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The TDA pipeline: persistent homology

A (very) concise summary:

Input: some (complex) object

filtration f

Y

Sequence of increasing topo. spaces

persistent homology theory

4
Persistence diagram

e Radon measures (locally finite Borel measures)

{(561,7?/1)(33@,71@)} s Zz nz(i,;z Birth
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The space of persistence diagrams (D?,d,))

Persistence diagrams are:
e Interpretable
e Comparable, using matching-like metrics
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tial matchi
partial matehing unmatched points |
matched points proj on diag
A e . .
e e Theoretically motivated

e Stable wrt input data
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Optimal Transport - Generalities

Discrete formulation : 1 and v two probability measures
=) ; ;0 V= Zj b;0y,

Wp(,u,u)p — infp <P, C> — iIlfp Zij Pij(]ij

where
. J Cij = d(x;,y;)P
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Optimal Transport - Generalities

General formulation
Consider 1, v two probability measures on a Polish metric space (X, d)
T € M(X x X) is a transport plan between 1 and v if
(A, X) = u(A) and n(X, B) = v(B)
The cost of 7 is Cp(7) := [[,, o d(x,y)Pdnr(x,y)

and the Wasserstein-p distance between 1 and v is

W, (11, v) = (infy Cp(rr))?



Optimal Transport - Generalities

Properties: Wy (11,0a0)"

A
r N\

e IV, is a distance over {1 € P(X) : / d(z,zo)Pdu(r) < co}
X

e It metricizes the weak convergence and the p-th moment convergence.



Optimal Transport - Generalities

Properties: Wi (11,924)"
e IV, is a distance over {1 € P(X) : / d(z,zo)Pdu(r) < co}
X

e It metricizes the weak convergence and the p-th moment convergence.

(,un — 1 weakly

Wy (pin, 1) = 0 <
g \Wp(una 55130) — Wp(:ua 5330)

Reminder:

® (i, — [t weakly means:

for all f continuous, bounded, [, f(z)dpn(z) = pn(f) = p(f)
® (i, — [t vaguely means:

for all f continuous, compactly supported, ., (f) = wu(f)



Optimal Transport - Generalities

Properties: Wi (11,924)"
e IV, is a distance over {1 € P(X) : / d(z,zo)Pdu(r) < co}
X

e It metricizes the weak convergence and the p-th moment convergence.

(,un — 1 weakly

Wy (pin, 1) = 0 <
g \Wp(u’m 5370) — Wp(:ua 55170)

e And many other nice properties:
- Know about barycenters (Fréchet means).
- Know the geodesics.

- Many numerical tools (algorithms, libraries)...
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Bridging TDA and OT

Persistence Diagrams (DP,d,) | Optimal Transport (WP, W,,)

e Discrete support (+integer mass) | e General support

e Measures with different e Measures same masses
(potentially infinite) masses
e Partial matching distances e Exact transportation distances

(can match to the diagonal)

e Well-studied theoretically
e Efficients algorithms/libraries

Outline:

e Turning d,, into an Optimal (partial) Transport problem [Divol, L, 2019].
(allow to consider more general measures)

e Proving some new statistical results [Divol, L, 2019]:
existence of Fréchet means, stability of linear vectorizations...

e Deriving some efficient algorithms [L, Cuturi, Oudot, 2018]:
distance and Fréchet means estimation, clustering, quantization.



Optimal Partial Transport

Global observation:
e Standard OT requires measures with the same mass
e \WWe want to be able to handle:
- Measures with different masses
- Measures with infinite mass

Recent efforts were made to develop this area (eg [Chizat, 2017])



Optimal Partial Transport

A.Figalli and N.Gigli (2010)

A. Figalli, N. Gigli / J. Math. Pures Appl. 94 (2010) 107-130

Mass taken from

Mass sent to the b:aundary

the bgu ndary

Mass exchanged
internally

This means that we can use 052 as an infinite reserve: we can ‘take’ as mass as we wish from the boundary,
or ‘give’ it back some of the mass, provided we pay the transportation cost, see Fig. 1. This is why this distance is
well defined for measures which do not have the same mass.
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Optimal Partial Transport

Core idea: Just consider sub-marginal constraints!

Given i, v two Radon measures on (2, consider admissible transport plans

Let O be the boundary of 2, and Q = Q U 99

T e M(Q x Q) such that (A x Q) = p(A)

7(Q x B) = v(B)
And then just define
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Optimal Partial Transport

Core idea: Just consider sub-marginal constraints!

Given i, v two Radon measures on (2, consider admissible transport plans

Let O be the boundary of 2, and Q = Q U 99

T e M(Q x Q) such that (A x Q) = p(A)

7(Q x B) = v(B)
And then just define

= [Jaxg d(@, y)Pdn(z,y)

. 1
Dp(ILL7 V) — (lanEAdm(,u,u) Cp(ﬂ-)) &

Rem: measures must satisfy [, d(x, 0Q)Pdpu(z) < 400
Proposition [Divol, L, 2019]:

If a,b are persistence diagrams, then D,(a,b) = d,(a,b)
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Stability of linear vectorizations

Context: How to use diagrams in ML pipelines?

e Use kernels (not in this talk)

e Vectorize your diagrams, i.e. build ® : D? — R¢

import sklearn

> o o o

®’s properties? Interpretation, stability (continuity, Lipschitz)?
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Let f: {2 — B continuous, and ® : DP — 5 defined by
O(p) =p(f)=>_ f(z;)) €B

Example (persistence images, Adams et al, 2016):

f:x— d(x,00)-exp (%) and B = (Ch(R), || - [|o0)

Persistence Diagram 9 Persistence Image
a" @ a a g‘ | T .
® 0.6
& o -




Stability of linear vectorizations

Let f: {2 — B continuous, and ® : DP — 5 defined by
O(p) =p(f)=>_ f(z;)) €B

Example (persistence images, Adams et al, 2016):

frx—d(z, 00)- and B = (Cp(R), || - ||oo)
Persistence Diagram 9 Persistence Image
® e = ° sl .
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Stability of linear vectorizations

Let f: {2 — B continuous, and ® : DP — 5 defined by
O(p)=p(f)=>2_; f(zi) €B

Theorem:
® is continuous if and only if f(x) = d(x,0)P
where g is continuous, bounded.

ldea of the proof (=): (by contradiction)

o Consider (z,, ), such that dygygg)'p > +00.

e 1
* Let in = gy O

d(xz,,00Q) L
D, (pin, 0) = |<|f(xn)|>| » 0 but || (f)| = 1 for all n.
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Stability of linear vectorizations

Let f: {2 — B continuous, and ® : DP — 5 defined by
O(p)=p(f)=>2_; f(zi) €B

Theorem:
® is continuous if and only if f(x) = d(x,0)P
where g is continuous, bounded.

ldea of the proof (<=):

(,un — 1 vaguely

e Show that D, (uy, pn) — 0 < 4
’ | Dp(pin; 0) = dp (12, 0)

e Deduce that d(-,9Q)Pu,, — d(-,0Q)P . weakly
e Conclude that ®(u,) — ®(u)
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Stability of linear vectorizations

Let f: {2 — B continuous, and ® : DP — 5 defined by
O(p)=p(f)=>2_; f(zi) €B

Theorem:
® is continuous if and only if f(x) = d(x,0)P
where g is continuous, bounded.
Furthermore, if p =1, and if f is 1-Lipschitz continuous,
then @ is also 1-Lipschitz continuous, ie
[2(p) — @)l = [|o(f) — v(HII < di(p,v)
ldea of the proof:

Dual formulation (~ Kantorovich-Rubinstein formula)
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Barycenters in the persistence diagram space

MP is a nice space (at least not so bad) for statistics:
It is complete, separable, etc.

Fréchet means (aka barycenters):

Consider by ...bn a set of diagrams
Estimating their Fréchet mean consists in computing

N
1
argmin {E(a) =~ E dy(a,b;)?, a persistence diagram} .
i=1

First results [Turner et al. 2013]:

e £ is not convex. It admits global (and local) minimizers
e Local minimizers can be computed (expensive)
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Barycenters in the persistence diagram space

MP is a nice space (at least not so bad) for statistics:
It is complete, separable, etc.

Fréchet means (aka barycenters):

Consider by ...bn a set of diagrams
Estimating their Fréchet mean consists in computing

N
1
argmin {E(a) =~ E do(a,b;)?, a persis |agram}
i=1

any Radon measure
Properties [Divol, L, 2019]
e £ is now convex, admits global minimizers.

e Some of them are actual diagrams.

Numerical considerations [L, Cuturi, Oudot, 2018]
e These can be approximated efficiently (Sinkhorn algorithm).



Conclusion

Take home messages:

e TDA (at least PDs) can be formulated as an OT pbm
e This formalism has theoretical and numerical strengths
Some other applications / links:

e Other results in the space of PDs:
- Topological stability of random processes
- Geodesics

e Sinkhorn divergences (Genevay et al. 2018)
e Semi-discrete transport

e Kernel for persistence diagrams



