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Ultracolds atoms:
an ultralow temperature laboratory for many-body physics
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The model

I Gas of non-relativistic bosons in a periodic box ΩL ∈ Rd , |ΩL| = Ld

I weak repulsive short range two-body potential λv(~x), 0 < λ� 1

HN,L = −
N∑

i=1

∆~xi
+ λ

∑
1≤i<j≤N

v (~xi − ~xj ) on Hsym
N

Goal: to construct the thermal ground state in infinite volume

e0(ρ) = − lim
β→∞

lim
L→∞

1

βLd
logTrHsym

N
e−β(HN,L−µβ,LN)

S(~x , ~y) = lim
β→∞

lim
L→∞

TrHsym
N

[
e−β(HN,L−µβ,LN)a+

~x a~y
]

TrHsym
N
e−β(HN,L−µβ,LN)

with µβ,L ≤ 0 the chemical potential.

Serena Cenatiempo − Montpellier, 24.8.2015 Critical phases for non–relativistic 2d interacting bosons: RG results 3/17



Motivations
Results

Idea of the proof

The model
Review of known results
The 2d case

The model

I Gas of non-relativistic bosons in a periodic box ΩL ∈ Rd , |ΩL| = Ld

I weak repulsive short range two-body potential λv(~x), 0 < λ� 1

HN,L = −
N∑

i=1

∆~xi
+ λ

∑
1≤i<j≤N

v (~xi − ~xj ) on Hsym
N

Goal: to construct the thermal ground state in infinite volume

e0(ρ) = − lim
β→∞

lim
L→∞

1

βLd
logTrHsym

N
e−β(HN,L−µβ,LN)

S(~x , ~y) = lim
β→∞

lim
L→∞

TrHsym
N

[
e−β(HN,L−µβ,LN)a+

~x a~y
]

TrHsym
N
e−β(HN,L−µβ,LN)

with µβ,L ≤ 0 the chemical potential.
Serena Cenatiempo − Montpellier, 24.8.2015 Critical phases for non–relativistic 2d interacting bosons: RG results 3/17



Motivations
Results

Idea of the proof

The model
Review of known results
The 2d case

The model

I Gas of non-relativistic bosons in a periodic box ΩL ∈ Rd , |ΩL| = Ld

I weak repulsive short range two-body potential λv(~x), 0 < λ� 1

HN,L = −
N∑

i=1

∆~xi
+ λ

∑
1≤i<j≤N

v (~xi − ~xj ) on Hsym
N

Goal: to construct the thermal ground state in infinite volume

e0(ρ) = − lim
β→∞

lim
L→∞

1

βLd
logTrHsym

N
e−β(HN,L−µβ,LN)

S(~x , ~y) = lim
β→∞

lim
L→∞

TrHsym
N

[
e−β(HN,L−µβ,LN)a+

~x a~y
]

TrHsym
N
e−β(HN,L−µβ,LN)

with µβ,L ≤ 0 the chemical potential.
Serena Cenatiempo − Montpellier, 24.8.2015 Critical phases for non–relativistic 2d interacting bosons: RG results 3/17



Motivations
Results

Idea of the proof

The model
Review of known results
The 2d case

Existence of condensation

The non-interacting case (Einstein, 1925)

λ = 0 λ > 0 & Bogoliubov

d = 3 0 ≤ T ≤ T 0
c 0 ≤ T ≤ T 1

c

d = 2 T=0

d = 1 T=0
} MWH2

The density of the states with ~k 6= 0 is bounded in each dimension at T = 0
and at finite T in 3d as µL,β → 0:

lim
|Ω|→+∞

ρ
(~k 6=0)
Ω,β =

∫
dd~k

(2π)d

1

eβ(~k2−µL,β ) − 1
≤ ρcritical

β

To fix the system at ρ = ρ0 + ρcritical
β the chemical potential has to be choosen

such that limβ→∞ limLd→∞(−µβ,L) = 1/ρ0.

The ground state wave function is simply a
product of single particle wave–functions:

Ψ0(x1, . . . , xN ) =
∏N

i ψ0(xi )

Serena Cenatiempo − Montpellier, 24.8.2015 Critical phases for non–relativistic 2d interacting bosons: RG results 4/17



Motivations
Results

Idea of the proof

The model
Review of known results
The 2d case

Existence of condensation

The non-interacting case (Einstein, 1925)

λ = 0 λ > 0 & Bogoliubov

d = 3 0 ≤ T ≤ T 0
c 0 ≤ T ≤ T 1

c

d = 2 T=0

d = 1 T=0
} MWH2

The density of the states with ~k 6= 0 is bounded in each dimension at T = 0
and at finite T in 3d as µL,β → 0:

lim
|Ω|→+∞

ρ
(~k 6=0)
Ω,β =

∫
dd~k

(2π)d

1

eβ(~k2−µL,β ) − 1
≤ ρcritical

β

To fix the system at ρ = ρ0 + ρcritical
β the chemical potential has to be choosen

such that limβ→∞ limLd→∞(−µβ,L) = 1/ρ0.

The ground state wave function is simply a
product of single particle wave–functions:

Ψ0(x1, . . . , xN ) =
∏N

i ψ0(xi )

Serena Cenatiempo − Montpellier, 24.8.2015 Critical phases for non–relativistic 2d interacting bosons: RG results 4/17



Motivations
Results

Idea of the proof

The model
Review of known results
The 2d case

Existence of condensation

The interacting case within Bogoliubov approximation (1947)

λ = 0 λ > 0 & Bogoliubov

d = 3 0 ≤ T ≤ T 0
c 0 ≤ T ≤ TB

c 0 ≤ T ≤ T 1
c

d = 2 T=0 T=0

d = 1 T=0 No cond.
} MWH2

Total density according to Bogoliubov approximation

ρ = ρ0 +

∫
dd~k

(2π)d

F (~k)− ε(~k)

ε(~k)︸ ︷︷ ︸
'
~k'0

1

|~k|

+

∫
dd~k

(2π)d

F (~k)

ε(~k)

1

eβε(~k) − 1︸ ︷︷ ︸
'

~k'0, β finite

1

β|~k|2

with F (~k) = |~k|2 + λv̂(~k)ρ0 and ε2(~k) = |~k|4 + 2 |~k|2λv̂(~k)ρ0.
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The interacting case: known results on condensation

λ = 0 λ > 0 & Bogoliubov λ > 0

d = 3 0 ≤ T ≤ T 0
c 0 ≤ T ≤ TB

c 0 ≤ T ≤ Tc ?

d = 2 T=0 T=0 T=0 ?

d = 1 T=0 No cond. No cond.

(2) }MWH
thm(1)

I Hard–core 3d bosons on a lattice at half filling
(Dyson, Lieb and Simon, 1978)

I 3d and 2d bosons in the Gross–Pitaevskii limit: N/L = (const.)
(Lieb, Seiringer, Yngvason 2002)

I Bogoliubov’s scheme has been proved to be valid in the mean field regime
(Seiringer 2010, Grech-Seiringer 2012, Dereziński and Napiórkowski 2013)

(1)Hohenberg (1967) (2)Lieb and Liniger (1963)
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The interacting case: which general results for homogeneous bosons?

λ = 0 λ > 0 & Bogoliubov λ > 0

d = 3 0 ≤ T ≤ T 0
c 0 ≤ T ≤ TB

c 0 ≤ T ≤ Tc ?

d = 2 T=0 T=0 T=0 ?

d = 1 T=0 No cond. No cond.
} MWH1

Corrections to Bogoliubov’s via perturbation theory: Beliaev (1958),
Hugenholtz & Pines (1959), Lee & Yang (1960), Gavoret & Nozières (1964),
Nepomnyashchy & Nepomnyashchy (1978), Popov (1987).

Benfatto (1994 & 1997): proof of the order by order convergence in
renormalized theory for the 3d case at T = 0 & strong BEC justification.

Constructing the theory: a great challenge. A program addressing this issue
started by Balaban, Feldman, Knörrer, Trubowitz (2008–2015)
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Two dimensions
I Pistolesi, Castellani, Di Castro, Strinati (1997 & 2004): RG analysis

in d = 2, 3 by using local Ward Identities in a dimensional regularization
scheme with d = 3− ε. After assuming the existence of a O(1) fixed
point for the particle-particle effective interaction:

∗ the condensate is stable in 2d and T = 0;

∗ the theory displays a linear excitation spectrum a’la Bogoliubov.

I A similar conclusion later recovered by Wetterich (2008), Dupuis (2009 &
2011), Sinner, Hasselmann, Kopietz (2010), Dupuis and Rançon (2011 &
2012) via the methods of the Functional RG.

Problems:

(1) Not even order by order results in 2d were available

(2) The 2d theory is quite delicate: 8 effective couplings
(two of them relevant) and 1 free parameter

(3) the momentum cutoffs break the local gauge invariance
↪→ In low-dimensional systems of interacting fermions (Luttinger liquids)

the corrections to WIs are crucial for establishing the infrared behavior
of the system ( Benfatto, Falco, Mastropietro, 2009)
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The goal

Extend the Wilsonian RG approach to the Bose gas in the 2d
continuum, at T = 0, both for ρ0 = 0 and ρ0 > 0, in the
formalism developed by Benfatto and Gallavotti.

Exact RG
approach

Explicit bounds at all orders

Complete control of all the diagrams
(irrelevant terms included)

Momentum cutoff regularization
(essential for a non perturbative construction)

Corrections to Local Ward Identities
can be studied within this scheme
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Renormalization group results
S.C. and A.Giuliani, Jour. Stat. Phys. (2014)

UV regionIR region

free propagator

v(~x − ~y)

super-

renormalizable theory
marginal

eff. couplings

with negative

beta function

QCP (ρ0 = 0) asymptotically free in the IR

Bogoliubov prop.

Bogoliubov ?

Perturbative

parameter

of order one

Energy scale R−2
0λρ0v̂(~0)λ2ρ0v̂(~0)

Violation of
Local Ward
Identities!
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1Fisher, Weichmann, Grinstein, Fisher (1989), Sachdev, Senthil, Shankar (1994)
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RG scheme for the BEC phase
Multiscale decomposition (IR)
Flow equations
Conclusions & Perspectives

The functional integral representation

The interacting partition function can be
formally expressed as a functional integral:

ZΛ

Z 0
Λ

=

∫
P0

Λ(dϕ) e−VΛ(ϕ)

I ϕ+
~x,t = (ϕ−~x,t)∗ complex fields (coherent states)

I Λ = [0, β)× L2

VΛ(ϕ) =
λ

2

∫
L4

d2~xd2~y

∫ β/2

−β/2

dt |ϕ~x,t |2 v(~x−~y) |ϕ~y,t |2−ν̄β,L
∫

L2

d2~x

∫ β/2

−β/2

dt |ϕ~x,t |2

P0
Λ(dϕ) is a complex Gaussian measure with covariance

S0
Λ(x , y) =

〈
a+

x ay

〉∣∣∣
λ=0

=

∫
P0

Λ(dϕ)ϕ−x ϕ
+
y

→
|Ω|,β→∞

ρ0 +
1

(2π)3

∫
R3

d2~k dk0
e−ik·x

−ik0 + ~k2
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RG scheme for the BEC phase

ϕ±x = ξ±+ ψ±x with ξ± = |Λ|−1
∫

Λ
ϕ±x dx ,

〈
ξ−ξ+

〉
= ρ0 ,

〈
ψ−x ψ

+
x

〉
decaying

ZΛ

Z 0
Λ

=

∫
P0

Λ(dϕ)e−VΛ(ϕ)

x

y

4

x

y

3+

x

y

3−

x

2

Bogoliubov propagator:

g B (x− y) =

(
g B
−+(x− y) g B

−−(x− y)
g B

++(x− y) g B
+−(x− y)

)
=

∫
dk0d2~k

(2π)3

e−i~k(~x−~y)−ik0(x0−y0)

k2
0 + ε2(~k)

(
ik0 + |~k|2+λv̂(~k)ρ0 −λρ0v̂(~k)

−λρ0v̂(~k) −ik0 + |~k|2+λv̂(~k)ρ0

)
,

with ε2(~k) = |~k|4 + 2λv̂(~k)ρ0|~k|2.
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RG scheme for the BEC phase

ΞΛ =

∫
PB

Λ (dψ) e−V̄Λ(ψ)

1 Multiscale decomposition: we integrate iteratively

the fields of decreasing energy scale, e.g. k2
0 + 2h̄~k2 ' 22h for h ≤ h̄.

2 Integration over the fields higher than 2h : Vh(ψ) = LVh(ψ) +RVh(ψ)

3 Using the Gallavotti-Nicoló tree expansion we prove that RVh is well
defined with explicit bounds if the terms in LVh are bounded.

4 Cancellations in the beta function of Zh and µh follow from Global WIs
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RG scheme for the BEC phase

ΞΛ = e−|Λ|fΛ,h
∫

P≤h
Λ (dψ) e−VΛ,h(ψ)

1 Multiscale decomposition: we integrate iteratively

the fields of decreasing energy scale, e.g. k2
0 + 2h̄~k2 ' 22h for h ≤ h̄.

2 Integration over the fields higher than 2h : Vh(ψ) = LVh(ψ) +RVh(ψ)

LVh =
λ6
h

+

2hλh

+

2
h
2 µh

+
22hνh

+
Zh

+
∂x0 ∂x0

Bh

+
∂xi ∂xi

Ah

+
∂x0

Eh

3 Using the Gallavotti-Nicoló tree expansion we prove that RVh is well
defined with explicit bounds if the terms in LVh are bounded.

4 Cancellations in the beta function of Zh and µh follow from Global WIs
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3 Using the Gallavotti-Nicoló tree expansion we prove that RVh is well
defined with explicit bounds if the terms in LVh are bounded.

4 Cancellations in the beta function of Zh and µh follow from Global WIs

Serena Cenatiempo − Montpellier, 24.8.2015 Critical phases for non–relativistic 2d interacting bosons: RG results 13/17



Motivations
Results

Idea of the proof

RG scheme for the BEC phase
Multiscale decomposition (IR)
Flow equations
Conclusions & Perspectives

RG scheme for the BEC phase

ΞΛ = e−|Λ|fΛ,h
∫

P≤h
Λ (dψ) e−VΛ,h(ψ)

1 Multiscale decomposition: we integrate iteratively

the fields of decreasing energy scale, e.g. k2
0 + 2h̄~k2 ' 22h for h ≤ h̄.

2 Integration over the fields higher than 2h : Vh(ψ) = LVh(ψ) +RVh(ψ)

LVh =
λ6
h

+

2hλh

+

2
h
2 µh

+
22hνh

+
Zh

+
∂x0 ∂x0

Bh

+
∂xi ∂xi

Ah

+
∂x0

Eh
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Flow equations for the effective interactions below h∗

There are two effective (three and two body) interactions, whose flows are
coupled among them at all orders. Under the assumptions on the propagator

E 2
h /(ZhBh)� 1 Ah/Bh = (const.) Bh ≤ (const.)

the flow equations for xh := λh and yh := λ6,h/(λ2
h) at leading order (in the

continuum limit) are:

5 10 15 20
 h¤

0.5

1.0

1.5

2.0

2.5

3.0

Numerical solutions to the leading order
flows for xh and yh.

π
2 dx

dt
= π2x − 2x2

π2 dy
dt

= −2π2y + 16
3

x − 2xy + cx2

Non perturbative fixed points?
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Flow equations for the renormalized wave functions

Even assumimg the existence of the fixed points, one is left with studying the
flow of Ah, Eh and Bh.

I In Castellani et al. this was done by using local Ward Identities,
checked with dimensional regularization at the one loop level.

I The arguments based on local WIs appears to be in disagreement
with the one-loop computations within a momentum-cutoff scheme
also in the region where the theory is still perturbative.

! The source of the violation to the local WIs is
a correction term due to the momentum cutoff.

The findings based on the systematic use of local WIs,
and then the nature and existence of the 2d

condensate, should be reconsidered.
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Renormalization group results
S.C. and A.Giuliani, Jour. Stat. Phys. (2014)

UV regionIR region

free propagator

v(~x − ~y)

super-

renormalizable theory
marginal

eff. couplings

with negative

beta function

QCP asymptotically free in the IR (ρ0 = 0)

Bogoliubov prop.

Bogoliubov ?

Perturbative

parameter

of order one

Energy scale R−2
0λρ0v̂(~0)λ2ρ0v̂(~0)

Violation of
Local Ward
Identities!

Serena Cenatiempo − Montpellier, 24.8.2015 Critical phases for non–relativistic 2d interacting bosons: RG results 16/17



Motivations
Results

Idea of the proof

RG scheme for the BEC phase
Multiscale decomposition (IR)
Flow equations
Conclusions & Perspectives

Perspectives

I Do corrections to LWIs correspond to anomalies ?

I Different parameters regime in 2d?

I Comparison with O(3) model in 3d?

I Critical temperature in 3d

I . . .

I Constructive theory (starting from the quantum critical point)

Serena Cenatiempo − Montpellier, 24.8.2015 Critical phases for non–relativistic 2d interacting bosons: RG results 17/17



Motivations
Results

Idea of the proof

RG scheme for the BEC phase
Multiscale decomposition (IR)
Flow equations
Conclusions & Perspectives

Perspectives

I Do corrections to LWIs correspond to anomalies ?

I Different parameters regime in 2d?

I Comparison with O(3) model in 3d?

I Critical temperature in 3d

I . . .

I Constructive theory (starting from the quantum critical point)

Serena Cenatiempo − Montpellier, 24.8.2015 Critical phases for non–relativistic 2d interacting bosons: RG results 17/17



Motivations
Results

Idea of the proof

RG scheme for the BEC phase
Multiscale decomposition (IR)
Flow equations
Conclusions & Perspectives

Perspectives

I Do corrections to LWIs correspond to anomalies ?

I Different parameters regime in 2d?

I Comparison with O(3) model in 3d?

I Critical temperature in 3d

I . . .

I Constructive theory (starting from the quantum critical point)

Serena Cenatiempo − Montpellier, 24.8.2015 Critical phases for non–relativistic 2d interacting bosons: RG results 17/17



The Boson Hubbard model
Tree expansion

The superfluid-insulator transition in the boson Hubbard model1

On site interacting bosons hoppings between sites i of a lattice,
t > 0 (hopping parameter), λ > 0 and µ ≤ 0 (chemical potential):

HL = −t
∑
〈ij〉

(â+
i âj + â+

j âi )− µ
∑

i

n̂i +
λ

2

∑
i

n̂i (n̂i − 1)

The chemical potential drives a Quantum
Phase transition between:

I Mott Insulator phase with integer
boson density (no phase coherence);

I Superfluid phase with delocalized
wave function (long-range order).

1Fisher, Weichmann, Grinstein, Fisher. Phys. Rev. B 40, 546 (1989)
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The Boson Hubbard model
Tree expansion

Gallavotti–Nicolò tree expansion

The |h|–th step of the iterative integration can be graphically represented
as a sum of trees over |h| scale labels. The number n of endpoints
represents the order in perturbation theory.

τ =

−2 −1 0 1

1

2

3

⇐ Γ =

0

−1

2

1

3

Gallavotti–Nicolò trees are a synthetic and convenient way to isolate the
divergent terms, avoiding the problem of overlapping divergences.
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