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The space of persistence diagrams (Dp, dp)

Persistence diagrams are:
• Interpretable

• Comparable, using matching-like metrics

dp(a, b) =

inf
ζ

∑
(x,y)∈ζ

‖x− y‖p +
∑
u/∈ζ

‖u− s(u)‖p
1/p

partial matching
unmatched points

proj on diagmatched points

• Stable wrt input data

• Theoretically motivated
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Optimal Transport - Generalities

Discrete formulation :

µ =
∑
i aiδxi

ν =
∑
j bjδyj

Wp(µ, ν)p = infP

yjxi

ai

bj

Pij · Cij

Cij = d(xi, yj)
p

where

∑
j Pij = ai∑
i Pij = bj

µ and ν two probability measures

subject to
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∑
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General formulation

Consider µ, ν two probability measures on a Polish metric space (X , d)

π ∈M(X × X ) is a transport plan between µ and ν if

π(A,X ) = µ(A) and π(X , B) = ν(B)

The cost of π is Cp(π) :=
∫∫
X×X d(x, y)pdπ(x, y)

and the Wasserstein-p distance between µ and ν is

Wp(µ, ν) = (infπ Cp(π))
1
p

Optimal Transport - Generalities



Properties:

• Wp is a distance over {µ ∈ P(X ) :

Wp(µ,δx0 )p︷ ︸︸ ︷∫
X
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• It metricizes the weak convergence and the p-th moment convergence.
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Reminder:

• µn → µ weakly means:

for all f continuous, bounded,
∫
X f(x)dµn(x) = µn(f)→ µ(f)

• µn → µ vaguely means:

for all f continuous, compactly supported, µn(f)→ µ(f)



Properties:

• Wp is a distance over {µ ∈ P(X ) :

Wp(µ,δx0 )p︷ ︸︸ ︷∫
X
d(x, x0)pdµ(x) <∞}

• It metricizes the weak convergence and the p-th moment convergence.

Wp(µn, µ)→ 0⇔

{
µn → µ weakly

Wp(µn, δx0
)→Wp(µ, δx0

)

• And many other nice properties:

- Know about barycenters (Fréchet means).

- Know the geodesics.

- Many numerical tools (algorithms, libraries)...

Optimal Transport - Generalities
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Bridging TDA and OT

Persistence Diagrams (Dp, dp) Optimal Transport (Wp,Wp)
• Discrete support (+integer mass) • General support

• Measures with different

(potentially infinite) masses

• Measures same masses

• Partial matching distances • Exact transportation distances

Outline:

(can match to the diagonal)

• Well-studied theoretically

• Efficients algorithms/libraries

• Turning dp into an Optimal (partial) Transport problem [Divol, L, 2019].

• Proving some new statistical results

existence of Fréchet means,

[Divol, L, 2019]:

• Deriving some efficient algorithms [L, Cuturi, Oudot, 2018]:

distance and Fréchet means estimation, clustering, quantization.

(allow to consider more general measures)

stability of linear vectorizations...

• Turning dp into an Optimal



Optimal Partial Transport

Global observation:
• Standard OT requires measures with the same mass

• We want to be able to handle:

- Measures with different masses

- Measures with infinite mass

Recent efforts were made to develop this area (eg [Chizat, 2017])
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A.Figalli and N.Gigli (2010)

bounded



Optimal Partial Transport

Core idea: Just consider sub-marginal constraints!

Given µ, ν two Radon measures on Ω, consider admissible transport plans

π ∈M(Ω× Ω) such that

π(Ω×B) = ν(B)

π(A× Ω) = µ(A) A ⊂ Ω

B ⊂ Ω

Let ∂Ω be the boundary of Ω, and Ω = Ω ∪ ∂Ω

And then just define

Cp(π) =
∫∫

Ω×Ω
d(x, y)pdπ(x, y)

Dp(µ, ν) =
(
infπ∈Adm(µ,ν) Cp(π)

)1/p
Rem: measures must satisfy

∫
Ω
d(x, ∂Ω)pdµ(x) < +∞
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Core idea: Just consider sub-marginal constraints!

Given µ, ν two Radon measures on Ω, consider admissible transport plans

π ∈M(Ω× Ω) such that

π(Ω×B) = ν(B)

π(A× Ω) = µ(A) A ⊂ Ω

B ⊂ Ω

Let ∂Ω be the boundary of Ω, and Ω = Ω ∪ ∂Ω

And then just define

Cp(π) =
∫∫

Ω×Ω
d(x, y)pdπ(x, y)

Dp(µ, ν) =
(
infπ∈Adm(µ,ν) Cp(π)

)1/p
Rem: measures must satisfy

∫
Ω
d(x, ∂Ω)pdµ(x) < +∞

Proposition [Divol, L, 2019]:
Dp(a, b) = dp(a, b)If a, b are persistence diagrams, then
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Stability of linear vectorizations

Context: How to use diagrams in ML pipelines?

• Use kernels (not in this talk)

• Vectorize your diagrams, i.e. build Φ : Dp → Rd

Φ
· · ·

import sklearn

Φ’s properties? Interpretation, stability (continuity, Lipschitz)?

Ω
∂Ω

Rd
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Stability of linear vectorizations

Let f : Ω→ B continuous, and Φ : Dp → B defined by

Φ(µ) = µ(f) =
∑
i f(xi) ∈ B

Theorem:
Φ is continuous if and only if f(x) = g(x)d(x, ∂Ω)p

Idea of the proof (⇐):

• Show that Dp(µn, µ)→ 0⇔

{
µn → µ vaguely

Dp(µn, ∅)→ dp(µ, ∅)

• Deduce that d(·, ∂Ω)pµn → d(·, ∂Ω)pµ weakly

• Conclude that Φ(µn)→ Φ(µ)

where g is continuous, bounded.
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Stability of linear vectorizations

Let f : Ω→ B continuous, and Φ : Dp → B defined by

Φ(µ) = µ(f) =
∑
i f(xi) ∈ B

Theorem:
Φ is continuous if and only if f(x) = g(x)d(x, ∂Ω)p

Furthermore, if p = 1, and if f is 1-Lipschitz continuous,

then Φ is also 1-Lipschitz continuous, ie

‖Φ(µ)− Φ(ν)‖ = ‖µ(f)− ν(f)‖ ≤ d1(µ, ν)

Idea of the proof:

Dual formulation (' Kantorovich-Rubinstein formula)

where g is continuous, bounded.
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Fréchet means (aka barycenters):

Consider b1 . . . bN a set of diagrams

Estimating their Fréchet mean consists in computing

argmin

{
E(a) =

1

N

N∑
i=1

d2(a, bi)
2, a persistence diagram

}
.



Barycenters in the persistence diagram space

Mp is a nice space (at least not so bad) for statistics:

It is complete, separable, etc.

Fréchet means (aka barycenters):

Consider b1 . . . bN a set of diagrams

Estimating their Fréchet mean consists in computing

argmin

{
E(a) =

1

N

N∑
i=1

d2(a, bi)
2, a persistence diagram

}
.

First results [Turner et al. 2013]:

• E is not convex. It admits global (and local) minimizers

• Local minimizers can be computed (expensive)
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Barycenters in the persistence diagram space

Mp is a nice space (at least not so bad) for statistics:

It is complete, separable, etc.

Fréchet means (aka barycenters):

Consider b1 . . . bN a set of diagrams

Estimating their Fréchet mean consists in computing

argmin

{
E(a) =

1

N

N∑
i=1

d2(a, bi)
2, a persistence diagram

}
.

any Radon measure

Properties [Divol, L, 2019]

• E is now convex, admits global minimizers.

• Some of them are actual diagrams.

• These can be approximated efficiently (Sinkhorn algorithm).

Numerical considerations [L, Cuturi, Oudot, 2018]



Conclusion

• Sinkhorn divergences (Genevay et al. 2018)

• Semi-discrete transport

• Kernel for persistence diagrams

Some other applications / links:

Take home messages:

• TDA (at least PDs) can be formulated as an OT pbm

• This formalism has theoretical and numerical strengths

• Other results in the space of PDs:
- Topological stability of random processes

- Geodesics


