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In conclusion we have shown that
under semi-hypoxic conditions non
canonical XHY889-2 signaling affects
the cell cycle independently of XHY33-3
withought affecting the cell cycle

Good morning everyone.
My lab works in this field




Motivation

Challenges for data science:

» data arising from new technologies

» not only size of data, but also complexity
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Ideas from pure mathematics can help

algebra geometry

topology



Topological data analysis
TDA studies the “shape” of complex data
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Topological data analysis
TDA studies the “shape” of complex data

» Persistent homology

» number of components, holes, voids, and higher dimensional
holes

» Magnitude homology
» effective number of points

A topological perspective on regimes in dynamical systems, K. Strommen, M. Chantry,
J. Dorrington, N. Otter, 2021, https://arxiv.org/abs/2104.03196

(Persistent) magnitude of point-cloud data, S. Kalisnik, M. O'Malley, N. Otter, in
preparation


https://arxiv.org/abs/2104.03196

Persistent homology
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Multiparameter persistent homology (MPH)
Motivation
Data often depend on several parameters, e.g.:

» colored digital images
» large and noisy climate data sets

2017/10/28

A topological perspective on regimes in dynamical systems, K. Strommen, M. Chantry,
J. Dorrington, N. Otter, 2021, https://arxiv.org/abs/2104.03196


https://arxiv.org/abs/2104.03196

Multiparameter persistent homology (MPH)

Motivation
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MPH: codensity-distance bifiltration
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MPH pipeline

data i
(i =07 e = r-filtered space =

r>1
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MPH: theoretical challenges

» MPH was introduced in 2009 by Carlsson and Zomorodian!

» Classification problem amounts to studying isomorphism
classes of multigraded modules over K[xi, ..., x/]

» Desiderata for invariants for applications:
» Computability
» Stability
> Interpretability

1G. Carlsson, A. Zomorodian, The theory of multidimensional persistence, Discrete
& Computational Geometry, 2009



Approaches focussing on finding invariants suitable for
applications

1) Efficient algorithms to 2) Invariants of MPH modules
compute homology of coming from applications: Bauer
multifiltrations: and Botnan, Chachdlski, Oudot
» For one-critical 3) Restriction of 2-parameter
multifiltrations? PH to 1-parameter PH: Biasotti

» For general multifiltrations® et al*, Lesnick and Wright®

2G. Carlsson, G. Singh, A. Zomorodian, Computing multidimensional persistence,
ISAAC 2009, Lecture notes in computer science

Sw. Chachélski, M. Scolamiero, F. Vaccarino, Combinatorial presentation of
multidimensional persistent homology, Journal of Pure and Applied Algebra, 2017

4s, Biasotti, A. Cerri, P. Frosini, D. Giorgi, C. Landi, Multidimensional Size
Functions for Shape Comparison, Journal of Mathematical Imaging and Vision, 2008

5Mm. Lesnick, M. Wright, Interactive Visualization of 2-D Persistence Modules,
arxiv.org/1512.00180



Restriction of 2-parameter PH to 1-parameter PH
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Restriction of 2-parameter PH to 1-parameter PH

Lines with positive slope
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Computations performed with RIVET by M. Lesnick and M. Wright.
M. Lesnick, M. Wright, Interactive Visualization of 2-D Persistence Modules,
arxiv.org/1512.00180



4) Stratification of MPH

data 1 . .
depending on r parameters E> r-filtered space |:> algebraic invariants

r>1

- H, ] Hy
. e “— =

R

In HOST® proposal of invariants » fully persistent features,
that distinguish between: support is a subspace of
» transient features, dimension r.

support is 0-dimensional,
» partially persistent
features, support is a
subspace of dimension
1<d<r, and

5H. Harrington, NO, H. Schenck, U. Tillmann, Stratifying multiparameter
persistent homology, SIAGA, 3(3):439-471 (2019)




Stability and distances for one-parameter PH

Parametrised Persistence ;
:

simplicial complex module

» Stability results for 1-parameter PH: the pipeline is Lipschitz in
an appropriate sense.

» Distances on barcodes are defined using matchings between
intervals in the barcode



Barcodes and persistence diagrams

—_— —
1 2 3 4 1 2 3 4
filtration step filtration step
[m]
4 4 .
:3; 3 ® :*; 3 .
= g
2 2
1 2 3 4 1 2 3 4
birth birth

from N. Otter, M. A. Porter, U. Tillmann, P. Grindrod and H. A Harrington, A
roadmap for the computation of persistent homology, EPJ Data Science, 6: 17 (2017)



Distances on persistence diagrams

Given two persistence diagrams:

How far apart are they?



Distances on persistence diagrams

Given two persistence diagrams:

How far apart are they?

Idea: look at all possible ways to match the points in the two
diagrams, and choose a way to compute distances between
matched points. Then the distance is given by the optimal
matching, the one minimizing these pairwise distances.



Bottleneck distance dg
Given x, y in R? choose

doo(x,y) = max{|x1 — y1|, |x2 — yo[}
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Bottleneck distance dg

Given x, y in R? choose

doo(x,y) = max{|x1 — y1|, |x2 — yo[}

¢

FNWhOOOo N
HND WO N

D1 012345 D2 012345

For each matching let m be the = Optimal matching:
maximum of the d., distances ! . d
between matched points. The
optimal matching is the one that
minimizes this quantity, and the
bottleneck distance is m for the
optimal matching. 012345
dg(D1,D2) =0.9

R NWrOOo N



The bottleneck distance

Example

HFNWsOoOo N
HFNWwsOoo N
HFNWOoo N

D 012345 D, 012345 Dy 012345

We have dB(Dl, D2) = dB(Dl, D3) = 0



The bottleneck distance is very coarse

Example

R NWkrOOo N
L]
RFNWrOoo N
FNDWsOoo N

Dy 012345 D 012345 D, 012345

We have dB(Dl, D2) = dB(Di, D2) =1



Wasserstein distance
Given x, y in R? choose

p p 1/p
Lo(x,y) = (b = l? + b = yal?)

¢
¢
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Wasserstein distance
Given x, y in R? choose

Lo(x,y) = (b =l + b = yal?)

FNWS~OOoO N

D, 012345

For each matching compute the
the p-norm of all the
L,-distances between matched
points. The optimal matching is
the one that minimizes this
p-norm.

1/p

¢
¢

FNWSsOOoO N

D, 012345

For p = 2: optimal matching
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dw, (D1, Dy) = /0.822 +1.22 + (.82



Geometry of the spaces of persistence diagrams
Means are not unique:

HFNWwsOooo N
FNWPsOOoO N

D 012345 D, 012345

Two different optimal matchings, leading to two different means:
¢ .
* *
o 4

HFNWAOOTO N
R NWMOOOo N

012345 012345



Geometry of the spaces of persistence diagrams

> In general: complicated



Geometry of the spaces of persistence diagrams

» In general: complicated

» For W5(Ly) is a non-negatively curved Alexandroff space:
Fréchet means are not necessarily unique nor continuous
(Turner et al 2014)

» Continuous Fréchet means for probability distributions of
persistence diagrams for W5(Lz) (Munch et al 2015)

> Lots of work, e.g.: [Chazal et al 2013], [Turner 2020], ...

K. Turner, Y. Mileyko, S. Mukherjee, and J. Harer, Fréchet means for distributions of
persistence diagrams, Discrete & Computational Geometry, 52(2014)

E. Munch, K. Turner, P. Bendich, S. Mukherjee, J. Mattingly, and J. Harer,
Probabilistic fréchet means for time varying persistence diagrams, Electronic Journal
of Statistics, 9(2015)

F. Chazal, B. Terese Fasy, F. Lecci, A. Rinaldo, A. Singh, and L. A. Wasserman. On
the bootstrap for persistence diagrams and landscapes. Modeling and Analysis of
Information Systems, 20(6), 2013

K. Turner, Medians of populations of persistence diagrams, Homology, Homotopy and
Applications 22(1) (2020)



Alternatives

Parametrised Persistence -
H Barcodes }—H Vectorisations

simplicial complex module

Idea: Instead of working directly with the space of persistence
diagrams, map it to another space, e.g. Banach space, in which it
is easier to compute means, variances, etc.



Alternatives

Parametrised Persistence o
simplicial complex H Barcodes }—H Vectorisations

module

Idea: Instead of working directly with the space of persistence
diagrams, map it to another space, e.g. Banach space, in which it
is easier to compute means, variances, etc.

Some approaches:

» Persistence landscapes

> Persistence images

v

Tropical coordinates

v

Kernels



Stability and distances for MPH

r-filtered
simplicial complex

r-parameter
module

Invariants

» Defining distances for MPH module is a problem linked with

finding suitable invariants that measure “persistence”



Interleaving distance

» Given two persistence modules N, M: (R", <) — Vect, one
defines a notion of “e-approximate isomorphisms’.

» The interleaving distance is the smallest € for which there is
such an approximate isomorphism.



Interleaving
Let € € R, and use the notation € = (¢, ...,€) € R".

» T.: (R, <) — (R, <) is the functor given by T.(a) =a+ €
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> 7t idwrr <) = Tc is the natural transformation given by
ne(a):a<a+é



Interleaving
Let € € R, and use the notation € = (¢, ...,€) € R".
» T.: (R, <) — (R, <) is the functor given by T.(a) =a+ €
> 7t idwrr <) = Tc is the natural transformation given by
ne(a):a<a+é
» Given two persistence modules N, M: R" — Vect, an
e-interleaving of M and N consists of natural transformations

¢: M= NT.and ¥ : N = MT,, i.e.
Te Te
R,)—— (R, ) —— (R, <)

M| 2 N X M

Vect Vect Vect

such that
(wTe)QO = My and (@Te)¢ = Nnpe.



Interleaving distance

v

Define the interleaving distance between modules M and N as

di(M, N) = inf{M and N are e-interleaved}
» We set dj(M, N) = oo if M and N are not e-interleaved for
any e € R

» In the one-parameter case, the interleaving distance is the
bottleneck distance (isometry theorem)’

» |n the multiparameter case, the computation of the
interleaving distance is NP-hard®

7Categorification of Persistent Homology, P. Bubenik, J. A. Scott Discrete &
Computational Geometry 51:600-627 (2014).

8Computing the Interleaving Distance is NP-Hard, H. B. Bjerkevik, M. B. Botnan,
M. Kerber, Foundations of Computational Mathematics 20:1237-1271 (2020).



Generalisation of Wasserstein distance?

In Bubenik et al.®:

Let d be a metric on the set of indecomposable modules, let
M= ®,eaM; and N = Spepg Ny where M, and N, are
indecomposable modules. Then define:

Wo(d)(M. N) =min (| (d(Me, Nye)) . |
+ 11 (d(Ma,0)) ca_c 12+

1/p
+ 1 (0, Nopep—picy 12)

b+

where the minimum is over all partial matchings
oA CA— B CB.

°P. Bubenik, J. A. Scott, and D. Stanley, An algebraic Wasserstein distance
for generalized persistence modules, https://arxiv.org/abs/1809.09654,
2018.


https://arxiv.org/abs/1809.09654

In general, generalising distances to the multiparameter setting
entails asking the question: what does “persistence” mean in
the multiparameter case?



A general framework to study stability for MPH

We proposel® a shift in perspective:
» a choice of invariant determines a distance

» thus, rather then asking when the pipeline is Lipzschitz, we
can ask for Lipschitz changes of invariants

Parametrised Persistence -
Data L = Invariants
simplicial complex module

Persistence .
——> Invariants

1
'
1
1
i/ module
1
Eessmer - - —— - — —— mEmam 1

inferred stability

108 Giunti, J. Nolan, N. Otter, L. Waas, Amplitudes on abelian categories,
in preparation



Amplitude

Fix an abelian category A.

Definition

A class function a: ob A — [0, 0] is called an amplitude if
a(0) =0, and for every short exact sequence

0O A—=B—-»C—0

in A the following inequalities hold:

(Monotonicity)

(Subadditivity)

a(A) < a(B)
a(C) < «(B) (1)
a(B) < a(A) + o(C) (2)

Moreover, « is additive if (2) is an equality and finite if

a(A) < oo for all Ain ob A.



Examples

» The map M — rankgM gives an additive amplitude on the
category of (left) R-modules;
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» The map M — rankgM gives an additive amplitude on the
category of (left) R-modules;

» The map V — dim V gives an additive amplitude on Vect;

» The map §(C) = max{n € N | C, # 0} gives an amplitude on
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Examples

» The map M — rankgM gives an additive amplitude on the
category of (left) R-modules;

» The map V — dim V gives an additive amplitude on Vect;

» The map §(C) = max{n € N | C, # 0} gives an amplitude on
ch;

» Given two amplitudes o and 3 on A, the assignments
max{a, 8} and o + 3 are two amplitudes on A.



Relationship to other work

> Noise systems (Scolamiero, Chachdlski, Lundman,
Ramanujam, and Oberg)!!: to each € > 0 they assign a
collection of objects.

» p-norms (Skraba and Turner)!?

» Weight functions (Bubenik, Scott, and Stanley) 13

M. Scolamiero, W. Chachdlski, A. Lundman, R. Ramanujam, and S.
Oberg, Multidimensional persistence and noise, Foundations of Computational
Mathematics, 17:1367-1406, 2017

12p_Skraba and K. Turner, Wasserstein stability for persistence
diagrams,https://arxiv.org/2006.16824, 2020

13p_ Bubenik, J. A. Scott, and D. Stanley, An algebraic Wasserstein distance
for generalized persistence modules, https://arxiv.org/abs/1809.09654,
2020.


https://arxiv.org/2006.16824
https://arxiv.org/abs/1809.09654

Examples in TDA: p-norms

Definition
Let X = @ ,I[b;, d;) € PerM(R) and p € [1,00]. The p-norm of
X is defined by

po(X) = {(Z"n‘l dj = biP)/?if p< o
o(X) =

maxXx;—=1 n|d,'—b," ifp:OO

,,,,,



Examples in TDA: p-norms

Definition
Let X = @ ,I[b;, d;) € PerM(R) and p € [1,00]. The p-norm of
X is defined by

(X0, |di — biIP)P i p < 0

maxij=1,..n|di — bj| if p=o00

PP(X) = {

Proposition
For all p € [1, 0], pp is an amplitude on PerM(R), additive if
p=1

Proof.
Skraba and Turner, arXiv, (2020). O



Examples in TDA: Tropical coordinates

Definition (Kalisnik4)

Let X = @7_,I[b;, b; + £;). Then {-tropk(X) is defined to be the
sum of the length of the k-longest intervals in X, while 9-troph,(X)
is defined to the sum of the p largest expressions of the form
min{b; + ¢;,(m+ 1)¢;}, for m € N.

Proposition (Giunti, Nolan, NO, Waas)

» The tropical coordinate (-trop¥ is an amplitude, for all k € N
on PerM(R);

» The tropical coordinate O-troph, is an amplitude on PerM(R),
for all m, p € N;

» The tropical coordinate given by the sum of | largest
expressions of the form min{b;, m{;} is not an amplitude on
PerM(R) for any m, | € N.

145 Kalisnik, Tropical coordinates on the space of persistence barcodes.
Foundations of Computational Mathematics, 19(1):101-129, 2019.



Examples in TDA: Persistent magnitude

Definition
Let X = @7 ,I[b;, di) € PerM(R). The persistent magnitude of
X is
n
PMagn(X) = Z e b e
i=1

15D Govc and R. Hepworth, Persistent magnitude, Journal of Pure and
Applied Algebra, 225, 2021.



Examples in TDA: Persistent magnitude

Definition
Let X = @7 ,I[b;, di) € PerM(R). The persistent magnitude of
X is
n
PMagn(X) = Z e b e
i=1

Proposition
The persistent magnitude is an additive amplitude on PerM(R).

Proof.
Govc and Hepworth?®®. O

15D Govc and R. Hepworth, Persistent magnitude, Journal of Pure and
Applied Algebra, 225, 2021.



Additive amplitudes

Theorem (Giunti, Nolan, NO, Waas)
Let Q be a finite poset. The following map is a bijection:
1 = Meas(Q) — AdAmp(PerM(Q))

u»—)/gdim(-)du.



Additive amplitudes

Theorem (Giunti, Nolan, NO, Waas)
Let Q be a finite poset. The following map is a bijection:
1 = Meas(Q) — AdAmp(PerM(Q))

u»—)/gdim(-)du.

Theorem (Giunti, Nolan, NO, Waas)

Each additive amplitude on PerM(RY) is uniquely given by
integrating the Hilbert function with respect to a content.



Amplitudes in multi-parameter persistence

v

LP-amplitudes;
Shift amplitudes;

v

v

Support amplitude;

v

Maximal dimension amplitude;

v

Rank and multirank amplitude;



Distances from amplitudes

Absolute-value distance

Definition
The absolute-value distance, for every X, Y € ob A, is defined as

dja)(X, Y) = [a(X) = (V).

» dy,,| is used in one of the first stability results in persistent
homology*©.
> d|£_tr0pk| and d|g_qrope| are used in the stability results for

tropical coordinates!”.

18David Cohen-Steiner, Herbert Edelsbrunner, John Harer, and Yuriy
Mileyko. Lipschitz functions have I,-stable persistence, Foundations of
Computational Mathematics, 10(2):127-139, 2010.

175 Kalisnik, Tropical coordinates on the space of persistence barcodes.
Foundations of Computational Mathematics, 19(1):101-129, 2019.



Distances from amplitudes
Path metric

Definition
Given a morphism ¢ in A, its cost is

ca(p) = a(ker ) + a(coker ¢) .



Distances from amplitudes
Path metric

Definition
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ca(p) = a(ker ) + a(coker ¢) .

For any X, Y € ob A, the path metric associated to « is

do (X, Y) = inf {g €[0,00) | ca(0)+ca(®) < e with X <2 7 -2 y} .



Distances from amplitudes
Path metric

Definition
Given a morphism ¢ in A, its cost is

ca(p) = a(ker ) + a(coker ¢) .

For any X, Y € ob A, the path metric associated to « is

do (X, Y) = inf {g €[0,00) | ca(0)+ca(®) < e with X <2 7 -2 y} .

Lemma
For each X € A, o(X) = dn(X,0).



Interleaving distance as a distance from an amplitude

Let C be a cone in R". A shift amplitude o on PerM(R") is
defined for any X € ob PerM(R") as

o(X)=inf{|lc|]||ce Cand X(t <t+c)=0forallteR"}.

180liver Gafvert and Wojciech Chachdlski. Stable invariants for multidimensional
persistence, arXiv:1703.03632, 2017



Interleaving distance as a distance from an amplitude
Let C be a cone in R". A shift amplitude o on PerM(R") is
defined for any X € ob PerM(R") as

o(X)=inf{|lc|]||ce Cand X(t <t+c)=0forallteR"}.

Theorem
For any X,Y € PerM(R"), we have:

di(X, Y) < do(X, Y) < 6ds(X, Y).

Proof.
Prop. 12.2 in [GC17]'8. O

180liver Gafvert and Wojciech Chachélski. Stable invariants for multidimensional
persistence, arXiv:1703.03632, 2017



Categories of amplitudes

Definition
The category of amplitudes, Amp, is the category where:

1. Objects are pairs (A, «) consisting of an abelian category A
together with an amplitude « on it;

2. Morphisms (A, &) — (A’, o’) are amplitude-bounding
functors, i.e. additive functors F: A — A’ such that there
exists K > 0 so that o/ (FX) < Ka(X) for all X € ob A.



Amplitude-bounding functors

Lemma (Giunti, Nolan, NO, Waas)

Letid: (PerM(R), pp) = (PerM(R), pq), where p, is the p-norm
amplitude. Then id is amplitude-bounding, with K = 1, if and only
ifp<gqell o]



Amplitude-bounding functors

Lemma (Giunti, Nolan, NO, Waas)

Letid: (PerM(R), pp) = (PerM(R), pq), where p, is the p-norm
amplitude. Then id is amplitude-bounding, with K = 1, if and only
ifp<gqell o]

Lemma (Giunti, Nolan, NO, Waas)

Letid: (PerM(R), p1) = (PerM(R), PMagn), where PMagn is the
persistent magnitude. Then id is amplitude-bounding with K = 1.



Continuous changes of invariants

Parametrised Persistence ;
Data . > Invariants
simplicial complex module




Continuous changes of invariants

; Persistence Algebraic
Filtered space - P8
module invariants
Persistence Algebraic
module invariants

inferred stability




Inferred stability results

Proposition (Giunti, Nolan, NO, Waas)

Let F: (A, a) = (A, ) be an exact, amplitude-bounding functor
with constant K. Then, for all X, Y € ob A,

do (FX, FY) < Kdo(X, Y).



Inferred stability results

Proposition (Giunti, Nolan, NO, Waas)

Let F: (A, a) = (A, ) be an exact, amplitude-bounding functor
with constant K. Then, for all X, Y € ob A,

do (FX, FY) < Kdo(X, Y).

Corollary (Giunti, Nolan, NO, Waas)
Given any persistence modules X, Y € PerM(R), we have that

dPMagn(Xa Y) < Wl(ng(X)7 ng( Y)) :



Future work

» Extend stability results.
» Study the computability of the distances.

» Explore the discriminating power of distances from amplitudes
on a data set of tropical diseases.



Non-example: Number of indecomposables

In general, the number of indecomposables of an object in an
abelian, Krull-Schmidt category is not an amplitude. Example!®:

M. Buchet and E. G. Escolar, Realizations of Indecomposable Persistence
Modules of Arbitrarily Large Dimension, In 34th International Symposium on
Computational Geometry(SoCG 2018), 99 15:1-15:13, Dagstuhl, Germany,
2018



Non-example: Number of indecomposables

In general, the number of indecomposables of an object in an
abelian, Krull-Schmidt category is not an amplitude. Example!®:

F R SN - B CL ) BN 0
(8] [16] [11]
0
0 P [1] 21 g 101 g

M. Buchet and E. G. Escolar, Realizations of Indecomposable Persistence
Modules of Arbitrarily Large Dimension, In 34th International Symposium on
Computational Geometry(SoCG 2018), 99 15:1-15:13, Dagstuhl, Germany,
2018



Non-example: c¢,-rank

Let M be an N-graded module over K[xi, ..., x,|. Let p be an
associated prime of M. Its Oth local cohomology with respect to
pis

Hg(M):{m€M|p”~m:0foraII n>>0}.

W.l.o.g. assume that p = (x1,...,xk). The c,-rank of M2 is the
rank of Hg as a module over K[xxy1,...,x/].

20y, Harrington, NO, H. Schenck, U. Tillmann, Stratifying multiparameter
persistent homology, SIAGA, 3(3):439-471 (2019)



Non-example: c¢,-rank

Let M be an N-graded module over K[xi, ..., x,|. Let p be an
associated prime of M. Its Oth local cohomology with respect to
pis

HS(M):{m€M|p”~m:0foraII n>>0}.

W.l.o.g. assume that p = (x1,...,xk). The c,-rank of M2 is the
rank of Hg as a module over K[xxy1,...,x/].

The c,-rank gives a count of the ways that the module goes to
infinity in the directions orthogonal to the coordinate subspace
spanned by xi, ..., xx [Proposition 4.20, HOST].

20y, Harrington, NO, H. Schenck, U. Tillmann, Stratifying multiparameter
persistent homology, SIAGA, 3(3):439-471 (2019)



Non-example: c¢,-rank

Let M be an N-graded module over K[xi, ..., x,|. Let p be an
associated prime of M. Its Oth local cohomology with respect to
pis

HS(M):{m€M|p”~m:0foraII n>>0}.

W.l.o.g. assume that p = (x1,...,xk). The c,-rank of M2 is the
rank of Hg as a module over K[xxy1,...,x/].

The c,-rank gives a count of the ways that the module goes to
infinity in the directions orthogonal to the coordinate subspace
spanned by xi, ..., xx [Proposition 4.20, HOST].

In general, the cp-rank is not an amplitude.

20y, Harrington, NO, H. Schenck, U. Tillmann, Stratifying multiparameter
persistent homology, SIAGA, 3(3):439-471 (2019)
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