
	-0.039 [-0.127;0.050]	0.060 [-0.185;0.306]	-0.062 [-0.258;0.134]	-0.025 [-0.470;0.419]
Variable $\beta^{(5)}$	3 sons -0.023 [-0.850;0.805] 0.031 [-0.393;0.454]	4 sons -0.039 [-0.490;0.411] -0.022 [-0.144;0.101]	5 sons or more 0.051 [-0.399;0.501] 0.014 [-0.109;0.137]	no daughter 0.015 [-0.267;0.297] -0.003 [-0.130;0.124]
Variable	1 daughter	2 daughters	3 daughters	4 daughters
β	-0.121 [-0.493;0.252]	0.164 [-0.228;0.557]	0.051 [-0.690;0.793]	-0.084 [-0.806;0.638]
$\beta^{(5)}$	-0.076 [-0.245;0.092]	0.141 [-0.003;0.285]	0.037 [-0.603;0.676]	-0.084 [-0.458;0.289]
${\scriptstyle \begin{array}{c} \lambda \\ \beta \\ \beta \end{array}} \beta^{(5)}$	5 daughters or more	number of children	no child	1 child
	-0.085 [-0.807;0.637]	-0.058* [-0.110;-0.007]	0.049 [-0.112;0.210]	0.012 [-0.388;0.411]
	-0.072 [-0.569;0.426]	-0.048* [-0.090;-0.006]	-0.009 [-0.279;0.262]	0.014 [-0.491;0.520]
$\beta^{(5)}$	2 children	3 children	4 children	5 children or more
	-0.044 [-0.599;0.512]	0.098 [-0.524;0.720]	-0.144 [-1.049;0.761]	0.003 [-0.423;0.430]
	-0.023 [-0.501;0.455]	0.129 [-0.286;0.544]	-0.135 [-0.799;0.529]	0.007 [-0.427;0.441]
Variable $\beta^{(5)}$	no child out of marriage -0.017 [-0.692;0.657] -0.035 [-0.644;0.575]	child out of marriage 0.017 [-0.657;0.692] 0.035 [-0.575;0.644]	age gap: 0 to 3 0.121* [0.015;0.227] 0.196* [0.018;0.374]	age gap: 4 to 7 -0.053 [-0.363;0.257] 0.025 [-0.354;0.404]
${\scriptstyle \begin{array}{c} \mathcal{B} \\ \mathcal{B} \\ \mathcal{B}^{(5)} \end{array}}$	age gap: 8 to 12 0.147 [-0.359;0.654] 0.137 [-0.367;0.642]	age gap: 13 to 24 -0.221* [-0.410;-0.032] -0.381* [-0.739;-0.023]	marriage certificate -0.138 [-0.571;0.294] -0.155 [-0.769;0.458]	

THE END Thank you, all

A few references:

- Chauvet J., Trottier C., Bry X. (2019): *Component-based regularisation of multivariate generalised linear mixed models*, Journal of Computational and Graphical Statistics (in press).
- Bry X., Simac T., El Ghachi S., Antoine P. (2018) : *Bridging data exploration and modeling in event-history analysis: the supervised-component Cox regression*, Mathematical Population Studies (in press).
- Bry X., Trottier C., Mortier F., Cornu G. (2018): *Component-based regularisation of a multivariate GLM with a thematic partitioning of the explanatory variables*, Statistical Modeling, SAGE (in press).
- Bry X., Verron T. (2015) : *THEME: THEmatic Model Exploration through Multiple Co-Structure maximization*, Journal of Chemometrics, vol.29, 12; pp.637-647
- Bastien P., Esposito Vinzi V., and Tenenhaus M. (2005). *PLS generalised linear regression*. Computational Statistics & Data Analysis, 48: 17-46
- Bastien P. (2007): *Deviance residuals based PLS regression for censored data in high dimensional setting*, Chemometrics and Intelligent Laboratory Systems, pp. 78-86, 2007
- Bry X., Antoine P. (2004): *Exploring explanatory models ; an event history application* Population-E 59(6).
- D.R. Cox, (1975): Partial Likelihood, Biometrika, vol. 62, p. 269-276
- Breslow, N. E. and Crowley, J. (1974): A large-sample study of the life table and product limit estimates under random censorship. Annals of Statistics 2, 437-454.
- Kalbfleisch, J. D. and Prentice, R. L. (1973): *Marginal likelihoods based on Cox's regression and life model*. Biometrika 60, 267-278.
- van Houwelingen HC, Bruinsma T, Hart AAM, van't Veer LJ, Wessels LFA (2006): Cross-Validated Cox Regression on Microarray Gene Expression Data. Statistics in Medicine, 25, 3201–3216