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Homological technics have beenwidely used in physics for a very long time. It seems
that their first appearance in quantumfield theory goes back to the so-calledFaddaev-
Popov ghosts [16], which have later been mathematically identified as Chevalley
generators. In more geometric terms one would nowadays justify their appearance
as follows: the quotient space of the phase space by symmetries of the Lagrangian
L might be singular and one shall rather deal with the quotient stack instead.

The usefulness of (higher) stacks in quantum field theory is argued in Chap.6.
Let me anyway emphasize that the quotient stack carries some relevant information
(such as finite gauge symmetries) that can’t be encoded by simply adding new fields.

Another crucial step is the introduction of anti-fields and anti-ghosts. A geometric
explanation for anti-fields is that the quantities one wants to compute localize on the
critical points of L, which might be degenerate or non-isolated. A smart idea is to
consider the derived critical locus of L instead, which one defines as the derived
intersection of the graph of dd RL with the zero section inside the cotangent of the
phase space. A derived intersection can be concretely computed by first applying a
(homological) perturbation to one of the two factors and then taking the intersection:
anti-fields then simply appear as Koszul generators.

The derived critical locus inherits a (−1)-shifted symplectic structure (see below)
which is at the heart of the anti-bracket formalism (a.k.a. BV formalism) [5]. The
symmetries of the Lagragian act in a Hamiltonian way on the derived critical locus,
and anti-ghosts appear when one is taking the derived zeroes of the moments.

We refer to [25] for related considerations and a wonderful exposition of the
homological nature of the BV formalism.

All this seems to be nowadays well-known, but we would like to emphasize two
points:

• the usual homological approach to higher structures (see e.g. Chaps. 3 and 10) does
not distinguish clearly the “derived” and “stacky” directions, while the rapidly
emerging field of derived geometry takes care of it.
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• one has to make use of derived geometry in order to get symplectic structures: the
use of non-derived stacks in Chap. 6 systematically destroys the non-degeneracy
of Hamiltonian structures.

The second point is very much related to what happens with symplectic structures on
moduli spaces (which are deeply studied in Chap.11). For instance, the moduli stack
of flatG-bundles (G being a compact Lie group) on a closed oriented surfacedoes not
carry any symplectic structure for very simple degree reasons: its tangent complex
sits in cohomological degrees −1 and 0. It is only when restricted to a specific locus
that the natural pre-sympectic form becomes non-degenerate. But there is a natural
derived stack of flat G-bundles on a closed surface which is symplectic (its tangent
complex sits in degrees −1, 0 and 1).

In this introductory chapter we provide an informal and partial discussion of the
usefulness of derived and homotopical technics in field theories.

We begin with a description of field theories of AKSZ type [2] in the frame-
work of derived (algebraic) geometry. The derived geometric approach makes very
transparent the fact that this class of theories fits into the axiomatic framework of
Atiyah–Segal [3, 26]. We refer to Chap.9 for a detailed discussion of the compati-
bility between the BV formalism and the Atiyah–Segal framework.

We thendiscuss twomathematical formulations of the physical concept of locality:
factorization algebras and fully extended field theories. We put a lot of emphasis on
topological field theories and say a few words about conformal field theories. We
also mention how these two approaches are related.

We finally end this Chapter with the example of 3d Chern–Simons theory with a
finite gauge group and sketch how one could recover the results of [17, Sect. 4] from
this approach.

1 Classical Fields and the AKSZ-PTVV Construction

Classical fields are usually described mathematically as sections of (infinite
dimensional) fiber bundles. A large class of theories, called σ -models, actually
describe fields as maps. In the seminal paper [2] the authors introduce the notion
of Q-manifolds, that allow one to deal with many theories as σ -models. Moreover,
the so-called AKSZ-construction make them fit into the framework of the BV formal-
ism [5] (a.k.a. anti-bracket formalism).

A mathematical treatment of perturbative quantum field theory within the frame-
work of the BV quantization (not only for AKSZ theories) can be found in [13] (see
also Chap.9 for examples).

http://dx.doi.org/10.1007/978-3-319-09949-1_6
http://dx.doi.org/10.1007/978-3-319-09949-1_11
http://dx.doi.org/10.1007/978-3-319-09949-1_9
http://dx.doi.org/10.1007/978-3-319-09949-1_9
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1.1 Transgression

At the heart of the AKSZ formalism [2] and its modern reformulation in [22] (known
as PTVV formalism, which is formulated in the language of derived geometry1)
one finds the so-called transgression procedure. Let X , Y be generalized spaces
(Q-manifolds in the AKSZ formalism, derived stacks in the PTVV formalism). Let
ω be a symplectic form of cohomological degree n on Y and assume that X carries
an integration theory of cohomological degree d. Then the formula

∫

X

ev∗ω ,

where ev : X × Map(X, Y ) −→ Y is the evaluation map, defines a symplectic form
of cohomological degree n − d on the mapping space Map(X, Y ).

1.1.1 AKSZ versus PTVV: Integration Theory

There are subtle but important differences between the AKSZ and the PTVV for-
malisms.

In the case of the AKSZ formalism, the integration theory one is referring to is
nothing but the Berezin integration [7]. Here are three examples of Q-manifolds
carrying an integration theory of cohomological degree d in this sense:

1. (V [1], 0), where V is vector space of dimension d.
2. Σd R := (

T [1]Σ, dd R
)
, where Σ is a compact oriented differentiable manifold

of dimension d.
3. ΣDol := (

T 0,1[1]Σ, ∂
)
, where Σ is a compact complex manifold of dimension

d equipped with a nowhere vanishing top degree holomorphic form η.

Within the PTVV formalism an integration theory of degree d on a derived stack
X is a chain map [X ] : RΓ (OΣ) −→ k[−d], where RΓ (OΣ) denotes the complex
of derived global functions on Σ , which satisfies a suitable non-degeneracy condi-
tion (the definition of non-degeneracy mimics the abstract formulation of Poincaré
duality). Any integration theory of cohomological degree d on a Q-manifold in
the AKSZ sense induces an integration theory on its associated derived stack in the
PTVV sense. But:

different Q-manifolds might have equivalent associated derived stacks.

This is an important point. Derived stacks are model-independent: it doesn’t matter
how a derived stack is constructed. In the physics language one could view derived
stacks as reduced phase space while Q-manifolds carry some information about

1 We refer to [27] and references therein for an introduction to derived geometry.
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the original phase space (e.g. the moduli stack of flat G-bundles, compared the
Q-manifold of all G-connections).

Note that there is a stack with an integration theory that can’t be described using
Q-manifolds. LetΣ be a Poincaré duality d-space; there is stackΣB classifying local
systems on Σ (it can be explicitely described using a combinatorial presentation of
Σ , such as a triangulation or a cellular structure). Derived global functions on ΣB

are cochains on Σ and thus the fundamental class [Σ] determines an integration
theory of degree d on ΣB .

1.1.2 AKSZ versus PTVV: Symplectic Structures

The model independence of derived stacks forces all definitions to be homotopy
invariant and as such the required properties can’t be strictly satisfied (i.e. they might
only hold up to coherent homotopies). This is particularly visible when it comes
to closed forms. Roughly speaking, the complex of forms on a derived stack (or
a Q-manifold) has two “graduations”: the weight (k-forms have weight k) and the
cohomological degree. Similarly the differential has two components: the internal
differential dint (the Lie derivative with respect to the cohomological vector field Q)
and the de Rham differential dd R . In the PTVV formalism a k-form of degree n is a
weight k dint -cocycle ω0 of cohomological degree n, and

being a closed form is an additional structure.

Namely, a closed k-form of degree n consists in a sequence (ω0, ω1, . . . ) where

• ω0 is a k-form of degree n.
• ωi has weight k + i and cohomological degree n.
• dd R(ωi ) ± dint (ωi+1) = 0.

Somehow we are considering forms which are closed up to homotopy, while the
AKSZ formalism only considers closed forms which are strictly closed.

Something similar happens for the non-degeneracy property when one defines
symplectic structures. An n-symplectic structure is the data of a closed 2-form of
degree n such that its underlying 2-form of degree n is non-degenerate (recall that
in the AKSZ formalism the underlying form coincides with the closed one): non-
degeneratemeans that themorphism it induces between the tangent and the cotangent
complexes is a quasi-isomorphism (while it is required to be an isomorphism in the
AKSZ formalism).

Remark 1 The AKSZ formalism also makes an extensive use of infinite dimensional
differential geometry, while derived geometry is designed so that many derived map-
ping stacks are still locally representable by finite dimensional objects (it is often
the case that the reduced phase space is a finite dimensional object even though the
original phase space is not).
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Example 1 Here are some nice examples of symplectic structures in the derived
setting:

• if G is a compact Lie group then BG = [∗/G] carries a 2-symplectic structure
(see [22]).

• if G is any Lie group then [g∗/G] = T ∗[1](BG) carries a 1-symplectic structure
(see [8]).

• if G is a compact Lie group then [G/G] = Map(S1
B, BG) carries a 1-symplectic

structure (see [8, 23]).
• the derived critical locus of a function carries a (−1)-symplectic structure (see
[22]).

1.2 Transgression with Boundary

In [10, 11] (see also Chap.9) the AKSZ construction is extended to the case when the
source of the σ -model has a boundary and the authors use it to produce field theories
that satisfy the axiomatics of Atiyah–Segal [3, 26]. The analogous construction also
exists for the PTVV formalism (see [8]).

1.2.1 AKSZ versus PTVV: Lagrangian Structures

Let X
f−→ Y be a morphism of generalized spaces and assume we have an n-

symplectic structure ω on Y . As usual in derived geometry (and more generally
in homotopy theory), being Lagrangian is not a property but rather an additional
structure. Namely, a Lagrangian structure on f is a homotopy γ (inside the space of
closed 2-forms of degree n on X ) between f ∗ω and 0 such that the underlying path
γ0 between f ∗ω0 and 0 is non-degenerate. In more explicit terms:

• γ = (γ0, γ1, . . .) is such that f ∗ω0 = dint (γ0) and

f ∗ωi = dint (γi ) ± dd R(γi−1) .

• the identity satisfied by γ0 ensures that the map TX −→ f ∗
LY [n] given by f ∗ω0

lifts to TX −→ L f [n + 1], where L f is the relative cotangent complex. The
non-degeneracy condition says that it is a quasi-isomorphism.

Usual Lagrangian subspaces are Lagrangian in the above sense, but any kind of map
can carry a Lagrangian structure. There are actually Lagrangian structures arising in
a quite surprising way:

Example 2 (See [8, 9, 23]). (a) A Lagrangian structure on the morphism X −→
∗(n+1), where ∗(n+1) is the point equipped with its canonical (n + 1)-symplectic
structure, is the same as an n-symplectic structure on X .

http://dx.doi.org/10.1007/978-3-319-09949-1_9
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(b) A moment map μ : X −→ g∗ induces a Lagrangian structure on the map
[μ] : [X/G] −→ [g∗/G].
(c) A Lie group valued moment map (in the sense of [1]) μ : X −→ G, where G is
a compact Lie group, induces a Lagrangian structure on the map [μ] : [X/G] −→
[G/G].

1.2.2 Relative Integration Theory

A relative integration theory (a.k.a. non-degenerate boundary structure or relative

orientation, see [8]) on a morphism X
f−→ Y is the data of an integration theory [X ]

on X together with a homotopy η between f∗[X ] and 0 that is non-degenerate.2

Example 3 There are two important examples of relative integration theories on a
morphism. Consider a compact oriented (d +1)-manifoldΣ with oriented boundary
∂Σ . Then the morphisms (∂Σ)d R −→ Σd R and (∂Σ)B −→ ΣB both carry a
relative integration theory.

Let X
f−→ Y be a morphism together with a relative integration theory ([X ], η),

and let Z be equipped with an n-symplectic structure ω. It is shown in [8] that

∫
η

ev∗ω

defines a Lagrangian structure on the pull-back morphism Map(Y, Z) −→
Map(X, Z).

1.2.3 Field Theories from Transgression with Boundary

Given a generalized space Y together with an n-symplectic structure, the process
of transgression with boundary allows one to produce a functor Map(−, Y ) from a
category with

• objects being generalized spaces with an integration theory,
• morphisms from X1 to X2 being cospans X1

∐
X2 → X12 equippedwith a relative

integration theory,3

• composition being given by gluing: X12 ◦ X23 := X12
∐
X2

X23.

2 We won’t detail what non-degeneracy means here, but simply say that its definition again mimics
the main abstract feature of relative Poincaré duality.
3 Here an below, ??means thatwe consider the opposite integration theory or the opposite symplectic
structure on ?? (it should be clear from the context).
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to a category with

• objects being generalized spaces with a shifted symplectic structure,
• morphisms from Z1 to Z2 being Lagrangian correspondences Z12 → Z1 × Z2,
• composition being given by fiber products: Z12 ◦ Z23 := Z12 ×

Z2

Z23.

If we restrict objects of the source category to those of the form described in
Example3, then we precisely get a topological field theory taking values in a cat-
egory of Lagrangian correspondences. Note that usually, categories of Lagrangian
correspondences are ill-defined (as some compositions might not be well-behaved),
but working in the homotopy setting and considering derived fiber products resolves
this problem.

Remark 2 The gadget one actually has to work with is called an (∞, 1)-category,
and one shall emphasize that categroids (which appear in the main references for
Chaps. 5 and 12) are often shadows of an underlying (∞, 1)-category (in otherwords,
even though some compositions might seem to be ill-defined, they actually happen
to be well-defined up to homotopy).

1.3 Examples

We now provide examples of classical topological field theories that can be treated
using the above approach, even though some superconformal field theories (as
described in Chap.4) can be obtained as well.

1.3.1 Classical Chern–Simons Theory

Classical Chern–Simons theory can be recovered if one starts with Y = BG for a
compact Lie group G. Details can be found in [23]. One can also include all kinds
of boundary conditions (Lagrangian morphisms) or domain-walls (Lagrangian cor-
respondences), which allow to recover all the symplectic moduli spaces of flat con-
nections over quilted surfaces that are obtained via the quasi-Hamiltonian formalism
in Chap.11.

1.3.2 Moore–Tachikawa Theory

There is a 2d TFT that have been sketched by Moore and Tachikawa [21], of which
the target category is a certain category of holomorphic symplectic varieties. This
category is a particular case of our category of Lagrangian correspondences (see [9])
and it is very likely that their TFT can be obtained from mapping spaces.

1.3.3 Poisson σ -model

Let (X, π) be a Poissonmanifold and consider itsπ -twisted 1-shifted cotangentY :=
TX [−1]π . The derived stack Y , resp. the zero section morphism X −→ Y , can be

http://dx.doi.org/10.1007/978-3-319-09949-1_5
http://dx.doi.org/10.1007/978-3-319-09949-1_12
http://dx.doi.org/10.1007/978-3-319-09949-1_4
http://dx.doi.org/10.1007/978-3-319-09949-1_11
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shown to carry a 1-symplectic structure, resp. a Lagrangian structure. One can show

that themapping stack from to Y with boundary condition in X , which happens
to be the derived self-intersection G := X ×h

Y X of X into Y , is 0-symplectic (see [8,
9, 27] for general statements about symplectic structures on relative derivedmapping

stacks). The cobordism with boundary is sent to a Lagrangian correspondence

betweenG×G andG, which turnsG into an algebra object within the (∞, 1)-category
of Lagrangian correspondences. For instance, associativity of composition is given
by the following diffeomorphism:

In [12] Contreras and Scheimbauer show that G is actually a Calabi-Yau algebra
(in the sense of [19]), which clarifies themysterious axioms of a relational symplectic
groupoid of Chap.12.

2 Mathematical Formulations of Locality

TheAKSZ-PTVV theories are expected to be local, in the sense that one can compute
everything from local data that one would later glue. In this section we briefly sketch
two mathematical approaches to the concept of locality.

2.1 Factorization Algebras

A factorization algebra E over a topological space X consists of

• the data of a vector space (or a cochain complex) EU for every open subsetU ⊂ X .
• the data of a linear map (or a chain map)

⊗
i∈I EUi −→ EV for every inclusion∐

i∈I Ui ⊂ V of pairwise disjoint open subsets.

satisfying the following properties:

• associativity, that can more or less be depicted as follows:

U11 U12 U21

U1 U2

V

• gluing (one can reconstruct EU from a nice open cover U of U and EU ).

Remark 3 The gluing property is typically a locality property.

We refer to Chaps. 3 and 13 for precise definitions.

http://dx.doi.org/10.1007/978-3-319-09949-1_12
http://dx.doi.org/10.1007/978-3-319-09949-1_3
http://dx.doi.org/10.1007/978-3-319-09949-1_13
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Example 4 (Topological quantum mechanics, see [14]). Let A be an associative
algebra (e.g. A = End(V )) and let (Φt )t be a 1-parameter group of automorphisms

of A (e.g.Φt = e− i t
�

H is the time evolution).We also give ourselves a right A-module
Mr (e.g. V ∗) and a left A-module M� (e.g. V ), together with initial and final states
vini t ∈ Mr and v f in ∈ M�. From these data one can describe a factorization algebra
E on the closed interval X = [0, 1].
• on open intervals of X we set: E[0,s[ = Mr , E]t,u[ = A and E]v,1] = M�.
• here are examples of the factorization product:

− − − − − − −

〈

〈 〈

• •
⊗ ⊗⎥

⎥ ⎥ ⎥ ⎥

• one can show that E[0,1] = Mr ⊗
A

M� (C in our example).

• we finally interpret
• • 	−→ 〈vini t |ΦsaΦ1−t |v f in〉 as an expectation value.

2.1.1 Factorization Algebras in the BV Formalism

Producing factorization algebras from the local observables in the BV formalism
is the main achievement of Costello–Gwilliam (see [14], and also Chap.3). At the
classical level they consider observables with compact support in order to get fac-
torization algebras. It seems that for topological and conformal AKSZ (or PTVV)
theories one can consider mapping spaces with compact support in order to get a fac-
torization algebra structure on classical local observables. In particular it is expected
that the transgression procedure (both for symplectic and Lagrangian structures) still
makes sense locally and glues well.

The main difficult part in Costello–Gwilliam work is of course the quantization
of these classical theories. One has to consider effective field theories in the sense
of [13] and renormalize (when possible). In the 2d conformal case one gets in the
end a structure which is very similar to the one of a vertex algebra (see Chap.3 for
a precise statement and Chap.4 for the definition of a vertex algebra and its use
in conformal field theory). In the topological case one obtains in the end a locally
constant factorization algebra: onRn this boils down to the datum of an algebra over
the little disks operad.

Renormalization is actually trivial in the topological case, even though it is not
so obvious in Costello’s framework. We propose here a different approach to the
quantization of classical topological BV theories. The first step is to discretize the
theory one is working with, so that one can easily write a factorization algebra of
classical discrete local observables that carries a bracket of degree 1. The main point
is that on a finite region the algebra of local observable is finitely generated, so that
BV quantization can be performed very easily (there is no need to apply any kind of
energy cut-off as we have only finitely many states).

http://dx.doi.org/10.1007/978-3-319-09949-1_3
http://dx.doi.org/10.1007/978-3-319-09949-1_3
http://dx.doi.org/10.1007/978-3-319-09949-1_4
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The final and very hard step is to make the mesh of the discretization tend to zero.
There is some magic that happens for topological theories:

there is no need to make the mesh tend to zero.

The reason is that, even though the factorization algebra of local observables is not
locally constant, it becomes locally constant at a sufficiently large scale (the scale
depending on the size of the mesh).

Remark 4 Understanding the renormalization procedure for lattice field theories in
terms of factorization algebras could lead to a non-perturbative alternative to the
constructions of QFTs proposed in [13, 14]. At the moment we4 can only recover
theWeyl algebra from a discrete 1d model. The next step would be to understand the
renormalization of discrete models in 2 dimensions (with an emphasis on conformal
ones).

2.1.2 Locally Constant Factorization Algebras from Discrete Models

One can prove that any factorization algebra that is locally constant above a given
scale gives rise to a locally constant factorization algebra that coincides with the
original one above that scale. The idea is very simple: discard the badly behaved part
(the one below the given scale) and replace it by a rescaled copy of what happens at
large scale... note that implementing this idea actually requires the use of the higher
categorical machinery.

Let us provide a potential application of this quite intuitive idea to lattice models.
We will formulate things in dimension 2 but it works in arbitrary dimension. Let
H, V be vector spaces of states (horizontal and vertical) and let R ∈ GL(H ⊗ V )

be an interaction matrix: R jl
ik = exp

(
− 1

kT ε
jl
ik

)
. Computing a state sum is nothing

but tensor calculus:

ek el

ek el

ei

ej

ei

ej

Rjm
ik Rnl

i mRj l
nkem

en

One can define a factorization algebra FR which associates the space of its
boundary states to a given open region ofR2, and for which the factorization product
can be depicted in the following way:

4 This is a joint project with Giovanni Felder.
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ek el

ek el

ei

ej

ei

A

B

ej

A B Ajm
ik Rnl

i mBj l
jj ll

ii kk
nk

Note that the lattice Z2 acts on global sections FR(R2) of FR .

Conjecture 1 (Kontsevich). C•(
Z
2,FR(R2)

)
has an action of the (chains on the)

little disks operads in dimension 2.

The idea to prove this conjecture is to define a new factorization algebra F̃R , very
similar to FR but carrying an additional discretized de Rham differential,5 such that

• F̃R is locally constant at scale > 2.
• F̃R(R2) = C•(

Z
2,FR(R2)

)
.

This would imply Kontsevich’s conjecture.

2.2 Fully Extended Field Theories

The axiomatics of fully extended field theories is a higher categorical analog of
Atiyah–Segal axiomatics. Roughly speaking, it is a symmetricmonoidal functor from
a symmetricmonoidal higher category of cobordisms to another symmetricmonoidal
higher category. Higher categories of cobordism can be informally described as
follows (we refer to [19] for precise definitions in the topological setting):

• objects are 0 dimensional manifolds of a certain type.
• 1-morphisms are 1-cobordisms between these.
• 2-morphisms are 2-cobordisms,
• . . .

It is only for topological field theories that the above has been formalized in
a mathematically precise way (see [4, 19]). The cobordism hypothesis (which is
now a Theorem thanks to the work of Lurie) states that fully extended topological
field theories are completely determined by their value on the point. One can see
this as a very strong locality property (everything can be reconstructued from the
point!). Objects that are images of the point under fully extended TFTs are called
fully dualizable: being fully dualizable is a very strong finiteness requirement.

We refer to [18] for a very nice review of the cobordism hypothesis (note that the
cobordism hypothesis appears implicitly in Chaps. 6 and 9).

5 Roughly, FR carries a discrete flat connection and F̃R is the factorization algebra of derived flat
sections of FR .

http://dx.doi.org/10.1007/978-3-319-09949-1_6
http://dx.doi.org/10.1007/978-3-319-09949-1_9
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2.2.1 Examples of Fully Extended TFTs

In dimension 1, fully dualizable objects are genuine dualizable objects (e.g. finite
dimensional vector spaces).

Classical field theories of AKSZ-PTVV type are fully extended. This has been
announced (without proof) in [11] and [8, 9]. The target category to work with is a
suitable category of iterated Lagrangian correspondences, that is currently the subject
of ongoing investigations.

It is expected that modular tensor categories are fully dualizable in the 4-category
of braided monoidal categories, leading to a large class of fully extended 4d TFTs.

2.2.2 Chiral and Factorization Homologies

Locality in 2d conformal field theory can be formalized either usingmodular functors
or vertex algebras. Chiral homology, that was invented by Beilinson–Drinfeld [6],
allows one to produce a modular functor out of a (quasi-conformal) vertex algebra.

Factorization homology (a.k.a. topological chiral homology) achieves the same
goal in the topological setting. If A is an algebra over the little disks operad and M is
a framed manifold then factorization homology of M with coefficients in A, denoted

∫

M

A ,

is defined as the “integral”, over all open balls in M , of the value of A on them.
Lurie proved [19, 20] that factorization homology is indeed a TFT, and conjectured
that it is fully extended. Chapter 7 presents perturbative Chern–Simons theory in
dimension 3 as a by-product of factorization homology.

The fact that factorization homology is a fully extended TFT was recently proved
in [24].

2.2.3 Chern–Simons Theory with a Finite Gauge Group

Let G be a finite group.

Remark 5 The cotangent complex of BG reduces to {0}, so that BG is trivially
n-symplectic for any n ∈ Z. Therefore symplectic structures won’t play a significant
rôle for this specific example. But they are essential when one deals with non-discrete
compact Lie groups.

We have a 3d fully extended TFT with values in a higher category of iterated corre-
spondences that is given by Map(−, BG).

It is very unlikely that the category of correspondences can provide numerical
invariants. In order to get that we have to “linearize” our field theory.

Let us sketch how to do this in dimensions 1-2-3:

http://dx.doi.org/10.1007/978-3-319-09949-1_7
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• we replace Map
(
S1

B, BG
) = [G/G] by its category of quasi-coherent sheaves

QCoh([G/G]), which is nothing but the category Rep
(
D(G)

)
of (complexes of)

representation of the Drinfeld double of G.
• the correspondence given by Map(Σ, BG) for a 2-cobordism Σ can be used to
produce a convolution functor QCoh([G/G]k) −→ QCoh([G/G]l).

• mapping spaces from 3d manifolds produce natural transformations of functors.

Remark 6 One can even associate the monoidal category QCoh(BG) = Rep(G)

to the point. It is important to notice that not every object is fully dualizable in the
3-category of monoidal categories. But Rep(G) surely is,6 so that we have a nice
and linear enough fully extended TFT.

It would be interesting to get back this fully extended Chern–Simons TFT with
finite gauge group by means of factorization homology. In order to do so one shall
construct a locally constant factorization algebra on R

3 that is locally constant. We
would suggest to use a discrete model.

Remark 7 Observe that Rep(G) is a fusion category and is thus, after [15], a fully
dualizable object in the symmetric monoidal 3-category of monoidal categories. It
thus produces a fully extended 3d TFT. The fact that the partition function of this
TFT can be computed via a state sum (see [28]) is a strong evidence in favor of our
suggestion.

Onemust say that already for Yang-Mills theory in dimension 2 it is an interesting
task to produce an E2-algebra from the data of a Hopf algebra with an integral, by
means of a discrete model.
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