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What is a Group Field Theory?

It is an approach to quantum gravity at the crossroads of loop quantum gravity (LQG)
and matrix/tensor models.

A simple definition:�



�
	A Group Field Theory (GFT) is a non-local quantum field theory defined on

a group manifold.

The group manifold is auxiliary: should not be interpreted as space-time!

Rather, the Feynman amplitudes are thought of as describing space-time
processes → QFT of space-time rather than on space-time.

Specific non-locality: determines the combinatorial structure of space-time
processes (graphs, 2-complexes, triangulations...).
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General structure of a GFT, and objectives

Typical form of a GFT: field ϕ(g1, . . . , gd), g` ∈ G , with partition function

Z =

∫
[Dϕ]Λ exp

−ϕ · K · ϕ+
∑
{V}

tV V · ϕnV

 =
∑

kV1
,...,kVi

∏
i

(tVi )
kVi {SF amplitudes}

Main objectives of the GFT research programme:

1 Model building: define the theory space.
e.g. spin foam models + combinatorial considerations (tensor models) → d, G, K
and {V}.

2 Perturbative definition: prove that the spin foam expansion is consistent in some
range of Λ.
e.g. perturbative multi-scale renormalization.

3 Systematically explore the theory space: effective continuum regime reproducing
GR in some limit?
e.g. functional RG, constructive methods, condensate states...
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Purpose of this talk

Illustrate the three steps with toy models:

1 Model building: Tensorial GFTs, in particular with gauge invariance condition.
(in dimension 3 ∼ Euclidean quantum gravity)

2 Consistency check: perturbative renormalizability well–understood in this context
→ full classification of consistent models.

3 Systematically explore the theory space: on-going efforts aiming at making
non-perturbative methods available.

Show that these new QFTs have interesting mathematical properties: in particular,
asymptotic freedom is realizable.
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Matrix models: example

Partition function for N × N symmetric matrix:

Z(N, λ) =

∫
[dM] exp

(
−1

2
TrM2 +

λ

N1/2
TrM3

)

Large N expansion:

Z(N, λ) =
∑

triangulation ∆

λn∆

s(∆)
A∆(N) =

∑
g∈N

N2−2g Zg (λ)

Continuum limit of Z0: tune λ→ λc ⇒ very refined triangulations dominate.
(Z0(λ) ∼ |λ− λc |2−γ)

Naive relation to Euclidean 2d quantum gravity:

SEH =
1

G

∫
S

d2x
√
−g (−R + Λ) = −4π

G
χ(S) +

Λ

G
A(S)

⇒ exp (−SEH) ∼
∆

λn∆Nχ(∆) with λ = exp(−Λ/G) ; N = exp(4π/G)
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Tensor models

Old idea [Ambjorn et al., Gross 91, Sasakura 92...]: generalize matrix models in the obvious
way e.g. in d=3

Z =

∫
[DT ] e−

1
2
Ti1 i2 i3

Ti1 i2 i3
−λTi1 i2 i3

Ti3 i5 i4
Ti5 i2 i6

Ti4 i6 i1

=
∑

triangulation ∆

λn∆A∆

→ a rank-d model generates simplicial complexes of dimension d .

Various issues:

no control over the topology of the simplicial complexes;
no adapted analytical tools, in particular no 1/N expansion.

Important improvements thanks to a modified combinatorial structure of the
interactions → colored [Gurau ’09] and uncolored [Bonzom, Gurau, Rivasseau ’12] models.

⇒ action specified by a tensorial invariance under U(N)⊗d :

Ti1...id → U
(1)
i1j1
. . .U

(d)
id jd

Tj1...jd , T i1...id → U
(1)
i1j1 . . .U

(d)
id jdT j1...jd .
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A wealth of recent results in TM, an opportunity for GFTs

Long list of recent results in the framework of these new tensor models:

1/N expansion dominated by spheres [Gurau ’11...];
continuum limit of the leading order [Bonzom, Gurau, Riello, Rivasseau ’11] → ’branched
polymer’ [Gurau, Ryan ’13];
double-scaling limit [Dartois, Gurau, Rivasseau ’13; Gurau, Schaeffer ’13; Bonzom, Gurau,

Ryan, Tanasa ’14];
Schwinger-Dyson equations [Gurau ’11 ’12; Bonzom ’12];
non-perturbative results [Gurau ’11 ’13; Delepouve, Gurau, Rivasseau ’14];
’multi-orientable’ models [Tanasa ’11, Dartois, Rivasseau, Tanasa ’13; Raasaakka, Tanasa ’13;

Fusy, Tanasa ’14], O(N)⊗d -invariant models [SC, Tanasa wip], and new scalings [Bonzom

’12; Bonzom, Delepouve, Rivasseau ’15];
symmetry breaking to matrix phase [Benedetti, Gurau ’15];
...

Same techniques available in GFTs provided that the same combinatorial
restrictions are implemented.

A tensor model can be viewed as a GFT of the simplest type
e.g. a theory on U(1)d with sharp cut-off on the Fourier modes (p1, . . . , pd) ∈ Zd .

⇒ naturally leads to the definition of more general Tensorial GFTs, with more general
groups and more general kinetic terms.
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Colored graphs

Definition: colored graph

A n-colored graph is a bipartite regular graph of valency n, edge-colored by labels
` ∈ {1, . . . , n}, and such that at each vertex meet n edges with distinct colors.

Two types of nodes: black or white dots.

n types of edges, with color label ` ∈ {1, . . . , n}.

Examples: 4-colored graphs.
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Colored graphs and triangulations

Each node in a (d + 1)-colored graph is dual to a d-simplex

Each line represents the gluing of two d-simplices along their boundary
(d − 1)-simplices

⇒ A (d + 1)-colored graph represents a triangulation in dimension d .
Crystallisation theory [Cagliardi, Ferri et al. ’80s]
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Locality as tensorial invariance

New notion of locality for Tensor Models and GFTs [Bonzom, Gurau, Rivasseau ’12]:

S int(ϕ,ϕ) is the interaction part of the action, and should be a sum of connected
tensor invariants

S int(ϕ,ϕ) =
∑
b∈B

tbIb(ϕ,ϕ)

=
d=3

t2 + t4 + t6,1 + t6,2 + . . .

which play the role of local terms.

Correspondence between colored graphs b and tensor invariants Ib(ϕ,ϕ):
white (resp. black) node ↔ field (resp. complex conjugate field);
edge of color ` ↔ convolution of `-th indices of ϕ and ϕ.

1 1

3

3

2

2

Ib(ϕ,ϕ) =

∫
[dgi ]

6 ϕ(g6, g2, g3)ϕ(g1, g2, g3)

ϕ(g6, g4, g5)ϕ(g1, g4, g5)
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Abstract notion of scale

Scales in space-time based QFTs: energy. Not available in a background
independent context.

In Matrix/Tensor Models (Ti1,...,id |ik ∈ {1, . . . ,N}): size N of the tensors viewed as
a cut-off.

’UV’ scales ≡ large ik ;
’IR’ scales ≡ small ik .

One possible generalization to GFT: eigenvalues of
∑̀

∆` [Ben Geloun, Bonzom ’11; Ben

Geloun, Rivasseau ’11]. For instance, for a field ϕ(g1, . . . , gd), with gk ∈ U(1) or SU(2):

scale =
d∑
`=1

p2
` . Λ2 or

d∑
`=1

j`(j` + 1) . Λ2

’UV’ ≡ large momenta |p`| or spins j`;
’IR’ ≡ small momenta |p`| spins j`.

Natural flow from a large cut-off on the spins to a smaller one: consistent with
continuum limit in LQG, since large spins means large building blocks (area).
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’Local potential approximation’

Ansatz akin to a ’local potential approximation’:

SΛ(ϕ,ϕ) = ϕ ·

(
−
∑
`

∆`

)
· ϕ+ S int

Λ (ϕ,ϕ)

Subtlety: invariance properties on ϕ imposed by spin foam constraints.

Partition function:

ZΛ =

∫
dµCΛ (ϕ,ϕ) e−Sint

Λ (ϕ,ϕ) .

S int
Λ (ϕ,ϕ) is local:

S int
Λ (ϕ,ϕ) =

∑
b∈B

tΛ
b Ib(ϕ,ϕ) =

d=3
tΛ

2 + tΛ
4 + . . .

Gaussian measure dµC with possibly degenerate covariance:

C = P
(
−
∑
`

∆`

)−1

P

where P is a projector implementing the relevant constraints on the fields.

Sylvain Carrozza (CPT) Renormalization of Tensorial (Group) Field Theories GDR Renormalization 2015 16 / 38



Feynman amplitudes

Feynman graphs:

Elementary building blocks = colored graphs = GFT vertices = 3d cells with
colored triangulated boundaries...

3 2 1

1 1

3

2

2

3

2
3

3

2

3
2

1 1

1

1 1

3 3

3

2

2

2

1

0

0

0

0

0

0

...glued together along their boundary triangles.

Covariances associated to the dashed, color-0 lines.

Face of color ` = connected set of (alternating) color-0 and color-` lines.
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Overview�



�
	Goal: check that the perturbative expansion - and henceforth the connection to

spin foam models - is consistent.

Types of models considered so far:

’combinatorial’ models on U(1)D → non-trivial propagators, but no use of the group
structure;

[Ben Geloun, Rivasseau ’11; Ben Geloun, Ousmane Samary ’12; Ben Geloun, Livine ’12...]

models with ’gauge invariance’ on U(1)D and SU(2) → non-trivial propagators + one
key dynamical ingredient of spin foam models.

[SC, Oriti, Rivasseau ’12 ’13; Ousmane Samary, Vignes-Tourneret ’12;

SC ’14 ’14; Lahoche, Oriti, Rivasseau ’14]

Methods:

multiscale analysis: allow to rigorously prove renormalizability at all orders in
perturbation theory;

Connes–Kreimer algebraic methods [Raasakka, Tanasa ’13];

loop-vertex expansion: non-perturbative method allowing to resum the perturbative
series [Gurau, Rivasseau,... ’13].
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TGFTs with gauge invariance condition

Gauge invariance condition

∀h ∈ G , ϕ(g1, . . . , gd) = ϕ(g1h, . . . , gdh)

Common to all Spin Foam models: introduces a dynamical discrete connection at
the level of the amplitudes.

Resulting propagator, including a regulator Λ (∼
∑
` j`(j` + 1) ≤ Λ2):

CΛ(g`; g
′
`) =

∫ +∞

Λ−2

dα

∫
dh

d∏
`=1

Kα(g`hg
′−1
` ) , h{g`} {g′`}

where Kα is the heat kernel on G at time α.

The amplitudes are best expressed in terms of the faces of the Feynman graphs:

h3 , α3 h2 , α2

h1 , α1

f ←→ K α1+ α2+ α3 (h1h2h3)

Sylvain Carrozza (CPT) Renormalization of Tensorial (Group) Field Theories GDR Renormalization 2015 20 / 38



TGFTs with gauge invariance condition: renormalizability

Power-counting analysis ⇒ classification of allowed just-renormalizable models:
[Oriti, Rivasseau, SC ’13]

d = rank D = dim(G) order explicit examples
3 3 6 G = SU(2) [Oriti, Rivasseau, SC ’13]

3 4 4 G = SU(2)×U(1) [SC ’14]

4 2 4
5 1 6 G = U(1) [Ousmane Samary, Vignes-Tourneret ’12]

6 1 4 G = U(1) [Ousmane Samary, Vignes-Tourneret ’12]

d = D = 3 is the only case for which the combinatorial dimension can match the
dimension of space-time inferred from the symmetry group G .

Analogy with ordinary scalar field theory: at fixed d = 3
ϕ6 model in D = 3;
ϕ4 model in D = 4.
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Multiscale proof of renormalizabiliy: strategy

1) Decompose amplitudes according to slices of ”momenta” (Schwinger parameter);

2) Replace high divergent subgraphs by effective local vertices;

3) Iterate.

Advantages of the multiscale expansion:

Results at all orders in perturbation theory;

sheds light on the finiteness of renormalized amplitudes (and on why they can be
large).
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Multiscale proof of renormalizabiliy: decomposition of propagators

The Schwinger parameter α determines a momentum scale, which can be sliced in a
geometric way. One fixes M > 1 and decomposes the propagators as

C =
∑
i

Ci ,

C0(g`; g
′
`) =

∫ +∞

1

dα e−αm
2
∫

dh
d∏
`=1

Kα(g`hg
′−1
` )

Ci (g`; g
′
`) =

∫ M−2(i−1)

M−2i

dα e−αm
2
∫

dh
d∏
`=1

Kα(g`hg
′−1
` ) .

A natural regularization is provided by a cut-off on i : i ≤ ρ. To be removed by
renormalization.

The amplitude of a connected graph G is decomposed over scale attributions
µ = {ie} where ie runs over all integers (smaller than ρ) for every line e:

AG =
∑
µ

AG,µ .

Sylvain Carrozza (CPT) Renormalization of Tensorial (Group) Field Theories GDR Renormalization 2015 23 / 38



Multiscale proof of renormalizabiliy: power-counting theorem

High subgraphs

A high subgraph H ⊂ G is a connected subgraph with:

{external scales} > {internal scales}

Theorem

If G has dimension D, there exists a constant K such that the following bound holds:

|AG,µ| ≤ K L(G)
∏

highH⊂G

Mω[H] ,

where the degree of divergence ω is given by

ω(H) = −2L(H) + D(F (H)−R(H))

and R(H) is the rank of the εef incidence matrix of H.

⇒ set of graphs to be renormalized, classification of potentially renormalizable theories.
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Quasi-locality: when should renormalization work?

Necessary condition: divergent subgraphs must be quasi-local, i.e. look like
(connected) tensor invariants.

Example: when internal scales j � external scales i

This property is not generic in TGFTs → ”traciality” criterion:

flatness condition: the parallel transports must peak around 1l (up to gauge);

combinatorial condition: connected boundary graph.

Models studied so far dominated by melonic graphs → always tracial.
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Overview�

�

�

�
Short-term goal: define tools to analyse the flow of coupling constants,
both in the perturbative and non-perturbative regions.

Physical question: continuum limit in some region of parameters? general rela-
tivity effectively recovered there?

Perturbative methods:

multiscale ’effective expansion’ → discrete RG flow; [SC ’14]

more traditional analysis (e.g. Callan–Symanzik eq.) → continuous RG flow.
[Ben Geloun ’12; Ben Geloun, Ousmane Samary ’12; Ousmane Samary ’13; SC ’14; Lahoche, Oriti,

Rivasseau ’15]

⇒ Asymptotic freedom is rather common in TGFTs! [Ben Geloun] For ϕ4 theories,
general explanation base on the intermediate field formalism [Rivasseau ’15].

Non-perturbative methods:

functional renormalization group (FRG): Wetterich [Eichhorn, Koslowski ’13 ’14;

Benedetti, Ben Geloun, Oriti ’14] or Polchinski equation [Krajewski, Toriumi, to appear];

ε-expansion [SC ’14].
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Gauge invariant TGFTs in d = 3: effective average action [SC ’14]

From now on: d = 3 i.e. ϕ(g1, g2, g3), and gauge invariance assumed.

Effective average action [Wetterich ’93, Morris ’93]

UVIR

SΛΓk

Effective average action Bare action

tb,Λ = ub,Λ Λdbtb,k = ub,k k
db

Effective action

Γ0

Assume also 1� k � Λ → approximately autonomous flow (not true in general).

Definition. Canonical dimension of a coupling constant tb (Nb = valency of b):

db = [tb] = D − (D − 2)Nb

2

Classification of coupling constants in the vicinity of the Gaussian fixed point:

[tb] ≥ 0 ⇒ tb relevant or renormalizable. Marginal when [tb] = 0.

[tb] < 0 ⇒ tb irrelevant or non-renormalizable.
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Gauge invariant TGFTs in d = 3: dimG = 4 [SC ’14]

Assume G = SU(2)×U(1), the effective average action at cut-off scale k reads

Γk(ϕ,ϕ) = u2,kk
2 + u4,k + · · ·

A perturbative computation of the flow yields:

k
∂u2,k

∂k
= −2u2,k − 3πu4,k +O(u2)

k
∂u4,k

∂k
= −2πu4,k

2 +O(u3)

This model is asymptotically free, due to a strong wave-function renormalization:

∀k � Λ0 , u4,k ≈
1

2π ln
(

k
Λ0

) .
NB: this is a direct consequence of the new tensorial notion of locality.
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Gauge invariant TGFTs in d = 3: dimG = 4 − ε [SC ’14]

TGFT in dimG = 4− ε defined through analytic continuation of the numbers of
U(1) copies:

G = SU(2)×U(1)D−3 → G = SU(2)×U(1)1−ε

The effective average action at cut-off scale k reads

Γk(ϕ,ϕ) = u2,kk
2 + u4,kk

ε + · · ·

A perturbative computation of the flow yields:

k
∂u2,k

∂k
≈ −2u2,k − 3πu4,k +O(u2)

k
∂u4,k

∂k
≈ −εu4,k − 2πu4,k

2 +O(u3)

New non-trivial fixed point:

u∗2 ≈
3

4
ε+O(ε2) , u∗4 ≈ −

1

2π
ε+O(ε2) .

Analogous to the Wilson-Fischer fixed point in ordinary scalar field theories, but
with opposite signs.
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Gauge invariant TGFTs in d = 3: dimG = 4 − ε [SC ’14]

Phase portrait (qualitative):

u2

u4

u∗2

u∗4
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Gauge invariant TGFTs in d = 3: dimG = 3 [SC ’14]

Back to G = SU(2).

The effective average action at cut-off scale k reads

Γk(ϕ,ϕ) = u2,kk
2 + u4,kk + u6,1,k + u6,2,k + · · ·

One-loop β-functions: 
β2(u) ≈ −2 u2 − 7.5 u4

β4(u) ≈ −u4 − 5.0 u6,1 − 10.0 u6,2

β6,1(u) ≈ −1.4 u4u6,1

β6,2(u) ≈ −3.1 u4u6,2

→ a 3d non-linear flow determines whether the theory is asymptotically free or not.
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Gauge invariant TGFTs in d = 3: dimG = 3 [SC ’14]

{u6,1} and {u6,2} are invariant subspaces → reduced 2d phase portrait:

u6,1

u4

β4 = 0

More generally: trajectories with u6,1 > 0 and u6,2 > 0 cannot be asymptotically
free.

However, if the non-trivial fixed point found in dimension 4− ε survives in dimension
3, these trajectories might be asymptotically safe. Should be investigated further
by means of non-perturbative methods such as the FRG.
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Non-perturbative methods

The Wetterich equation:

k∂kΓk = Tr
(
k∂kRk · [Γ(2)

k +Rk ]−1
)

applied to matrix and tensor models; [Eichhorn, Koslowski ’13 ’14]

applied to a ϕ4 TGFT without gauge-invariance; [Benedetti, Ben Geloun, Oriti ’14]

what about gauge invariant models? The ϕ6 d = D = 3 model is an interesting
playground!

The Polchinski equation (t = ln Λ):

∂S

∂t
=

∫
[dgidg̃i ]Kt(gi g̃

−1
i )

(
δ2S

δϕ(gi )δϕ(g̃i )
− δS

δϕ(gi )

δS

δϕ(g̃i )

)
General framework currently being investigated. [Krajewski, Toriumi, to appear]

Constructive methods such as the loop-vertex expansion (intermediate field):
applied to tensor models; [Gurau ’11 ’13; Delepouve, Gurau, Rivasseau ’14]

applied to TGFTs without gauge invariance; [Delepouve, Rivasseau ’14]

gauge invariance makes the intermediate field construction easier! Construction of a
just-renormalizable TGFT tractable? [Lahoche, Oriti, Rivasseau ’15]
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Background Independent lattice renormalization

Alternative to GFT approach to spin foam models: lattice interpretation of a given
foam ⇒ refining strategy.

Mainly developed by Bianca Dittrich (Perimeter Institute) and collaborators.

Outstanding challenge: diffeomorphism invariance and background-independence
⇒ no scale parameter a, and no regular lattices.

Instead:

The lattice itself is the scale → complicated directed set, not completely ordered.

projective methods used to construct the renormalization group flow i.e. the
(consistent) collection of all effective descriptions.

[Dittrich, Bahr ’10s...]

practical avenue to find theories as fixed points of a truncated RG flow:
non-perturbative numerical methods generalizing tensor networks.

[Dittrich, Steinhaus, Martin-Benito, Mizera, Delcamp...]
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Summary

Tensor models and tensorial field theories are within the scope of renormalization
methods.

Interaction between LQG ideas and tensor models ⇒ Tensorial Group Field
Theories, which are interesting completions of spin foam models.

Perturbatively renormalizable TGFTs exist, despite the complications introduced
by the new notion of locality and non-commutative group structures.

Asymptotic freedom can be realized in such models, especially when only quartic
interactions are renormalizable → UV complete GFTs.

Non-perturbative features of TGFTs are explored: new fixed points.
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Outlook

Non-perturbative renormalization group methods:

Functional Renormalization Group for gauge invariant models: e.g. fixed point in 3d
SU(2) model?
relation to lattice gauge theory methods [Dittrich and collaborators ’10s]?

Towards 4d quantum gravity GFT models:

imposition of (some version of) the remaining spin foam constraints;
lorentzian signature → non–compact group;
neat formulation of 4d theory space in terms of symmetries of the GFT action.

Physical applications of the GFT formalism:

effective smooth space–time from GFT coherent states [Gielen, Oriti, Sindoni ’12...];
GFT description of black holes in LQG? what is the role of coarse–graining and
renormalization? [Perez, Pranzetti,... ’10s]

Thank you for your attention
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