Invariants for persistent homology and their stability

Nina Otter

UCLA

Group de travail ATD, Montpellier 16 June 2021

Science seminars

Slide 1

Good morning everyone. My lab works in this field

Slide 40

In conclusion we have shown that under semi-hypoxic conditions non canonical XHY889-2 signaling affects the cell cycle independently of XHY33-3 withought affecting the cell cycle

Motivation

Challenges for data science:

- data arising from new technologies
- not only size of data, but also complexity

Motivation

Challenges for data science:

- data arising from new technologies
- not only size of data, but also complexity

Ideas from pure mathematics can help

Topological data analysis

TDA studies the "shape" of complex data

Topological data analysis

TDA studies the "shape" of complex data

- Persistent homology
 - number of components, holes, voids, and higher dimensional holes

Topological data analysis

TDA studies the "shape" of complex data

- Persistent homology
 - number of components, holes, voids, and higher dimensional holes
- Magnitude homology
 - effective number of points

A topological perspective on regimes in dynamical systems, K. Strommen, M. Chantry, J. Dorrington, N. Otter, 2021, https://arxiv.org/abs/2104.03196

(Persistent) magnitude of point-cloud data, S. Kališnik, M. O'Malley, N. Otter, in preparation

Persistent homology

Multiparameter persistent homology (MPH) Motivation

Data often depend on several parameters, e.g.:

- colored digital images
- large and noisy climate data sets

A topological perspective on regimes in dynamical systems, K. Strommen, M. Chantry, J. Dorrington, N. Otter, 2021, https://arxiv.org/abs/2104.03196

Multiparameter persistent homology (MPH) Motivation

MPH: codensity-distance bifiltration

MPH pipeline

MPH: theoretical challenges

- MPH was introduced in 2009 by Carlsson and Zomorodian¹
- ► Classification problem amounts to studying isomorphism classes of multigraded modules over K[x₁,...,x_r]
- Desiderata for invariants for applications:
 - Computability
 - Stability
 - Interpretability

 $^{^1{\}rm G.}$ Carlsson, A. Zomorodian, The theory of multidimensional persistence, Discrete & Computational Geometry, 2009

Approaches focussing on finding invariants suitable for applications

- 1) Efficient algorithms to compute homology of multifiltrations:
 - For one-critical multifiltrations²
 - For general multifiltrations³

2) Invariants of MPH modules coming from applications: Bauer and Botnan, Chachólski, Oudot

3) Restriction of 2-parameter PH to 1-parameter PH: Biasotti et al⁴, Lesnick and Wright⁵

 $^2{\rm G.}$ Carlsson, G. Singh, A. Zomorodian, Computing multidimensional persistence, ISAAC 2009, Lecture notes in computer science

³W. Chachólski, M. Scolamiero, F. Vaccarino, Combinatorial presentation of multidimensional persistent homology, Journal of Pure and Applied Algebra, 2017

⁴S. Biasotti, A. Cerri, P. Frosini, D. Giorgi, C. Landi, Multidimensional Size Functions for Shape Comparison, Journal of Mathematical Imaging and Vision, 2008

⁵M. Lesnick, M. Wright, Interactive Visualization of 2-D Persistence Modules, arxiv.org/1512.00180

Restriction of 2-parameter PH to 1-parameter PH Vertical lines

Restriction of 2-parameter PH to 1-parameter PH Lines with positive slope

Computations performed with RIVET by M. Lesnick and M. Wright. M. Lesnick, M. Wright, Interactive Visualization of 2-D Persistence Modules, arxiv.org/1512.00180

4) Stratification of MPH

In HOST⁶ proposal of invariants that distinguish between:

- transient features, support is 0-dimensional,
- partially persistent features, support is a subspace of dimension

 $1 \leq d < r$, and

 fully persistent features, support is a subspace of dimension r.

⁶H. Harrington, NO, H. Schenck, U. Tillmann, Stratifying multiparameter persistent homology, *SIAGA*, **3**(3):439–471 (2019)

Stability and distances for one-parameter PH

- Stability results for 1-parameter PH: the pipeline is Lipschitz in an appropriate sense.
- Distances on barcodes are defined using matchings between intervals in the barcode

Barcodes and persistence diagrams

from N. Otter, M. A. Porter, U. Tillmann, P. Grindrod and H. A Harrington, A roadmap for the computation of persistent homology, *EPJ Data Science*, **6**: 17 (2017)

Distances on persistence diagrams

Given two persistence diagrams:

How far apart are they?

Distances on persistence diagrams

Given two persistence diagrams:

How far apart are they?

Idea: look at all possible ways to match the points in the two diagrams, and choose a way to compute distances between matched points. Then the distance is given by the optimal matching, the one minimizing these pairwise distances.

Bottleneck distance d_B

Given x, y in \mathbb{R}^2 choose

Bottleneck distance d_B

Given x, y in \mathbb{R}^2 choose

For each matching let m be the maximum of the d_{∞} distances between matched points. The optimal matching is the one that minimizes this quantity, and the bottleneck distance is m for the optimal matching.

 $d_B(D_1, D_2) = 0.9$

The bottleneck distance Example

We have $d_B(D_1, D_2) = d_B(D_1, D_3) = \infty$

The bottleneck distance is very coarse Example

We have $d_B(D_1, D_2) = d_B(D'_1, D_2) = 1$

Wasserstein distance

Wasserstein distance

Given x, y in \mathbb{R}^2 choose

For each matching compute the the *p*-norm of all the L_p -distances between matched points. The optimal matching is the one that minimizes this *p*-norm.

For p = 2: optimal matching 6 5 . 3 2 2 3 4 5 $d_{W_2}(D_1, D_2) = \sqrt{0.82^2 + 1.2^2 + 0.8^2}$

Geometry of the spaces of persistence diagrams Means are not unique:

Two different optimal matchings, leading to two different means:

Geometry of the spaces of persistence diagrams

► In general: complicated

Geometry of the spaces of persistence diagrams

- In general: complicated
- ▶ For W₂(L₂) is a non-negatively curved Alexandroff space: Fréchet means are not necessarily unique nor continuous (Turner et al 2014)
- ► Continuous Fréchet means for probability distributions of persistence diagrams for W₂(L₂) (Munch et al 2015)
- ▶ Lots of work, e.g.: [Chazal et al 2013], [Turner 2020], ...

K. Turner, Y. Mileyko, S. Mukherjee, and J. Harer, Fréchet means for distributions of persistence diagrams, *Discrete & Computational Geometry*, **52**(2014)

E. Munch, K. Turner, P. Bendich, S. Mukherjee, J. Mattingly, and J. Harer, Probabilistic fréchet means for time varying persistence diagrams, *Electronic Journal of Statistics*, **9**(2015)

F. Chazal, B. Terese Fasy, F. Lecci, A. Rinaldo, A. Singh, and L. A. Wasserman. On the bootstrap for persistence diagrams and landscapes. *Modeling and Analysis of Information Systems*, **20**(6), 2013

K. Turner, Medians of populations of persistence diagrams, *Homology, Homotopy and Applications* **22**(1) (2020)

Alternatives

Idea: Instead of working directly with the space of persistence diagrams, map it to another space, e.g. Banach space, in which it is easier to compute means, variances, etc.

Alternatives

Idea: Instead of working directly with the space of persistence diagrams, map it to another space, e.g. Banach space, in which it is easier to compute means, variances, etc.

Some approaches:

- Persistence landscapes
- Persistence images
- Tropical coordinates
- Kernels

Stability and distances for MPH

Defining distances for MPH module is a problem linked with finding suitable invariants that measure "persistence"

Interleaving distance

► Given two persistence modules N, M: (ℝ^r, ≤) → Vect, one defines a notion of "ε-approximate isomorphisms".

The interleaving distance is the smallest
e for which there is such an approximate isomorphism.

Interleaving

Let $\epsilon \in \mathbb{R}$, and use the notation $\hat{\epsilon} = (\epsilon, \dots, \epsilon) \in \mathbb{R}^r$.

▶ T_{ϵ} : $(\mathbb{R}^{r}, \leq) \rightarrow (\mathbb{R}^{r}, \leq)$ is the functor given by $T_{\epsilon}(a) = a + \hat{\epsilon}$

Interleaving

Let $\epsilon \in \mathbb{R}$, and use the notation $\hat{\epsilon} = (\epsilon, \dots, \epsilon) \in \mathbb{R}^r$.

▶ T_{ϵ} : $(\mathbb{R}^{r}, \leq) \rightarrow (\mathbb{R}^{r}, \leq)$ is the functor given by $T_{\epsilon}(a) = a + \hat{\epsilon}$

• $\eta_{\epsilon}: id_{(\mathbb{R}^r, \leq)} \Rightarrow T_{\epsilon}$ is the natural transformation given by $\eta_{\epsilon}(a): a \leq a + \hat{\epsilon}.$
Interleaving

Let $\epsilon \in \mathbb{R}$, and use the notation $\hat{\epsilon} = (\epsilon, \dots, \epsilon) \in \mathbb{R}^r$.

- ▶ T_{ϵ} : $(\mathbb{R}^{r}, \leq) \rightarrow (\mathbb{R}^{r}, \leq)$ is the functor given by $T_{\epsilon}(a) = a + \hat{\epsilon}$
- $\eta_{\epsilon}: id_{(\mathbb{R}^r, \leq)} \Rightarrow T_{\epsilon}$ is the natural transformation given by $\eta_{\epsilon}(a): a \leq a + \hat{\epsilon}.$
- Given two persistence modules $N, M \colon \mathbb{R}^r \to \text{Vect}$, an ϵ -interleaving of M and N consists of natural transformations $\varphi \colon M \Rightarrow NT_{\epsilon}$ and $\psi \colon N \Rightarrow MT_{\epsilon}$, i.e.

such that

 $(\psi T_{\epsilon})\varphi = M\eta_{2\epsilon}$ and $(\varphi T_{\epsilon})\psi = N\eta_{2\epsilon}$.

Interleaving distance

▶ Define the interleaving distance between modules *M* and *N* as

 $d_I(M, N) = \inf_{\epsilon} \{M \text{ and } N \text{ are } \epsilon \text{-interleaved} \}$

- ▶ We set $d_I(M, N) = \infty$ if M and N are not ϵ -interleaved for any $\epsilon \in \mathbb{R}$
- In the one-parameter case, the interleaving distance is the bottleneck distance (isometry theorem)⁷
- In the multiparameter case, the computation of the interleaving distance is NP-hard⁸

⁷Categorification of Persistent Homology, P. Bubenik, J. A. Scott *Discrete & Computational Geometry* **51**:600–627 (2014).

⁸Computing the Interleaving Distance is NP-Hard, H. B. Bjerkevik, M. B. Botnan, M. Kerber, *Foundations of Computational Mathematics* **20**:1237–1271 (2020).

Generalisation of Wasserstein distance?

In Bubenik et al.⁹:

Let d be a metric on the set of indecomposable modules, let $M \cong \bigoplus_{a \in A} M_a$ and $N \cong \bigoplus_{b \in B} N_b$ where M_a and N_b are indecomposable modules. Then define:

$$W_{p}(d)(M,N) = \min_{\varphi} \left(\left\| \left(d(M_{c}, N_{\varphi(c)}) \right)_{c \in C} \right\|_{p}^{p} + \right. \\ \left. + \left\| \left(d(M_{a}, 0) \right)_{a \in A - C} \right\|_{p}^{p} + \right. \\ \left. + \left\| \left(d(0, N_{b}) \right)_{b \in B - \varphi(C)} \right\|_{p}^{p} \right)^{1/p} \right.$$

where the minimum is over all partial matchings $\phi: A' \subset A \rightarrow B' \subset B$.

⁹P. Bubenik, J. A. Scott, and D. Stanley, An algebraic Wasserstein distance for generalized persistence modules, https://arxiv.org/abs/1809.09654, 2018.

In general, generalising distances to the multiparameter setting entails asking the question: what does "persistence" mean in the multiparameter case?

A general framework to study stability for MPH

We propose¹⁰ a shift in perspective:

- ► a choice of invariant determines a distance
- thus, rather then asking when the pipeline is Lipzschitz, we can ask for Lipschitz changes of invariants

¹⁰B. Giunti, J. Nolan, N. Otter, L. Waas, Amplitudes on abelian categories, in preparation

Amplitude

Fix an abelian category \mathcal{A} .

Definition

A class function α : ob $\mathcal{A} \to [0, \infty]$ is called an **amplitude** if $\alpha(0) = 0$, and for every short exact sequence

$$0 \rightarrow A \hookrightarrow B \twoheadrightarrow C \rightarrow 0$$

in \mathcal{A} the following inequalities hold:

$$\begin{array}{ll} \text{(Monotonicity)} & \begin{array}{l} \alpha(A) \leq \alpha(B) \\ \alpha(C) \leq \alpha(B) \end{array} & (1) \\ \text{(Subadditivity)} & \begin{array}{l} \alpha(B) \leq \alpha(A) + \alpha(C) \end{array} & (2) \end{array}$$

Moreover, α is additive if (2) is an equality and finite if $\alpha(A) < \infty$ for all A in ob A.

 The map M → rank_RM gives an additive amplitude on the category of (left) R-modules;

- The map M → rank_RM gives an additive amplitude on the category of (left) R-modules;
 - The map $V \rightarrow \dim V$ gives an additive amplitude on Vect;

Examples

- The map M → rank_RM gives an additive amplitude on the category of (left) R-modules;
 - The map $V \rightarrow \dim V$ gives an additive amplitude on Vect;
- The map δ(C) = max{n ∈ N | C_n ≠ 0} gives an amplitude on ch;

Examples

- The map M → rank_RM gives an additive amplitude on the category of (left) R-modules;
 - The map $V \rightarrow \dim V$ gives an additive amplitude on Vect;
- The map δ(C) = max{n ∈ N | C_n ≠ 0} gives an amplitude on ch;
- Given two amplitudes α and β on A, the assignments max{α, β} and α + β are two amplitudes on A.

Relationship to other work

- Noise systems (Scolamiero, Chachólski, Lundman, Ramanujam, and Öberg)¹¹: to each ε ≥ 0 they assign a collection of objects.
- p-norms (Skraba and Turner)¹²
- Weight functions (Bubenik, Scott, and Stanley) ¹³

¹¹M. Scolamiero, W. Chachólski, A. Lundman, R. Ramanujam, and S. Öberg, Multidimensional persistence and noise, *Foundations of Computational Mathematics*, **17**:1367–1406, 2017

 $^{^{12}\}text{P.}$ Skraba and K. Turner, Wasserstein stability for persistence diagrams,https://arxiv.org/2006.16824, 2020

¹³P. Bubenik, J. A. Scott, and D. Stanley, An algebraic Wasserstein distance for generalized persistence modules, https://arxiv.org/abs/1809.09654, 2020.

Examples in TDA: *p*-norms

Definition

Let $X \cong \bigoplus_{i=1}^{n} \mathbb{I}[b_i, d_i) \in \operatorname{PerM}(\mathbb{R})$ and $p \in [1, \infty]$. The *p*-norm of X is defined by

$$\rho_p(X) = \begin{cases} \left(\sum_{i=1}^n |d_i - b_i|^p\right)^{1/p} & \text{if } p < \infty \\ \max_{i=1,\dots,n} |d_i - b_i| & \text{if } p = \infty \end{cases}$$

Examples in TDA: *p*-norms

Definition

Let $X \cong \bigoplus_{i=1}^{n} \mathbb{I}[b_i, d_i) \in \operatorname{PerM}(\mathbb{R})$ and $p \in [1, \infty]$. The *p*-norm of X is defined by

$$\rho_p(X) = \begin{cases} \left(\sum_{i=1}^n |d_i - b_i|^p\right)^{1/p} & \text{if } p < \infty \\ \max_{i=1,\dots,n} |d_i - b_i| & \text{if } p = \infty \end{cases}$$

Proposition

For all $p \in [1, \infty]$, ρ_p is an amplitude on $\operatorname{PerM}(\mathbb{R})$, additive if p = 1.

Proof. Skraba and Turner, arXiv, (2020).

Examples in TDA: Tropical coordinates

Definition (Kališnik¹⁴)

Let $X = \bigoplus_{i=1}^{n} \mathbb{I}[b_i, b_i + \ell_i)$. Then ℓ -trop^k(X) is defined to be the sum of the length of the k-longest intervals in X, while ∂ -trop^p_m(X) is defined to the sum of the p largest expressions of the form $\min\{b_i + \ell_i, (m+1)\ell_i\}$, for $m \in \mathbb{N}$.

Proposition (Giunti, Nolan, NO, Waas)

- The tropical coordinate ℓ-trop^k is an amplitude, for all k ∈ N on PerM(R);
- The tropical coordinate ∂-trop^p_m is an amplitude on PerM(ℝ), for all m, p ∈ N;
- The tropical coordinate given by the sum of I largest expressions of the form min{b_i, mℓ_i} is not an amplitude on PerM(ℝ) for any m, I ∈ ℕ.

¹⁴S. Kališnik, Tropical coordinates on the space of persistence barcodes. *Foundations of Computational Mathematics*, **19**(1):101–129, 2019.

Examples in TDA: Persistent magnitude

Definition

Let $X \cong \bigoplus_{i=1}^{n} \mathbb{I}[b_i, d_i) \in \operatorname{PerM}(\mathbb{R})$. The **persistent magnitude** of X is

$$\operatorname{PMagn}(X) = \sum_{i=1}^n e^{-b_i} - e^{-d_i}$$

¹⁵D. Govc and R. Hepworth, Persistent magnitude, *Journal of Pure and Applied Algebra*, **225**, 2021.

Examples in TDA: Persistent magnitude

Definition

Let $X \cong \bigoplus_{i=1}^{n} \mathbb{I}[b_i, d_i) \in \operatorname{PerM}(\mathbb{R})$. The **persistent magnitude** of X is

$$\operatorname{PMagn}(X) = \sum_{i=1}^{n} e^{-b_i} - e^{-d_i}$$

Proposition

The persistent magnitude is an additive amplitude on $\operatorname{PerM}(\mathbb{R})$.

Proof.

Govc and Hepworth¹⁵.

¹⁵D. Govc and R. Hepworth, Persistent magnitude, *Journal of Pure and Applied Algebra*, **225**, 2021.

Additive amplitudes

Theorem (Giunti, Nolan, NO, Waas) Let Q be a finite poset. The following map is a bijection: $\psi = \text{Meas}(Q) \longrightarrow \text{AdAmp}(\text{PerM}(Q))$ $\mu \mapsto \int_{Q} \text{dim}(\cdot) d\mu.$

Additive amplitudes

Theorem (Giunti, Nolan, NO, Waas) Let Q be a finite poset. The following map is a bijection: $\psi = \text{Meas}(Q) \longrightarrow \text{AdAmp}(\text{PerM}(Q))$ $\mu \mapsto \int_{\Omega} \dim(\cdot) d\mu.$

Theorem (Giunti, Nolan, NO, Waas)

Each additive amplitude on $\operatorname{PerM}(\mathbb{R}^d)$ is uniquely given by integrating the Hilbert function with respect to a content.

Amplitudes in multi-parameter persistence

- L^p-amplitudes;
- Shift amplitudes;
- Support amplitude;
- Maximal dimension amplitude;
- Rank and multirank amplitude;

▶ ...

Distances from amplitudes Absolute-value distance

Definition

The **absolute-value distance**, for every $X, Y \in ob \mathcal{A}$, is defined as

$$d_{|\alpha|}(X,Y) = |\alpha(X) - \alpha(Y)|.$$

- ► d_{|ρ1|} is used in one of the first stability results in persistent homology¹⁶.
- ▶ d_{|ℓ-trop^k|} and d_{|∂-trop^p|} are used in the stability results for tropical coordinates¹⁷.

¹⁶David Cohen-Steiner, Herbert Edelsbrunner, John Harer, and Yuriy Mileyko. Lipschitz functions have I_p -stable persistence, Foundations of Computational Mathematics, **10**(2):127–139, 2010.

¹⁷S. Kališnik, Tropical coordinates on the space of persistence barcodes. *Foundations of Computational Mathematics*, **19**(1):101–129, 2019.

Distances from amplitudes Path metric

$$c_{lpha}(arphi) = lpha(\ker arphi) + lpha(\operatorname{coker} arphi)$$
 .

Distances from amplitudes Path metric

Definition

Given a morphism φ in \mathcal{A} , its **cost** is

$$c_{\alpha}(\varphi) = \alpha(\ker \varphi) + \alpha(\operatorname{coker} \varphi).$$

For any $X, Y \in ob \mathcal{A}$, the **path metric** associated to α is

$$\mathrm{d}_{\alpha}\left(X,Y\right) = \inf\left\{\varepsilon \in [0,\infty) \mid c_{\alpha}(\varphi) + c_{\alpha}(\psi) \leq \varepsilon \text{ with } X \xleftarrow{\varphi} Z \xrightarrow{\psi} Y\right\}.$$

Distances from amplitudes Path metric

Definition

Given a morphism φ in \mathcal{A} , its **cost** is

$$c_{\alpha}(\varphi) = \alpha(\ker \varphi) + \alpha(\operatorname{coker} \varphi).$$

For any $X, Y \in ob \mathcal{A}$, the **path metric** associated to α is

$$d_{\alpha}(X,Y) = \inf \left\{ \varepsilon \in [0,\infty) \mid c_{\alpha}(\varphi) + c_{\alpha}(\psi) \leq \varepsilon \text{ with } X \xleftarrow{\varphi} Z \xrightarrow{\psi} Y \right\}.$$

Lemma

For each $X \in A$, $\alpha(X) = d_{\alpha}(X, 0)$.

Interleaving distance as a distance from an amplitude

Let C be a cone in \mathbb{R}^r . A shift amplitude σ on $\operatorname{PerM}(\mathbb{R}^r)$ is defined for any $X \in \operatorname{ob}\operatorname{PerM}(\mathbb{R}^r)$ as

 $\sigma(X) = \inf \left\{ \ ||c|| \ | \ c \in C \text{ and } X(t \leq t + c) = 0 \text{ for all } t \in \mathbb{R}^r \right\}.$

¹⁸Oliver Gäfvert and Wojciech Chachólski. Stable invariants for multidimensional persistence, arXiv:1703.03632, 2017

Interleaving distance as a distance from an amplitude

Let C be a cone in \mathbb{R}^r . A shift amplitude σ on $\operatorname{PerM}(\mathbb{R}^r)$ is defined for any $X \in \operatorname{ob}\operatorname{PerM}(\mathbb{R}^r)$ as

 $\sigma(X) = \inf \left\{ \ ||c|| \ | \ c \in C \text{ and } X(t \leq t + c) = 0 \text{ for all } t \in \mathbb{R}^r \right\}.$

Theorem For any $X, Y \in PerM(\mathbb{R}^r)$, we have:

$$d_I(X, Y) \leq d_\sigma(X, Y) \leq 6 d_I(X, Y).$$

Proof. Prop. 12.2 in [GC17]¹⁸.

¹⁸Oliver Gäfvert and Wojciech Chachólski. Stable invariants for multidimensional persistence, arXiv:1703.03632, 2017

Categories of amplitudes

Definition

The category of amplitudes, Amp , is the category where:

- 1. Objects are pairs (A, α) consisting of an abelian category A together with an amplitude α on it;
- 2. Morphisms $(\mathcal{A}, \alpha) \to (\mathcal{A}', \alpha')$ are **amplitude-bounding** functors, i.e. additive functors $F : \mathcal{A} \to \mathcal{A}'$ such that there exists $K \ge 0$ so that $\alpha'(FX) \le K\alpha(X)$ for all $X \in \text{ob } \mathcal{A}$.

Amplitude-bounding functors

Lemma (Giunti, Nolan, NO, Waas)

Let id: $(\operatorname{PerM}(\mathbb{R}), \rho_p) \to (\operatorname{PerM}(\mathbb{R}), \rho_q)$, where ρ_p is the p-norm amplitude. Then id is amplitude-bounding, with K = 1, if and only if $p \leq q \in [1, \infty]$.

Amplitude-bounding functors

Lemma (Giunti, Nolan, NO, Waas)

Let id: $(\operatorname{PerM}(\mathbb{R}), \rho_p) \to (\operatorname{PerM}(\mathbb{R}), \rho_q)$, where ρ_p is the p-norm amplitude. Then id is amplitude-bounding, with K = 1, if and only if $p \leq q \in [1, \infty]$.

Lemma (Giunti, Nolan, NO, Waas)

Let id: $(\operatorname{PerM}(\mathbb{R}), \rho_1) \to (\operatorname{PerM}(\mathbb{R}), \operatorname{PMagn})$, where PMagn is the persistent magnitude. Then id is amplitude-bounding with K = 1.

Continuous changes of invariants

Continuous changes of invariants

Inferred stability results

Proposition (Giunti, Nolan, NO, Waas)

Let $F: (\mathcal{A}, \alpha) \to (\mathcal{A}', \alpha')$ be an exact, amplitude-bounding functor with constant K. Then, for all $X, Y \in ob \mathcal{A}$,

 $d_{\alpha'}(FX,FY) \leq K d_{\alpha}(X,Y).$

Inferred stability results

Proposition (Giunti, Nolan, NO, Waas)

Let $F: (\mathcal{A}, \alpha) \to (\mathcal{A}', \alpha')$ be an exact, amplitude-bounding functor with constant K. Then, for all $X, Y \in \text{ob } \mathcal{A}$,

 $d_{\alpha'}(FX,FY) \leq K d_{\alpha}(X,Y).$

Corollary (Giunti, Nolan, NO, Waas) Given any persistence modules $X, Y \in PerM(\mathbb{R})$, we have that $d_{PMagn}(X, Y) \leq W_1(Dgm(X), Dgm(Y))$.

Future work

- Extend stability results.
- Study the computability of the distances.
- Explore the discriminating power of distances from amplitudes on a data set of tropical diseases.

Non-example: Number of indecomposables

In general, the number of indecomposables of an object in an abelian, Krull-Schmidt category is not an amplitude. Example¹⁹:

¹⁹M. Buchet and E. G. Escolar, Realizations of Indecomposable Persistence Modules of Arbitrarily Large Dimension, *In 34th International Symposium on Computational Geometry(SoCG 2018)*, **99** 15:1–15:13, Dagstuhl, Germany, 2018

Non-example: Number of indecomposables

In general, the number of indecomposables of an object in an abelian, Krull-Schmidt category is not an amplitude. Example¹⁹:

¹⁹M. Buchet and E. G. Escolar, Realizations of Indecomposable Persistence Modules of Arbitrarily Large Dimension, *In 34th International Symposium on Computational Geometry(SoCG 2018)*, **99** 15:1–15:13, Dagstuhl, Germany, 2018

Non-example: *c*_p-rank

Let *M* be an \mathbb{N} -graded module over $\mathbb{K}[x_1, \ldots, x_r]$. Let *p* be an associated prime of *M*. Its 0th local cohomology with respect to *p* is

$$H^0_p(M)=\{m\in M\mid p^n\cdot m=0 ext{ for all }n>>0\}\,.$$

W.l.o.g. assume that $p = \langle x_1, \ldots, x_k \rangle$. The c_p -rank of M^{20} is the rank of H_p^0 as a module over $\mathbb{K}[x_{k+1}, \ldots, x_r]$.

²⁰H. Harrington, NO, H. Schenck, U. Tillmann, Stratifying multiparameter persistent homology, *SIAGA*, **3**(3):439–471 (2019)
Non-example: c_p -rank

Let *M* be an \mathbb{N} -graded module over $\mathbb{K}[x_1, \ldots, x_r]$. Let *p* be an associated prime of *M*. Its 0th local cohomology with respect to *p* is

$$H^0_p(M)=\{m\in M\mid p^n\cdot m=0 ext{ for all }n>>0\}\,.$$

W.l.o.g. assume that $p = \langle x_1, \ldots, x_k \rangle$. The c_p -rank of M^{20} is the rank of H_p^0 as a module over $\mathbb{K}[x_{k+1}, \ldots, x_r]$.

The c_p -rank gives a count of the ways that the module goes to infinity in the directions orthogonal to the coordinate subspace spanned by x_1, \ldots, x_k [Proposition 4.20, HOST].

²⁰H. Harrington, NO, H. Schenck, U. Tillmann, Stratifying multiparameter persistent homology, *SIAGA*, **3**(3):439–471 (2019)

Non-example: c_p -rank

Let *M* be an \mathbb{N} -graded module over $\mathbb{K}[x_1, \ldots, x_r]$. Let *p* be an associated prime of *M*. Its 0th local cohomology with respect to *p* is

$$H^0_p(M)=\{m\in M\mid p^n\cdot m=0 ext{ for all }n>>0\}\,.$$

W.l.o.g. assume that $p = \langle x_1, \ldots, x_k \rangle$. The c_p -rank of M^{20} is the rank of H_p^0 as a module over $\mathbb{K}[x_{k+1}, \ldots, x_r]$.

The c_p -rank gives a count of the ways that the module goes to infinity in the directions orthogonal to the coordinate subspace spanned by x_1, \ldots, x_k [Proposition 4.20, HOST].

In general, the c_p -rank is not an amplitude.

²⁰H. Harrington, NO, H. Schenck, U. Tillmann, Stratifying multiparameter persistent homology, *SIAGA*, **3**(3):439–471 (2019)