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Ordinary Model

dν =
1

Z
e−(λ/4!)

∫
φ4(x)dxdµC (φ)

C(p) =
1

(2π)2

1

p2 + m2
, C(x , y) =

∫ ∞
0

dαe−αm
2 e−|x−y|2/4α

α2
,

SN(z1, ..., zN) =

∫
φ(z1)...φ(zN)dν(φ).
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Perturbative φ4
d

Expanding in the coupling constant λ yields (bare) perturbative field theory:

SN(z1, ..., zN) =
1

Z

∞∑
n=0

(−λ/4!)n

n!

∫ [∫
φ4(x)dx

]n
φ(z1)...φ(zN)dµ(φ)

=
∑
G

AG (z1, · · · , zN)

AG (z1, · · · , zN) =

∫ n∏
v=1

ddxv
∏
`

C(x`, x
′
`)
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Two main difficulties

Some Feynman amplitudes diverge if d ≥ 2; problem depends on d

Solution: Renormalization

Feynman graphs proliferate too fast, hence
∑

G |AG | = +∞. (φ4 graphs
not exponentially bounded combinatoric species); problem does NOT
depend on d

Solution: Borel summation, constructive theory; replace Feynman graphs by
trees (exponentially bounded combinatoric species)
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The Forest Formula

Let F be a smooth function of n(n − 1)/2 line variables x` ∈ [0, 1], ` = (i , j),
1 ≤ i < j ≤ n. The forest formula states

F (1, ..., 1) =
∑
F

{∏
`∈F

[ ∫ 1

0

dw`
]}{∏

`∈F

∂

∂x`
F

}[
xF ({w})

]
, where

the sum over F is over all forests over n vertices,

the ”weakening parameter” xF` ({w}) is 0 if ` = (i , j) with i and j in
different connected components with respect to F ; otherwise it is the
infimum of the w`′ for `′ running over the unique path from i to j in F .

Furthermore the real symmetric matrix xFi,j ({w}) (completed by 1 on the
diagonal i = j) is positive.

The logarithm of the forest formula is the tree formula.
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Why is the Forest Formula positive?

The set PSn of positive n by n symmetric matrices with 1 on the diagonal
and off-diagonal entries between 0 and 1 is convex.

Order 0 = w0 ≤ w1 ≤ · · · ≤ wn ≤ 1 = wn+1.
xFi,j ({w}) =

∑
k=1(wk − wk−1)Πk , Πk block matrix

This convex combination depends on the ordering of the w ′s.
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An Example

For n = 2, the forest fomula is simply: F (1) = F (0) +
∫ 1

0
dh F ′(h). For n = 3

there are seven forests and the formula is:

F (1, 1, 1) = F (0, 0, 0) +

∫ 1

0

dw1 ∂1F (w1, 0, 0) +

∫ 1

0

dw2 ∂2F (0,w2, 0)

+

∫ 1

0

dw3 ∂3F (0, 0,w3) +

∫ 1

0

∫ 1

0

dw1dw2 ∂
2
12F (w1,w2,min(w1,w2))

+

∫ 1

0

∫ 1

0

dw1dw3 ∂
2
13F (w1,min(w1,w3),w3)

+

∫ 1

0

∫ 1

0

dw2dw3 ∂
2
23F (min(w2,w3),w2,w3).

Usually the logarithm of the forest formula is the tree formula.

Vincent Rivasseau Montpellier, August 2015



An Example

For n = 2, the forest fomula is simply: F (1) = F (0) +
∫ 1

0
dh F ′(h). For n = 3

there are seven forests and the formula is:

F (1, 1, 1) = F (0, 0, 0) +

∫ 1

0

dw1 ∂1F (w1, 0, 0) +

∫ 1

0

dw2 ∂2F (0,w2, 0)

+

∫ 1

0

dw3 ∂3F (0, 0,w3) +

∫ 1

0

∫ 1

0

dw1dw2 ∂
2
12F (w1,w2,min(w1,w2))

+

∫ 1

0

∫ 1

0

dw1dw3 ∂
2
13F (w1,min(w1,w3),w3)

+

∫ 1

0

∫ 1

0

dw2dw3 ∂
2
23F (min(w2,w3),w2,w3).

Usually the logarithm of the forest formula is the tree formula.

Vincent Rivasseau Montpellier, August 2015



An Example

For n = 2, the forest fomula is simply: F (1) = F (0) +
∫ 1

0
dh F ′(h). For n = 3

there are seven forests and the formula is:

F (1, 1, 1) = F (0, 0, 0) +

∫ 1

0

dw1 ∂1F (w1, 0, 0) +

∫ 1

0

dw2 ∂2F (0,w2, 0)

+

∫ 1

0

dw3 ∂3F (0, 0,w3) +

∫ 1

0

∫ 1

0

dw1dw2 ∂
2
12F (w1,w2,min(w1,w2))

+

∫ 1

0

∫ 1

0

dw1dw3 ∂
2
13F (w1,min(w1,w3),w3)

+

∫ 1

0

∫ 1

0

dw2dw3 ∂
2
23F (min(w2,w3),w2,w3).

Usually the logarithm of the forest formula is the tree formula.

Vincent Rivasseau Montpellier, August 2015



An Example

For n = 2, the forest fomula is simply: F (1) = F (0) +
∫ 1

0
dh F ′(h). For n = 3

there are seven forests and the formula is:

F (1, 1, 1) = F (0, 0, 0) +

∫ 1

0

dw1 ∂1F (w1, 0, 0) +

∫ 1

0

dw2 ∂2F (0,w2, 0)

+

∫ 1

0

dw3 ∂3F (0, 0,w3) +

∫ 1

0

∫ 1

0

dw1dw2 ∂
2
12F (w1,w2,min(w1,w2))

+

∫ 1

0

∫ 1

0

dw1dw3 ∂
2
13F (w1,min(w1,w3),w3)

+

∫ 1

0

∫ 1

0

dw2dw3 ∂
2
23F (min(w2,w3),w2,w3).

Usually the logarithm of the forest formula is the tree formula.

Vincent Rivasseau Montpellier, August 2015



Borel Summability

Borel summability of a series an means existence of a function f with two
properties

Analyticity in a disk tangent at the origin to the imaginary axis

plus uniform remainder estimates:

|f (λ)−
N∑

n=0

anλ
n| ≤ KN |λ|N+1N!

Given any series an, there is at most one such function f . When there is one, it
is called the Borel sum, and it can be computed from the series to arbitrary
accuracy.
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How to compute a log

F (λ) =

∫ +∞

−∞
e−λx

4−x2/2 dx√
2π

is Borel summable. How to compute G(λ) = log F (λ) (and prove it is also
Borel summable)?

Composition of series

With Feynman graphs (1950)

Classical constructive theory (Glimm-Jaffe-Spencer, 1970’s - => Brydges,
Feldman, Slade ...)

Loop Vertex Expansion (LVE, 2007-)
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Composition of series

F = 1 + H, H =
∑
p≥1

ap(−λ)p, ap =
(4p)!!

p!

log(1 + x) =
∞∑
n=1

(−1)n+1 x
n

n

G =
∞∑
n=1

(−1)n+1 H(λ)n

n
=
∑
k≥1

bk(−λ)k ,

bk =
k∑

n=1

(−1)n+1

n

∑
p1,..,pn≥1

p1+...+pn=k

∏
j

(4pj)!!

pj !

Borel summability is unclear. Even the sign of bk is unclear.
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A la Feynman

F = 1 + H, H =
∑
p≥1

ap(−λ)p, ap =
1

p!
#{vacuum graphs on p vertices}

G =
∞∑
k=1

(−λ)kbk , bk =
1

k!
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Classical Constructive Expansion

Cluster expansion = Taylor-Lagrange expansion of the functional integral:

F = 1 + H, H = −λ
∫ 1

0

dt

∫ +∞

−∞
x4e−λtx

4−x2/2 dx√
2π

Mayer expansion: define Hi = −λ
∫ 1

0
dt
∫ +∞
−∞ x4

i e
−λtx4

i −x2
i /2 dxi√

2π
= H ∀i ,

εij = 0 ∀i , j and write

F = 1 + H =
∞∑
n=0

n∏
i=1

Hi (λ)
∏

1≤i<j≤n

εij

Defining ηij = −1, εij = 1 + ηij = 1 + xijηij |xij=1 and apply swiss knife.
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Classical Constructive Expansion, II

F =
∞∑
n=0

1

n!

∑
F

n∏
i=1

Hi (λ)

{∏
`∈F

[ ∫ 1

0

dw`
]
η`

}∏
6̀∈F

[
1 + η`x

F
` ({w})

]

G =
∞∑
n=1

1

n!

∑
T

n∏
i=1

Hi (λ)

{∏
`∈T

[ ∫ 1

0

dw`
]
η`

}∏
6̀∈T

[
1 + η`x

T
` ({w})

]
where the second sum runs over trees!

Convergence easy because each Hi contains a different ”copy”
∫
dxi of

functional integration.

Borel summability now easy from the Borel summability of H.

Generalizes well to lattice statistical mechanics (d > 0).

However link with Feynman graphs somewhat lost, and may be not
optimal for curved or random space-time geometries.
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Loop Vertex Expansion

Intermediate field representation

F =

∫ +∞

−∞
e−λx

4−x2/2 dx√
2π

=

∫ +∞

−∞

∫ +∞

−∞
e−i
√

2λσx2−x2/2−σ2/2 dx√
2π

dσ√
2π

=

∫ +∞

−∞
e−

1
2

log[1+i2
√

2λσ]−σ2/2 dσ√
2π

=

∫ +∞

−∞

∞∑
n=0

V n

n!
dµ(σ)

Apply the forest formula using copies (‘replicas”): V n(σ)→
∏n

i=1 Vi (σi ),
dµ(σ)→ dµC ({σi}), Cij = 1 = xij |xij=1.
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Loop Vertex Expansion II

F =
∞∑
n=0

1

n!

∑
F

{∏
`∈F

[ ∫ 1

0

dw`
]}∫ {∏

`∈F

∂

∂σi(`)

∂

∂σj(`)

n∏
i=1

V (σi )

}
dµCF

where CFij = xF` ({w}) if i < j , CFii = 1.

G =
∞∑
n=1

1

n!

∑
T

{∏
`∈T

[ ∫ 1

0

dw`
]}∫ {∏

`∈T

∂

∂σi(`)

∂

∂σj(`)

n∏
i=1

V (σi )

}
dµCT

where the second sum runs over trees!
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Advantages

One can picture the result as a sum over trees on loops, or ”cacti”. Since

∂k

∂σk
log[1 + i2

√
2λσ] = −(k − 1)!(−i2

√
2λ)k [1 + i2

√
2λσ]−k ,

Convergence is easy because |[1 + i2
√

2λσ]−k | ≤ 1

Borel summability remains easy

Link with Feynman graphs can be recovered

LVE should be better adapted for general background geometries (curved,
random... quantum gravity).
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A constructive dream

Weights w(G ,T ), for any connected graph G and spanning tree T ⊂ G , such
that ∑

T⊂G

w(G ,T ) = 1.

Any sum over connected graphs G can be formally repacked as

S =
∑
G

AG =
∑
G

∑
T⊂G

w(G ,T )AG =
∑
T

AT , AT =
∑
G⊃T

w(G ,T )AG .

Could it be that ∑
G

|AG | = +∞,
∑
T

|AT | < +∞?

Then S would be well defined, and could be the Borel sum of
∑

G AG ! But this
dream seems impossible to realize.

Any repacking at fixed order of perturbation theory cannot work. It should mix
infinitely many Feynman graphs of different order!
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Constructively interesting weights

For any Hepp sector σ ∈ S(G), there is a leading tree T (σ) (Kruskal, 1957).

Constructively interesting weights:

w(G ,T ) =
N(G ,T )

|E |!
where N(G ,T ) is the number of sectors σ such that T (σ) = T .∑

T⊂G w(G ,T ) = 1 obvious

w(G ,T ) are symmetric with respect to relabeling of the vertices of T
(which are also those of (G))

Constructively interesting property is:

Theorem

w(G ,T ) =

∫ 1

0

∏
`∈T

dw`
∏
6̀∈T

xT` ({w})

So w(G ,T ) are the weights obtained by applying the forest formula to
∏
`∈G 1

(not the ”trivial” weights w(G ,T ) = 1/χ(G)).
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Proof of the theorem

xT` ({w}) =

∫ 1

0

dw`
[ ∏
`′∈PT

`

1(w` < w`′)
]
,

Decomposing the w integrals according to all possible orderings σ

w(G ,T ) =

∫ 1

0

∏
`∈G

dw`
∏
` 6∈T

[ ∏
`′∈PT

`

1(w` < w`′)
]

=
∑
σ

1(T (σ) = T )

∫
0<wσ(E)<···<wσ(1)<1

∏
`∈G

dw`.

Indeed in the domain 0 < wσ(E) < · · · < wσ(1) < 1 the function∏
` 6∈T
[∏

`′∈PT
`

1(w` < w`′)
]

is 1 or 0 depending whether T (σ) = T or not.

Hence ∫ 1

0

∏
`∈T

dw`
∏
` 6∈T

xT` ({w}) =
N(G ,T )

|E |! .
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An example

1
1

l
2

l
3

l
4v

1

v
2

v
3

Five trees. Naive weights: 1/5. Constructive weights: w(G , (l1, l2)) = 1/6 (4
leading sectors) , w(G , (l1, l3)) = 5/24 (5 leading sectors).

w(G , (l1, l2)) =

∫ 1

0

dw1

∫ 1

0

dw2

∫ 1

0

dw3

∫ 1

0

dw4[inf(w1,w2)]2

= 2

∫ 1

0

dx

∫ x

0

dyy 2 = 1/6

w(G , (l1, l3)) =

∫ 1

0

dw1

∫ 1

0

dw2

∫ 1

0

dw3

∫ 1

0

dw4w3 inf(w1,w3)

=

∫ 1

0

xdx(

∫ x

0

ydy +

∫ 1

x

xdy = 1/8 + (1/3− 1/4) = 5/24
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How does the LVE repack the initial Feynman graphs?

first step (extension): decompose each Feynman φ4 graph with n vertices
into 3n combinatorial maps, with new ”dashed edges” and loop vertices
whose ”corners” or ”arcs” are the former graph edges;

second step (collapse): contract every loop vertex to a fat black vertex
=> result expressed in terms of ordinary maps with dashed edges only and
new black vertices

third step: repack the sum according to the constructive tree weight
formula
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= + + =

Tree structure in loop vertex expansion:

3 1 1 1 1 2

extension collapse
+

+

Vincent Rivasseau Montpellier, August 2015



9
72

24

=
Collapse

1 4

++

+ +

1 44

++

++

4

16

=

Collapse

=

Extension

24 8
8 16

=

9

Extension

32

=

Extension

=

Collapse

72 8 32

8 32 32

Vincent Rivasseau Montpellier, August 2015



How does the LVE repack the initial Feynman graphs?

Each tree term is an infinite explicit sum of pieces of combinatorial maps,
hence of pieces of Feynman graphs.

It realizes the constructive dream, but with Feynman maps M instead of
Feynman graphs G

S =
∑
M

AM =
∑
M

∑
T⊂M

w(M,T )AM =
∑
T

AT , AT =
∑
M⊃T

w(M,T )AM .

∑
M

|AM | = +∞,
∑
T

|AT | < +∞.
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LVE for ”richer” models

adding non trivial propagators C easy...

typically replace (1 + i
√
λσ)−1 by C 1/2(1 + i

√
λC 1/2σC 1/2)−1C 1/2

works for any ”space-time” (Riemann manifold, infinite discrete
triangulation...), on which C ≥ 0 is both bounded and trace class ...

if C not trace class: add mass renormalization; if C 2 not trace class: add
coupling constant renormalization.

requires scales and Bosons + Fermions,

forest formula replaced by two-level jungle formula (Abdesselam, R, 1994).

LVE replaced by MLVE (Gurau, R, 2013).
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Combinatorial Field Theory

Combinatorial Field Theory: nice playground to learn about QFT and
renormalization in a more abstract context (without fixed space-time and
ordinary locality)

hopefully: QFT of space-time, nice formalism for quantum gravity...

Let us consider a pair of complex fields (φ̄, φ) ∈ HN = CN .

When N →∞, HN → H = `2(N), the Hilbert space.

What could be the most symmetric interacting model for (φ̄, φ)?

U(N) symmetry => vector model.

U(N)-invariant action = function f (φ̄ · φ)
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Random Matrices Tensors as Symmetry Breaking

U(N) invariance can be broken.

vector models => matrix models => tensor models

Smaller symmetry means there are more invariants available for interactions

Random vectors have exactly one connected polynomial invariant interaction,
of degree 2 namely the scalar product φ̄ · φ.

Random matrices: N = N1N2, => U(N1N2) symmetry can break to
U(N1)⊗ U(N2) giving rise to infinitely many connected invariant polynomial
interactions, one at every (even) degree, namely Tr (MM†)p.

Random tensors: N = N1N2N3 · · · , => U(N1N2N3 · · · ) symmetry can break
to U(N1)⊗ U(N2)⊗ U(N3) · · · , creating even much more invariants
=> richer theory space than for matrix models.
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Colored Triangulations and Edge Colored Graphs

Italian school, Lins, crystallization theory: D-dimensional colored triangulations
are simpler than general triangulations. They triangulate pseudo-manifolds with
a well defined D-homology and they are dual to (D + 1)-edge-colored graphs.

Are colored triangulations general enough for random geometry? Yes, since
any D-dimensional triangulation uniquely defines a D dimensional colored
triangulation, its barycentric subdivision.
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Barycentric Colored Triangulations
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Tensor Models

R. Gurau found in 2009 that crystallization theory is dual to a quantum field
theory and in 2010 that this field theory admits a 1/N expansion.

This expansion is not topological !

Basic objects: U(N)⊗D tensor invariants = regular D-edge-colored connected
bipartite graphs

are dual to colored triangulations

are the interactions (vertices) of rank-D random tensors

are the observables of rank-D random tensors

are the Feynman graphs of rank-D − 1 random tensors
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Tensor Invariants
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Tensor invariants can be counted as equivalence classes of permutations (J.
Ben Geloun and S. Ramgoolam)

Z c
1 (n) = 1, 0, 0, 0, 0, ... Φ̄ · Φ

Z c
2 (n) = 1, 1, 1, 1, 1, 1, 1... Tr(MM†)n

Z c
3 (n) = 1, 3, 7, 26, 97, 624, 4163...

Z c
4 (n) = 1, 7, 41, 604, 13753...
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Tensor Models

A general tensor model (with polynomial interactions) is

S(T , T̄ ) = T · T̄ +
∑
B

tBTrB(T̄ ,T )

Z(tB) =

∫
[dT̄dT ] e−ND−1S(T ,T̄ )

Feynman graphs: “vertices” B. Gaussian integral: Wick contractions of T and
T̄ → dashed edges to which we assign the index 0 (here green color).
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Feynman graphs: “vertices” B. Gaussian integral: Wick contractions of T and
T̄ → dashed edges to which we assign the index 0 (here green color).
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Jackets, Degree, 1/N Expansion

Jackets = color cycle up to orientation (D!/2 at rank D)
= canonical system of D!/2 globally defined Heegaard surfaces in the dual
triangulation

Gurau’s degree governs the expansion. After suitable scaling, A(G) ∝ ND−ω(G),
where

ω =
∑
J

g(J)

is not a topological invariant of the triangulated manifold dual to G .
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Tensor Models and Quantum Gravity

The Feynman graphs of tensor models can be considered an equilateral version
of Regge calculus (1962):

SRegge = Λ
∑
σD

vol(σD)− 1

16πG

∑
σD−2

vol(σD−2) δ(σD−2)

Discretized Einstein Hilbert action on a triangulation with QD equilateral

D-simplices and QD−2 (D − 2)-simplices:

AG (N) = eκ1QD−2−κ2QD

On the Feynman dual graph: QD → n, number of vertices; QD−2 → F , number

of faces, hence Regge action for equilateral simplices becomes

AG (N) = λnNF

the natural amplitudes of tensor models. The exact correspondence is

lnN =
vol(σD−2)

8G
=

aD
G

,

lnλ =
D

16πG
vol(σD−2)

(
π(D − 1)− (D + 1) arccos

1

D

)
− 2Λ vol(σD)
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The community

People working on this formalism

J. Ben Geloun, V. Bonzom, S. Carrozza, S. Dartois, T. Delepouve, R. Gurau,
V. Lahoche, L. Lionni, D. Oriti, V. R., J. Ryan, D. O. Samary, A. Tanasa, F.
Vignes-Tourneret...

or interested

D. Benedetti, B. Eynard, J. Ramgoolam, G. Schaeffer, R. van der Veen, R.
Wulkenhaar...

frontier domain between theoretical physics, geometry, combinatorics and
probability theory
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Combinatorial Field Theories

Same than vector, matrix or tensor models, but with slightly broken U(N)
invariance at the propagator level

Allows for bona fide renormalization and renormalization group analysis...

Let us consider the simplest of all such (superrenormalizable) models.
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A Very Simple Superrenormalizable Vector Field Theory

Conjugate vector fields {φp}, {φ̄p}, p = 1, · · · ,N, with λ2

2
(φ̄ · φ)2 bare

interaction.

Gaussian measure dµ(φ̄, φ) which slightly breaks the U(N) invariance of the
theory. It has diagonal covariance which decreases as the inverse power of the
field index:

dη(φ̄, φ) ,

∫
dη(φ̄, φ) φ̄pφq =

δpq
p

.

Z(λ,N) =

∫
dη(φ̄, φ) e−

λ2

2N
(φ̄·φ)2

,

Perturbative amplitudes of the model all finite in the N →∞ limit, except for a
logarithmic divergence of self-loops (as in ordinary φ4

2) LN =
∑N

p=1
1
p
' logN.
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Renormalized Model

The renormalized partition function of the model is:

Z(λ,N) =

∫
dη(φ̄, φ) e−

λ2

2
(φ̄·φ−LN )2

.

The intermediate field representation decomposes the quartic interaction as:

e−
λ2

2
(φ̄·φ−LN )2

=

∫
dν(σ) eıλσ(φ̄·φ−LN ) ,

where dν(σ) = 1√
2π
e−

σ2

2 is the standard Gaussian measure with covariance 1.

Integrating over (φ̄p, φp) leads to:

Z(λ,N) =

∫
dν(σ)

N∏
p=1

1

1− ıλσ
p

e−ı
λσ
p =

∫
dν(σ) e−

∑N
p=1 log2

(
1−ıλσ

p

)
,

where log2(1− x) ≡ x + log(1− x) = O(x2).
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Main Result

Theorem
The pressure p = limN→∞

1
N

logZ(λ,N) is analytic and Borel summable in
z = λ2.

LVE alone not enough because of renormalization.

Requires MLVE Analysis (arXiv 1312.7226)
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Slices and scales for RG

Applying the ordinary LVE to this functional integral would express logZ(λ,N)
as a sum over trees.

However logarithmic divergence of each leaf of the tree must be compensated;

It generates one intermediate field σ in numerator for each leaf:(
1− ıλσ

p

)−1 − 1 = ıλσ
p

(
1− ıλσ

p

)−1

Integrated through the Gaussian measure, these numerator σ’s would create
divergent bounds for trees with many leaves.

The MLVE is designed to solve this problem.

We fix a number L > 1 ( here, non-canonical choice...) and define the j-th
slice, as made of the indices p ∈ Ij ≡ [Lj−1, Lj − 1]. The ultraviolet cutoff N is
chosen as N = Ljmax , with jmax an integer.
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Fermionic Fields

Z(λ,N) =

∫
dν(σ)

jmax∏
j=1

e−Vj , Vj =
∑
p∈Ij

log2

(
1− ıλσ

p

)
.

The factorization of the interaction over the set of slices S = [1 · · · jmax] can be
encoded into an integral over Grassmann numbers. Indeed,

a =

∫
dχ̄dχ e−χ̄aχ =

∫
dµ(χ̄, χ) e−χ̄(a−1)χ

where dµ(χ̄, χ) = dχ̄dχ e−χ̄χ is the standard normalized Grassmann Gaussian
measure with covariance 1. Hence, denoting Wj(σ) = e−Vj − 1,

Z(λ,N) =

∫
dν(σ)

(jmax∏
j=1

dµ(χ̄j , χj)
)
e−V

V =

jmax∑
j=1

χ̄jWj(σ)χj =

jmax∑
j=1

χ̄j(e
−Vj − 1)(σ)χj .
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m Level Jungle Formula

An m-jungle is a sequence J = (F1, . . . ,Fm) of forests on In = [1, · · · n] such
that F1 ⊂ . . . ⊂ Fm.

Given an m-jungle J = (F1, . . . ,Fm), we introduce the notation w for the
vector (wl)l∈Fm

, and wJ ,k{ij} (w) for the functions defined by:

if i and j are not connected by Fk , wJ ,k{ij} (w) = 0.

if i and j are connected by Fk−1, wJ ,k{ij} (w) = 1.

if i and j are connected by Fk but not by Fk−1, wJ ,k{ij} (w) is the infimum of

the w` for ` in Fk\Fk−1 ∩ PF
ij , where PF

ij is the unique path that goes from
i to j in Fk .
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m Level Jungle Formula

F (1) =
∑

J=(F1,...,Fm)
m−jungle

(∏
l∈Fm

∫ 1

0

dwl

)(( m∏
k=1

( ∏
l∈Fk\Fk−1

∂

∂xk
l

))
F

)(
XBK
J (h)

)
.

Here XBK
J (w) is the vector (xk

l )(l,k) defined by xk
l = hJ ,kl (w), which is the value

at which we evaluate the complicated derivative of H.
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Application to MLVE

We need only m = 2. Expand e−V =
∑∞

n=0
(−V )n

n!
Set Vn = [1, · · · , n]

Introduce n copies (replicas) for the σ field of each vertex, through a
Gaussian matrix with covariance 1 everywhere, then the n(n − 1)/2
interpolation variables xij ∈ [0, 1] for the off-diagonal elements of the
covariance.
The σ variables have no scale attached.

Introduce in the same way n(n− 1)/2 interpolation variables yij ∈ [0, 1] for
the for the off-diagonal elements of the Grassmann Gaussian covariance χ̄
and χ variables (keeping intact the fact that the Fermionic variables have
scales attached, and that the measure dµ(χ̄, χ) =

∏jmax
j=1 dµ(χ̄j , χj) is

factorized over scales).
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Result

Z(λ,N) =
∞∑
n=0

1

n!

∑
J

jmax∑
j1=1

· · ·
jmax∑
jn=1

∫
dwJ

∫
dνJ ∂J

[∏
B

∏
a∈B

(
Wja(σa

ja)χBja χ̄
B
ja

)]
,

where

the sum over J runs over all two level jungles, hence over all ordered pairs
J = (FB ,FF ) of two (each possibly empty) disjoint forests on Vn, such
that J̄ = FB ∪ FF is still a forest on Vn. The forests FB and FF are the
Bosonic and Fermionic components of J . The edges of J are partitioned
into Bosonic edges `B and Fermionic edges `F .∫
dwJ means integration from 0 to 1 over parameters w`, one for each

edge ` ∈ J̄ .
∫
dwJ =

∏
`∈J̄

∫ 1

0
dw`. There is no integration for the empty

forest since by convention an empty product is 1. A generic integration
point wJ is therefore made of |J̄ | parameters w` ∈ [0, 1], one for each
` ∈ J̄ .
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MLVE Analysis

∂J =
∏

`B∈FB
`B=(c,d)

( ∂

∂σc
jc

∂

∂σd
jd

) ∏
`F∈FF
`F =(a,b)

δja jb

( ∂

∂χ̄
B(a)
ja

∂

∂χ
B(b)
jb

+
∂

∂χ̄
B(b)
jb

∂

∂χ
B(a)
ja

)
,

where B(a) denotes the Bosonic blocks to which a belongs.

The measure dνJ has covariance X (w`B )⊗ 1S on Bosonic variables and
Y (w`F )⊗ IS on Fermionic variables,

e

1
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The log is then easily computed!

Z(λ,N) =
∞∑
n=1

1

n!

∑
J jungle

· · · =>

logZ(λ,N) =
∞∑
n=1

1

n!

∑
J tree

jmax∑
j1=1

· · ·
jmax∑
jn=1

∫
dwJ

∫
dνJ ∂J

[∏
B

∏
a∈B

(
Wja(σa

ja)χBja χ̄
B
ja

)]
,

where the sum is the same but conditioned on J̄ = FB ∪ FF being a spanning
tree on V = [1, · · · , n].

Theorem
This series is absolutely convergent uniformly in jmax, in a Borel domain for
z = λ2.
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Why does it work

1) The Grassmann variable integration can be bounded by 1. Here positivity of
the jungle formula is essential!

Any positive real matrix R admits a square root R = Z 2, and by the Hadamard
inequality,

detR = (detZ)2 ≤
[ n∏
i=1

(
∑
k

zikzki )
]

=
[ n∏
i=1

Rii

]2

.

In the case at hand, the diagonal Rii terms are all equal to 1.

2) Some factorials cannot be avoided. Each renormalized leaf at scale j gives a
σ numerator but also a convergent L−j factor and a small λ coupling.

3) Bosonic blocks have distinct scales (ensured by the Grassmann variables;
there is a single Grassmann variable per scale in each block). Hence inside a
Bosonic block B the scales j1, ·jp must be distinct.

4) Convergence follows because for any fixed α > 0 and λ small,∑
p

∑
j1 6=···6=jp

λp[p!]α
∏p

k=1 L
−jk << 1 since

∏p
k=1 L

−jk ≤ L−p(p−1)/2.
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General Conclusion, LVE

For φ4 models with no renormalization required, the LVE provides an
explicit and canonical convergent repacking of perturbation theory, based
on the forest formula.

For superrenormalizable models incorporating (mass) renormalization, the
MLVE with Bosons, Fermions and a 2-level jungle formula provides a
convergent series, based on a Wilsonian slice decomposition (with a
non-canonical parameter L).

Open Question 1: Can one remove this slice decomposition?

Simple superrenormalizable tensor models can be controlled non
perturbatively by the MLVE (T. Delepouve, R., 2014), (although the σ
field in that case is a large random matrix).

Open question 2: could more general models, in particular just
renormalizable asymptotically free tensor models incorporating coupling
constant renormalization be also treated by this MLVE. do they require
more than a 2-level jungle formula?
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General Conclusion, Tensor Field Theories

Tensor field theories have promising features for quantum gravity and random
geometry in dimension d ≥ 3:

they perform background independent sums over all geometries (including
topology change)

pondered by discretized EH action

when renormalizable, they are typically asymptotically free (at least in the
case of simple quartic interactions)

at least in some cases they can be controlled non-perturbatively with an
MLVE.
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