
The Cohomology of the Moduli Space of Curves 

John L. Harer 

The purpose of these notes is to give an exposition of recent 

work of several people on the topology and geometry of the moduli 

space of curves. Moduli space may be approached in many different 

ways. For g > i, it is simultaneously the space of isometry classes 

of hyperbolic metrics on a surface of genus g, the space of conformal 

equivalence classes of Riemann surfaces of genus g and the space of 

algebraic curves of genus g up to isomorphism. This means that 

there is an elaborate interplay between hyperbolic geometry, complex 

analysis and algebraic geometry going on. The mapping class group 

acts properly discontinuously on Teichmuller space with quotient 

moduli space, so the rational cohomology of moduli space may be 

identified with that of the mapping class group. This adds a 

topological and algebraic perspective to things. 

The main emphasis in these notes will be on this topological 

side and we will discuss primarily work of our own. We will, however, 

spend some time on analysis as we discuss work of Scott Wolpert on 

the Weil-Petersson geometry of Moduli space. Our main theme then 

will be the question of how much of the topology and formal geometry 

of a symmetric space can be found for Teichmuller space and how many 

of the properties of an arithmetic group can be found for the mapping 

class group. This will lead us through a discussion of work by 

Charney and Lee, Harris, Miller, Morita, Mumford, Thurston, Zagier 

and many others. 

We would like to thank Scott Wolpert for a great deal of help 

with these notes. 

The author wishes to thank the C.I.M.E. foundation and the N.S.F. for 
support of this work. 
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Chapter i. Introduction 

Let F be a closed, oriented surface of genus g. The primary 

object we will be looking atin these notes is the space which para- 

metrizes all the conformal structures carried by the surface F; it 

is called the moduli space of Riemann surfaces and is denoted M . 
g 

This space can also be defined as the space of hyperbolic metrics on 

F or the space of algebraic curves of genus g, up to appropriate 

notions of equivalence. We will not use this third point of view 

here, but we will constantly be switching between the other two. 

§I. First Definitions 

We begin with the conformal point of view. Define a marked Riemann 

surface to be a pair (R, [f]) where R is a Riemann surface 

(= complex 1-manifold), f :R ÷ F is a homeomorphism and [f] 

denotes the homotopy class of f. Two marked Riemann surfaces 

(Rl,[fl]) and (R2, [f2]) are called equivalent if there is a conformal 

homeomorphism h :R 1 ÷ R 2 such that If2 0 h] = [fl ] . The collection 

of equivalence classes is denoted T ; it has a natural topology and 
g 

is called the Teichmuller space of genus g. (We will discuss this 

topology later when we introduce Fenchel-Nielsen coordinates.) 

The moduli space is obtained by forgetting the marking [f]. To 

make this precise we introduce the mapping class group F ; it is 
g 

the group of homotopy classes (or, equivalently, isotopy classes) of 

orientation preserving homeomorphisms of F. The formula 

[g] • (R,[f]) = (R, [gf]) 

defines an action of F on T ; the quotient space is denoted M 
g g g 

and is called the moduli space of conformal structures on F. 

The second way to define T and M is using hyperbolic 
g g 

geometry (g >i). By a hyperbolic surface we will mean a smooth 

surface X equipped with a complete Riemannian metric of constant 

curvature -i. A marked hyperbolic surface is a pair (X, [f]) where 

X is hyperbolic and f :X ÷ F is a homeomorphism. We say that 

(X!, [fl]) is equivalent to (X2,[f2]) if there is an isometry 

h :X 1 ÷ X 2 with [f2 oh] = [fl] , and we denote the collection of 

equivalence classes by the same letter T • The justification for 
g 

this is the uniformization theorem which states that every Riemann 

surface R is conformally equivalent to one which admits a hyperbolic 

metric, and this metric is uniquely determined up to {sometry by the 

conformal equivalence class of R. 

More generally, one defines the spaces Ts, M s and the group F s 
g g g 
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as follows. Fix s distinct points, ordered pl,...,ps on the 

surface F and consider triples (R, (ql,...,qs), If]) where R is 
g 

a Riemann surface, ql,...,qs are distinct, ordered points on R and 

f :R ÷ F is a homeomorphism with f(qi ) = Pi for each i. In this 

case If] denotes the homotopy class of f ~el{qi} ~ The definition 

of equivalence is the same as before: (RI, (ql .... ,qs ) , [fl ]) 

(R 2 ( 2 2 ' ql .... 'qs )' [f2 ]) if and onlyl ifo there exists a conformal homeo- 

morphism h :R 1 + R 2 with h(q~) = q~ for each i such that 

[f2 oh] = Ill]. The space of equivalence classes is denoted T s and 
± 

g 
is again called Teichm~ller space. 

The mapping class group F s is the group of all orientation pre- 
g 

serving homeomorphisms % :F + F such that %(pi ) = Pi for all i, 

up to isotopies fixing each Pi" It acts on T s as before and the 

quotient is moduli space M s . g 
g 

To define T s using hyperbolic surfaces we remove the s points; 
g 

set F s = F - {Pl ..... PS } and assume X(F s) < 0. Consider pairs 
g g g 

(X, [f]) where X is complete hyperbolic of finite area and f :X ÷F s g 
is a homeomorphism. Since X is complete and finite area its structure 

near a puncture is modeled on the pseudosphere. The definition of the 

equivalence is exactly as in the case s = 0. 

§2. Fenchel-Nielsen Coordinates 

TO understand T s better it is necessary to introduce Fenchel- 
g 

Nielsen coordinates. These will be defined using the description of 

T s as hyperbolic metrics. 
g 

The starting point is the observation that a right hexagon in the 

hyperbolic plane is determined up to isometry by the lengths of three 

alternating sides, and these lengths may be chosen to be arbitrary 

positive numbers. It also makes sense to allow these lengths to go 

to 0 or ~; for example, if Z 1 goes to 0 in Figure i.i we obtain 

ideal right pentagons, for which there are two parameters, and if Z 1 

and ~2 both go to 0 we obtain ideal right quadralaterals with one 

parameter. 

Figure i.i 
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Given such a hexagon, form its double across the remaining sides 

to obtain the basic building block P, a pair of pants (Figure 1.2) 

with goedesic boundary. The metric on P is now determined by the 

lengths of its three boundary components and these also are arbitrary. 

Allowing one or two of these to have length 0 we have the ideal 

pairs of pants of Figure 1.2. 

Figure 1.2 

Next, fix a partition on FS;g this is a collection C l,...,c3g_3+s 

of disjoint simple closed curves such that F s - {Ci} is the disjoint 
g 

union of pairs of pants, punctured annuli and twice punctured disks 

3 is a single point) We may build a (if g = 0 assume s > 3, T O 

marked hyperbolic surface by glueing hyperbolic pairs of pants (and 

ideal pairs of pants) together according to the pattern determined by 

{Ci}. The Fenchel-Nielsen coordinates are the free parameters for 

this construction; there are two for each C i. The first is Zi" the 

length of Ci; two pairs of pants may be metrically glued along 

boundary curves to obtain a hyperbolic surface as long as these curves 

have the same length. The second, the twist parameter T i, measures 

the displacement of the boundary curves along which we glue. The 

parameter T i is the hyperbolic distance between the feet of perpen- 

diculars dropped from fixed boundaries (Figure 1.3). The parameters 

Zi vary freely in IR + and the T i vary in IR. Fenchei and Nielsen 

proved 

Theorem i.i: The map ~lg+x IR) 3g-3+s ÷ T s described above is a 
g 

homeomorphism. 

As we have not described a topology on T s we will think of this 
g 
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Figure 1.3 

result as defining the topology. There is still content, however, to 

Theorem i.i since it is true independent of the choice of partition. 

Furthermore, we now know that T s is a cell. 
g 

The Fenchel-Nielsen coordinates may also be used to describe the 

Deligne-Mumford compactification ~s of M s as follows. If {C.} 
g g 

is a partition of F~, allowing some of the Z. to be 0 we obtain 
i 

a Riemann surface with nodes at those C.; ~s is obtained from M s 
l g g 

by adjoining these singular surfaces. The complement then has irreduc- 

. of real codimension 2 where D o ible components D0, DI, ..,Dig/2 ] 

is the collection of surfaces with a node at a nonseparating curve 

(and perhaps other nodes) and D i, i > 0, consists of the surfaces 

with a node at a curve which separates F into surfaces of genus i 

and g - i. 

§3. Homology of M s and F s 
g g 

A well-known result about hyperbolic surfaces is that their 

length spectrum (the collection of real numbers which occur as lengths 

of closed geodesics) is discrete. It is not difficult to use this to 

prove that the action of F s on T s is properly discontinuous; i.e. 
g g 

for every compact set K c T s the collection of ~ 6 F s such that 
g g 

~(K) n K ~ @ is finite. This means that M s is a V-manifold or 
g II~N 

orbifold: each point has a neighborhood modeled on modulo a 

finite group. Furthermore, M s is a "rational K(r~,l)"; that is, 
g 

H, (Mg;@) ~ H s - . (Fg;~) . 
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One can say more than this; actually we claim that F s is virtually 
g 

, F s torsion free. To see this let ~ : + Sp(2g;X) be the map obtained 
g 

by allowing a homeomorphism % of F s to act on HI(Fg;Z). This 
g 

gives an element of Sp because ~ preserves the intersection form 

on F . The map ~ fits into the exact sequence 
g 

1 + T s ÷ F s ~-~ Sp(2g;Z) + l (S O ) 
g g 

where T s is the Torelli group. Now look at Gn, the full congruence 
g 

subgroup of level n in Sp(2g;Z) which is defined as the subgroup 

_ is of matrices congruent to the identity mod n. For n > 3, G n 

torsion free and it is also well-known that T s is torsion free. 
g 

Therefore, the congruence subgroup nS[n ]~g = -I(G n) will also be 

torsion free, n ~ 3. Its index is the order of the finite group 

Sp(2g;Z/nZ) so the claim is established. 

s S[n] = MS[n] is called the moduli space The quotient Tg/Fg g 

of curves with level n structure. It is a manifold and we have 

H,(F s In] ;Z) =~ H. (Mg[n] ;Z) . 
g 

At times it will be necessary to compare the homology groups of 

£ s as we vary g and s. For s we have the exact sequence 
g 

1 ÷ ~l(F s) ÷ F s+l ~ F s + l, (S I) 
g g g 

defined as follows. Let q be the map obtained by forgetting Ps+l" 

If % lies in Ker(q), then ~ is isotopic to the identity fixing 

pl,...,p s. Following Ps+l under this isotopy determines an element 

of Zl(F:) ; the sequence S 1 is derived from this. The Lyndon- 

Hockshieid-Serre spectral sequence may then be used to relate H,(F s) g 
s+l to H,(F ) . When we vary g, however, there is no natural way of 
g s s' mapping Fg to £g+l so it becomes necessary to introduce mapping 

class groups of surfaces with boundary. In Chapter 6 we will describe 

these and show how to use them to prove that for g >>k Hk(r ~) is 

independent of g. 

§4. Algebraic Structure of the Mapping Class Group 

Because H,(M~) and H,(F~) are so intimately related, we will 

need to know some facts about the algebraic structure of £ s. 

We first discuss a finite presentation for F s. Let cgc F s be g g 
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a simple closed curve; the Dehn twist of C, denoted T c, is (the 

isotopy class of) the homeomorphism of F s obtained by splitting along 
g 

C, rotating one side 360 ° to the right and reglueing (Figure 1.4). 

C 

, ; 111 

Figure 1.4 

Dehn proved that F s is generated by Dehn twists on a finite number 
g 

of curves ([D]) and Humphries determined the minimal number of twist 

generators necessary (the 2g +i curves of Figure 1.5 when s = 01o 

Figure 1.5 
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McCooI([Mc]) gave an indirect proof that r is finitely presented, but 
g 

the first explicit presentation was provided by Hatcher and Thurston 

([HT]) . This was simplified by Wajnryb ([Wa]) whose presentation uses 
2g+l 

as generators T i = TC , 1 ! i ~ 2g +i, and has ( 2 ) + 3 relations 
i 

(g > 2). The first of these are the braid relations: 

T i Tj = Tj T i if C i N Cj = ~, 

~i Tj T i : Tj T i Tj if C i N Cj @ ~. 

At this point one has a group with H I ~ Z (the group is normally 

generated by any Ti), whereas in actual fact H 1 : 0 ([P] , [M]) . 

The "lantern relation" (see [HI]) is added next, giving a group with 

H 1 = 0. Now the result has H 2 = 0 whereas H 2 should be Z([HI]) . 

To fix this we add the "Chinese lantern ' " to relatlon get H 2 ~ Z. It 

turns out that this is a presentation of the mapping class group of a 

surface with 1 boundary component. To get F 0 we add one more 
g 

relation, called the "boundary relation". We refer the reader to [Wa] 

for explicit forms of these relations. Presentations for the groups 

F s can easily be obtained using (SI) . 
g 

Next we briefly describe Thurston's classification of the elements 

of F s This classification is modeled on the decomposition of PSL21R g" 

into elliptic, hyperbolic and parabolic elements. The analogue of the 

elliptics are the elements of finite order in rs; each such may be 
g 

realized as an isometry of some hyperbolic metric. Corresponding to 

hyperbolics are the pseudo-Anosovs~ these are represented by maps which 

preserve apair of transverse, measured foliations (with singularities) 

and they are distinguished by the fact that no element of ~I(F) is 

brought back to a conjugate of itself by a positive power of the map. 

Finally, parabolics have as counterpart the reducible elements. Each 

such is represented by a map which fixes (setwise) a collection of dis- 

joint, nontrivial, nonisotopic simple closed curves in F. 

Thurston proves this result by constructing a spherical compaetifi- 

cation ~s of ys and an extension of the action on r s to -s g g g Tg 

([T3]). The boundary sphere is the space of all equivalence classes of 

projective measured foliations on F. The theorem is proven by apply- 

ing the Brouwer fixed point theorem. 

Using this decomposition it is possible to say a great deal about 

the subgroup structure of the mapping class group. McCarthy has com- 

puted the centralizers and normalizers of the elements of F s ([McCa]). 
g 

For finite order elements they are extensions of a finite cyclic group 
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by a mapping class group, for pseudo-Anosovs they are finite-by-infinite 

cyclic and for reducibles they are a mixture of the two. Long ([LI]) 

showed that if H < F is finitely generated and contains a free 
g 

group of rank 2 generated by 2 pseudo-Anosovs (for example, F g 
itself), then H contains uncountably many maximal subgroups of 

infinite index and the Frattini subgroup of H, which is the inter- 

section of all maximal subgroups of H, is a torsion group. Finally, 

Birman, Lubotsky and McCarthy showed that every solvable subgroup of 

F is virtually abelian ([BLM]). 
g 

All of these properties are similar to those of discrete subgroups 

of linear algebraic groups. In fact, slightly weaker forms of them 

would follow immediately if we had a discrete, faithful linear represen- 

tation of Fg. Thus we are led naturally to the question: is Fg 

actually linear? Or even more: is F arithmetic? 
g 

§5. The Analogy with Symmetric Spaces 

The problem which will motivate us in this notes is this: how 

close is Teichm~ller space to being a symmetric space and how close is 

F s to being arithmetic? When G is a linear algebraic group defined 
g 

over ~ and F < G~ is arithmetic (see Chapter 4 for definitions), 

then F acts properly discontinuously on the symmetric space X = G/K, 

K maximal compact in G. The space X is diffeomorphic to Euclidean 

space and the quotient F~X is a V-manifold; it follows that H,(F;~) 

H,(F\x;~). This suggests an analogy between T s and X and between 
g 

F s and F and most of what we will do springs from this analogy. 
g 

The first question which then arises is whether there exists some 

G such that T s = G/K and F s = F. Ivanov was the first to announce 

g g FS a proof that this is not the case; in fact he shows that is not 
g 

arithmetic in any linear algebraic group. In Chapter 4 we will give a 

proof of this due to Bill Goldman. 

Even though F s is not arithmetic, we can still ask which properties 
g 

it shares with the arithmetic groups. This is the theme of Chapters 

2, 3, 4, 6 and 8. Among other things we will see that Teichmuller space 

admits a Borel-Serre bordification (Chapter 3) and that the mapping 

class group is a virtual duality group (Chapter 4), satisfies homological 

stability as g goes to infinity (Chapter 6) and admits a formula for 

its Euler-characteristic which involves the Riemann zeta-function 

(Chapter 8). All of these are properties of arithmetic groups. 

We can also ask how much of the formal geometry of a symmetric 

space may be found for T s. There are two well-known metrics for T s. g • g 

The first is the Teichmuller metric; it is only a Finsler metric and 



148 

the geometry it provides is quite distorted. In fact, Royden ([R]) 

showed that in this metric the group of isometries of T s is exactly 
g 

the mapping class group, so the situation is very unlike that of a 

symmetric space. The second is the Weil-Petersson metric. This metric 

is Kahler and is much more suited to our purposes. It has strictly 

negative Ricci curvature and holomorphic sectional curvatures. In 

Chapter 5 we will discuss Scott Wolpert's striking work on the symplectic 

and Hermitian geometry this metric gives for Teichmuller space. This 

geometry is intimately tied to the complex structure on; in fact, in 

3 we will outline how Wolpert uses the Weil-Petersson Kahler form to 

give an analytic proof that ~s is projective. 
g 
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Ch_apter 2: Triangulating Teichm~ller Space 

The purpose of this chapter is to describe an ideal triangulation 

of Teichm~ller space which is compatible with the action of the 

mapping class group. The construction works for ~ny s £ 1 but 

we will restrict to the case where s : 1 to keep the exposition 

simple. The original idea for this triangulation is due to Thursto~: 

and uses hyperbolic geometry; the details forthis approach were 

provided by Bowditch and Epstein and will be given in §~3. The 

first complete proof, however, was given by Mumford using the 

conformal point of view and was based on results of Strebel. 

(Yet another proof was provided more recently by Epstein and Penner 

using the interpretation of Teichm~ller space as conjugacy classes 

of discrete, faithful representations of the fundamental group of 

surface in S0(2,1)). We will present Mumford's proof first~ 

in §2, after giving the combinatorial structure of the trianoulation 

in §I. 

§i The Simplicial Complex 

Let F be a closed, oriented surface Of genus o { 1 and let 

* be a basepoint in F. The isotopy class (tel *) of a family 

~0' .... ~k of simple closed curves in F through * will be called 

a rank-k arc-system if ~. intersects ~ only at * when 
l ] 

# j and the family satisfies the nontriviality condition that 

no ~. is null-homotopic and no distinct ~. and ~. are 
l ± 3 

homotopic (rel *). The maximum rank an arc-system can have is 

6q-4 since 6g-3 curves will decompose F into triangles so that 

~O more curves can be added without violating nontriviality. 

~) Definition of A 

Form a simplicial complex A by taking a k-simplex <s0, .... ,~k > 

for each rank-k arc-system in F and identifying <8 0 .... ,8£> as 

a face of <~0,...,ek > if {6i} c {~j}. By the remarks above, A 

has dimension 6g-4. Points in A correspond to pairs (e,w) where 

is an arc-system represented by curves ~0 ..... ek and w is a 

collection of non-negative weights w0, .... w k on the ~i such 

that w0+...+w k = i. 
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ii) Definition of A 

A f~mily of curves is said to fill the surface F if each com- 

ponent of its complement is simply connected. Define A to be 

the subcomplex of A consisting of all simplices <s0, .... ~k > 

such that {e. } does not fill F. There is a natural action of 

on A given by [f] <~0' .... ~k > = <f(e0)'''''f(~k )> and 

since this action preserves A it restricts to an action on A-A , 

The main theorem of this chapter is: 

Theorem 2.1: There is a homeomorphism ~: T 1 ÷ A- A which commutes 
g,l 

~,:ith the action of the mapping class group [g. 

Sections 2 and 3 of this chapter are devoted to the proof of this 

theorem. Before we go on, however, we will discuss in some detail 

the case where g = !. 

iii) Example, g = 1 

A single simple closed curve cannot fill the torus, but any 

arc-system with 2 or more curves (.rank = 1 or 2) must do so~ This 

means that A~ contains only the vertices of A; these in turn 

may be identified with ~ U {~}: if {m,Z} is a basis for ~i F 

corresponding to two non-homotopic simple closed curves meeting 

only at *, then any other simple closed curve ~ through * 

represents alm + a21 in ~i F with a I prime to a 2. Associating 

al/a 2 to ~ gives the bijection between A and ~ U {~}. It 

is easy to see that two curves with parameters (al,a 2) and (bl,b 2) 

are isotopic to ones which meet only at* exactly when alb 2 - a2b I = ±i 

We may therefore identify A with ~ U ~ U {~}, where ~ is the 

hyperbolic plane as in figure 2.1 (upper half plane model) o~ figure 

2.2 (Poincare model). 

-.3 -~ -~ 0 ~ 2 3 

Figure 2.1 
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A_ 

O 

-~ ~ =-± 

Figure 2.2 

1 
Since T 1 may be identified with ~ , the picture gives an illustra- 

tion of theorem 2.1. 

It should be pointed out that the situation is much more compli- 

cated in higher genus. Since it takes 2g curves to fill the 

surface, A contains the 2g - 2 skelton of A; however, it also 

contains pieces of the skeleta of A up to codimension 2. The 

existence of these higher dimensional cells will turn out to be a 

red herring, however, because we will see in chapter 4 that A 

has the homotopy type of a wedge of spheres of dimension 2g - 2. 

~2 The Conformal Point of View: Strebel Quadratic Differentials. 

In this section we will give the Mumford-Strebel proof of 

Theorem 2.1. The mafn ingredient is the theory of quadratic 

differentials. 
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i) Definitions 

Let R be a Riemann surface with conformal structure {(Ui,zi)}. 

An analytic (meromorphic) quadratic differential ¢ is a collection 

{¢i } of analytic (meromorphic) functions in the z i which transform 

according to the rule 

¢i(zi)dz~ = Cj (zj)dz~ 

whenever U. and U. intersect. The zeros and poles of ¢ are 
i ] 

clearly independent of local representative, they are called the 

critical points of ¢. A pole of order { 2 will be called an 

infinite critical point while any other is called finite. Any 

non-critical point is of course called regular. 

If y c R is any rectifiable curve, its ¢-length will be 

defined to be 

171® = fyl¢(z) I I/2 [dzl 

and this quantity is easily seen to be finite unless 7 passes 

through an infinite critical point. The motivation for this defini- 

tion comes from the fact that near any regular point p of ¢ with 

conformal coordinate z centered at p the expression w =I ~ d z  

makes sense and gives a new parameter w in which ¢ is identically 

equal to i. Then 171¢ = Iy,Idwl is the ordinary Euclidean le~@th 

of ~' where 7' is the image of ¥ in the w-plane. 

With the metric defined by I] % it is possible to talk about 

geodesics in R. The two types important to us are the horizontal 

and vertical trajectories of ~: A smooth curve 7 is called 

horizontal if arg ¢(z)dz = 0 along 7 and vertical if 

arg ¢(z) = z along y. The horizontal trajectories of % are 

the (unique) maximal horizontal curves through every regular point 

of ¢, with a similar definition for vertical trajectories. These 

trajectories give two perpendicular foliations of R - critical 

points ; if we add the critical points (by taking the closure of 

the leaves) we obtain singular foliations F h and F v of R. 

ii) Horocyclic Quadratic Differentials 

Suppose ~ is a quadratic differential on R with exactly one 

pole of order 2 at p 6 R and no other poles. Suppose further 

that all the horizontal trajectories of ¢ which consist only of 
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regular points are closed curves. In a neighborhood of the pole p 

there is a distinguished parameter 5 so that ~ has the repre- 
d 2 c sentation --~--. When c < 0 we will call such a quadratic 

differential horocyclic (this terminology will make sense after §3). 

~he trajectory structure of ~ near a zero is an n-pronged sing- 

ularity, n ~ 3, illustrated in figure 2.3 for n = 3, 4. Around 

the pole the structure is as shown in figure 2.4. The horizontal 

trajectories are concentric circles around p, while the vertical 

ones are wheel-spokes emanating from p. 

n = 3 n = 4 

Figure 2.3 

horizontal vertical 

Figure 2.4 

The reason we are interested in quadratic differentials is the 

following result of Strebel IS]. 

Theorem 2.2: Let R be a closed Riemann surface of genus g and 

p a point of R. Then there exists a horocyclic quadratic differ- 

ential ~ on R with its pole at p. The differential ~ is 

unique up to multiplication by positive scalars. 

Strebel proves this theorem by solving the followina extremal 
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mapping problem. Let z be a coordinate at p and consider the 

family of all conformal embeddings I: Dp + R where D is a 

I d i s k  o f  r a d i u s  p i n  t h e  w p Z a n e ,  X(O) = p a n d  ~-~ (0 )  = 1 .  

Using a normal families argument he shows that a X exists which 

maximizes p and it is unique up to multiplication by a constant. 

The inverse of 1 is then the distinquished parameter for a 

horocyclis quadratic differential ~ whose nonsingular horizontal 

trajectories are the image under 1 of the circles w = constant. 

The map 1 has the added property that it extends to a map 

of the closed disk ~: Dp ÷ R, exhibiting R as Dp/~ where 

is an identification on ~Dp. More specifically, if {~i } is the 

inverse image under ~ of the zeros of ~, Dp becomes a polygon 

with vertices v i on ~Dp and ~ is an identification of the 

edges of this polygon (figure 2.5). 

C 

c~ 

b 
> ) 

Figure 2.5 

iii) Definition of W: T 1 +~ A - A 
g 

1 
We are finally ready to define the map ~: Tg + A - A - Let 

R be a Riemann surface, p 6 R, and let f: (R,p) ~+ (F,*) repre- 

sent a marking of R; the triple (R,p, If]) determines a point of 

T ~. By applying Theorem 2.2 we obtain a horocyclic quadratic 
g 

differential on R centered at p. Let ql,...,qn be the memos 

of % and let 71,...,ym be the singular leaves of the horizonta~ 

foliation F h determined by %. The Yi are closed horizontal 
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arcs whose interiors consist of regular points and whose endpoints 

lie in {qj}. Each nonsingular leaf of the vertical foliation is 

a loop based at p which is perpendicular to F h and meets ex- 

actly one of the Yi" Two such are homotopic (rel p) in R - {qi } 

if and only if they intersect the same Yi; select one for each 

Yi and call it ~i" Let ~i = f(~i ) ; the collection {~i } is 

then an arc-system in F. (An example is given in figure 2.6 .) 

If Yi has %-length £i and £ is the sum of the £i' we let 

w i : Zi/£ to obtain positive weights on the ~i" The map 

is now defined by 

Figure 2.6 

~((R,p, [f])) = ({~i }, {wi}). 

-! ÷ Tl iv) Definition of n = ~ : A - A g 

To define the inverse n of ~, let ({~i}, {wi}) represent 

a point of A - A where the arc-system {~i } has rank k - I. 

The complement of the dual graph ~ to {~i } is a 2-disk. Split 

F along 9 to obtain a polygon P with 2k-sides, an identifica- 

tion ~ of the edges of P and a surjective map f0: P + F 

taking the center point * of P to p, the boundary of P onto 

and commuting with ~ so that it induces a homeomorphism 

÷ q where i is P/~ ~ F. Let the edges of P have labels Yi' 

paired Y[ ~ and f0(y~)_ = f0(y~) is the edge of 2 to by 

which meets ~.. We will now use the combinatorial data 
+ 1 

(P'{Y7}'{Wi})I to build a marked Riemann surface. 
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Begin with the closed unit disk D = {z £ ~:IIz[;~l} and choose 

a homeomorphism fl: P + D taking * to 0 such that fl(y[) 

and fl(y~) have Euclidean length ~TW i for each i. The edges 
+ 

Yi and Yi map to arcs in ~D which we denote with the same 

symbols. Also let {vi~ be the image under fl of the vertices 

of P. By identifying each 7~ with 7i via the composition of 

the inversion z ÷ i/z with a rotation we obtain a Riemann surface 

R 0 with singularities {qj} = f2({vi}) where f2: D ÷R 0 is the 

quotient map (see figure 2.7). 

4- 

> 

Figure 2.7 

The total angle at each qj is nj~ where nj is the number of 

v i which map to qj. Since these angles are each commensurable 

with 27, a standard argument using branched coverings extends the 

complex structure to the qj and gives a closed Riemann surface R. 

To define the marking f: R + F we merely complete the diagram 

D < P 

Ko -E ) F 

this can be done because the quotient maps f0 and f2 are compa- 

tible. 
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_dz 2 
The expression ~ = 2 defines a quadratic differential 

Z 

on D with a double pole at the origin such that the ~-lengths 

of y~ and y? are their Euclidean lengths ~w.. This means 
l 1 1 

is compatible with the identifications and therefore descends 

to R. The data which # determines is clearly the original 

weighted arc-system ({~i},{wi}), so the map 

~(({~i},{wi})) = (R,p,[f]) 

is the inverse of ~ as required. 

~3 The Hyperbolic Point of View 

Because of the importance of theorem 2.1 we will present an 

alternate proof of it in this section. The original idea for this 

proof is due tO Thurston and was explored by Mosher in [Mo]; the 

details were worked out by Bowditch and Epstein in [BE]. Throughout 

this section Teichm~ller space will be treated as the space of 

marked hyperbolic structures (complete, finite area) on a surface of 

genus g with 1 puncture. 

i) Definition of 

First we define the map m: T 1 ÷ A-A . Let X be a complete 
g 

hyperbolic surface of finite area with one puncture and let 

f: X + F - {*} be a homeomorphism; (X,[fJ) represents a point of 

T I. Begin with an embedded horoeycle C O around the puncture and 
g 

let X 0 be X with the open punctured disk enclosed by C O 

removed~ The function 0: X 0 + {te0} which associates to a point 

of X 0 its minimum distance from C O has level set C t at time 

t; C t is called the ~uasi-horocycle at distance t. For small t 

C t is smooth but in general C t has singularities at those points 

of X 0 which are equidistant from 2 or more points of C 0. These 

singularities form a 1-dimensional connected graph ~ ¢ X whose 

complement is a once-punctured disk (compare ~ in ~2 and see 

figure 2~8). 

Co 
Figure 2.8 
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The construction of the map 0~ is now similar to the construction 

in §2: the geodesics perpendicular to C O form a non-smooth singular 

foliation F of X 0, where each nonsingular leaf of F is the 
v v 

union of two geodesic segments joining Q to C O (figure 2.9). 

For each edge Y. of 9 there is a 
1 

P 

v~ 

Figure 2.9 

unique leaf ~i of Fv perpendicular to 7i ; ei is a smooth 

geogesic in X 0 and has a completion to a bi-infinite geodesic in 

X. Apply the map f and add on the point * to get an embedded 

arc ~i in F based at *; then {ei} is the arc-system associated 

to (X, If]). To determine the weights w look at the leaves of i 
F v which meet the singular points of ~. The intersection of these 

leaves with C O divides C O into segments each of which meets 

exactly one ~i" Some elementary hyperbolic geometry shows that 

the two segments that ~i meets have the same length Zi; set 

w i = li/~ where Z is the sum of the Zl (figure 2.10). It is 

easy to check that ({Zi},{wi }) does not depend on C O or the 

equivalence class of (X,[f]), so ~ is well-defined by the formula 

~((X,[f])) = ({ei},{wi}). 
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Figure 2.10 

1 
ii) Definition of n -I T I = :A-A÷ g 

The inverse map ~ : A-A ÷ T 1 is defined by constructing the 
g 

strips between the singular leaves of the foliation F explicitly 
v 

(figure 2.10 ), and then glueing them together to build X 0. 

The problem will be to match the angles around the singular points 

of F (= the vertices of ~). 
v 

We begin with a model for the combinatiorial structure of X0, 

namely take F 0 = F -(small open disk around *), C O = SF 0 and let 

~i = ei n F 0. Also take the dual graph ~ with edges Yi and vertices 
k 

qj and add to the picture embedded edges ej from qj to C O , one 

for each homotopy class of paths from qj to C O in F 0 - {~i } 

(these correspond to the singular leaves of the foliation Fv). 

Splitting along {e~} divides F 0 into strips, each containing a 

single pair ei' ~- 

It is clear that strips as illustrated in figure 2.11 exist in 

the hyperbolic plane with geodesic sides and horocyclic tops and 

bottoms (curvature ~ i). We choose {wi} very small, but in the 

correct projective class, and restrict to those strips which have 

length w i on top and bottom and are symmetric with respect to 

reflection through ¥ (this was the case for the strips on X 

between the singular leaves of Fv). There is then a 2-parameter 

family of such strips where the 
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W~ 

k / 

Figure 2.11 

parameters are the distances r(q) and r(q') from the endpoints 

q, g' of Y. to the top (or bottom). To glue the strips back 
1 

together we only need to have constructed them so that the lengths of 
k 

the edges ej from the vertex qj to C O are the same in each 

str~p. By symmetry this distance can only depend on qj, so any 

collection of v positive numbers r I .... ,rv(r i = r(qi) and v = 

the number of vertices of 9) gives a singular hyperbolic structure 

on F 0 with horocyclic boundry and with singularities at the vertices 

of ~. The total angle around qi will be denoted @i; the 

surface constructed above will be nonsingular when each @i = 2z. 

The problem is to show this occurs for an appropriate choice of 

rl,...,r v • 
Define ~ : (0,~) v ÷ (0,~)v by setting ~(r I .... ,r v) = (01,...,Gv). 

If qi has valence ni in ~, then since n i ~ 3 the point 

P = (2z, .... 2v) lies well in the interior of the convex hull H of 

the 2 v points (ElnlZ, .... Svnv~), where s i equals 0 or i. 

[ge claim that if the w. are chosen small enough, then im(~) will 
] 

contain enough of H to contain P. In fact, as the w. ÷ 0, im(~) 
1 

will converge to an open set containing all of the interior of H. 

To see this, look at the upper portion (which is isometric to ~e 

lower portion) of a strip as in Figure 2.11. Label the top edge I. 
1 

and let ~(q), ~(q') be the interior angles at q, q' respectively. 

There is a bound to how small r(q) and r(q') can be before Yi 

becomes tangent to li; however, as we shorten I i this bound goes 

to 0. Therefore if we let r(q) and r(q') be near their minimum 

values, as w i goes to 0 ~(q) and ~(q') approach z/2. 
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If follows that (nl~,...,nv~] lies in the limit of the closure of 

im(~) as all w i goes to 0. Now suppose all the r i are short; 

pick il,...,i s and keep ri ,...,r i short while the others are 
I s 

allowed to vary. It is clear that as rj ÷ ~, @j + 0. Furthermore, 

if r(q) is kept short while r(q') grows long in our strip, then 

~(q) increases to a maximum value greater than z/2. From this it 

is not hard to see that the wall of H: (tlnl~,...,tvnv~) where t il = 

... = t. = 1 and all other t. vary between 0 and 1 , lies in 
i s 3 

the closure of im(D) as the w. go to 0. On the other hand, any 
1 

moint in the dual wall where t. = ... = t. = 0 can be reached by 
l I i s 

letting ril' .... ris go to ~. 

By now the picture is clear. Bowditch and Epstein complete the 

arcument by showing that ~ is proper and 1 - i. The intermediate 

value theorem then guarantees that for w small enough, (2~,...,2~) 
1 

lies in im(~) . 
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Chapter 3: The Borel-Serre Bordification of Teichmuller Space 

In this chapter we begin the study of properties shared by 

Teichmuller space and Symmetric spaces by proving the existence of 

a Borel-Serre bordification for T s. 
g 

Let G be a linear algebraic group defined over ~ and let X 

be the symmetric space G/K where K is maximal compact in G. In 

this situation Borel and Serre ([BS]) construct a manifold-with-corners 

with X - ~X = X such that if F c G~ is any arithmetic group, 

then the action of F on X extends to a properly discontinuous 

action of F on X with F\X compact. The manifold F\~ is 

then used to make cohomological computations for F. 

Our goal will be the proof of: 

Theorem 3.1: There exists a piecewise-linear manifold (or a smooth 
S 

manifold with corners) W which is contractible and has interior Tg 

such that the action of the mapping class group F s on T s extends to g g 

a properly discontinuous action of F s on W with W/F s compact. 
g g 

& S 
Notice that W/F~ = is then a compactification of moduli space Mg. 

In chapter 4 we will use W to study the cohomology of F s and 

Ms g 

The first Borel-Serre bordification of T S was discovered by 
g 

HarvGy ([Har]) who constructed W by adding on copies of lower genus 

Teichm~ller spaces (crossed with Euclidean spaces of the appropriate 

dimension) at infinity. We will give a description of Harvey's 

bordification in §2; however, it will be constructed inside Teichmuller 

space, not externally as Harvey did originally. This way it will be 

easy to see how F~ act on W; the only difficult part will be identi- 

fying T s with the interior of W. 
g 

Before we give Harvey's construction, however, we will use the 

triangulation of chapter 2 to find another description of W. The 

advantage of this second point of view is that W is constructed 

combinatorially and this will allow us to analyze the homotopy type 

of ~W (chapter 4, Theorem 4.1). A second advantage of the combin~ 

atorial construction of W is that when s > 0 W retracts FS-eaui - 
g 

variantly onto a spine y c W of dimension 4g-3. This implies: 

Theorem 3.2: The moduli space M s has the homotopy type of a finite 
g 

cell-complex of dimension 4g-4+s, s > 0. In particular, 



163 

Hk(M $) = 0, k > 4g-4+s, s>0 and 

Hk(Mg;@) = 0, k > 4g-5. 

It would be nice if we had an equivariant spine Y c T of dimen- 
g 

sion 4g-5 so that we could remove the U-coefficients in the theorem. 

Thurston has constructed a geometric candidate for Y and shown how 

to retract T onto it; but there is no combinatorial description of 
g 

Y available that would allow us to decide if it has the best possible 

dimension. We will describe this spine in §3. 

~i. The Combinatorial Construction 

In this section we give the first construction of the Borel-Serre 

bordification W of Teichmuller space. Just as in chapter 2 we will 

only consider the case s = 1 to keep the exposition simple (see [H3] 

for the general case). Recall that we have identified A-A with 

T ! g, we will work directly with A in building W and Y. 

i ) Definition of W and Y 

Let A ° be the first barycentric subdivision of A. The complex 

A O has a vertex of weight k for each rank-k arc-system <eo,...,ek > 

in F and an r-cell for each chain of r + 1 inclusions of arc 

systems. The subcomplex A ° is defined similarly; we set yO equal 

to the union of all the simplices of A ° which have no face in A °. 

(By simplex we always mean closed simplex unless stated otherwise.) 

The complex yO is a spine for Teichmuller space, we will see shortly 

that it has dimension 4g-3. Let A °° and A °° be the second 

barvcentric subdivisions of A and A respectively. We define W 

to be the collection of all simplices of A °° which have no face in 

A O° W is a regular neighborhood of yO and the group F 1 acts on • g 

the pair (W,Y°) with both W/F 1 and Y°/FI compact. 
g g 

ii) Description of Y 

First we will study the spine yO. The key fact is that vO is 

the first barycentric subdivision of the dual complex Y of A. Th~s 

allows us to describe Y directly: Y has a k-cell for each rank 

6g-4-k arc-system which fills F and the cell corresponding to 

{~i } is a face of the cell corresponding to {6j} if {6j} c {~i}. 

It is instructive to enumerate the low dimensional cells of Y: a 

0-cell of Y corresponds to a maximal arc-system in F, maximality 

means that the curves of the arc-system triangulate F~ A 1-cell 

of Y corresponds to an arc-system consisting of 6g-4 curves; these 
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curves cut F into 4g-4 triangles and 1 square~ The 1-cell is 

attached to the two 0-cells which correspond to the two possible 

completions of the arc-system to a maximal one (figure 3.1). A 2-cell 

of Y corresponds to an arc-system with 6g-5 curves which cut F 

into either 4g-5 triangles and 1 pentagon, or 4g-6 triangles and 

2 squares. The corresponding 2-cells of ¥ are illustrated in 

figure 3.2. This process continues until we reach the 

Figure 3.1 

/ 

\ 

@ 
\ 

/ I 

Figure 3.2 
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case of an arc-system consisting of 2g curves, since this is the 

minimum number of curves mecessary to fill F. In this situation 

the curves cut F into a single 4g-gon and the possible completions 

to higher rank arc-systems describe cells which fit together to form a 

4g-4 sphere. Y has a 4g-3 cell attached along this 4g-4 sphere. 

As a subset of T~, Y corresponds to those surfaces R with 

basepoint p such that the graph ~ given by the Strebel differential 

has "enough" edges of maximal ~-length. By this we mean that if 

is the largest length of any edge of ~, then we may collapse the 

edges of ~ whose length is less than Z without changing the top- 

ological type of R. The dimension of the (open) cell of Y which 

contains (R,p, [f]) is 6g-3 minus the number of maximal length edges 

of ~. 

The genus 1 case is illustrated in figure 3.3; the vertices of Y 

Figure 3.3 

correspond to cut-systems with 3 curves while the edges correspond to 

cut-systems with 2 curves. In this picture we can see why the vertices 

of A have no dual 2-cells: the link of a vertex is PL-homeomorphic 

to I~ no~ato S 1 as it would have to be. We can also see how to 

1 1 has retract T 1 onto Y as follows. The complement of Y in T 1 
1 

one component for each point of A and T 1 acts transitively on 
1 

these components. Furthermore, every point in T 1 - Y lies on a 

unique geodesic ray which begins on Y and tends to a point of A . 
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1 
Flowing in along these geodesics rays collapses T 1 onto Y; by 

1 
choosing the flow in one component of T 1 - Y and using the action 

1 
1 1 it may be made F~-equivariant. of F 1 to extend it to all of T 1 1 ± 1 

This means the flow descends to moduli space MI; here ~41 is 

homeomorphic to ~ , but is collapsed onto Y/F which is an interval. 

The general case is directly analogous to the case where g = 1. 

The dimension of the complex Y is 4g-3 because the cells in A ° 

have links which are contracible, not spherical, so they have no dual 

cells. The Teichmuller space T 1 F 1 can be -emuivariantly retracte ,~ 
g g 

onto Y by "flowing" along straight lines (in the simplicial structure 

provided by A) away from A onto Y. The construction of these 

simplicial flow lines is somewhat technical and will be omitted (the 

construction requires a proof that the entire complex A is contract- 

ible; see [H3]). 

iii) Description of W 

Now we pass to the study of the regular neighborhood W. Recall 

that the first barycentrio subdivision A ° of A has a vertex for 

each rank k arc-system in F and an r-cell for each chain of r + 1 

inclusions of arc-systems. In symbols we write a k-cell of A ° as 

BO c 61 c . . . c  Bk 

i i 
• . The second where each 6 i corresponds to an arc-system ~o' "'r~n. 

1 

barycentric subdivision A °° has a similar description; its k-cells 

are written 

Yo < Y1 4..< Yk 

where each Yi denotes a chain 

i c ..c B i 
B o • mi 

and Yi < ~+i means the chain for Yi is obtained from the chain 

for Yi+l by omitting some terms. The cell Yo <'''< ~ lies in 

W if and only if the top term B i fill F for every i and it 
m. 

1 

lies in ~W when, in addition, the bottom term 8 i does not fill F 
O 

for every i. Using this description it is not hard now to check 

that W is a PL manifold with boundary by analyzing the links of 

the cells in W-~W and in ~W. For details of this in the general 

case we refer to reader to [H3]; here we will only deal with the case 

g = 1 where we can actually draw W. 
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A picture of W is given in figure 3.4. To keep the illustration 

form getting too cluttered we have drawn only the outline of W and 

the spine Y. To see the full 

\ 

".., i ." 

Figure 3.4 

picture we have pulled out a simplex of A in figure 3.5. The vert- 

rices of the simplex are labeled 0, i, 2, corresponding to three 

curves ~o' ~i' ~2 of a maximal arc-system and the vertices of A °° 

have been labeled using the notation introduced above. The part of 

W contained in the simplex is shaded. 
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L 

~.I~-~,:o,X 

Figure 3.5 

Now we come to the question: In what sense is W a bordification 

of Tl? After all, W was constructed inside T 1 and the action 
g g 

of F 1 is given by restriction not by extension. The solution to 
g 

this is to look once again at the flow we mentioned earlier which 

collapses T 1 onto Y. This flow is Fl-equivariant and can be 

g Tt g parameterized so that it collapses onto Y at time t = i and q 

provides a homeomorphism of T 1 into itself at any time t < I. 
g 

After some rescaling by linear coordinate changes in the simplices 

of A ° we can arrange that the flow at time t = 1/2 gives a 

homeomorphism of T 1 onto W - ~W. 
g 

If we remove Y and add on A the inverse of the flow is well- 

defined and retracts everything onto A m. This provides the necessary 

tool to prove 

1 
Lemma 3.3: ~W is F -equivariantly homotopy equivalent to A • 

g 

We omit the details of the proof (see[H3]). This lemma will be used 

in chapter 4 to prove that the groups r s are virtual duality groups. 
g 
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~2 The Geometric Construction 

In this section we will give a geometric construction of Harvey's 

bordification of Teichmulier space. This construction has the advan- 

tage over the one in §i that it works for any value s { 0 but the 

disadvantage that it does not provide a spine of the correct dimension 

(compare §3). While these two constructions do not give the exact 

same object, they are nevertheless equivalent in the sense that for 

s > 0 there is a map from the combinatorial bordification to the 

geometric bordification which is a FS-equivariant homeomorphism 
g 

on T s and a homotopy equivalence on the boundary. 
g 

i) Geodesic Length Functions 

Let F be a surface of genus g with s punctures and let 

(X,f) represent a point of T s where X is complete hyperbolic of 
g 

finite area and f: X ÷ F is a homeomorphism. For any simple closed 

curve C c F there is a unique closed geodesic y c X such that 

f(y) is freely homotopic to C; y will be simple. We define the 

geodesic length function ~ : T s + ~ + by associating to (X,f) 
C g 

the length of y. It is a standard result that the function Z C is 

C for every C. 

Before we define W we state (without proof) an elementary 

result from hyperbolic geometry. 

Lemma 3.4: There exists a number ~ > 0 such that if X is any 

complete hyperbolic surface and ¥i' Y2 are two simple closed geo- 

desics of length ~ s then ~i and Y2 are disjoint. 

ii) Definition of W 

Fix ~ > 0 as in the lemma and set: 

W = {(X,[f]) 6 ~: Zc((X,[f]))~ c for every simple Closed curve C ¢ F} 

It is clear that the action of F s on T s restricts to W where it 
g g 

is properly discontinuous. A theorem of Mumford says that W/F s 
- g 

is compact. We summarize the main facts about w. 

Proposition 3.5: W is a real analytic manifold-with-corners which 

admits a p r o p e r l y  d i s c o n t i n u o u s  a c t i o n  o f  F s s u c h  t h a t  W/F~ i s  g 
compact. There is a diffeomorphism W - ?W ÷T s which commutes 

g 
with the action of ~s. 

g o 
The interior of W is W = {(X, If]) : Zc((X, If])) > e for 

O 

every C} and W - W = ~W is {(X, lf]) : Ic((X, [f])) = e for at 

least one C}. It is not hard to see that ~ is open in Ts: 
g 
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let (X, [f]) ~ ~ and suppose 7 l' .... 7 t c X have the same length 

and have shorter length than any other closed geodesics in X. 

Since the length spectrum on X is discrete there is a neighborhood 

of (X, [f]) in T s so that if (X', [f']) lies in this neighborhood 
g 

l ! 
and has shortest curves Yl' .... 7n then each f' (7~) is freely 

homotopic to some f(yj). If we put Cj = f(Yj) then the intersection 
o 

o f  t h i s  n e i g h b o r h o o d  w i t h  N ~C ( ( a , ~ ) )  l i e s  i n  W • 
z 

i i i )  The  S t r u c t u r e  o f  ~W; D e f i n i t i o n  o f  Z s 
g 

The  f i r s t  s t e p  i n  a n a l y z i n g  ~W i s  t o  d e f i n e  a new s i m p l i c i a l  

c o m p l e x  Z s.g The  i s o t o p y  c l a s s  o f  a f a m i l y  {C O . . . . .  Ck} o f  d i s j o i n t  

S i m p l e  c l o s e d  c u r v e s  i n  F w i l l  be  c a l l e d  a r a n k - k  c u r v e - s y s t e m  i f  

t h e  c u r v e s  s a t i s f y  t h e  n o n t r i v i a l i t y  c o n d i t i o n  t h a t  no  C i i s  
f r e e l y  h o m o t o p i c  t o  a p o i n t  a n d  no  C. a n d  C. a r e  f r e e l y  h o m o t o p i c  

1 3 
t o  o n e  a n o t h e r  ( i # j ) .  The c o m p l e x  Z sg h a s  a k - s i m p l e x  <C O , . . . , C k >  

< ' ' e x a c t l y  when  {C.}  c {C!} is a face of C0,...,C~> z 3 

Since a curve system can contain at most 3g-3+s curves, Z s has 

g Z 1 dimension 3g-4+s. We will show in Chapter 4 that for s = 1 
g 

is homotopy equivalent to A~ (this is also true for s > i, but 

we have not given the definition of A in this case; it can be 

found in [H3]). 

The complex Z s will act as parameter space for ~W: suppose 
g 

C = {Co, .... C k} is a rank-k curve-system in F. Define 

T C = { (X, [f]) 6 TS: Z ((X, [f])) = ~ for every i} 
g C 

1 

When k is maximal (=3g-4+s), the curves of C form a partition of 

so we may use them to define Fenchel-Nielsen coordinates on T s. 

These coordinates provide an identification of T C with ~ 3g-3+sg 

since only the twist parameters can vary. When k is not maximal 

we use the fact that C can be included in a maximal curve-system 

to see that T c is again homeomorphic to Euclidean space. This 

time the lengths of the extra curves may vary so T C has dimension 

6g-5+2s-k (codimension k+l). 

When the curve-system C has rank O, the subspace T C has 

codimension i; these subspaces act like walls which cut W out of 

T s. Not all of the wall T C will border W; define g 

T C+ = { (X, If]) 6 TC: ZC' > ~ whenever C' ~ C } 

and 

--+ 
T C = {(X, If]) ( TC: ZC, £ s for every C'}. 
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~W = U TC + ~ + 
C rank 0 = TC 

By lemma 3.4, if C = {C} and C' = {C'} are two rank-0 curve- 

--~ + if and only if C and C' systems then T intersects TC, 

are isotopic to disjoint curves, and in that case TC + n TC +, = 
--+ 
TCUC," 

Each of the spaces T C may be thought of as a kind of Teichm~ller 

space~ let F c = F - C (we treat the new holes as punctures), then 

T c may be identified naturally with ~ k+l × (Teichm~l!er space of 

FC) where the first factor corresponds to the twist-parameters on 

the k+l curves of C. Using flows like the one we will construct in 

+ may be identified with T C and T/ with the Borel-Serre i¥, T c 
bodification of T C. In particular, this tells us that T is 

contractible and proves: 

S . , 
Lemma 3.6: ~W is F -equivarlantly homotopy equivalent to the complex 

g 
Z s . 
g 

Our analysis of W is now easy to complete. Each point of 

+ so that if (X, [f]) 6 U, then the T C has a neighborhood U in T s g 
curves having the shortest length in X lie in C. If we complete 

C (arbitrarily) to a partition, the resulting Fenchel-Nielen coordin- 

ates identify U n W with ~n x Q where N = 6g-7+2s-k and Q 

is the upper orthant in ~k+l where ZC ~ 0 for every C i in C. 
1 

These coordinates give W the required structure of manifold-with- 

corners (see [BS]). 

iv) Deformation of T s onto W - ~W -- g 

To finish the proof of Theorem 3.6 we must show how to map T s g 

onto W - ~W equivariantly. This will be done by constructing a 

flow on T s which moves the surfaces which have short curves in a 
g 

direction which increases the lengths of those curves, but fixes the 

surfaces which do not have short curves. This is easy to do ,one 

curve-system at a time using Fenchel-Nielsen coordinates; it is 

considerably harder to find a FS-equivariant flow which simultaneously 
g 

increases the length of all short curves. The one we describe here 

is due to Scott Wolpert. 

Begin by selecting e > o such that 3e satisfies the conditions 

of Lemma 3.4; that is, any two closed geodesics of length S3e are 
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C ~ disjoint. Choose a function ~: [0, ~] ÷ [0,i] such that 

¢[0,g] ~ i, @[2s,~) ~ 0 

and ¢ is decreasing on [E,2E]. 

The flow will be constructed using the gradients of the functions 

ZC" To regulate the flow we need a lemma: 

Lemma 3.7: There exist functions < C 6 C~ (Tg), on@ for every isotopy 

class of simple closed curve in F, such that at each point (X, [f]) 

of T~, the formula 

Kc(grad ~C ) Z C, = ¢(~,C, ) 

C:ZC~3E 

holds for every C' such that ZC, (X, [f]) s3e. 

Proof: Let C I, .... C n be disjoint simple closed curves in F. Twist- 

on T s (see chapter 5). ing on C I generates a vector field tci g 

The set {C i} can be completed to a partition of F where the tci 

become coordinate vector fields in the resulting Fenchel-Nielsen 

coordinates; this implies the tci are linearly independent. 

Define g( ) to be the Weil-Peterson metric on T s and let , g 

be the corresponding 2-form (~ (v,w) = g(Jv,w) where J is the 

complex structure on Ts). The duality formula (again see chapter 5) 
g 

of Wolpert says 

~ (tc,) = g(it C, ) = -dZ C 

In particular, this means that grad i C = it C and tells us that 

(grad £ci)d ~j = g(grad ZCi, grad Z Cj) = g(itc "itcl j ) = g(tc''tc')'l 3 

Linearly independence of the tci then implies that the matrix 

((grad iC )dZc ) is positive definite and therefore nonsingular. 
1 1 

From this we see immediately that the functions <C exist at 

each point (X, If]) 6 T s such that Zc(X,[f]) ~ 3e. It is not hard to 
g 

check that <C = 0 if Zc(X, [f]) > 2s so setting K c = 0 where it 

is not already defined extends K c to all of T s. Using the fact 
g 

C ~ C ~ that £C and g( , ) are one proves easily that R C is . D 

Now we can define the flow on ~. Let V be the vector field g 
whose value at (X, [f]) is given by 

V = [ K C(grad i C) . 
C : £C<3 e 
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The flow ~t generated by V is clearly FS-invariant; the length 

d~ C g 
functions satisfy -~- = @(ZC). At time t = E, ~ is the required 

differomorphism of T s onto W - ~W. 
g 

0 
§3. Thurston's Spine for T 

g 

The method which we described in §i for constructing a spine 

y c T 1 may be adapted to work for any value of s ~ I. It does not, 
g 

however, work when s = 0 and there is at present no known combina- 

torial description of a spine for T O . Thurston has given a geometric 
g 

description of what ought to be the spine in this case and shown 

0 onto it F~-equivariantly [T2]. Unfortunately we how to retract Tg 

are unable to say whether it is best possible (lowest dimension) as 

we could in the earlier case. 

The subspace Y¢T O is easy to describe; it consists of all 
g 

marked hyperbolic surfaces X which have the property that the 

shortest closed geodesics yl,...,yn (length Y1 ='''= length Yn 

and all other closed geodesics are longer) fill the surface X. 

It is easy to see that two shortest closed geodesics can meet in 

at most one point so the number n is bounded for fixed g. Notice 

that when (X,[f]) lies in Y all the curves in {yi } must be 

nonseparating, otherwise they could not fill X. This means that 

a flow on Teichm~l!er space which collapeses everything onto Y 

cannot preserve shortest geodesics; any separating shortest geodesic 

must end up longer than some non-separating one. 

Thurston constructs a flow of T O onto Y as follows. Let 
g 

X be a hyperbolic surface with marking f and suppose {Mlt...,Yn} 

is a set of simple closed geodesics in X which do not fill X. 

For later use we set A = {f(7i)}. Choose a simple closed geodesic 

y c X such that each Yi is either disjoint from y or equals 

and let X 0 be obtained by splitting X along y(X 0 may be dis- 

connected). The surface X 0 is naturally included in a complete 

hyperbolic surface X 1 as a deformation retract (X 1 has infinite 

area and flares out at ~X0). Any geodesic arc ~ properly imbedded 

in X~ extends uniquely to a bi-infinite geodesic in X 1 which is 

embedded; split X 1 open along this geodesic line and insert a 
2 

strip fro m ~ bounded by two nearby lines. The surface X 0 

is replaced by a new surface with the property that any closed 

geodesic in X 0 which meets ~ is now longer. If we perform this 

operation on several arcs every geodesic in X 0 can be lengthened. 
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By matching the change in the lengths of the two curves of SX 0 we 

may reglue to form a new surface which has the property that any 

geodesic not meeting 7 has been lengthened (as has y). The 

infinitesimal version of this construction defines a vector field 

on all of T O which we denote V A. For completeness, when i is 
g 

a finite set of simple closed curves which fill F we set V i = 0. 

The next step is to patch these vector fields together with a 

partition of unity. For any s > 0 and any i as above define 

U A to be the set of all (X, [f]) 6 T O such that 
g 

{C: Zc((X, [f])) S L x + I i l s }  

is exactly A, where Iil denotes the cardinality of A and L x 

is the length of the shortest geodesic in X. For ~ small enough 

0. choose B such that for the sets U A form a covering of Tg. 

every (X, [f]) the number of closed geodesics of length less than 

L x + 1 is not more than B and let e < I/B. Let yl,...,yn be 

the geodesics on X of length less than L + 1 with Z(yi ) 

Z(Yi+ I) for every i. If there is a first i > 1 such that 

~(yi ) > L + ~i, set A : {f(yl ) , .... f(Ti_l)}; otherwise set 

A = {f(yl ), .... f(yn)}. In either case (X, [f]) lies in U i. 

Now we choose a partition of unity {I A} subordinate to {UA} 

and define a vector field V 6 on T 0 by the formula g 

V e = ~ lAVA" 

This makes sense because if two sets U A and U A, intersect, then 

either i c A' or A' c A. The flow generated by V is F~-equivar- 

iant and deforms TO into 
g 

Y = {(X,[f]) : {C:ic((X,[f])) < L X + e] fills F}. 

Letting ~ go to zero gives the desired retraction onto Y. 
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Chapter 4: How Close is the Mapping Class Group to Being Arithmetic? 

Let G be an algebraic subgroup of GL n defined over ~, G@ 

the group of D-points of G and G z = G~ n GLnZ. A subgroup F < G~ 

is called arithmetic if it is commensurable with G z. The mapping 

class groups have many properties in common with the arithmetic groups. 

In the following list (taken from [Se i]) F denotes an arithmetic 

group or a mapping class group: 

(i) F is finitely presented, 

(2) F has only finitely many conjugacy classes of finite subgroups, 

(3) F is residually finite, 

(4) F is virtually torsion free, 

(5) for any torsion free subgroup F of finite index in F there 

exists a finite complex which is a K(F,I), 

(6) the virtual eohomological dimension (Vcd) of F is finite. 

References for properties (1)-(6) when F is arithmetic may be found 

in [Sl] . For the mapping class group see [Wa] and [HT[ for (i), [Mc] 

for (3); (4), (5) and (6) may be proven using the complex Y of 

Chapter 3 (although all three are well-known and follow from more 

standard results). 

In §I of this chapter we will establish for the mapping class 

group the next property on Serre's list for arithmetic groups: 

(7) Hq(F;Z[F]) is zero except for a single value of q(q = vcd(F)) 

for which it is a free Z-module I; thus F is a virtual duality 

group as defined by Bieri and Eckmann [Bi Ec]. 

This is Corollary 4.2 below. When F is arithmetic in an alge- 

braic group G which is simple and has ~-rank r~ ~ 2, the following 

holds: 

(8) Every normal subgroup of F is either finite index, or is finite 

and central. 

This property fails for F s, because the Torelli group T s = Ker 
g g 

(F~ ÷Sp(2g;Z)) is normal and is neither finite nor finite index. In 
S 

§2 we will use this to show F is not arithmetic in G when 
g 

r~(G) > i. Concerning the possibility that F sg might be arithmetic 

in G with r~(G) = I, we will also see in §2 that vcd F sg turns 

out to be the wrong value for this to be true (g ~ 3). Thus we will 

have proven the result (announced first by Ivanov) that F s is not 
g Fs 

arithmetic for g ~ 3. In fact, one extra step will show that g 

cannot be a lattice (discrete, cofinite volume) in any algebraic 

group G. The more general question of whether F s admits any faith- 
g 
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ful representation at all in an algebraic group remains open (compare 

[MCca], [LI] and [L2]) . 

§i. The Mapping Class Group is a Virtual Duality Group 

Let F be an arithmetic group in a linear algebraic group G and 

let x be the symmetric space associated to G. If X denotes the 

Borel-Serre bo~dification of X, then the action of F on X extends 

to a properly discontinuous action on X (in fact the action of G O 

extends to X). The boundary 8X is homotopy equivalent to the Tits 

building of G, which in turn has the homotopy type of a wedge of d 

spheres where d = r (G) - i. In particular, Hd(~X) = I, the 

Steinberg module of G~, is free abelian of infinite rank (unless F 

is co-compact, in which case it has rank i). It follows that when F 

is torsion free, 

Hk(F;ZF) ~ Hk(x) ~ Hn k l (~) ~Ii' k = n-d-I 

c - - , otherwise. 

(n = dim X, H* : eohomology with compact supports), so that F is a 
C 

duality group in the sense of Bieri and Eckmann. This is equivalent 

to the statement that if M is any ~F-module, then 

Hk(F;M) ~ Hv_k(F;M ®!) 

where v = n-d-i is the cohomological dimension of F. (The cohomo- 

logical dimension of F (cd(F)) is the smallest integer v such that 

there exists a ~F-module M with Hv(F ;M) ~ 0. 

To follow the outline above for the mapping class groups it remains 

only to show: 

Theorem 4.1: The boundary ~W is homotopy equivalent to a wedge of 

d-spheres where d = 2g-2 when s = 0, g > 0, d = 2g-3+s when s > 0, 

g > 0 and d = s -4, g = O. 

An equivalent result is that F s is a virtual duality group: 
g 

Corollary 4.2: If F is any torsion-free subgroup of finite index in 

F s then 
g 

Hk(F;ZF) ~ (I = Hd(~W) , k = n-d-I 

<0 , otherwise, 

where n = dim T s = 6g-6+2s. Thus 
g 

Hk (F ;M) -~- Hv_k (F ;M ~I) 



177 

with 

V = n-d-i = 

44g-5 s = 0 and g > i, 

g-4+s s > 0 and g T i, 

1 s = 0, g = I, 

s-3 s > 2, g = 0. 

The integer v is the virtual cohomological dimension (vcd) of 

Fs; that is, v is the cohomological dimension of any torsion free 
g s 

subgroup of finite index in F • 
g 

i) Reduction to the case where s = 0. 

Let 

l+ A÷ B+ C÷ 1 

be an exact sequence of torsion free groups. When A and C are 

duality groups, Bieri and Eckmann prove that B is also a duality 

group, cd(B) = cd(A) + cd(C) and the dualizing module I B is 

isomorphic to I A ® I C. We apply this to the exact sequence (derived 

from (Sl) in Chapter i) : 

i÷ ~I(F s) ÷ ~s+l ÷ is ~ i (s 2) 
g g g 

where ~s is torson free, finite index in F s and ~s+l -l.~s) g g g =n (g 

has the same properties in F s+l. This means that for fixed g if we 
0 g 

show that F is a virtual duality group then the same will hold for 
s g 

F , s > 0. It also means that for fixed g > 1 Theorem 4.1 need only 
g 

be verified for s = 0. 

We will prove Theorem 4.1 by induction on g. To start the induc- 

tion we note that the cases g = 0, i, and 2 follow from more 

n0 1 and 3 is trivial (as are I 0 , F 0 elementary results: For g = 0, F 0 

F~) so induction on s using (S 2) establishes Corollary 4.2 and 

s 0 FI SL2Z therefore Theorem 4.1 for all F0, s a 3. For g = i, F 1 m 1 ~ 

which is arithmetic; applications of (S 2) with s { 1 give the general 

case of F1 .s For g : 2, it is known that F20 is an extension of a 

6 0 which is finite group by F 0. Any subgroup of finite index in F 2 

6 having torsion free will map isomorphically onto a subgroup of F 0 

0 thus the same properties. This proves 4.2 and therefore 4.1 for F2, 
s 

for all F 2 . 

From here on we will assume g ~ 2. In view of the results of 

Chapter 3, §2 and the comments above, proving Theorem 4.1 is equivalent 

to showing Z 0 ~ vS 2g-2. 
g 

ii) Z 0 is 2g-3 connected. g -- 
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The subcomplex A c A was defined to be the simplices of A 

corresponding to arc-systems which do not fill the surface F. It 

takes 2g curves to fill F so A contains the 2g-2 skeleton of 

A. It can be shown that A ~ W so A is contractible and A is 

2g-3 connected. 

By forgetting the base point we may define a map q : Z 1 Z 0 
g g 

Z 0 Z 1 This map has a right inverse ~ : ÷ defined as follows. Choose 
g g 

a hyperbolic metric on F so that all simple closed curves in F are 

represented by geodesics. Select a point p ( F such that no simple 

closed geodesic passes through p; this gives a map from the curve 

systems in F to the curve systems in F -p and defines ~. Clearly 

q o~ = i, so q, is surjective on each ~k" 

By the remarks above the following will imply Z 1 and Z 0 are 
g g 

2g-3 connected. 

Lemma 4.3: The complexes A and Z 1 are (equivalently) homotopy 
g 

equivalent. 

Proof: If C c F -{p} is any simple closed curve, define 
g 

AC = {<~0'''''ek > :~i n C' is empty for some C' isotopic to C}. 

Clearly A C c A m and ~ A C = A . A c may be identified with the 

arc-system complex of the component of F-C which contains p; it is 

therefore contractible. Finally, for any C 1 ..... C k (disjoint or not), 
k 
N ACi is either empty or contractible. These facts mean that 

i=l 
A ~ N, the nerve of the cover {Ac}. 

Let C0,...,C k be a collection of k + 1 simple closed curves 

(not necessarily disjoint, but nontrivial and nonisotopic) in F -p. 

Isotope the curves to have minimal geometric intersection and let 

F(C0,...,Ck) = F - (open regular neighborhood of UCi). Set 

F0(C0,...,Ck) equal to the component of F(C0,...,C k) that contains 

p. The nerve N may be described combinatorially as the complex which 

has a k-cell [C O .... ,C k] for each isotopy class of simple closed 

curves C0,...,C k such that F0(C0,...,Ck) is not simply connected 

and has the usual face relations given by inclusion. From this des- 

cription it is clear that Z 1 may be identified with a subcomplex of N. 
g 

Let N ° and Z ° denote the first barycentric subdivisions of N 

N ° Z ° and z I respectively; we define a retraction r : + as follows. 
g 

Given a collection C0,...,C k, set ~'F(C0, .... C k) equal to the 

curve-system in F obtained from ~F(C 0 ..... C k) by omitting null- 

homotopic curves and redundancies. Let B(C 0 .... ,C k) denote the 

barycenter of the cell [C O , .... C k] of N and, when C O .... ,C k 
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1 
form a curve system, the barycenter of the cell <C0,...,Ck> of Z . 

g 
Now set r(B(C0, .... Ck)) = B(~'F(C 0 .... ,Ck)) and extend linearly. 

Clearly rIZ ° is the identity. To see that r ~ 1 triangulate 

N ° × I by identifying N ° × 0 and N ° × 1 with N ° and joining each 

[C O ] < [C I] <...< [C k] 

in N ° × 1 to each chain 

[%1 <...< [c[] 

in N ° x 0 whenever C~ c C O . Since 8'F(C0,...,C k) is disjoint from 

each C i it is clear that 1 IN ° × 0 ~ r IN ° × 1 extends linearly to 

N ° × I, providing the needed homotopy. 

iii) Z 0 has the homotopy type of a 2g-2 complex 
g 

To finish the proof of Theorem 4.1 we must now show that Z 0, 
g 

which has dimension 3g-4, has the homotopy type of a complex of 

dimension 2g-2 (recall we are assuming g > 2). Let Z ° denote the 

first barycentric subdivision of Z 0 we build Z ° piece by piece, g' 

including the subcomplexes spanned by vertices of descending weight. 

Let X k be the subcomplex of Z ° consisting of simplices whose 

vertices have weight >_k. Assume Theorem 4.i for all Z s with h < g 
h 

and assume that Xk+ 1 has been shown to be homotopy equivalent to a 

complex of dimension <2g-2. X k is obtained from Xk+ 1 by adding the 

simplices which have exactly one vertex of weight k (since no two 

vertices of a simplex of Z O have the same weight). Let V be a 

vertex of X k - Xk+ 1 corresponding to the curves C0,...,C k. If 

F I,...,F t are the components of the surface obtained by splitting F 

along {C i} and Z(F i) denotes the complex of curve-systems on F i, 

then the link of v in Xk+ 1 is easily identified with the join of 

the Z(F i) . If F i has genus gi and r.l boundary components, then 

g = [gi +k-t +2 with gi < g for all i and [r i = 2k +2. Since 

each Z (F l) is by assumption homotopy equivalent to a complex of 

dimension <2g i +r i -3, the link of v is homotopy equivalent to one 

of dimension <Z(2gi+ri-3) + (t-l) = 2g-3. This verifies that X k is 

homotopically of dimension <2g-2 for each k; since X 0 = Z O the 

proof of Theorem 4.1 is now complete. 

§2. The Mapping Class Group is not Arithmetic 

Suppose that the group F = F s is an arithmetic subgroup of the 
g 

linear algebraic group G. Then Corollary 4.2 can be combined with 
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the results of Borel and Serre to see that if n is the dimension of 

the symmetric space X associated to G, then n - F@(G) = vcd(F) . 

The number F~(G) can be computed directly from F; it is the maximal 

rank of an abelian subgroup of F. In [BLM] this is shown to be 

3g-3+s, so n = 7g-8 when g > i, s = 0 and n = 7g-7+2s for g > 0. 

Thus Teichm~ller space cannot be identified with X when s ~ 0, 

g > 2 or s > 0, g = 2. 

This still does not mean F cannot be arithmetic;to prove it cannot 

be we argue as follows (this argument was shown to us by Bill Goldman). 

Suppose first that G has rank 1 so that X is hyperbolic space. Two 

elements of infinite order in the group of isometries of X then 

commute if and only if they have the same fixed point set on the sphere 

at ~. This means that comm~uting is an equivalence relation on the 

elements of infinite order in F. For the mapping class group this is 

absurd: simply take curves C O , C 1 and C 2 with C O disjoint from 

C 1 and C 2 but C 1 intersecting C 2 (say in one point). If T i 

denotes the Dehn twist on C i, then T 0 co~f~utes with T 1 and T 2 

but T 1 and T 2 do not commute. 

An alternative argument for the rank 1 case goes as follows. If 

F is cocompact, the dualizing module I will be isomorphic to Z. 

It is not hard to show this is not true; on the contrary, it has 

infinite rank. If F is not cocompact it must at least be cofinite 

volume. The V-manifold X/F will have cusps, modeled on horoballs/F. 

The boundary horosphere [ of one of these horoballs has a Euclidean 

structure and since [/F is compact it is covered by an n -i dimen- 

sional torus. This implies F has an abelian subgroup of rank n -i 

which is impossible by the dimension count above. 

Next consider the case where G has rank ~2. As mentioned 

earlier, property (8) and the existence of the Torelli group say 

that G cannot be simple. Suppose then that G is semisimple; a 

stronger version of (8), also proven by Margulis, says that if F is 

an irreducible lattice in G, then once again any normal subgroup in 

G is either finite (and central) or finite index. This means F must 

be reducible, so there is a subgroup of finite index in F which is 

a direct product of infinite groups. An analysis of the centralizers 

of the elements of F (compare [MCcar]) shows this is not possible. 

Finally, if G is not semisimple we need to look at solvable subgroups 

of F. A theorem of Birman, Lubotsky and MCCarthy [BLM] says that 

every solvable subgroup of F is virtually abelian. Such a subgroup 

will not be normal in F, so the map G ÷ G/rad(G) imbeds F in the 

semisimple group G/rad(G) ; this is impossible. 
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Chapter 5. The Weil-Peters~onGeometry of Teichmuller Space 

In this chapter we will describe some results of Scott Wolpert on 

the geometry of Teichmuller space ([Wol I]-[Wol 5]). The theme we 

will be following is the counterpart to that of chapter 4, namely: 

I{ow close is Teichm~ller space to being a symmetric space? We will 

translate this into the question: flow much of the formal geometry 

of a symmetric space does Teichm~ller space have? The metric we 

s is the Weil-Peterss~n metric;it is Kahler and we will study on Tg 

will see that its He~mitian and symplectic geometry arise from the 

hyperbolic geometry of the surface. The metric is also invariant 

s. on M s is it not under the action of the mapping class group Fg, g 

complete, rather it admits a continuous extension to the Deligne- 

Mumford compactification ~ s ([Mas]). The corresponding Kahler 
g 

form ~ extends to ~ on ~ s ; in §3 we will show how Wolpert 
_wp wp g 

uses ~ to give an analytic proof that ~ s is projective. 
wp 9 

~i. The Symplectic Geometry of the Weil-Petersson Form 

We begin with the definition of the Weil-Peter~son metric on T s. 

Let R be a ~iemann surface and let 1 be the hyperbolic line 

element on R. Teichmuller space is a complex manifold and the 

holomorphic cotangent space at R may be identified with O(R), the 

space of integrable holomorphic quadratic differentials on R (tensors 

of type dz ~dz). If @,@(Q(23, the Hermitian product 

1 [ i-2 <¢,$> = ~ ¢ $ 

R 

defines the Weil-Petersson metric at 

corresponding Kahler form is denoted 

is to give Wolpert's formula for 
wp 

coordinates. 

R. This metric is Kihler; its 

Wwp. The first thing we will do 

in terms of Fenchel-Nielsen 

i) w in Fenchel-Nielsen Coordinates. 
wp 

Let C = {Cl,...,C n} be a maximal curve system in F and let 

(~i,Zi) be the corresponding Fenchel-Nielsen coordinates for T s. 
g 

Theorem 5.1 Wwp ~ d~ i ^ d 7 . .  
i 1 

Several things about this statement are surprising. First of all, 

the Weil-Petersson metric is K~hler, while Fenchel-Nielsen coordinates 

are only real analytic; the simplicity of the formula is therefore 

unexpected. Secondly, the Weil-Petersson metric is invariant under 

the action of the mapping class group, so ~ d£ i ^ dT i must be also. 

Actually, Theorem 5.1 says more since it shows that [ d£ i ^ dT i is 
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independent of the curve-system C. By contrast the change of 

coordinates from one curve-system to another can be quite complicated. 

Theorem 5.1 is a consequence of the duality formula which was 

used already in chapter 3. To state this we must first define the 

Fenchel-Nielsen twist vector fields t C. Let (X, [f]) represent 

a point of Teichm~ller space with X hyperbolic and let e be the 

closed geodesic on X representing the free homotopy class f-l(c) 

where C < F is a nontrivial simple closed curve. Cut X along ~, 

rotate one side of the cut and then reglue the sides. The hyperbolic 

structure in the complement of the cut extends naturally to a hyper- 

bolic structure on the new surface. Varying the amount of rotation 

s and the twist vector field t C (sometimes gives a flow on Ig 

denoted t ) is the tangent vector field to this flow. We will 

always normalize t c so that the hyperbolic displacement of two 

points on opposite sides of the geodesic e increases at unit spped 

(thus for example a full rotation about ~ occurs at time t = 

length of ~). 

Let C c F be any nontrivial simple closed curve. The Duality 

Formula now states: 

Theorem 5.2: Wwp(t c, ) = -dZ c . 

ii) Proof of Theorem 5.2 

To prove this formula we introduce H(R), the space of harmonic 

Beltrami differentials on R. An element ~ 6 H(R) is a tensor of 

®d~ and is harmonic with respect to the Laplace-Beltrami type 

operator for the hyperbolic metric on R. The holomorphic tangent 

space at R may be identified with H(R) and the Weil-Petersson 

i s metric on has the dual expression 
g 

<~,v> = f ~ I 2 , 

R 

~, v 6 H(R) and 1 the hyperbolic line element as before. 

The underlying Riemannian structure to < , > is of course 

given by the symmetric tensor 

g(~,v) = 2Re<p,v>, 

and the Weil-Petersson K~hler form is defined by the equation 

~wp(P,v) = g(a~,v) 
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where J is the complex structure on T s. This means that ~wp(tC, ) 
g 

is the Riemannian dual of Jt C- 

The next step is to write down formulas for t C and dZ C in 

terms of Poincare series. Let X = ~ 2/ r where F is Fuchsian 

and let ~ be the simple closed geodesic representing C in X. 

When A =(~ ~) represents ~ in F < PSL2~ , define ~ A(~) = 

(tr2A-4) (¢~(d-a)~-b) -2. If < A> denotes the infinite cyclic group 

generated by A, we set 

B 6~<A> B-lAB 

this is a relative Poincare series and it converges uniformly and 

absolutely on compact sets. A formula of Gardiner [G] expresses 

di C in terms of @C: if p 6 H(X) represents a tangent vector, then 

2 f Re(d ~(~)) = ~ Re X ~@C" 

2 0 On the other hand, Wolpert In particular, we may write -d ~ = -~ C" 

uses the Bers embedding of T s into the vector space of F invariant 
g 

holomorphic quadratic differentials to show that 

tc = i (imz]2 [C 

[Wol i]. Therefore Jtc = -~ (Imz)2 OC so -dZ c is also the 

Riemannian dual to Jt C. Theorem 5.2 follows. D 

iiD Proof of Theorem 5.1 

Next we derive Theorem 5.1 from 5.2. First note that if {C i} is 

a partion of F giving Fenchel-Nielsen coordinates {Ti,Zi}, then 

the twist vector fields tc are just the coordinate vector fields 
z 

~ . Furthermore, the duality formula implies that ~ is invariant 
~. wp 

l 
under any twist flow. Combining this with the fact that the coordinate 

~ } commute, it follows that the coefficients vector fields { T.' ~Z. 
1 1 

of Wwp in the basis {dTiAdTj,dZiAd~j,dZiAd£j} are independent of T i. 

From this one can show that it suffices to compute ~ at those 
wp 

surfaces X which admit an orientation reversing isometry p fixing 

the partition {C i} (P(ei) = ~i for each ~i where {~i } are the 

geodesics representing {C i} on X). The functions ~C. are in- 
1 

variant under p since the length of a curve does not depend on the 

orientation of the surface. On the other hand, the twist parameter 
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T. does depend on this orientation since right and left are re- 
1 

versed by p. One makes this precise by showing: 
n 

#*d~c. = d~c. and p*dTc. = -d~c. + ~ d~c, 
1 i 3 ] ] 

for some integers n.. Since p corresponds to an element of the 
3 

mapping class group which acts antiholomorphically, 

p*W = --~ 
wp wp 

Now ~ncethe coefficients of dT. A d~. and dZ. Adz. are even 
l ] i ] 

relative to a P substitution, while ~ is odd, these coefficients 
wp 

are identically zero. Finally, the fact that the coefficient of d£. 
1 

A dT. is the Kronecker delta 6.. follows directly from 5.2. D 
3 13 

iv) Consequences of Theorems 5.1 and 5.2 

The first consequence of Theorem 5.2 is that the vector fields t C 

are Hamiltonian for Wwp; that is, the Lie derivative LtcWwp vanishes. 

This follows from the general formula ~i~wp = (dwwp) (X, , ) + 

f WWp d(Wwp(X )), the fact that is Kahler (thus dwwp 0) and the 

duality formula. Thus we see that Wwp and the vector fields t C 

define a symplectic geometry on M s and Y s (later we will see that 
g g 

w extends smoothly to ~ s where it remains symplectic) . By 
wp g 

analogy with symmetric spaces we may use w to define a Lie 
wp Ts 

algebra: just take the vector space of all vector fields X on g 
such that Lxwwp = 0. It can be shown that this Lie algebra is 

generated over the C ~ functions by the Ltc; however, it is infinite 

dimensional• 

An idea suggested by the preceeding Theorems is that the hyperbolic 

geometry on the surface is reflected in the symplectic geometry of 

Teichm~ller space. There are three main formulas that come out; they 

are the cosine formula, the sine-length formula and the Lie bracket 

formula. We state them without proof. 

Cosine Formula 

Let C 1 and C 2 be two nontrivial simple closed curves in F; 

then at X ~ Y s 
g 

= ~ cOS@p 
tCl~C2 WwPl tel' tc2 I= p(~#B 

where ~ and B are the geodesics in X representing C~ and C&, 

~#B = ~ N8 unless a = B in which case it is empty, and @ denotes 
P 

the angle between ~ and B. Here tCIZC2 means the Lie derivative 

by the vector field ut~l of ~ 2 
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Sine-Length Formula 

Let CO, C l, C 2 be three nontrivial simple closed curves in F 

and let e, 8 y represent CO, C 1 C 2 respectively in X E T s. Then r , g 

~ ~ m I m 2 

tc0tcl£C 2 = e +e sin @ sin @ 
I ~ P q 

(p,q)E~#yxB#y2(e 7-1) 

> ~ n I n 2 
e +e 

m eZ~_l) 
(r,s)6~#SxS#'{ 2 ( 

sin @ sin @ 
r s 

where the two possible routes from p to q along y have length 

m I and m 2 and the two routes from r to s along B have length 

n I and n 2 . 

Lie Bracket Formula 

ZC 
Renormalize the vector fields t c by setting T C = 4(sinh -~)t c. 

Then, with notation as above, 

[TcI,TC2 ] = [ T - T 
P~#B ~pB + ~p6- 

apB+ where and epB are the curves in F corresponding to the 

configurations in Figure 5.1. 

Figure 5.1 

Actually, in the third formula we have done something illegal in 

that the curves ~pB + and epB- may not be simple. Nevertheless, 

the formula makes sense because it is possible to define the functions 

Z c and the vector fields t c even when C is not simple. (It 



186 

is clear how to do this for IC, and t C is given by duality). 

This suggests that a Lie algebra over the integers might be constructed 
^ 

as follows. Let ~ denote the conjugacy classes in the fundamental 

group of the surface F and let~ denote the free abelian group g 
on the elements of ~. Fix a hyperbolic metric on F; each element 

^ 

of ~ is represented by a unique closed (but not necessarily simple) 

geodesic. Goldman [Gold] defines a bracket on/~z by setting 

B + 
P ~ # 6  ~ P 

and extending linearly. The proof that [ , ] satisfies the hypotheses 

to be a Lie bracket on ~ is purely topological. 

Unfortunately, all these definitions give infinite dimensional 

Lie algebras and there is no indication that they contain any inter- 

esting finite dimensional subalqebras in any natural way. We will 

not be discouraged, however, and we will continue to study the Weil- 

Petersson geometry with an eye towards the formal geometry of a 

symmetric space. In the next section we dig deeper into the inter- 

play between the hyperbolic geometry of the surface and the symplectic 

geometry of T s. 
g 

§2. The Thurston-Wolpert Random Geodesic Interpretation of the 

Weil-Petersson Metric 

The key step in Kerckhoff's proof of the Nielsen conjecture is 

his observation that the geodesic length functions are convex alona 

earthquake paths. While it would be out of place here to discuss 

either the Nielsen conjecture or earthquakes, we can still abstract 

from this the idea that a geodesic length function Z C can be 

thought of as the square of a distance function (measured from the 

minimum of ZC). This means that its second derivative should define 

a metric tensor at that minimum. Thurston makes this idea precise by 

introducing the notion of a random geodesic on a hyperbolic surface 2 

X and showing that the corresponding "length function" does indeed 

have its minimum at X. He uses this idea to define a metric on 

Teichmuller space; Wolpert ([Wol 4]) then proves that this metric is 

actually the Weil-Petersson metric. This new interpretation of the 

metric proves to be quite valuable for it gives the following 

remarkable formula for the complex structure on T : g 

Jt C = 3~(g-l) lira [tc'ts~] 

j ZBj 
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where 6. are random geodesics. 
3 

i) Definition of the Random Geodesic 

Let x be a hyperbolic surface and 6j c X a sequence of closed 

geodesics (not necessarily simple). If TIX denotes the unit tanaents 

to X, then each Bj has a unique lift 6j to TIX. Define {Bj} 

to be uniformly distributed if for all open sets U • TIX 

lim __, ~ = Volume (U) 
• Z(6j) Volume(TiX) 
3 

Here we identify TIX with TI~ 2/F where X = ~ 2/F and 
2 

compute volume via the isomorphism TI~ ~ PSL2~ . Let < , > 

denote the Weil-Petersson metric. 

Theorem 5.3: For any nontrivial simple closed curves C I, C 2, 

tcltc2£6j, 

<tcl,tC2> = 3~(g-l) lim ..... 
J IBj 

where {8 9 } is uniformly distributed on X. 

In the formula we are writing ZBj when we really mean If[~])_ 

where f: X ÷F is the markin~ on X. 

ii) Outline of the proof of Theorem 5.3 

First explain why <tCl, = lim -~-I is we tC2>T J ZBj tcltc2Zgj 

symmetric. Since [tcl,tC2] is a tangent vector for every C 1 and 

1 
C 2, this will follow if we show lim3. -----~Sj V ~gj  = 0 f o r  a n y  t a n g e n t  

vector V. Since twist vector fields span the tangent space to Is, 

it suffices to show lim 1 = J ~ t C ZSj 0 for every C. But the 8j 

3 
are uniformly distributed in TIX, so for any closed geodesic 

c X, in the limit each intersection of ~ with 8. of angle @ 
3 

is accompanied by another of angle ~ - 0. Applying the cosine 

formula completes the argument. 

The backbone of the rest of the argument is the fact that < ' >T 

is constructed naturally with respect to the PSL2~ geometry on 

the unit tangent bundle TIX. To make use of this, Wolpert observes 

that there exist tensors K 1 and K 2 on X such that for any 

two holomorphic quadratic differentials ¢, ~ on X 
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m 

even continuous in complex coordinates on ~g. In fact ~wp is only 

a current and thus its positivity and rationality are difficult to 

check. 

The approach consists of three parts; the extension of the K~hler 

form to Mg, the rationality of the extension and of course the 

positivity of the resulting line bundle. 

i) The extension of w to 
wp -- g 

Masur [Mas] was the first to consider the extension of w to 
wp 

. At a generic point of D = M - M with normal coordinate z, he 
g g g 

gave the formula 

~ i/2 dzAdz 

wp izi2(log i/izl)3 ' 

showing that the extension is not continuous in the complex coordinates. 

By contrast, since Fenchel-Nielsen coordinates on ~g are obtained 

simply by allowing the i i to be 0, the formula O~p =Z di i A dT i 

shows that mw p extends smoothly in Fenchel-Nielsen coordinates. This 
-- 

means that the complex structure M and the real-analytic structure 
-- FN g 
M g are not subordinate to a common smooth structure on Mg. 

Nevertheless, in [Wol 5] it is proved that the identity map ~ FN ÷ ~ 
g 

is Lipschitz continuous. From the point of view of cohomology this 

means we can integrate ~ over 2-cycles in Fenchel-Nielsen coordinates 
wp 

and use the answer to study ~ ~ 
g 

Masur's formula shows that the form ~wp has singularities along D. 

Wolpert deals with this by first showing that ~wp is a closed, positive 

(i,i) current and then that ~ is the limit of smooth, closed, 
wp 

positive (i,i) forms. 

1 -- 

ii) Rationality of ~ ~wp 

1 -- is rational. The second part of the proof is to show that ~ ~wp 

By Theorem 7.2 below (IHI]), H2(Mg;Q) is rank 1 for g d 3. An 

application of Mayer-Victoris then shows H2(~g;~) ~ H6g-8(~g;~) has 

rank 2 + [g/2]. We will describe dual bases for H 2 and H6g_8. 

The divisor D = ~g - Mg is the sum of 1 + Ig/2] components 

D O .... ,D[g/2 ] where D i generically consists of the surfaces with 

a node which are obtained by collapsing a simple closed curve to a 

point. For D O the curve is nonseparating while for D i, i> 0, the 

curve separates the surface into pieces of genus i and g-i. 

The Poincar6 dual of ~wp and D0,...,D[g/2 ] ~ive 2+[g/2] classes 

in H6g_8(~g). 
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<%'~>T = IxO~KI + %~K2" 

K 1 must be a (-i,-i) tensor and K 2 a (-3,1) tensor and by the 

naturality of < , >T both must be PSL2~ invariant. The only 

possibility is that K 1 is a multiple of the hyperbolic area element 

and K 2 is zero. Thus < ' > T is a multiple of < , >wp. 

T s iii) Description of the Complex Structure on 

Let C be any nontrivial simple closed curve and {Sj} a 

sequence of uniformly distributed geodesics in X. Then Wolpert 

uses Theorem 5.3 to show: 

Theorem 5.4: Jt C = 3~(g-1)l~m ~I [t~,t~ ] where J is the complex 

structure on T s. 
g 

The proof of this uses not only 5.3 but also the Lie Bracket 

formula, the duality formula and the formula 

t it 2Z B + t 2t~Z ~ + tBt IZ 2 = 0 
1 

= , ~it~2~B 
from [Wol 3]. By skew symmetry t IZ 2 -t 2Z 1 so t + 

[t 2, ts]Z 1 = 0. Dividing by Z B and taking 8 in a sequence which 

is uniformly distributed gives 

<t l,t 2> + 3z(g-l)~wp(lim .i [t ,t~ ],t i) = 0. 
j ~Sj e2 ~j 

Since e I is arbitrary t + 3~(g-l) J lim It ,tsj] = 0. 
j 

J 

§3. The Projective Embedding of 
g 

As a final illustration of the importance of the Weil-Petersson 

geometry we will give a sketch of Wolpert's beautiful proof that 

~g is projective. The outline is very simple: first he shows 
-- gg 1 ~W~ 

that ~wp extends to ~wp on Next he proves that --~ 

n - 
is rational and therefore ~ ~0wp is c I of a line bundle L for 

some positive integer n. Since ~ is Kahler, L is postive; the 
wp 

Kodaira theorem now provides the imbedding ~ .2 ~pn. 
g 

Of course things are not really as simple as all that. The 

extension ~ is smooth in Fenchel-Nielsen coordinates but is not 
wp 

Theorem 5.4 now follows. 
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For H2(Mg) take one of the 2+[g/2] configurations of Figure 

5.2 and consider the subset of D described by allowing the 

structure 

.-- 0 ~ --, 

o 

Figure 5.2 

on the component labeled A to vary while that on the rest of the 

surface remains fixed. Each of these describes an analytic 2-cycle 
1 

in D; s is isomorphic to ~ ~ while ~0,...,~[g/2 ] are isomorphic 
-- 4 

to M 0 . The next thing to do is to compute the intersection matrix 

between these two collections; it will be nonsingular, showing that 

both sets are actually bases. This is straightforward except for 

evaluating the integrals . I ~wp and I ~ . Now Wolpert computes 
. ~ wp 

I - / i directly that = ~2 6. Passing to a 4-fold cover aives 

I 
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f ~4 double covers 4 f ~ = 2/3 . = 2~2/3 and since 5 1 F0 wp 
~l 4 wp ' _ M0 4 

Using Theorem 5.1 it is easy to see that ~ restricts, i.e. 

wp M0 4 ~%p Is = ~Lp on M11 and ~wpl~ i = ~wp on -- This shows not 

only that the collections are bases, but simultaneously evaluates 

1 ~ is rational. ~wp and shows --~ wp 

iii) The Positive Line Bundle 

Now ~ ewpl -- is a rational, closed positive (i,I) current on Mg. 

n ~wp We would like to say that ~ is c I of a positive line bundle 

1 ~ logll sII2 where s L on ~g. Recall that for any L, Cl(L) - 2~i 

is any section of L and II II is a metric for L. Heuristically, 

if IIs!l 2 = el/l°g(i/Izl2),Iz I< i, then we find 

$~ log !!sII2 = ~] 1 = 2 
log(i/Izl 2) IzI2(log(I/IzI2)) 3 ; 

the principal term of Masur's formula. Now by our calculation 

e I/IOg(I/Izl2) is a C O metric of positive curvature in the sense 

of currents. Similarly Wolpert finds that ~ is the positive wp 
curvature form of a C O metric for a line bundle over M . An 

g 

argument of Richberg is then used to replace the metric in the line 

bundle by a smooth metric with positive corvature form. This completes 

the argument. 
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s 
Chapter ~ Stability of the Homology of Fg 

H s We return now to a direct study of _,(Fg). A natural question 

to ask about F s is whether its homology stabilizes as g + ~. 
g 

This kind of result is known (rationally, at least) for many classes 

of arithmetic groups, e.g. SL n and SP2g ([B]), and the techniques to 

prove it are readily available ([C], [Q], IV], [W]). We will now combine 

these techniques with the results of Chapter 2 and 4 to show that 

in fact Hk(F $) is independent of g when g >> k. 

Let F s denote an oriented surface of genus g with r 
g,r 

boundary components and s punctures. The mapping class group 
s 

F , r is defined to be the group of all isotopy classes of 

honeomorphisms of F which are the identity on ~F and fix the 

punctures individually. We emphasize that isotopies must fix ~F 

pointwise, otherwise there would be no distinction between s Fg,r 
and F r+s Define three maps 

g,0" 

: F s F s ÷ r > l, 
g,r g,r+l ' - 

4: FS FS ÷ r > 2, 
g,r 9+l,r-i ' - 

q: F s ÷ F s , r d 2 
g,r g+l,r-2 

as follows. For ~ sew a pair of pants ( a copy of the surface 

F0,3 )0 to FSg,r along two components of its boundary. For % sew 

a pair of pants to F s along one component of its boundary. 
g,r 

Finally, for n sew two components of SF s together. The maps 
g,r 

%, ~, n induce maps of mapping class groups (extend by the identity 
0 

on F0, 3 for ~ and ~; ~ is obvious); let %,, ~,, q, be 

(respectively) the maps they induce on homology. We may now state 

the main result of [H2]: 

Theorem 6.1: ¢,: Hk(F 'r ) + Hk(Fg,r+l) is an isomorphism for g{3k-2, 

~ s 
~,: Hk(F 'r ) ÷ Hk(Fg+l,r_ I) is an isomorphism for g~-3k-l, 

n,: Hk(F$, r) ÷ Hk(F$+l,r_ 2) is an isomorphism for g~3k. 

By combining these maps in various ways we can see that Theorem 6.1 

s i m p l i e s  H k ( F g , r )  i s  i n d e p e n d e n t  o f  g and r a s  l o n g  as  g ~ 3 k + l .  



193 

For the moduli spaces this says that Hk(M:; ~) does not depend on 

g when g{3k+l. 

Before giving the proof of 6.1 we make some observations due to 

Ed Miller [Mi]. Let Ag, l = Diff+(Fg,l ) be the group of diffeomorphisms 

fixing the boundary component of F pointwise. Taking boundary 

connected sum defines a natural homomorphism 

Ag,l x Ah, 1 ÷ ^g+h,l 

which induces a product on classifying spaces 

i: BAg,1 × BAh, 1 + BAg+h,l- 

Now set A= l~m H,(B^~,I; @) where the limit is defined using the 

natural inclusions + Ag,l ÷ Ag+l,l ÷ ... Theorem 6.1 implies 

is finite type; therefore A, under the product I, induced from 

is a commutative, cocommutative Hopf algebra of finite type. A 

theorem of Milnor and Moore [MM] then implies: 

Corollary 6.2: A is the tensor product of a polynomial algebra on 

even dimensional generators with an exterior algebra on odd 

dimensional generators. 

A 

i, 

We move now to the proof of Theorem 6.1. 

91) The Cell Complexes 

The first half of the proof is an excursion through a maze of 

different cell complexes which are constructed from configurations 

of arcs and circles in a surface. There are six of these; their 

names are X, Z, AX(A), AZ(A), BX(A,A') and BZ(A,A'). The complex 

Z is the one we defined in chapter 3 using curve-systems, while 

AZ(A) is a generalization of the arc-system complex A we used 

in Chapter 2 to triangulate T I. All the others are derived from 
g 

these; in fact we have X c Z, AX(~) c AZ(A) and BX(~,A') c 

BZ(A,A') c AZ(~. 

i) The Complexes AZ(A) and BZ (A,A') 

Let us be more specific. Fix F = F s and let A be a 
g,r 

collection of points in ~F. Also let A' be any proper subset of 

A. A A-arc will be the isotopy class of any C ~ imbedded path in 

F from one point of A to another, or ~ C ~ imbedded loop in F 

based at a point of A. The A-arc ~ is nontrivial if it is not 

null-homotopic and is not homotopic (rel ~) into ~F - A U ~. 
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A A-arc system of rank k is then any family ~0,...,ek of non- 

trivial A-arcs which are disjoint, except that they may intersect 

at their endpoints, such that no two distinct e. are homotopic 
1 

(rel endpoints). Also define a (A,A')-arc to be any A-arc with 

one end in A' and the other in A - A' and a (A,A')-arc-system 

of rank k to be any A-arc-system of rank k consisting only of 

(A,A')-arcs. 

Now following the same pattern as for A let AZ(A) be the 

simplicial complex which has a k-cell <~0,...,~k > for each rank k 

A-arc-system in F, with <s 0 .... ,~k > identified as a face of 

<B 0 ..... B~> if and only if {~i} £ {~j}. Also define Bz(A,A') 

to be the subcomplex of AZ(A) consisting of simplices <~0,...,~k > 

where {~.} is a (A,A')-arc-system. 
l 

We say that asimplicial complex [ of dimension n is spherical 

if [ ~ VS n. The first step in the proof of Theorem 6.1 is: 

Theorem 6.3: (a) The complex Az(A) is co<ntractible, except in the 

special cases where F is a 2-disk, a punctured 2-disk or an annulus 

with A contained in one component of ZF, in which case AZ(£) is 

homeomorphic to a sphere. 

(b) The complex Bz(A,A') is spherical. If no component of 

~F contains points of both A' and A - A', it is contractible. 

We refer the reader to [H2] for the proof. 

Along with these two complexes we may define Z = z s just 
g,r 

as we did Z;; in fact ZSg,r ~ Z r+sg because isotopy classes of 

simple closed curves in the interior of a surface aren't effected 

if we remove the boundary curves to create punctures. The mapping 

class group £ = F s acts on each of the complexes Z, AZ(A) and 
g,r 

BZ(A) in the obvious way. 

ii) The Complexes X, AX(A), BX(A,A') 

The problem with the complexes Z, AZ(A) and BZ(A,A') is that 

their quotients by F, while finite complexes, are difficult to 

work with because they have too many ce]Is. To rectify this problem 

we define in each case a natural subcomplex which is invariant 

under the action of F and has a simpler quotient. 

The definition is the same in all 3 cases: 
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the subcomplexes X, AX(A) and BX(A,A') are obtained by restricting 

in each case to curve or arcsystems which do not separate the surface 

(the entire system must be nonseparating, not just the individual 

curves or arcs). The complex X is g - 1 dimensional since g 

curves whose union does not separate F will cut it into a planar 

surface where all further curves are separating. Similar reasoning 

shows that AX(A) and BX(A,A') are 2g-2+r' dimensional where 

r' is the number of boundary components of F which contain points 

of A. 

Theorem 6.4: The complexes X, AX(A) and BX(A,A') are spherical. 

This theorem is proved by a combinatorial analysis of the 

inclusion into the corresponding larger complex. For example, any 

map f:S n ÷ X with n<g-1 extends to ~: D n+l ÷ Z by Theorem 4.1. 

We then use the fact that n is small, so that simplices of im(f) 

do not involve too many curves in F, to show how to homotope 

(rel f) into X. Similar arguments work for AX(A) and BX(A,A') 

using an induction on g,r, #A and #A' This is why we had to 

allow A and A' to be arbitrary. From here on, however, we will 

assume that for Ax(A), A consists of a single point and for BX(A,A') 

A consists of 2 points on distinct boundary components of F with 

A' equal to one of the points. For brevity we then write AX = AX(A) 

and BX = BX(A,A'). 

iii) Description of the Quotient Complexes 

Let G be a group acting simplicially on the complex I- The 

quotient [/G inherits a natural cell structure f~om ~ only if 

the action has the property that whenever g 6 G fixes a simplex 

of ~ setwise, if does so pointwise. This property can always be 

arranged, if necessary, by passing to the first barycentric subdivision 

[o of [. In our case this will only be necessary for X; the 

property above is already true for AX and BX. 

The quotient of X ° by F is a simplex of dimension g-l. 

This is because any two rank-k curve systems which do not separate F 

are identified by F, so any top dimensional simplex of X ° maps 

homeomorphically to X°/F. 

The quotients of AX and BX are more complicated. Orient 3F 

and consider any k-cell <e0,...,ek > of AX. In a neighborhood of 

the component of 3F which contains the point q of A, the picture 

is as in Figure 6.1. Number the edges emanating from q in the order 

determined by the orientation; then <~o,...,ek > determines a pairing 
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Figure 6.1 

Two cells of AX are identified by F if and only if they give 

the same pairing. Furthermore, if k < g any pairing may occur. 

A similar analysis holds for BX. Number the edges emanating 

from ql as in figure 6.1; the order that they come into q2 

gives a permutation of k + 1 elements. Any two cells of BX 

are identified by F if and only if they determine the same 

permutation and for k < g any permutation can occur. 

In the next section we will use these descriptions to show 

how stability is proven. 

2 Spectral Sequence Arguments 

To prove Theorem 6.1 we use Theorem 6.4 and the spectral sequence 

techniques of [C], [Q] , [W] , [V] . Begin with the 

Inductive assumptions 

(ik_ I) ~, ~ Hn(~g,r) ÷ Hn(Fg,r+l) 

g >_ 3n-2, 1 < n < k 

~, : Hl(Fg,r) ~ Hl(Fg,r+l) 

g _~ 2, r ~_ I. 

is an isomorphism, 

and r ~ I. 

is an isomorphism, 

(2k_ I) 4, : Hn(Fo, r) ÷ Hn(Fg+l,r_l) is surjective, 

g ~--- 3n~2, 1 -~ n<k, r ~- 2~ and an isomorphism~ 

g -~ 3n-l, 1 < n < k, r ~- 2. 

.~, : H l ( F g , r )  + H l ( F g + l , r _ l )  i s  an i s o m o r p h i s m ,  

g _~ 3, r ~_ 2. 
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(3k_ 1 ) q, : Hn(Fg,r;~) + Hn(Fg+l,r_2;~) is an isomorphism, 

g { 3n-l, n < k, r ~ 2. 

~.: Hn(F ,r ) ÷ g Hn(Fg+l,r_2 ) is an isomorphism, 

g ~ 3n, n < k, r t 2. 

Both maps are surjective at one smaller value of g~ 

It is easy to check (ik) , (2k) and (3 k) directly for k ~ 2 

using the results of [HI] (see chapter 7). Assume k ~ 3 and that 

(lj), (2j) and (3j) have been verified for all 9 < k. There are 

then three spectral sequence arguments to perform to prove (ik) , 

(2 k) and (3k). We will show how (i k) goes (it is the easiest); 

the reader is refered to [}{2] for the other two. 

First notice that %, is injective for every g, k when r ~ i. 

This is because we may define 0; F ÷ F by plugging one 
g,r+l g,r 

of the extra boundary components of the pair of pants sewed on in 

defining % and we will have 0 o % = i. 

Now look at the action of F = F on the complex BX 
g,r+l 

defined on Fg,r+l. Let K, + ~ be the augmented chain complex 

of BX. Choose E, +~, a free L7 F resolution of ~_7. The double 

complex E, ®~F K, gives rise to a spectral sequence converging to 

zero for p+q ~ 2g-l, with 

E lp,q = Hq(F;Kp) , p { -i, 

(see [C], [Q], [W], ~]). By Shapiro's lemma there is a decomposition 

n 
p 

Hq(F;Kp) ~ l~iHq(F 1 ) . =  P 

n P " i 
= K 1 ~...~K with F(K l) ( F acts tra~stively on Where Kp P P 19 Kp, 

the generators of each K i and F i denotes the stabilizer of a 
P P K i" 

choeen p-cell 0 i, a generator from 
P P 

Lemma 6.5 : Hp(BX/F) = 0, 1 _< p ~ g - i. 

i 
Proof- Recall each p-cell o may be defined by the permutation 

P 
it gives of 0,i, .... p. Label this permutation (i0,...,ip) 

where i. is the image of j under the permutation. The boundary 
] 

map of BX/F is now 

P 

~p(i 0 ..... ,ip) j[0 
(-l)J(Tj(i0) ..... ij ..... Tj(ip)) 
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where T. is the shift map 
3 

I 
n, n < i 

~j(n) = 3 
n-l, n > ij. 

Consider the map 

D 
Cp(BX/F) -~ Cp+ I(BX/F) 

(io, .... ip) ÷ (p+l,io, .... ip). 

The formula D~ + ~D : 1 

the zero map on C,(BX/F) 

This proves 6.5. 

Next we look at the E 1 term of the spectral sequence. If 
i = < i .,8i> so that for each p necessary, rechoose the Op B0,.. P 

there is an embedding 

p:Fg_p,l ÷ F - {B~O ~ t ~p,l~i~np}, 

is easy to verify, so the identity and 

are chain homotopic in the range p < g. 

with Up = ~p-i " ~ " ¢ for each p. This is possible because the 

i:0sjsp} is at least g - p. If (o~) i is the ith genus of F - {~j 

face of ~, choose fi in F identifying (o~) i with the 

ki 
appropriate dp_ I, making sure that fi l~p~ g-p,l) = i. The map 

E 1 + E 1 dl: p,q p-l,q 

has components 

k. 
(- l)i(fi),; Hq(F~) ÷ Hq(Fp~l). 

By (ik_ I) and (2k_l) , the maps (Up_l),, (Up),, 4, and ¢, 

isomorphisms as long as g -p ~ 3q, q < k, and are surjective 

when g-p = 3q-l, q < k. Since 

are 

(Up_l) , 4. " ¢, = (fi),(~p),, 
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(fi), is an isomorphism or is surjective for the same values of 

p, q and g. 

Consider the diagram 

Hq (F~) ÷ Hq(F) 

k (fi) * (fi) * 

Hq(Fp[ I) ÷ Hq(F) 

The horizontal maps are induced by the inclusions of the stabilizers 

in F. Since F . is an element of F, it induces the identity on 
1 

homology, so that the right hand vertical map is the identity. The 

horizontal maps are compositions of the maps ~, and ~,; so for 

p ~ 1 and q < k, they are isomorphism. This means that E~,q is 

isomorphic as a complex to C,~BX/F) ~H (F), where the boundary 
q 

map is the tensor product of the boundary map of BX/F with the 

identity on H (T). In particular, 
q 

2 
Ep,k_ p ~ Hp(BX/F;H k_p(F)) = 0, 

Since p a i, this holds for 

= 0, p+q<2g, to conclude that 

as long as g - (p+l) a 3(k-p) - i. 

d3k-2. 

Now we use the fact that E ~ 
P,q 

1 1 ÷ E 1 
d0,k : E0,k -l,k 

l is the is surjective, g~k-2 (k>l and g~3k-2 imply g>k) . AS d0, k 

map $,, (i k) is verified. 

The arguments for (2 k) and (~k) are more difficult and will be 

omitted. 
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Chapter 7. Computations of the Cohomology of F s 
g 

Finally the time has come to construct some cohomology classes for 

F s. In this chapter we will discuss which Betti numbers of F s and 
g g 

;~s are known explicitly. Then we will give Miller's construction of 
g 

a polynomial algebra on even generators in the stable cohomology of 

F s [Mi], and describe unstable relations for these classes due to 
g 

Mumford [MI], Morita [Mor] and Harris [Ha]. 

§i. The first two Betti numbers of M s 
g 

In Theorem 3.2 we observed that F s has no rational cohomology 

g , M s above dimension 4g-4+s (4g-5 when g > i, s = 0) while has 
g 

no integral homology above dimension 4g-4+s, s > 0. Only two other 

Betti numbers, ~i and 8 2 , are known. Mumford [M] proved that 

HI(F ) is torsion of order dividing I0 (g > i) and Powell [P] 
g 

proved that HI(Fg) = 0 when g > 2. The general statement is: 

Theorem 7.1: 

I 0 for g > 2, 

H I(F s) _~ Z/10~ for g = 2 and 

g L~/12Z for g = i. 

Another thing Mumford did in [M] was to define Pic(M$) and 

s) ~ H2(F$), g > i. In [HI] this latter group was com- prove PiC(Mg 

puted; the result is: 

Theorem 7.2: H2(F $) ~ Z s+l for g > 4 .* 

s and F~ while This result also holds rationally for F 3 

F s H2(F~; H2(2;~) and ~) have rank s. We do not know the torsion in 

H2(F $) when 2 s g ~ 4. 

The proofs of Theorem 7.1 and 7.2 will not be presented here as 

that would lead us too far afield. Instead we content ourselves with 

F s a description of generators for H2(q) . Geometrically, we saw in 

1 generates H2iM ;~) . We now give a purely Chapter 5 that --2 ~wp g 

topological description of generators. Let i = Diff+(F$) be the 

group of orientation preserving diffeomorphism of F which fix s 
g 

points, equipped with the C~-topology. The group A has one 

* Actually, the statement in [H I ] was that H2(F ~) has torsion, but 

this was in error, the correction appears in the same journal some- 

what later. 
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component for each element of F s and, when 2-2g-s <0, Earle and 
g 

Eells [EE] have proved that each of these components is contractible. 

This means that the classifying space BA is a K(F$,I). 

Let ~2(BA) denote the second bordism group of BA. An element 

of ~2(BA) is represented by a map % :X ÷ BA where X is a closed 

oriented surface and two maps ¢i :XI ÷ BA and ¢2 ~X2 ÷ BA represent 

the same element if and only if there is a map ~ :M + BA where M 3 

is an oriented 3-manifold with ~M 3 = X 1 ~ - X 2 and ~IXi = %i" 

Bordism groups and homology groups agree in low dimensions; in particu- 

lar we have: 

H2 (Fg) m- H2(BA ) _~ ~2 (BA) . 

Any map f :X ~ BA induces a bundle over X with fiber F: use f 

to pull back the bundle EA ×F F + BA where EA is the universal 

cover of BA. Bordant maps pull back bordant bundles, i.e. bundles 

which cobound a bundle over a 3-raanifold. 

Now we may define H2(F s) + Z s+l. Each X ~ H2(~ ~) gives rise 
g 

as above to a fiber bundle F ÷ W 4 ÷ X with structure group in A. 
g 

This bundle then has s canonical sections dl,...,ds; the invariants 

we associate to X are signature(W)/4 and the self-intersection 

numbers [oi(X)] 2 (the signature of W 4 is always divisible by 4 

so these invariants are all integers). Theorem 7.2 states that this 

map is an isomorphism. 

§2. Miller's Polynomial Algebra 

Let A = Diff+(F 0) and consider the universal F bundle 
g g 

p :E ~ BA. Define T to be the bundle of tangents to the fibers of 

p and set ~ = -Cl(T) . Now define 

i+l 
K . : p,~ ; 

1 

<'i (H2i(BA) ~ H2i(F~). When we have an analytic family ~ :X ~ B 

which coincides with the pull back of E ~ BA: 

^ 

X f~ E 

B f~ BA, 

then f*(~) is c I of the relative dualizing sheaf. Mumford [MI] 

shows that f*(K i) may be regarded as a Chow cohomology class in 

Ai(B) ~ Q. Miller proves: 
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Theorem 7.3: Let @[<1,<2 .... ] 

Then the induced map 

~[Kl,K2,...] ÷ H*(FS;~) 

be the polynomial algebra on the <i" 

is injective in dimensions less than g/3. 

To prove this theorem, Miller first looks at the Hopf algebra 

A = lim H,(%,I;~) defined in Chapter 6 and proves that each <i 

vanishes on the l, decomposibles. It therefore suffices to construct 

6 (A;~) such that [<n,Xn] ~ 0. explicit homology classes X n H2n 

Theorem 7.3 then follows from the stability Theorem 6.1. 

i) Construction of the Classes X 
n 

The classes X n are provided by: 

Lemma 7.4: There exists for each n > 0 a smooth fibration of pro- 

X n+l B n jective algebraic varieties ~ : ÷ with fiber F such that 
g 

[~n+l,x] # 0, where ~ is c I of the tangents to the fiber of ~. 

X n+l B n The construction of the fibration ~T : ÷ is modeled on 

one of Atiyah [A] First we review Atiyah's construction which gives 

the example for n = i. Let C be a connected curve of genus g > 2 

and let T :C ÷ C be a free involution. The base B 1 is the 2 2g- 

fold covering of C determined by the map ~I(C) ÷ HI(C;Z/2Z) ; if 

f :B 1 ÷ C is the covering map, then f* is 0 on H 1 with Z/2Z- 

coefficients. Now look at B 1 × C and consider the graphs Gf and 

GTf. Atiyah's choice of f guarantees that the homology class of 

Gf + GTf in H2(B 1 ×C;~) is even, therefore it is possible to form 

the 2-fold cover X 2 ÷ B 1 × C ramified along the divisor Gf + GTf. 

X 2 B 1 Composing with the projection to B 1 gives ~ : ÷ with fiber 

of genus 2g. Atiyah now shows that 

2 /3 = signature (X 2) = (g-l)2 2g-I 

where e is c I of the tangents to the fibers. 

To generalize the construction, fix an epimorphism HI(C;~) ÷ ~ ~Z; 

the composition ~I(C) ÷ HI(C;Z) ÷ Z ~ Z + ~/2nz @ ~/2n~ has kernel 

K and determines a 4n-fold covering C ÷ C. Miller uses the tower 
n n n+l B n 

÷ Cn 4...÷ C 1 ÷ C O = C to inductively define X ÷ with connected 

fiber Y such that: 
n 

(i) X n+l maps onto x n in such a way that the composition 
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X n+l X n .. X 2 B 1 ÷ ÷ • ÷ ÷ × C ÷ C 

(X n+l 
maps Zl(Y n) and z i ) onto Kn_ 1 , and 

(2) [~n+l,xn+l] # 0, ~ = c I (tangents to the fiber) as above. 

Assume inductively that X i+l + B i has been constructed for all 

i < n. By (I) , X n ÷ C lifts to X n ÷ Cn_ 2 and sends both ~l(Yn_in.) 

and ~i(X n) onto Kn_ 2. Define X' to be the 4-fold cover X' ÷ X 

induced by the composition ~I(X n) + Kn_ 2 ÷ Kn_2/Kn_ 1 ~/2Z • ~/2~, 

with a similar definition for Y' ÷ Yn-l" Clearly both ~I(X') ~ ~I(C) 

and ~I(Y') ÷ Zl(C) have image Kn_ I. Form the fiber product 

P2 
X' ×Bn_lX' ~ X' 

X ' ..... ~ B n - 1  ; 

the fiber of Pl is Y' We extend this diagram to the left as 

follows. Let T n ÷ X' be the finite covering determined by the kernel 

of the representation ~l(X') ÷ Aut(HI(Y';Z/2~)) associated to Pl" 

Also let B n ÷ T n be the finite covering determined by ~I(T n) ÷ 

HI(Tn; ~/2~). Then we have the pull back diagram 

wn+l h 
X' x n-I 

B 

B n ---~ T n --~ X ' 

X' 

Now X' x n-i X' admits the free involution o(x l,x 2) = (Xl,TX 2) 
B 

where T is a nontrivial covering translation of X' ÷ X. If A 

denotes the diagonal section £(x) = (x,x) of Pl' then we may look 

at the divisor A + ~£ in X' xBn_l X' Miller proves that the 

-i 
homology class of h (£+oA) is even. Therefore it makes sense to 

define X n+l to be the 2-fold cover of W n+l ramified along 

h-l(£+0g). The composition X n+l ÷ W n+l ÷ B n is the desired fibration. 

The entire construction is summarized in the diagram 
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xn+l 

n+l h P2 X n 
W -~ X' × X' ~ X' 

n T n X' Bn-i n-i B --+ --+ ----~ : B 

X n+l X n The map p : ÷ promised in (i) above is the obvious one in this 

diagram; it is easy to check it has the right properties. 

To calculate [ n+l xn+l] choose a holomorphic differential on 

C and use the maps of (i) to pull it back to ~n+l on X n+l and 

X n on . One computes that 
n 

~n+l : P*(~n ) - (h-l(A+°£)) 

and then uses this to work back through the diagrams to see 

n+l xn+l] 16N((I/2)n+l_l ) n n 
0~n+ I, = [~n,X ] ~ 0 

where N is the degree of the covering B n ÷ X' (see [Mi] for details). 

ii) Comparison with H*(Sp(2g;~) ;~) 

In [B] Borel found the stable cohomology of Sp(2g;Z) with 

C-coefficients; it is a polynomial algebra on generators in dimensions 

4k+2, k { 0. Miller considers the problem of computing the map induced 

on cohomology by ~ :F + Sp(2g;~). 
g 

The map ~ induces a map BDiff+(Fg) ÷ BSp(2g;Z). Using the 

inclusion Sp(2g;Z) c Sp(2g;IR) and the fact that U(g) is the 

maximal compact subgroup of Sp(2g;IR) we obtain a map 

:BDiff+(F ) ÷ BU(g) . 
g 

The map ~ sends the k product in A to the product in BU induced 

by Whitney sum. If ~ denotes the universal bundle over BU, the 

characteristic classes S (~) (the polynomials in the Chern classes of 
n 

corresponding to ItS) vanish on decomposibles. Miller [Mi], 

Mumford [MI] and Morita [Mor] prove independently that 

0 n even, 

~* (Sn(V)) : n+l 

(-I) 2 Bn+l n odd, 
n+----~'~n 

th 
where B is the n-- Bernoulli number. In particular, this implies 

n 
~* is injective. 
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iii) Relations among the <. 
i 

In [MI], Mumford gave an algebraic construction of the classes <. 
1 

and proved relations between them. These and other relations (along 

with Miller's polynomial algebra) were rediscovered by Morita [Mor] who 

described them topologically. Harris ([Ha]), while considering the 

problem of determining when certain linear combinations of divisor 

classes are ample and/or effective, also find relations among the 

classes in Pic(M:) ~ ~. We will briefly describe these relations. 

Let ~ be the g-dimensional complex vector bundle over 

BA (A = Diff+F as before)induced by ~, and let s. (n) be the 
g _i 

pull backs of the characteristic classes s (v) by ~. As a real 
i 

bundle, D is determined by the map F ÷ Sp(2g;IR), so it is flat. 
g 

This means all its Pontrjagin classes vanish, or equivalently 

s2i(n) : 0 for all i. (RI) 

This is a relation in H4i(F0;~). 
g 

Let ~ = ~:E ÷ BA be the universal bundle over BA and consider 

the conjugate of the pull back ~*(~) over E. The fibers of the 

bundle ~ over the point x may be identified naturally with 

HI(Ex;IR) which in turn may be identified with the space of harmonic 

1-forms on E x. Using this description,define a map ~:z*(n) ÷ ~* by 

setting 

~(~) (v) = ira(v) + i~(v) . 

This gives a sequence 

0 ÷ Ker(%) ÷ ~*(~) ÷ ~* ÷ 0; 

Mumford and Morita observe Ck(Ker ~) = 0 

K k-j c. = 0, k >_ g, 
j=0 3 

where < = ~*(<i) E H 2(E) 
• th 

of the 3--Chern class of 

relation in H*(FI;~) 

Applying ~, to (R2) gives 

for k ~ g. This gives 

(R2) 

and c. denotes the pull back to H2~(E) j 
3 

n. Since E is a K(FI,I), this is a 
g 

j!O <k-l-j ~,(cj) : O, k >- g, 

a relation in H*(Fg;~). Mumford shows that these relations imply 

that <k is a polynomial in <l,...,Kg_2 for all k >g -i. 

(R3) 
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In [Ha] Harris considers the following question. Let ~ be c 1 

of the relative dualizing sheaf as before and let ~ =~,~. 2 6H2(Mg;~)~ 

PiC(Mg) m ~. Consider complete, nondegenerate families of curves 

X ÷ B with associated classifying map $ :B ÷ M (non-degenerate means 
g 

has finite fibers). Then for what a, b is a~ + b< ample on 

every X ÷ B? He proves this is true for a > 0 and a +4g(g-l)b > 0. 

He then shows that if B is 2-dimensional, 

2 
> __(2g-2]< 2 (R4) 

<l 

and finally, the most amazing relation of all is 

(4g(g-l)~-<) g+l : 0. 

We refer the reader to [Ha] for more information and proofs. 

(R5) 

--S §3. Homology of Mg 

Using Mayer-Vietoris one can easily relate H,(M~) to H,(M$) . 

For example, 81(M $) = 0 implies 81(~) = 0 and we saw in Chapter 5 

that 82(Mg) = 1 implies B2(~ ) = 2 + [g/2]. The fact that <i is 

symplectic on % shows that g<~g-3 ~ 0. What is more, Wolpert uses 
I ~i) intersections of the D i to show that 82k(Mg) ~ ~ (g . 

Let ~g denote the Siegel upper half space of degree g, 

~g = {Z (Mg({) : Z = Z t, ImZ > 0} 

where M (C) is g × g matrices with complex entries and t denotes g 
transpose. The group Sp(2g,Z) acts on %g by the formula 

Z • M = (ZC+D) -I • (ZA+B) 

AB 
where M = (C D )" The quotient hg/Sp(2g;~) is called the Siegel 

modular space and may be identified with Ag, the space of principally 

polarized abelian varieties. The action of Sp(2g;Z) is properly dis- 

continuous and hg ~ * so H*(A ;~) ~ H*(Sp(2g;Z) ;@) . 
g 

One may associate to each Reimann surface its Jacobian; this defines 

a mapping 

J :Mg ÷ Ag 

called the period mapping. The classical Torelli theorem says that J 

is an embedding. Rationally, the maps J* and U* are the same on 

cohomology. 

Suppose next that ~g denotes the Satake compactification of Ag; 



207 

it is obtained in a manner similar to M by adding on copies of A k, 

k < n, at ~ The map J extends to gJ :M ÷ A by normalizing 
g g 

and then taking period matrices as before. Charney and Lee ([CLI]) 

prove three things in this situation which we summarize as: 

Theorem 7.5: (I) For g ~ i +i, Hi(Ag;~) ~ Hi(lim__~ Ag;@). 
g 

(2) H*(lim A ;@) ~ Q[x2,x6,...] ® ~[y6,Yl0 .... ], where the x. 
+ g 1 

live in H*(Ag;~). 

(3) Ker(J ) = <y6,Yl0 .... >; that is, 

image(~*). 

This result is proven by decomposing 
g 

K(~,l)'s, relating the pieces to K-theory using ~ categories and 

then applying results from K-theory to compute the cohomology. 

image (J) = image (J*) = 

as a union of simplicial 

§4. Torsion in H (F ;Z) 
g 

For completeness we will state here what is known about torsion in 

H*(F~;Z). By s t a b i l i t y ,  H*(F0;Z)g -~ H*(F0g,1;Z) and since F 0g,1 is 

torsion free, H*(F~ I;Z) ~ H*(M~,I;Z) where M 0 is the moduli 
, g,l 

space of triples (R,p,v) with R a Riemann surface, p a point of 

R and v a unit tangent vector to R at p. However, we only have 

H*(Fg;~) ~ H*(Mg;~) ; it is not known if the torsion classes we shall 

describe lie in M . 
g 

Outside of low dimensional phenomena, the first construction of 

torsion in H*(Fg) seems to be due to Charney and Lee [CL]. As a 

special case of their work on classifying spaces of Hedge structures, 

they prove that for every odd prime p there exists a p-torsion class 

in H2p-2(F 0 (p_l)/2;Z). This result was strengthened by Glover and 

Mislin [GM] who showed: 

Theorem 7.6: The stable cohomology group H4k(~g;Z) (g >> k) contains 

an element of order E2k = denominator of B2k/2k, where B2k is the 

2k t-~h Bernoulli number. 

For p prime, the number E2k is divisible by p~ if and only if 

p~-l(p-l) divides 2k. Together with Theorem 7.6, this can be used to 

show 

Corollary 7.7: Let p be prime and odd and let e > i. Then , for 

every j >_ i, H 2jpe(p-l) (F0; T.) contains an element of order p~. 
g 
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Chapter 8: The Euler Characteristic of Moduli Space 

The results in this chapter are all taken from [HZ] . 

Let F be a torsion free subgroup of finite index in F s. The 

subgroup F acts properly discontinuously and freely on T s g the g' 

quotient is therefore a manifold. We define the orbifold Buler 
s 

characteristic of r to be 
g 

x(rS) = [Fs :~],i. e(TS/~) 
g g g 

where e(TS/£) is the ordinary Euler characteristic of Ts/F. The 
g s) g 

rational number x(F does not depend on the choice of the subgroup 
g 

We will use the contractible cell complex Y of Chapter 3 to 

compute x(F2) . Using the exact sequence (S I) of Chapter 1 together 

with the fact that orbifold Euler characteristics are multiplicative 

in short exact sequences, we see that it suffices once again to 

consider the case where s = i. The main theorem of [HZ] is: 

Theorem 8.1: X(F~) : 6 (l-2g). 

Here ~ denotes the Riemann zeta function; its value at 1 -2g 

is given by ~(l-2g) = -B2g/2g , where B2g is the 2g t-~n Bernoulli 

number. 

An equivalent formulation of the theorem is given by 

X (rg) = B2q 
4g (g-l) (g > i) , 

and the general expression is 

×(r0) = i 1 s < 3 

(-l)S-3(s-3) ! s >_ 3 

s) 
X(F 1 

- s < 1 

(2g+s-3) [ 
x(FS)g = (-l)S 2g(2g-2)'. B2g g >- 2, s ~ 0. 

By a result of Ken Brown ([Br]), the ordinary Euler characteristic 
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= (-i) 1 rank (Hi (Fg;~)) 
e(Fg) i~O 

can be computed from the orbifold Euler characteristics of the central- 

izers of the elements of finite order in F s. The exact formula is 
g 

e(F s ) = [ X(Z O ) 
g <o> 

where the sum is over all conjugacy classes <a> of elements a of 

finite order in F s and Z denotes the centralizer of a. These g a 
centralizers are extensions of finite groups by mapping class groups, 

so their Euler characteristics can be computed from the formulas above. 

Working this out for s = 0 gives: 

Theorem 8.2: The numbers e(Fg) are given by the generating function 

[ e(Fg)t2g-2 = [ [ X(Fh) ~(m) k 2h-28k 
g>_l k>-I h,s~0 s! ~-- #(d) ( t k) d (tin)s" 

m m' (d,m) 
m,dlk s+2hZ 3 

where ~ denotes the Mobius function, % the Euler totient function 

and B is given by 

~ (k/£) t k-£ 
= ~ ( ~ )  ~ (d/(d,£)) " 8k,d (t) Z k 

Z/k 

This theorem can be used to easily derive values of e(Fg). For 

example, we have the following table when g ~ 15: 

g e(F ) 
g 

1 1 
2 1 
3 3 
4 2 
5 3 
6 4 
7 1 
8 -6 
9 45 

i0 -86 
ii 173 
12 -100 
13 2641 
14 -48311 
15 717766 

An important consequence of Theorem 8.2 is that it can be used to 

show e(F ) ~ X(F ) ; therefore the Betti numbers of F grow more 
g g g 
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that exponentially in g and F has a lot of homology in dimensions 
g 

congruent to g -i modulo 2. We have seen how to construct even 

dimensional classes in Chapter 7 (but not enough to account for the 

size of e(Fg) even when g is odd); we know of no constructions 

of odd-dimensional classes. 

§i. Basics of the Proof 

There are three parts to the proof of Theorem 8.1; we outline them 

now. Let P n be a polygon with 2n sides; a pairing of the sides of 

Pn gives a unique oriented surface of genus g ~ n/2. Using these 

pairings we define three double sequences of numbers: Sg(n) is the 

number of pairings of the edges of P which give a surface of genus 
n 

g, ~g(n) is the number of parings of the edges of Pn which give a 

surface of genus g, but with no edge paired to its neighbor (figure 

8.1 configuration A) and 1 (n) is the number of pairings giving a 
g 

surface of genus g, but without an occurence of either configuration 

A or B of figure 8.1. 

7 ~ ° 

b 

Figure 8.1 

After the identification of the sides of P has been made, ~P 
n n 

becomes a finite graph ~ c F (compare Chapter 2). The conditions 

above say that Sg(n) counts everything, but pg(n) counts only the 

pairings for which every vertex of ~ has valence ~2 and ~ (n) 
g 

counts pairings ~ with vertices of valence a3. 

By analyzing the action of F 1 on Y we will prove in §2: 
g 
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6g-3 
Theorem 8.3: X(F~)I = [ (-i) n-I I (n)/2n. 

n=2g g 

It is not difficult to relate the numbers e (n), ~g(n) and Ig(n). 
g 

The relation is provided by the following lemma whose proof will be 

omitted 

Lemma 8.4: (a) Sg(n) = i~0~ (2n)i pg(n-i) 

= (n) Ig (n-i) . 
(b) Zg (n) i~0 

In §3 we will give the main combinatorial result: 

Theorem 8.5: The numbers e (n) are determined by the formula 
g 

( X/2 )n+ 1 
(n) = (2n) ! • coefficient of x 2g in \£anh X/J2 eg (n+l) ! (n-2g) ! 

These three statements can be combined to give Theorem 8.1 as 

follows. Define a polynomial of degree d = 3g -i in n by 

F (n) = (n-l) ! { x/2 ~n+l 
(n-2g) ! " coefficient of x 2g in ~tanh x/2] " 

Clearly F(-1) = 0, so F(n)/(n+l) is still a polynomial in n and 

can be written 

d 
r__!_! 

F(n) = (n+l) • ~ (2r) , < (r) (n-l) (n-2) ..... (n-r+l) , 
r=l " g 

for some numbers < (r) . The definition of F and Theorem 8.5 give: 
g 

d 
(2n) ! r! <(r) 

(e) e (n) = n! [ (2r) ' (n-r) ' 
g r=l " " 

the relationship between <, e, ~ and l can be understood best by 

using the generating functions 

K(X) = [ <g(n)x n, E(x) = [ eg(n)x n, M(x) = [ Hg(n)x n, 
n >- 0 n > - 0 n > - 0 

L(x) = [ 1 (n)x n . 
n >- 0 g 

Formulas (a) and (b) of Lemma 8.4 and formula (c) above may then be 

used to show 

1 E {x(l+x) ) 1 
_ 1 MCI~x) = (l+x) (l+2x) ~ (i+2x)2 = L(x) - 1 +---X ~ K(X(I+x)) . 
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Expanding gives 

d 
1 (n) = ~ < (r)~r-l)," ~ 
g r=l g ~ j n-r 

and Theorem 8.3 now yields 

X(V I) = [ (-l)n-ll (n)/mn : 

g n>_l g 

d 2r-1 n-i 

r=l g n=r 2n n-r 

d ~ (r) (-l)r-i (r-l) !2 

r=l g 2 (2r-l) ! 
- F(0) = -B2g/2g 

as required. 

§2. Counting the Cells of Y 

The action of F 1 .g on Y is cellular and may be used to compute 

X(r ) . Suppose { p} is a set of representatives for the orbits of 

the p-cells of Y; thus every p-cell is identified to one of the 

representatives and no two are identified to one another. Then we 

have the following formula of Quillen ([S], prop. ii) : 

×(r I) : [ (-l) p [ X(Gi) 
g p i P 

i is the stabilizer of the cell o i. where Gp P 

A p-cell of Y is determined by a rank n = 6g -3 -p arc-system 

which fills F; the dual to this arc system is the graph ~ c F whose 

complement is a disk centered at *. Splitting F along ~ gives a 

2n-gon P with its center at * and an identification of F with 
n 

Pn/~ where :~ is an edge pairing on Pn" The pairing ~ satisfies 

the conditions to be counted for 1 (n) since ~ has valence ~3 at 
g 

each vertex. The stabilizer of this p-cell is the group of rotational 
2n 

symmetries of ~; it is finite of order -- and its Euler character- 
-i m 

istic is (2n/m) 

The pairings of the edges of P occuring in the count for 1 (n) 
n g 

may be partitioned into equivalence classes, two pairings being equiva- 

lent if they differ by a rotation of P . Choose a representative for 
n 

each equivalence class, pair the sides of P and identify the result 
n 

with F so that the center of P is matched with *. This picks out 
n 

3 -n cell i for each class and {ol} is a set of a P 6g 
P P 

representatives for the action of F 1 on Y. If there are m elements 
g 

in the equivalence class, the identification will have a cyclic symmetry 

of order 2__n_n and the corresponding i will have isotropy group which 
m 2n Counting (~)-i-- for each i gives the same is cyclic of order -~. 
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answer as counting each of the m elements in each equivalence class 

with weight i/2n. Thus 

X(G i) = 1 (n)/2n. 
i P g 

Theorem 8.3 follows. 

~3. Combinatorics 

Now we give the proof of Theorem 8.5. 

i) Colorings 

A k-coloring of the vertices of Pn is a map % from the 

vertices of P to a fixed set of cardinality k, called the set of 
n 

colors. Define C(n,k) to be the number ofpairs (%,T) where % is 

a k-coloring of the vertices of P and T is an identification of 
n 

the edges of Pn which is compatible with ¢ (thus two edges may be 

identified by t • only if the left end of each has the same color as 

the right end of the other). If we first identify by T, the number 

of inequivalent vertices is n +i -2g where g is the genus of the 

resulting surface. These vertices can be colored in k n+l-2g ways, 

so we have shown 

n/2 2g 
(d) C (n,k) : ~ e (n)k n+l- 

g=0 g 

It is easy to see that the numbers C(n,k) determine the numbers 

e (n). In fact, Theorem 8.5 is implied by: 
g 

Theorem 8.6: C(n,k) = (2n-l)!!D(n,k) 

where D(n,k) is defined by the generating functions 

(e)  1 + 2 ~ D ( n , k ) X  n + l  = { l + x  
n=O ~ i---~- 

and (2n-l) !! = (2n-l) (2n-3) - ... • 5 • 3 - i. 

Proof of 8.5: To see how 8.6 implies 8.5, differentiate (e) to obtain: 

( n + l ) D ( n , k )  = k .ReSx=0 [x--~+ 1 (l+--x) k dl_7] ~l-x 

t 
Making the substitution x = tanh ~ gives 
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(n+l)D(n,k) 1 ~(t_~nhl )n+l kt tl = ~ k .Rest= 0 t e d 

= 2nk .Coefficient of t n in ekt(tanht/2t/2)n+l 

= 2nk . ~ k r " t/2 n+l 
r=O -~. Coefficient of t n-r in (tanh t/2) " 

t/2 
Since tanh t/2 is an even power series, only the coefficients where 

n -r is even, say n -r = 2g, are nonzero. Thus the last equality 

(multiplied by (2n-l) !! _ (2n)[) may be written 
n+l 2n(n+l) ! 

(2n-l) ! [D(n,k) - 
(2n) ! n/2 kn+l-2g 

(n+l) ' ~ ~ × 
" g=0 

t/2 )n+l 
Coefficient of t 2g in tanh t/2 " 

This we are reduced to proving Theorem 8.6. 

ii) Full Coloring s 

A full k-coloring of the vertices of P is a k-coloring ~ in 
n 

which every color is used at least once (¢ is surjective). Let 

C0(n,k) be the number of pairs (%,T) where % is a full k-coloring 

of the vertices of P and T is a compatible edge pairing. Since 
n 

the number of inequivalent vertices under any T is n +i -2g we have 

(f) C0(n,k) = 0 if k > n +i. 

It is easy to relate C(n,k) and C0(n,k) , the formula is 

k 
(g) C (n,k) = [ (k) C0(n,~) . 

Z=0 

We will use formulas (f) and (g) together with the following lemma to 

prove Theorem 8.6. 

Lemma 8.7. The function D(n,k) is a polynomial of degree k -i in n. 

Proof of 8.6. Formula (g) may be inverted to give 

k 
C0(n,k ) = [ (_l)k-Z (k) C(n,i). 

%=0 

Therefore C0(n,k) = (2n-l) !!D0(n,k) where D0(n,k) = [(-l)k-£(k)D(n,k) 
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is again a polynomial of degree k-1 in n. Formula (f) says that 
n 

D0(n,k) vanishes for n = 0,1,...,k-2, so D0(n,k) = ek ( ) where 
k-i 

~K is independent of n. 

When n = k-i, C0(k-l,k) may be computed directly: the only 

possible identifications of the sides of a 2(k-l) gon which admits a 

full k-coloring are those giving a surface of genus 0, hence 

C0(k-l,k) = k! g0(k-1). The recursion 

g0(n) = [ c0(a)~0(b) 
a+b=n-I 

with initial value c0(I) = 1 is easy to see geometrically; it can 

"2n)/(n+l) (the n th Catalin number). be solved to give g0 (n) = [ n 

Working back we find ~k = 2 k-l, C0(n,k) = (2n-l) !! 2 k-l(k_l )n and so 

C(n,k) = (2n-l)!! [ 2Z-i (k) (%nl) " 
Z_>l 

(l+x)k 2x ,k 
Expanding ~ = (i + i_--~) 

implies Theorem 8.6. 

by the binomial theorem we see that this 

iii) An Integral Formula For C(n,k) 

Finally we come to the heart of the combinatorial argument as we 

carry out the proof of Lemma 8.7. We begin the proof by reversing our 

earlier counting procedure; first we color the vertices of Pn and then 

we make the identifications. 

Let ~ be a coloring of the vertices of Pn and let nij be the 

number of edges of Pn which are colored i -j (where i and j are 

in the color set). Any edge identification T must identify an edge 

colored i -j with one colored j -i but the order the edges occur 

is unimportant. If n.. ~ n.. for some i ~ j or if for some i n.. 
:3 3: :i 

is odd, then there are no compatible identifications. Thus we want to 

count the cases where the matrix N = (nij) is even and symmetric, and 

when it is the number of compatible edge identifications is 

nij! T[ (nii-l)!!" Therefore 
i<j i 

C (n,k) = [ C(N) c(N) , 
N 

with ~N =(nij) where the nij are non-negative integers such that 

[nij = 2n, C(N) is the number of k-colorings of Pn having nij 

edges colored i -j and 
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k 
(n..-l)!!, N even and symmetric, 

i=l ii I 
~ n . , !  x 

l<-i j<-k 13 

e(N) = 

, otherwise. 

To understand the number c(N) associate to each coloring of Pn the 
• th 

product z. • z. i ... Zi2ni I where i. is the color of the 3-- 
1112 12 3 3 

vertex. Allowing the variables to commute we see that this equals 
n.. 

z. 13. which we denote Z N with Z = (zij) , 1 - < i,j - < k. Working 
i,j 13 

out tr(Z 2n) explicitly demonstrates the formula 

tr(Z 2n) = [ C(N)Z N. 

N 

The next step is to introduce an integral representation for the 

function s(N). One uses the fact that 

i~ i~ (x+iy)n 22 1 (x-iy) m e -x -Y dxdy 6 n! and 
-~ -~ nm 

f° n I 0 X e dx = to see 
2~ -~ (n-l) ! ! n even 

1 
e(N) = 2 -k/2 ~ -k2/2 / Z N e -~ tr(Z2) d]~ii 

H k 

where H k is the space of all k ×k Hermitian matrices Z = (zij) 

(so Hk m- IR k2 with variables xij(i -<j) and Yij(i <j), and 

I xii i = j , 

zij = l~ij +-/:iYij i <j, 

- -/:lYij i > j, ) 
t ij 

and dp H = ~ dxij ~ dYi4 J is Euclidean volume. Thus we have the 
i-<j i<_j 

integral representation 
- itr (Z2) 

C(n,k) = 2 -k/2 ~ -k2/2 [] tr(z2n)e d~ H. (*) 

H k 
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iv) Evaluating the Integral 

Let Tk c H k be the diagonal matrices (k × k with real entries , 

U k be the unitary group, A k be the diagonal elements of U k and 

W the group of k x k permutation matrices. Any Hermitian matrix Z 

is conjugate under U k to an element of T k and for all t 6 T k 

with distinct non-zero entries (therefore for almost all t) the 

choice of u 6 U k with Z = u-ltu is unique up to left multiplication 

by an element of A k • W. Define 

T k × Ak\Uk---~ Hk, by 

-i 
(t,u)~ ; u tu; 

this map is generically a covering of degree k! 

We use the map to make a change of variables in 

not difficult to see that 

(*) above. It is 

du H = ~ (ti-tj) 2 i<j " d~A\u " d~T 

where d~ T is Euclidean volume on T k ~ IR k and d~g\ u is the 

measure induced on A\u by Haar measure. Combining the above with the 
1 -~tr (Z 2 ) 

fact that the function F(Z) = tr(z2n)e is invariant under the 

action of U k on H k by conjugation, we have 

r 1 I ~ 2d~A\ U 
F(z)d~H k' Tk Ak\U k i<j 

3Hk - • ] F (u-ltu) ~ (ti-tj) dUT 

= C k . . .  ] F ~ ( t i - t j ) 2 d t l . . . d t k  
-~ O "tk l~i<j~k 

for some C k which does not depend on n. This shows 

t 
C(n,k) = C{ ] 

]3~ k 

_i(~+...t 2) 
• 2n+ .+t 2n)e 2 
(t I -. (t -t.)2dtl...dt k 

l!i<j~k i ] 

where C{ is also independent of n. 
2n 2n 

By symmetry of the integrand, we may replace t I +...+ t k by 

kt~ n without changing the value of the integral. Write 
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2k-2 
(ti-tj)2 = Z ar r 

i<j r=O tl 

where each ar is a function of t2,...,t k, and perform the integra- 

tion over t I (using the integral representation for (n-l) l! intro- 

duced earlier) to obtain 

C(n,k) = 
k-i 

~ (2n+2s-l) '' 
k,s " " 

s=O 

where ek is independent of n. Since (2n+2s-l)!! = (2n-l)!! 
tr 

times a polynomial of degree s in n, we have proven Lemma 8.7 and 

therefore the main result. [] 
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