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Data and Problem

1. Data1. Data
1.1. The Data1.1. The Data

A right-censored survival time y, to be modelled through many possibly
redundant time-dependent explanatory variables.
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Data and Problem

1. Data1. Data
1.1. The Data1.1. The Data

1.2. The conceptual model1.2. The conceptual model

y

X 1 X 2 Z

Thematic blocks (themes) of many redundant explanatory variables

A few
additional
covariates

X R...

(right-censored) 
time-to-event

A right-censored survival time y, to be modelled through many possibly
redundant time-dependent explanatory variables.

(i , t)
∈

{1 , ... , n}
×

[0 ;T ]
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Data and Problem

2. Problem2. Problem

y

X 1 X 2 Z

High dimension + redundancy ⇒ dimension reduction in the X's

X R...
No dimension
reduction
required in Z

A few
additional
covariates

2.1. Dimension reduction2.1. Dimension reduction
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Data and Problem

2. Problem2. Problem
2.1. Dimension reduction2.1. Dimension reduction

2.2. Exploratory + explanatory situation2.2. Exploratory + explanatory situation

The explanatory dimensions must be found AND easy to interpret.

y

X 1 X 2 Z

High dimension + redundancy ⇒ dimension reduction in the X's

X R...
No dimension
reduction
required in Z

A few
additional
covariates
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Data and Problem

2. Problem2. Problem

y

Z...
No dimension
reduction
required in Z

We shall look for "strong" orthogonal components in each X-theme...

A few
additional
covariates

2.3. How to tackle both issues2.3. How to tackle both issues

g

h1

h2
f 2

f 1
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Data and Problem

2. Problem2. Problem

y

Z...
No dimension
reduction
required in Z

We shall look for "strong" orthogonal components in each X-theme...

A few
additional
covariates

2.3. How to tackle both issues2.3. How to tackle both issues

g

h1

h2
f 2

f 1

... so as to build a component-based Cox Proportional Hazard Model:

With f (i , t ):=( f (i , t)
1 , f (i , t)

2 , ... , g(i , t) , h(i ,t )
1 , ...) ' : h(t ; x(i , t) , z(i , t ))=h0(t )eδ ' f (i , t )+γ ' z(i ,t )
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Statistical model

1. The classical Cox Proportional hazard Model1. The classical Cox Proportional hazard Model

h(t ; x(i , t))=h0(t )eβ ' x(i , t )Regressor-set X → semi-parametric hazard function:
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Statistical model

1. The classical Cox Proportional hazard Model1. The classical Cox Proportional hazard Model

h(t ; x(i , t))=h0(t )eβ ' x(i , t )Regressor-set X → semi-parametric hazard function:

2.1. The single-X-theme component Model2.1. The single-X-theme component Model

X → components F=[ f 1 , ... , f k ] , where f k=X ukExplanatory theme 

Let f (i , t ):=( f (i , t)
1 , ... , f (i , t )

k ) '

→ semi-parametric hazard function of the component-model: h(t ; x(i , t) , z(i , t ))=h0(t )e
α ' f (i ,t )+γ ' z(i , t )

2. The component-based Cox-Model2. The component-based Cox-Model
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Statistical model

1. The classical Cox Proportional hazard Model1. The classical Cox Proportional hazard Model

h(t ; x(i , t))=h0(t )eβ ' x(i , t )Regressor-set X → semi-parametric hazard function:

2.1. The single-X-theme component Model2.1. The single-X-theme component Model

X → components F=[ f 1 , ... , f k ] , where f k=X ukExplanatory theme 

Let f (i , t ):=( f (i , t)
1 , ... , f (i , t )

k ) '

→ semi-parametric hazard function of the component-model: h(t ; x(i , t) , z(i , t ))=h0(t )e
α ' f (i ,t )+γ ' z(i , t )

2. The component-based Cox-Model2. The component-based Cox-Model

X r → components F r=[ f r
1 , ... , f r

k r] , where f r
k=X r ur

kExplanatory theme 

→ semi-param. hazard function of the component-model: h(t ; x(i , t ) , z(i , t ))=h0(t )e
∑
r=1

R

αr ' f r (i ,t )+γ ' z(i , t)

Let f r (i , t) :=( f r (i , t )
1 , ... , f r (i , t)

k r )'

2.2. The general component Model2.2. The general component Model
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Structural Relevance of components

1. The notion of Structural Relevance1. The notion of Structural Relevance
Components must capture interpretable variable structuresComponents must capture interpretable variable structures

⇒ Components must be structurally relevant, i.e.:
●  close to bundles of observed variables

too far!
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Structural Relevance of components

1. The notion of Structural Relevance1. The notion of Structural Relevance
Components must capture interpretable variable structuresComponents must capture interpretable variable structures

⇒ Components must be structurally relevant, i.e.:
●  close to bundles of observed variables

too far!
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Structural Relevance of components

1. The notion of structural relevance1. The notion of structural relevance
Components must capture interpretable variable structuresComponents must capture interpretable variable structures

⇒ Components must be structurally relevant, i.e.:
●  or close to bundles of interpretable subspaces (e.g. embodying theory-based constraints)

component

structural bundle
Subspace
materializing
interpretable
constrains

Observed variable
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Structural Relevance of components

2. The expression of Structural Relevance2. The expression of Structural Relevance

f =Xu● Component in a theme X :



16SC-Cox R - Bry, Simac, El Ghachi, Antoine - 2019

Structural Relevance of components

2. The expression of Structural Relevance2. The expression of Structural Relevance

f =Xu● Component in a theme X :

u ' M−1 u=1● Identification / regularisation constraint :

, where A is such that PCA of (X,A,W) is relevant to X's data,with M−1=τ A−1+(1−τ) X ' WX

and τ ∈ [0,1] is a parameter tuning regularisation: 

● τ = 0 means no regularisation;
● τ = 1 means PLS-strong regularisation.
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Structural Relevance of components

2. The expression of Structural Relevance2. The expression of Structural Relevance

f =Xu● Component in a theme X :

● The Structural Relevance Indicator:

ϕN ,Ω , l(u):=(∑
j=1

J

ω j(u' N j u)l )
1
l s.t. constraint u ' M −1 u=1

N
j
's code the directions

components should focus on

weights

u ' M−1 u=1● Identification / regularisation constraint :

, where A is such that PCA of (X,A,W) is relevant to X's data,with M−1=τ A−1+(1−τ) X ' WX

and τ ∈ [0,1] is a parameter tuning regularisation: 

● τ = 0 means no regularisation;
● τ = 1 means PLS-strong regularisation.
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Structural Relevance of components

2. The expression of Structural Relevance2. The expression of Structural Relevance

ϕN ,Ω ,l (u):=(∑
j=1

J

ω j(u ' N j u)l )
1
l

● Purpose of N
j
's = ?

Examples: ϕ(u)=V ( f )=∥X u∥W
2 =u ' (X ' WX )u➢ Component's variance:

∥u∥2=1 ⇒ M =I

→  directions of discrepancy of observations

(W =matrix of line-weights)

 The N
j
's are coding directions of concern
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Structural Relevance of components

2. The expression of Structural Relevance2. The expression of Structural Relevance

ϕN ,Ω ,l (u):=(∑
j=1

J

ω j(u ' N j u)l )
1
l

● Purpose of N
j
's = ?

Examples: ϕ(u)=V ( f )=∥X u∥W
2 =u ' (X ' WX )u➢ Component's variance:

∥u∥2=1 ⇒ M =I

→  directions of discrepancy of observations

(W =matrix of line-weights)

ϕ(u)=(∑
j=1

p

ω j ρ
2 l( f , x j))

1
l

➢ Variable Powered Inertia:

=(∑
j=1

p

ω j(u' X ' W x j x j ' W Xu)l )
1
l

∥ f ∥W
2 =1 ⇒ M =( X ' WX )−1

N j

locality parameter

→  directions of observed variables.

 The N
j
's are coding directions of concern
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Structural Relevance of components

2. The expression of Structural Relevance2. The expression of Structural Relevance

 The N
j
's are coding directions of concern

● Purpose of N
j
's = ?

Examples:

ϕ(u)=(∑
j=1

p

ω j 〈 f ∣x j 〉W
2 l )

1
l

➢ Variable Powered Covariance:

=(∑
j=1

p

ω j (u ' X ' W x j x j ' W Xu)l )
1
l

M−1=τ A−1+(1−τ)(X ' WX )

N j

Regularisation parameter:
τ = 0 : no regularisation.
τ = 1 : PLS-strong regularisation.

Variable Powered Inertia can be extended to:

ϕN ,Ω ,l (u):=(∑
j=1

J

ω j(u ' N j u)l )
1
l

where A = suitable metric matrix for X’s PCA
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Structural Relevance of components

2. The expression of Structural Relevance2. The expression of Structural Relevance
● Purpose of l = ?

ϕN ,Ω , l(u):=(∑
j=1

J

ω j(u' N j u)l )
1
l

locality = ± the “narrowness” of the bundles of directions of structural interest.

 l : tunes the “locality” of the bundles of directions to focus on 
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Structural Relevance of components

2. The expression of Structural Relevance2. The expression of Structural Relevance
● Purpose of l = ?

ϕN ,Ω , l(u):=(∑
j=1

J

ω j(u' N j u)l )
1
l

Would this set of directions rather be considered...

locality = ± the “narrowness” of the bundles of directions of structural interest.

 l : tunes the “locality” of the bundles of directions to focus on 
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Structural Relevance of components

2. The expression of Structural Relevance2. The expression of Structural Relevance
● Purpose of l = ?

ϕN ,Ω , l(u):=(∑
j=1

J

ω j(u' N j u)l )
1
l

... one bundle? (l <<)

Would this set of directions rather be considered...

locality = ± the “narrowness” of the bundles of directions of structural interest.

 l : tunes the “locality” of the bundles of directions to focus on 
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Structural Relevance of components

2. The expression of Structural Relevance2. The expression of Structural Relevance
● Purpose of l = ?

ϕN ,Ω , l(u):=(∑
j=1

J

ω j(u' N j u)l )
1
l

... two bundles? (l ↑)

Would this set of directions rather be considered...

locality = ± the “narrowness” of the bundles of directions of structural interest.

 l : tunes the “locality” of the bundles of directions to focus on 
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Structural Relevance of components

2. The expression of Structural Relevance2. The expression of Structural Relevance
● Purpose of l = ?

ϕN ,Ω , l(u):=(∑
j=1

J

ω j(u' N j u)l )
1
l

... four bundles? (l ↑↑)

Would this set of directions rather be considered...

locality = ± the “narrowness” of the bundles of directions of structural interest.

 l : tunes the “locality” of the bundles of directions to focus on 
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Structural Relevance of components

2. The expression of Structural Relevance2. The expression of Structural Relevance
● Purpose of l = ?

ϕN ,Ω , l(u):=(∑
j=1

J

ω j(u' N j u)l )
1
l

... eight bundles, each one being
a single direction? (l → ∞)

Would this set of directions rather be considered...

locality = ± the “narrowness” of the bundles of directions of structural interest.

 l : tunes the “locality” of the bundles of directions to focus on 
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Structural Relevance of components

2. The expression of Structural Relevance2. The expression of Structural Relevance
● Purpose of l = ?

ϕN ,Ω , l(u):=(∑
j=1

J

ω j(u' N j u)l )
1
l

... eight bundles, each one being
a single direction? (l → ∞)

This ultimately depends on the data
⇒ Best l to be found through cross-validation.

Would this set of directions rather be considered...

locality = ± the “narrowness” of the bundles of directions of structural interest.

 l : tunes the “locality” of the bundles of directions to focus on 
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Structural Relevance of components

2. The expression of Structural Relevance2. The expression of Structural Relevance

x1

x2

x3

x4

ϕX
l (u)● VPI: plotted in polar coordinates:

 l : tunes the “locality” of the bundles of directions to focus on 

Example: 4 variables in a plane...
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Structural Relevance of components

2. The expression of Structural Relevance2. The expression of Structural Relevance

Example: 4 variables in a plane...

x1

x2

x3

x4
<u>

ϕ(u) ; l=1

ϕ2(u) ; l=2

ϕ4(u) ; l=4

ϕX
l (u)● VPI: plotted in polar coordinates:

 l : tunes the “locality” of the bundles of directions to focus on 
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SC-CoxR's mechanism

1. Estimation of a standard Cox-model1. Estimation of a standard Cox-model
1.1. Partial likelihood1.1. Partial likelihood

Let :
● R(t) denote the set of all individuals at risk at time t;
● δ denote the censoring indicator: 

∀i :δi=1 if for individual i ,  the event occurs at time yi

δi=0 if individual i  is censored at time yi

l p(β)=∏
i=1

n

[ e
β' xi , yi

∑
j∈R( yi)

e
β ' x j , yi ]

δi

Cox (1979) suggested to get     by maximising on β the following conditional likelihood:
(which is rid of the h

0
(t) baseline terms)

β̂
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SC-CoxR's mechanism

1. Estimation of a standard Cox-model1. Estimation of a standard Cox-model
1.1. Partial likelihood1.1. Partial likelihood

Let :
● R(t) denote the set of all individuals at risk at time t;
● δ denote the censoring indicator: 

l p(β)=∏
i=1

n

[ e
β' xi , yi

∑
j∈R( yi)

e
β ' x j , yi ]

δi

Cox (1979) suggested to get     by maximising on β the following conditional likelihood:
(which is rid of the h

0
(t) baseline terms)

β̂

∀i :δi=1 if for individual i ,  the event occurs at time yi

δi=0 if individual i  is censored at time yi

1.2. Estimation of the baseline hazard1.2. Estimation of the baseline hazard
Given     , [Kalbfleisch et al. 1973], [Breslow 1974], among others, proposed an
estimation of the Baseline Survival Function, based on it.

β̂
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SC-CoxR's mechanism

2. Estimation of the single-X component-based Cox Model2. Estimation of the single-X component-based Cox Model

2.1. The single-X component-based Cox Model2.1. The single-X component-based Cox Model

● In the Cox model, X is replaced by F = XU, U = [u
1
, ..., u

k
]

h(t ; x i ,t , z i , t)=h0(t )eα ' f i , t+γ ' z i , t

=h0(t )eα ' U ' xi , t+γ ' z i , t

where X  has been standardised column-wise :
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SC-CoxR's mechanism

2. Estimation of the single-X component-based Cox Model2. Estimation of the single-X component-based Cox Model

2.1. The single-X component-based Cox Model2.1. The single-X component-based Cox Model

● In the Cox model, X is replaced by F = XU, U = [u
1
, ..., u

k
]

where X  has been standardised column-wise :

h(t ; x i ,t , z i , t)=h0(t )eα ' f i ,t+γ ' z i , t

=h0(t )eα ' U ' xi , t+γ ' z i , t

both unknown
⇒ non-linear / parameters
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SC-CoxR's mechanism

2.2. Calculating components2.2. Calculating components

SRGoodness of fit

u1=arg
u

max
α ,γ

u ' M−1 u=1

[ ( l p(u ,α ,γ))1−s (ϕX (u))s ]
● Component f 1 = Xu

1
 is sought as the solution of:

2. Estimation of the single-X component-based Cox Model2. Estimation of the single-X component-based Cox Model
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SC-CoxR's mechanism

2.2. Calculating components2.2. Calculating components

SRGoodness of fit

u1=arg
u

max
α ,γ

u ' M−1 u=1

[ ( l p(u ,α ,γ))1−s (ϕX (u))s ]
● Component f 1 = Xu

1
 is sought as the solution of:

s∈[0 ;1] tunes the importance of the SR with respect to the GOF so that,
at the maximum, relative variations of GOF and SR compensate:

∇ l p(u)
l p(u)

=− s
1−s

∇ ϕ(u)
ϕ(u)

2. Estimation of the single-X component-based Cox Model2. Estimation of the single-X component-based Cox Model
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SC-CoxR's mechanism

2.2. Calculating components2.2. Calculating components

SRGoodness of fit

u1=arg
u

max
α ,γ

u ' M−1 u=1

[ ( l p(u ,α ,γ))1−s (ϕX (u))s ]
● Component f 1 = Xu

1
 is sought as the solution of:

s∈[0 ;1] tunes the importance of the SR with respect to the GOF so that,
at the maximum, relative variations of GOF and SR compensate:

∇ l p(u)
l p(u)

=− s
1−s

∇ ϕ(u)
ϕ(u)

2. Estimation of the single-X component-based Cox Model2. Estimation of the single-X component-based Cox Model

➢ s = 0 : the criterion is equal to l
p
 ; its maximisation leads to the classical Cox Regression

➢ s = 1 : the criterion is equal to ϕ
X
(u) ; its maximisation leads to PCA 

  for SR = component-variance and VPI.
➢ 0 < s < 1 : the criterion is a trade-off between these extremes, and provides a supervised 

 component-based Cox regression.

● A continuum-approach:
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SC-CoxR's mechanism

● Calculating the first component:

u1=arg
u

max
α , γ

u' M−1u=1 [(1−s) ln (∏i=1

n

[ e
αu ' xi , yi

+γ ' z i , yi

∑
j∈R ( yi)

e
αu ' x j , yi

+γ ' z j , yi ]
δi

)+s ln ϕX (u)]
2.2. Calculating components2.2. Calculating components

2. Estimation of the single-X component-based Cox Model2. Estimation of the single-X component-based Cox Model
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SC-CoxR's mechanism

● Calculating the first component:

u1=arg
u

max
α , γ

u' M−1u=1 [(1−s) ln (∏i=1

n

[ e
αu ' xi , yi

+γ ' z i , yi

∑
j∈R ( yi)

e
αu ' x j , yi

+γ ' z j , yi ]
δi

)+s ln ϕX (u)]
can be done by alternating, until convergence:

1) With a given u: Cox regression on f = Xu and Z
     → update of α, γ

2.2. Calculating components2.2. Calculating components

2. Estimation of the single-X component-based Cox Model2. Estimation of the single-X component-based Cox Model
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SC-CoxR's mechanism

● Calculating the first component:

u1=arg
u

max
α , γ

u' M−1u=1 [(1−s) ln (∏i=1

n

[ e
αu ' xi , yi

+γ ' z i , yi

∑
j∈R ( yi)

e
αu ' x j , yi

+γ ' z j , yi ]
δi

)+s ln ϕX (u)]
can be done by alternating, until convergence:

1) With a given u: Cox regression on f = Xu and Z
     → update of α, γ

2) With given α, γ : solving

→ update of u

u1=arg max
u' M−1 u=1

[(1−s) ln l p(u ,α , γ)+s ln ϕX (u)]

(this step uses the dedicated PING algorithm, detailed later)

2.2. Calculating components2.2. Calculating components

2. Estimation of the single-X component-based Cox Model2. Estimation of the single-X component-based Cox Model
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SC-CoxR's mechanism

● Calculating further components:

1) Every new component f  k must be uncorrelated with the former ones: F  k-1 = [f  1, ... , f  k-1]

N = number of lines of X = number of individuals-at-risk at time-points (i,t)
W = (N, N) diagonal line-weighting matrix

〈 f k∣F k−1〉W=0 ⇒ Dk ' uk=0 with Dk=X ' WF k−1

2.2. Calculating components2.2. Calculating components

2. Estimation of the single-X component-based Cox Model2. Estimation of the single-X component-based Cox Model
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SC-CoxR's mechanism

● Calculating further components:

1) Every new component f  k must be uncorrelated with the former ones: F  k-1 = [f  1, ... , f  k-1]

2.2. Calculating components2.2. Calculating components

2. Estimation of the single-X component-based Cox Model2. Estimation of the single-X component-based Cox Model

Note on individual-weighting:
 
● Uniform weighting ⇒  each line of an individual ←  weight inversely proportional to
the number of the individual's lines.

● Weighting proportional to the individual’s duration of follow-up  ⇒  The weight of
each line = proportional to the line’s time span.

N = number of lines of X = number of individuals-at-risk at time-points (i,t)
W = (N, N) diagonal line-weighting matrix

〈 f k∣F k−1〉W=0 ⇒ Dk ' uk=0 with Dk=X ' WF k−1
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SC-CoxR's mechanism

● Calculating further components:

2) Former components F  k-1 = [f  1, ... , f  k-1] must now be included into the extra covariates in
order to remove their effect.

Z k :=[Z ; F k−1]

uk=arg
u

max
α ,γ

u' M−1u=1
Dk ' u=0

[(1−s) ln (∏i=1

n [ e
αu' x i , yi

+γ ' z i , yi

k

∑
j∈R( yi)

e
αu' x j , y i

+γ ' z j , yi

k ]
δi

)+s ln ϕX (u) ] performed as for u
1
, with

additional constraint:
D

k
' u = 0

2.2. Calculating components2.2. Calculating components

2. Estimation of the single-X component-based Cox Model2. Estimation of the single-X component-based Cox Model
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SC-CoxR's mechanism

3.  The PING algorithm3.  The PING algorithm
max

u∈ℝ p , u ' M−1 u=1
D' u=0

h(u)

At the solution: u=M Π
D⊥ Γ(u) , M−1−normed

with Π
D⊥ :=I −D(D' MD)−1 D' M

Hence an iteration: ũ[t+1]=
M Π

D⊥ Γ(u[ t ])

∥M Π
D⊥ Γ(u[ t ])∥

M−1

; u[ t+1]=arg max
arc(u[t ] , ũ[t+1])

h(u) (unidimensional)

We proved that this iteration follows a direction of ascent.
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y

X 1 F 2
K 2 ZF R

K R...

SC-CoxR's mechanism

4.  Estimating the Multiple-X model4.  Estimating the Multiple-X model

Iterate over themes until overall convergence:

To calculate components
in current theme ...

... consider components of other themes as additional covariates
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SC-CoxR's mechanism

5. Assessing the Component Cox model5. Assessing the Component Cox model

● Cross-Validation techniques for the Cox Model are provided by [van Houwelingen et al. (2006)]

Cross-validation quality coefficient of model M :  C
k
(M)

C k (M )=l (θ−k , M )−l−k (θ−k , M )

kieth sub-sample calculated without the
kieth sub-sample

C (M )= 1
K

∑
k=1

K

C k (M )

K-fold subsampling :
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SC-CoxR's mechanism

5. Assessing the Component Cox model5. Assessing the Component Cox model

● More simply, one can assess the significance of the components by :

a)  calculating the vectors { U
r
 }

r=1,R
 on a calibration sample C ;

b)  calculating the components' values on a spare test-sample T ;

c)  performing a Cox Regression on T, with the associated classical significance-tests.

● Cross-Validation techniques for the Cox Model are provided by [van Houwelingen et al. (2006)]

Cross-validation quality coefficient of model M :  C
k
(M)

C k (M )=l (θ−k , M )−l−k (θ−k , M )

kieth sub-sample calculated without the
kieth sub-sample

C (M )= 1
K

∑
k=1

K

C k (M )

K-fold subsampling :
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SC-CoxR's mechanism

6. Outputs6. Outputs
● Correlations of components with variables in each theme → correlation scatterplots 

Theme X
r
 : f

r

1

f
r

2

→ component thematic interpretation 
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SC-CoxR's mechanism

6. Outputs6. Outputs
● Correlations of components with variables in each theme → correlation scatterplots 

Theme X
r
 : f

r

1

f
r

2

● Cox Regression on components → components' effects ; P-values / confidence interval 
on test-sample T , or boostrap confidence interval

→ component thematic interpretation 
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SC-CoxR's mechanism

6. Outputs6. Outputs
● Correlations of components with variables in each theme → correlation scatterplots 

Theme X
r
 : f

r

1

f
r

2

● Cox Regression on components → components' effects ; P-values / confidence interval 
on test-sample T , or boostrap confidence interval

→ component thematic interpretation 

● Components' effects + vectors U 
 → (regularised) coefficients of original variables in linear predictor

+ boostrap confidence interval
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Short simulation study

1. Simulation scheme1. Simulation scheme
● Time-span : [0,30] , divided in 30 unit-length elementary intervals.
● Baseline hazard function: 

h0(t )=a+b(t−tm)2 with tm=12 , a=.2 , b=10−3



51SC-Cox R - Bry, Simac, El Ghachi, Antoine - 2019

Short simulation study

1. Simulation scheme1. Simulation scheme
● Time-span : [0,30] , divided in 30 unit-length elementary intervals.
● Baseline hazard function: 

h0(t )=a+b(t−tm)2 with tm=12 ,a=.2 , b=10−3

● 75 subjects simulated with bundle-structures:

Variables at subject level : ψi
j∼N (0 ;1) , j∈{1,2 ,3}, i∈{1, ... ,75}

Variables at subject-time level : ϕit
j∼N (0 ;1) , j∈{1,2,3}, i∈{1, ... ,75}, t∈{1,... ,30}

Combination : ∀(i , t , j) : ξit
j=ψi

j+ϕit
j
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Short simulation study

1. Simulation scheme1. Simulation scheme
● Time-span : [0,30] , divided in 30 unit-length elementary intervals.
● Baseline hazard function: 

h0(t )=a+b(t−tm)2 with tm=12 ,a=.2 , b=10−3

● 75 subjects simulated with bundle-structures:

 ξ1, ξ2, ξ3  → 3 explanatory variable-bundles:
➢ B

1
 : 4 variables x j = ξ1 + ε j ;

➢ B
2
 : 6 variables x j = ξ2 + ε j ;

➢ B
3
 : 10 variables x j = ξ3 + ε j ;

where ε j = N(0;σ2) noise with σ = 0.3

Variables at subject level : ψi
j∼N (0 ;1) , j∈{1,2,3}, i∈{1, ... ,75}

Variables at subject-time level : ϕit
j∼N (0 ;1) , j∈{1,2,3}, i∈{1, ... ,75}, t∈{1,... ,30}

Combination : ∀(i , t , j) : ξit
j=ψi

j+ϕit
j

the 1st PC of X is central to B
3
 

+ B
4
 : 20 noise-variables x j ~ N(0;1)

ξ3

ξ1

ξ2
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Short simulation study

1. Simulation scheme1. Simulation scheme
● Time-span : [0,30] , divided in 30 unit-length elementary intervals.
● Baseline hazard function: 

h0(t )=a+b(t−tm)2 with tm=12 ,a=.2 , b=10−3

● 75 subjects simulated with bundle-structures:

 ξ1, ξ2, ξ3  → 3 explanatory variable-bundles:
➢ B

1
 : 4 variables x j = ξ1 + ε j ;

➢ B
2
 : 6 variables x j = ξ2 + ε j ;

➢ B
3
 : 10 variables x j = ξ3 + ε j ;

where ε j = N(0;σ2) noise with σ = 0.3

Variables at subject level : ψi
j∼N (0 ;1) , j∈{1,2,3}, i∈{1, ... ,75}

Variables at subject-time level : ϕit
j∼N (0 ;1) , j∈{1,2,3}, i∈{1, ... ,75}, t∈{1,... ,30}

Combination : ∀(i , t , j) : ξit
j=ψi

j+ϕit
j

+ B
4
 : 20 noise-variables x j ~ N(0;1)

ξ3

ξ1

ξ2

True explanatory
variables of y

the 1st PC of X is central to B
3
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Short simulation study

1. Simulation scheme1. Simulation scheme

● Exponential Survival Time y with hazard function: 

⇒ X
3
 (1st PC) is a nuisance variable-bundle.

∀(i , t , j) : hi(t )=h0(t )eηit where ηit=.25+ξit
1−.5 ξit

2

ξ3

ξ1

ξ2

True explanatory
variables of y

primary  effect (positive)

secondary  effect (negative)
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s = 1 ; l = 1 ; τ = 0 (= PCA)

Short simulation study

2. Results2. Results

Cox-regression on the components :

f 1: coefficient = -0.03 ; p=0.830 
f 2 : coefficient = -0.42; p=0.004
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s = 1 ; l = 1 ; τ = 0 (= PCA)

Short simulation study

2. Results2. Results

Cox-regression on the components :

f 1: coefficient = -0.03 ; p=0.830 
f 2 : coefficient = -0.42; p=0.004

f 3: coefficient = -1.60 ; p<10-16

f 4 : coefficient = -0.09; p=0.49
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s = 0.95 ; l = 1 ; τ = 0.01

Short simulation study

2. Results2. Results

Cox-regression on the components (on test sample):

f 1: coefficient = -1.69 ; p<2.00 10-16 
f 2 : coefficient = 0.69; p=1.49 10-5
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s = 0.95 ; l = 1 ; τ = 0.01

Short simulation study

2. Results2. Results

Cox-regression on the components (on test sample):

f 1: coefficient = -1.69 ; p<2.00 10-16 
f 2 : coefficient = 0.69; p=1.49 10-5

f 3: coefficient = -0.19 ; p=0.19
f 4 : coefficient = -0.09; p=0.56
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Short simulation study

2. Results2. Results

Cox-regression on the components (on test sample):

f 1: coefficient = -1.92 ; p<2.00 10-16 

f 2 : coefficient = -0.27; p=0.068

s = 0.95 ; l = 4 ; τ = 0.01
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Short simulation study

2. Results2. Results

Cross-validation performance according
to the number of components retained

Right!

s = 0.95 ; l = 4 ; τ = 0.01
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Short simulation study

2. Results2. Results
The impact of τ (for s = 0.95 , l = 4):

Coefficients
with unstable
values and signs
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Short simulation study

2. Results2. Results
The impact of τ (for s = 0.95 , l = 4):

Coefficients
with unstable
values and signs

Coefficients with
stable & even 
values and signs



63SC-Cox R - Bry, Simac, El Ghachi, Antoine - 2019

Short simulation study

2. Results2. Results
The impact of τ (for s = 0.95 , l = 4):

Coefficients
with unstable
values and signs

Coefficients with
stable & even 
values and signs

Better fit
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s = 0.00

Short simulation study

2. Results2. Results

Cox-regression on the components (test sample):

f 1: coefficient = -1.85 ; p<2.00 10-16 

f 2 : coefficient = -0.12; p=0.35

direction of the
regularised linear

predictor
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s = 0.00

Short simulation study

2. Results2. Results

f 1: coefficient = -1.85 ; p<2.00 10-16 

f 2 : coefficient = -0.12; p=0.35

direction of the
regularised linear

predictor

s = 0.1 ; l = 1 ; τ = 0.01

f 1: coefficient = -1.83 ; p<2.00 10-16 

f 2 : coefficient = -0.11; p=0.40

Cox-regression on the components (test sample):
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An application to life-history analysis

1. The data :1. The data :

● The subjects: 222 married men born before 1967 and residing in Dakar, Senegal.

● From the 2001 retrospective survey conducted by Antoine and Fall: 
Crisis, passage to adult age, and family in poor and middle classes in Dakar.

● The event under study: the shift from monogamy to polygamy.

→ 55 events (marriages to a second wife).
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An application to life-history analysis

1. The data :1. The data :

● The subjects: 222 married men born before 1967 and residing in Dakar, Senegal.

● From the 2001 retrospective survey conducted by Antoine and Fall: 
Crisis, passage to adult age, and family in poor and middle classes in Dakar.

● The event under study: the shift from monogamy to polygamy.

→ 55 events (marriages to a second wife).

● Covariates: 107 time-varying variables, some of which highly correlated.

⇒  direct Cox regression impossible.

● 0.95-confidence intervals obtained by bootstrap.
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An application to life-history analysis

s = 1 , l = 1 (PC-CoxR)

2. Results2. Results

Components 4 and 5 have
the smallest p-values.
Only component 5 has a
p-value < 0.05 (0.002).
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An application to life-history analysis

s = 1 , l = 1 (PC-CoxR)

2. Results2. Results

Components 4 and 5 have
the smallest p-values.
Only component 5 has a
p-value < 0.05 (0.002).

Only variable with
high cosine on the
(4,5) plane: age-gap.

Interpretation is weak.
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An application to life-history analysis

s = 10-3 ; l = 1 ; τ = 1

2. Results2. Results
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An application to life-history analysis

s = 10-3 ; l = 1 ; τ = 1

2. Results2. Results

direction of the
regularised linear

predictor
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An application to life-history analysis

s = 10-3 ; l = 1 ; τ = 1

2. Results2. Results

direction of the
regularised linear

predictor

Interpretation is null.



73SC-Cox R - Bry, Simac, El Ghachi, Antoine - 2019

An application to life-history analysis

s = 0.9 ; l = 8 ; τ = 1

2. Results2. Results
Best values :
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An application to life-history analysis

s = 0.9 ; l = 8 ; τ = 1

2. Results2. Results
Best values :



75SC-Cox R - Bry, Simac, El Ghachi, Antoine - 2019

An application to life-history analysis

s = 0.9 ; l = 8 ; τ = 1

2. Results2. Results
Best values :
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An application to life-history analysis

s = 0.9 ; l = 8 ; τ = 1

2. Results2. Results
Best values :

Offspring

Offspring size 
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An application to life-history analysis

s = 0.9 ; l = 8 ; τ = 1

2. Results2. Results
Best values :

High education

Offspring

Offspring size 
& high education
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An application to life-history analysis

s = 0.9 ; l = 8 ; τ = 1

2. Results2. Results
Best values :
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An application to life-history analysis

s = 0.9 ; l = 8 ; τ = 1

2. Results2. Results
Best values :

Other city

Rural area

Places of birth
and infancy

Dakar
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An application to life-history analysis

s = 0.9 ; l = 8 ; τ = 1

2. Results2. Results
Best values :

Age gap
(husband-wife 1)

Age gap  
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An application to life-history analysis

s = 0.9 ; l = 8 ; τ = 1

2. Results2. Results
Best values :

Kinship between
ego and wife 1

Age gap
(husband-wife 1)

Age gap and
spouse-kinship
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An application to life-history analysis

2. Results2. Results
Variable-coefficients
(with 0.95 IC) :
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An application to life-history analysis

2. Results2. Results
Variable-coefficients
(with 0.95 IC) :

● The younger ego’s wife is
relative to him, the lower the risk.
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An application to life-history analysis

2. Results2. Results
Variable-coefficients
(with 0.95 IC) :

● The younger ego’s wife is
relative to him, the lower the risk.

● The older ego is at first
marriage, the lower the risk.
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An application to life-history analysis

2. Results2. Results
Variable-coefficients
(with 0.95 IC) :

● The younger ego’s wife is
relative to him, the lower the risk.

● The older ego is at first
marriage, the lower the risk.

● A wife unrelated to ego lowers
the risk.
● A wife related to ego’s mother
increases the risk.
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An application to life-history analysis

2. Results2. Results
Variable-coefficients
(with 0.95 IC) :

● The younger ego’s wife is
relative to him, the lower the risk.

● The older ego is at first
marriage, the lower the risk.

● A wife unrelated to ego lowers
the risk.

● Infancy in Dakar lowers the
risk.
● Birth and infancy in a rural area
increases the risk.

● A wife related to ego’s mother
increases the risk.
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An application to life-history analysis

2. Results2. Results
Variable-coefficients
(with 0.95 IC) :
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An application to life-history analysis

2. Results2. Results
Variable-coefficients
(with 0.95 IC) :

● A high number of children
lowers the risk.
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THE END

Tank yo, al 
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