# Field Theory Approach to Equilibrium Critical Phenomena

#### Uwe C. Täuber

Department of Physics (MC 0435), Virginia Tech Blacksburg, Virginia 24061, USA email: tauber@vt.edu http://www.phys.vt.edu/~tauber/utaeuber.html

#### Renormalization Methods in Statistical Physics and Lattice Field Theories Montpellier, 24–28 August 2015



Lecture 1: Critical Scaling: Mean-Field Theory, Real-Space RG Ising model: mean-field theory Real-space renormalization group Landau theory for continuous phase transitions Scaling theory

Lecture 2: Momentum Shell Renormalization Group Landau–Ginzburg–Wilson Hamiltonian Gaussian approximation Wilson's momentum shell renormalization group Dimensional expansion and critical exponents

Lecture 3: Field Theory Approach to Critical Phenomena Perturbation expansion and Feynman diagrams Ultraviolet and infrared divergences, renormalization Renormalization group equation and critical exponents Recent developments



Lecture 1: Critical Scaling: Mean-Field Theory, Real-Space RG

#### Ferromagnetic Ising model

Principal task of statistical mechanics: understand *macroscopic* properties of matter (interacting many-particle systems):

 $\rightarrow$  thermodynamic *phases* and *phase transitions* 

- Phase transitions at temperature T > 0 driven by competition between energy E minimization and entropy S maximization: minimize free energy F = E - T S
- Example: *Ising model* for N "spin" variables  $\sigma_i = \pm 1$  with ferromagnetic exchange couplings  $J_{ij} > 0$  in external field h:

$$H(\{\sigma_i\}) = -\frac{1}{2} \sum_{i,j=1}^{N} J_{ij} \sigma_i \sigma_j - h \sum_{i=1}^{N} \sigma_i$$

Goal: partition function  $Z(T, h, N) = \sum_{\{\sigma_i = \pm 1\}} e^{-H(\{\sigma_i\})/k_{\rm B}T}$ , free energy  $F(T, h, N) = -k_{\rm B}T \ln Z(T, h, N)$ , thermal averages:

$$\left\langle A(\{\sigma_i\})\right\rangle = \frac{1}{Z(T,h,N)} \sum_{\{\sigma_i=\pm 1\}} A(\{\sigma_i\}) e^{-H(\{\sigma_i\})/k_{\rm B}T}$$

#### Curie-Weiss mean-field theory

*Mean-field approximation*: replace effective local field with average:

$$h_{\mathrm{eff},i} = -\frac{\partial H}{\partial \sigma_i} = h + \sum_j J_{ij}\sigma_j \rightarrow h + \widetilde{J}m, \ \widetilde{J} = \sum_i J(x_i), \ m = \langle \sigma_i \rangle$$

More precisely:  $\sigma_i = m + (\sigma_i - \langle \sigma_i \rangle)$  $\rightarrow \sigma_i \sigma_j = m^2 + m (\sigma_i - \langle \sigma_i \rangle + \sigma_j - \langle \sigma_j \rangle) + (\sigma_i - \langle \sigma_i \rangle) (\sigma_j - \langle \sigma_j \rangle)$ 

Neglect fluctuations / spatial correlations  $\rightarrow$ 

$$H \approx \frac{Nm^2 \widetilde{J}}{2} - \left(h + \widetilde{J}m\right) \sum_{i=1}^{N} \sigma_i \,, \ Z \approx e^{-Nm^2 \widetilde{J}/2k_{\rm B}T} \left(2\cosh\frac{h + \widetilde{J}m}{k_{\rm B}T}\right)^N$$

yields Curie-Weiss equation of state

$$m(T,h) = -\frac{1}{N} \left( \frac{\partial F_{\rm mf}}{\partial h} \right)_{T,N} = \tanh \frac{h + \widetilde{J} m(T,h)}{k_{\rm B} T}$$

Solution for large T: disordered, paramagnetic phase m = 0

- $T < T_c = J/k_{\rm B}$ : ordered, ferromagnetic phase  $m \neq 0$
- Spontaneous symmetry breaking at critical point  $T_c$ , h = 0

## Mean-field critical power laws

Expand equation of state near  $T_c$ :  $|\tau| = \frac{|\tau - \tau_c|}{\tau} \ll 1$  and  $h \ll \widetilde{J} \to |m| \ll 1$ :  $\rightarrow \frac{h}{k_{\rm P}T_c} \approx \tau m + \frac{m^3}{3}$ • critical isotherm:  $T = T_c$ :  $h \approx \frac{k_B T_c}{3} m^3$ 

coexistence curve:  $h = 0, T < T_c: m \approx \pm (-3\tau)^{1/2}$ 

isothermal susceptibility.

$$\chi_{T} = N \left( \frac{\partial m}{\partial h} \right)_{T} \approx \frac{N}{k_{\rm B} T_c} \frac{1}{\tau + m^2} \approx \frac{N}{k_{\rm B} T_c} \begin{cases} 1/\tau^1 & \tau > 0\\ 1/2|\tau|^1 & \tau < 0 \end{cases}$$

 $\rightarrow$  *Power law singularities* in the vicinity of the critical point

Deficiencies of mean-field approximation:

- predicts transition in any spatial dimension d, but Ising model does not display long-range order at d = 1 for T > 0
- experimental critical exponents differ from mean-field values
- origin: *diverging* susceptibility indicates *strong fluctuations*

### Real-space renormalization group: Ising chain

Real-space RG for the Ising square lattice

$$-\beta H(\{\sigma_i\}) = K \sum_{n.n. (i,j)} \sigma_i \sigma_j$$

$$\rightarrow -\beta H'(\{\sigma_i\}) = A' + K' \sum_{n.n. (i,j)} \sigma_i \sigma_j$$

$$+L' \sum_{n.n.n. (i,j)} \sigma_i \sigma_j + M' \sum_{\Box (i,j,k,l)} \sigma_i \sigma_j \sigma_k \sigma_l$$

$$2 \cosh K(\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4) = -e^{A' + \frac{1}{2}K'(\sigma_1 \sigma_2 + \sigma_2 \sigma_3 + \sigma_3 \sigma_4 + \sigma_4 \sigma_1) + L'(\sigma_1 \sigma_3 + \sigma_2 \sigma_4) + M' \sigma_1 \sigma_2 \sigma_3 \sigma_4}$$

List possible configurations for four nearest neighbors of given spin:

| $\sigma_1$ | $\sigma_2$ | $\sigma_3$ | $\sigma_4$ | A' + 2K' + 2L' + M'                       |
|------------|------------|------------|------------|-------------------------------------------|
| +          | +          | +          | +          | $\rightarrow 2 \cosh 4\pi = e$            |
| +          | +          | +          | _          | $\rightarrow 2 \cosh 2K = e^{A' - M'}$    |
| +          | +          | _          | _          | $\rightarrow 2 = e^{A' - 2L' + M'}$       |
| +          | _          | +          | _          | $\rightarrow 2 = e^{A' - 2K' + 2L' + M'}$ |

# RG recursion relations

G recursion relations  

$$K' = \frac{1}{4} \ln \cosh 4K \approx 2K^2 + O(K^4)$$

$$L' = \frac{K'}{2} = \frac{1}{8} \ln \cosh 4K \approx K^2$$

$$A' = L' + \frac{1}{2} \ln 4 \cosh 2K \approx \ln 2 + 2K^2$$

$$M' = A' - \ln 2 \cosh 2K \approx 0 \rightarrow \text{drop}$$

$$\Rightarrow a^{(\ell)} = 2^{\ell/2}a, \ K^{(\ell)} \approx 2[K^{(\ell-1)}]^2 + L^{(\ell-1)}, \ L^{(\ell)} \approx [K^{(\ell-1)}]^2$$

$$\models K^* = 0 = L^* \text{ stable} \rightarrow T = \infty: \text{ disordered paramagnet}$$

$$\models K^* = \infty = L^* \text{ stable} \rightarrow T = 0: \text{ ordered ferromagnet}$$

$$\models K^*_c = 1/3, \ L^c_c = 1/9 \text{ unstable: } critical fixed point$$

$$Linearize \text{ RG flow: } \begin{pmatrix} \delta K^{(\ell)} = K^{(\ell)} - K^*_c \\ \delta L^{(\ell)} = L^{(\ell)} - L^*_c \end{pmatrix} = \begin{pmatrix} 4/3 & 1 \\ 2/3 & 0 \end{pmatrix} \begin{pmatrix} \delta K^{(\ell-1)} \\ \delta L^{(\ell-1)} \end{pmatrix}$$
with eigenvalues  $\lambda_{1/2} = \frac{1}{3}(2 \pm \sqrt{10})$  and associated eigenvectors:  

$$\Rightarrow \begin{pmatrix} K^{(\ell)} \\ L^{(\ell)} \end{pmatrix} \approx \begin{pmatrix} 1/3 \\ 1/9 \end{pmatrix} + c_1 \lambda_1^{\ell} \begin{pmatrix} 3 \\ \sqrt{10} - 2 \end{pmatrix} + c_2 \lambda_2^{\ell} \begin{pmatrix} -3 \\ \sqrt{10} + 2 \end{pmatrix}$$

## Critical point scaling

Utilize linearized RG flow to analyze critical behavior:

- $\lambda_1 > 1 \rightarrow$  *relevant* direction;  $|\lambda_2| < 1 \rightarrow$  *irrelevant* direction
- Critical line:  $c_1 = 0$ , set  $L_c = 0$  (n.n. Ising model),  $\ell = 0$

$$\binom{\kappa_c}{0} \approx \binom{1/3}{1/9} + c_2 \binom{-3}{\sqrt{10}+2} \rightarrow c_2 = \frac{-1}{9(\sqrt{10}+2)}$$

→ K<sub>c</sub> ≈ 0.3979; mean-field: K<sub>c</sub> = 0.25; exact: K<sub>c</sub> = 0.4406
 ▶ Relevant eigenvalue determines *critical exponent*:

 $\ell \gg 1: \ \lambda_2^{\ell} \to 0, \ \delta K^{(\ell)} \approx e^{\ell \ln \lambda_1} (K - K_c)$ correlations:  $\xi^{(\ell)} = 2^{-\ell/2} \xi \rightarrow \xi = \xi^{(\ell)} \left| \frac{\delta K^{(\ell)}}{K - K_c} \right|^{\ln 2/2 \ln \lambda_1}$ 

$$\xi^{(\ell)} \approx a \rightarrow \xi(T) \propto |T - T_c|^{-\nu}, \ \nu = \frac{\ln 2}{2 \ln \frac{2 + \sqrt{10}}{3}} \approx 0.6385$$

compare mean-field theory:  $\nu = \frac{1}{2}$ ; exact (L. Onsager):  $\nu = 1$ Real-space renormalization group approach:

- difficult to improve systematically, no small parameter
- successful applications to critical disordered systems

### General mean-field theory: Landau expansion

Expand free energy (density) in terms of order parameter (scalar field)  $\phi$  near a *continuous (second-order) phase transition* at  $T_c$ :

$$f(\phi) = \frac{r}{2} \phi^2 + \frac{u}{4!} \phi^4 + \ldots - h \phi$$

 $r = a(T - T_c), u > 0$ ; conjugate field h breaks Z(2) symmetry  $\phi \rightarrow -\phi$ 

 $f'(\phi) = 0 \rightarrow$  equation of state:

$$h(T,\phi)=r(T)\phi+\frac{u}{6}\phi^3$$

Stability:  $f''(\phi) = r + \frac{u}{2} \phi^2 > 0$ 

• Critical isotherm at  $T = T_c$ :  $h(T_c, \phi) = \frac{u}{6} \phi^3$ 

• Spontaneous order parameter for r < 0:  $\phi_{\pm} = \pm (6|r|/u)^{1/2}$ 



### Thermodynamic singularities at critical point

Isothermal order parameter susceptibility:

$$V\chi_{T}^{-1} = \left(\frac{\partial h}{\partial \phi}\right)_{T} = r + \frac{u}{2}\phi^{2} \rightarrow \frac{\chi_{T}}{V} = \begin{cases} 1/r^{1} & r > 0\\ 1/2|r|^{1} & r < 0 \end{cases}$$

 $\rightarrow$  divergence at  $T_c$ , amplitude ratio 2



• Free energy and specific heat vanish for  $T \ge T_c$ ; for  $T < T_c$ :

$$f(\phi_{\pm}) = \frac{r}{4} \phi_{\pm}^2 = -\frac{3r^2}{2u}, \ C_{h=0} = -VT \left(\frac{\partial^2 f}{\partial T^2}\right)_{h=0} = VT \frac{3a^2}{u}$$

 $\rightarrow$  discontinuity at  $T_c$ 

### Scaling hypothesis for free energy

Postulate: (sing.) free energy generalized *homogeneous function*:

$$f_{
m sing}( au,h) = | au|^{2-lpha} \, \widehat{f}_{\pm}\left(rac{h}{| au|^{\Delta}}
ight) \,, \,\, au = rac{T-T_c}{T_c}$$

two-parameter scaling, with scaling functions  $\hat{f}_{\pm}$ ,  $\hat{f}_{\pm}(0) = \text{const.}$ Landau theory: critical exponents  $\alpha = 0$ ,  $\Delta = \frac{3}{2}$ 

Specific heat:

$$C_{h=0} = -rac{VT}{T_c^2} \left(rac{\partial^2 f_{
m sing}}{\partial au^2}
ight)_{h=0} = C_{\pm} | au|^{-lpha}$$

Equation of state:

$$\phi( au, h) = -\left(rac{\partial f_{
m sing}}{\partial h}
ight)_{ au} = -| au|^{2-lpha-\Delta} \, \hat{f}_{\pm}'\left(rac{h}{| au|^{\Delta}}
ight)$$

• Coexistence line  $h = 0, \tau < 0$ :

 $\phi( au,0) = -| au|^{2-lpha-\Delta} \ \hat{f}_-'(0) \propto | au|^eta \ , \ eta = 2-lpha-\Delta$ 

### Scaling relations

► Critical isotherm:  $\tau$  dependence in  $\hat{f}'_{\pm}$  must cancel prefactor, as  $x \to \infty$ :  $\hat{f}'_{\pm}(x) \propto x^{(2-\alpha-\Delta)/\Delta}$ 

$$ightarrow \phi(0,h) \propto h^{(2-lpha-\Delta)/\Delta} = h^{1/\delta}, \ \delta = rac{\Delta}{eta}$$

Isothermal susceptibility:

$$rac{\chi_{ au}}{V} = \left(rac{\partial \phi}{\partial h}
ight)_{ au, \ h=0} = \chi_{\pm} \, | au|^{-\gamma} \, , \ \gamma = lpha + 2(\Delta - 1)$$

Eliminate  $\Delta \rightarrow scaling relations$ :

$$\Delta = \beta \, \delta \,, \, \alpha + \beta (1 + \delta) = 2 = \alpha + 2\beta + \gamma \,, \, \gamma = \beta (\delta - 1)$$

→ only *two independent* (static) critical exponents

Mean-field:  $\alpha = 0$ ,  $\beta = \frac{1}{2}$ ,  $\gamma = 1$ ,  $\delta = 3$ ,  $\Delta = \frac{3}{2}$  (dim. analysis)

Experimental exponent values different, but still *universal*: depend only on symmetry, dimension ..., *not* microscopic details

#### Thermodynamic self-similarity in the vicinity of $T_c$



Temperature dependence of the *specific heat* near the *normal- to superfluid transition* of He 4, shown in successively reduced scales *From: M.J. Buckingham and W.M. Fairbank, in:* Progress in low temperature physics, *Vol. III, ed. C.J. Gorter, 80–112, North-Holland (Amsterdam, 1961).* 

## Selected literature:

- J.J. Binney, N.J. Dowrick, A.J. Fisher, and M.E.J. Newman, *The theory of critical phenomena*, Oxford University Press (Oxford, 1993).
- N. Goldenfeld, Lectures on phase transitions and the renormalization group, Addison–Wesley (Reading, 1992).
- S.-k. Ma, Modern theory of critical phenomena, Benjamin-Cummings (Reading, 1976).
- G.F. Mazenko, *Fluctuations, order, and defects*, Wiley–Interscience (Hoboken, 2003).
- R.K. Pathria, *Statistical mechanics*, Butterworth–Heinemann (Oxford, 2nd ed. 1996).
- A.Z. Patashinskii and V.L. Pokrovskii, *Fluctuation theory of phase transitions*, Pergamon Press (New York, 1979).
- L.E. Reichl, A modern course in statistical physics, Wiley–VCH (Weinheim, 3rd ed. 2009).
- F. Schwabl, Statistical mechanics, Springer (Berlin, 2nd ed. 2006).
- U.C. Täuber, Critical dynamics A field theory approach to equilibrium and non-equilibrium scaling behavior, Cambridge University Press (Cambridge, 2014), Chap. 1.

#### Lecture 2: Momentum Shell Renormalization Group

## Landau-Ginzburg-Wilson Hamiltonian

Coarse-grained Hamiltonian, order parameter field S(x):

$$\mathcal{H}[S] = \int d^d x \left[ \frac{r}{2} S(x)^2 + \frac{1}{2} \left[ \nabla S(x) \right]^2 + \frac{u}{4!} S(x)^4 - h(x) S(x) \right]$$

 $r = a(T - T_c^0)$ , u > 0, h(x) local external field;

gradient term  $\sim [\nabla S(x)]^2$  suppresses spatial inhomogeneities *Probability density* for configuration S(x): *Boltzmann factor* 

 $\mathcal{P}_{s}[S] = \exp(-\mathcal{H}[S]/k_{\mathrm{B}}T)/\mathcal{Z}[h]$ 

canonical *partition function* and moments  $\rightarrow$  functional integrals:

$$\mathcal{Z}[h] = \int \mathcal{D}[S] \ e^{-\mathcal{H}[S]/k_{\rm B}T}, \ \phi = \langle S(x) \rangle = \int \mathcal{D}[S] \ S(x) \mathcal{P}_s[S]$$

- ▶ Integral measure: discretize  $x \to x_i$ ,  $\to D[S] = \prod_i dS(x_i)$
- or employ Fourier transform:  $S(x) = \int \frac{d^d q}{(2\pi)^d} S(q) e^{iq \cdot x}$

$$\rightarrow \mathcal{D}[S] = \prod_{q} \frac{dS(q)}{V} = \prod_{q,q_1>0} \frac{d\operatorname{Re} S(q) \ d\operatorname{Im} S(q)}{V}$$

#### Landau–Ginzburg approximation

Most likely configuration  $\rightarrow$  *Ginzburg–Landau equation*:

$$0 = \frac{\delta \mathcal{H}[S]}{\delta S(x)} = \left[r - \nabla^2 + \frac{u}{6}S(x)^2\right]S(x) - h(x)$$

Linearize  $S(x) = \phi + \delta S(x) \rightarrow \delta h(x) \approx (r - \nabla^2 + \frac{u}{2} \phi^2) \delta S(x)$ Fourier transform  $\rightarrow Ornstein-Zernicke susceptibility:$ 

$$\chi_0(q) = \frac{1}{r + \frac{u}{2}\phi^2 + q^2} = \frac{1}{\xi^{-2} + q^2}, \ \xi = \begin{cases} 1/r^{1/2} & r > 0\\ 1/|2r|^{1/2} & r < 0 \end{cases}$$

Zero-field two-point *correlation function* (cumulant):

$$C(x-x') = \langle S(x) S(x') \rangle - \langle S(x) \rangle^2 = (k_{\rm B} T)^2 \frac{\delta^2 \ln \mathcal{Z}[h]}{\delta h(x) \,\delta h(x')} \bigg|_{h=0}$$

Fourier transform  $C(x) = \int \frac{d^d q}{(2\pi)^d} C(q) e^{iq \cdot x}$ 

 $\rightarrow$  fluctuation-response theorem:  $C(q) = k_{\rm B} T \chi(q)$ 

#### Scaling hypothesis for correlation function

Scaling ansatz, defines *Fisher exponent*  $\eta$  and *correlation length*  $\xi$ :

$${\cal C}( au, q) = |q|^{-2+\eta} \, \hat{\mathcal{C}}_{\pm}(q\xi) \,, \; \xi = \xi_{\pm} \, | au|^{-
u}$$

Thermodynamic susceptibility:

$$\chi(\tau, \boldsymbol{q} = \boldsymbol{0}) \propto \xi^{2-\eta} \propto |\tau|^{-\nu(2-\eta)} = |\tau|^{-\gamma}, \ \gamma = \nu(2-\eta)$$

• Spatial *correlations* for  $x \to \infty$ :

$$C( au, x) = |x|^{-(d-2+\eta)} \widetilde{C}_{\pm}(x/\xi) \propto \xi^{-(d-2+\eta)} \propto | au|^{
u(d-2+\eta)}$$

 $\langle S(x)S(0) \rangle \rightarrow \langle S \rangle^2 = \phi^2 \propto (-\tau)^{2\beta} \rightarrow \text{hyperscaling relations:}$ 

$$\beta = \frac{\nu}{2} \left( d - 2 + \eta \right), \ 2 - \alpha = d\nu$$

Mean-field values:  $\nu = \frac{1}{2}$ ,  $\eta = 0$  (Ornstein–Zernicke)

Diverging spatial correlations induce thermodynamic singularities !

#### Gaussian approximation

*High-temperature phase*,  $T > T_c$ : neglect nonlinear contributions:

$$\mathcal{H}_0[S] = \int rac{d^d q}{(2\pi)^d} \left[ rac{1}{2} \left( r+q^2 
ight) |S(q)|^2 - h(q)S(-q) 
ight]$$

Linear transformation  $\widetilde{S}(q) = S(q) - \frac{h(q)}{r+q^2}$ ,  $\int_q \ldots = \int \frac{d^d q}{(2\pi)^d}$  and Gaussian integral:

$$\begin{aligned} \mathcal{Z}_0[h] &= \int \mathcal{D}[S] \, \exp(-\mathcal{H}_0[S]/k_{\rm B}T) = \\ &= \exp\left(\frac{1}{2k_{\rm B}T} \int_q \frac{|h(q)|^2}{r+q^2}\right) \int \mathcal{D}[\widetilde{S}] \, \exp\left(-\int_q \frac{r+q^2}{2k_{\rm B}T} |\widetilde{S}(q)|^2\right) \\ &\to \left\langle S(q)S(q')\right\rangle_0 = \frac{(k_{\rm B}T)^2}{\mathcal{Z}_0[h]} \frac{(2\pi)^{2d} \, \delta^2 \mathcal{Z}_0[h]}{\delta h(-q) \, \delta h(-q')} \Big|_{h=0} \\ &= C_0(q) \, (2\pi)^d \delta(q+q') \,, \ C_0(q) = \frac{k_{\rm B}T}{r+q^2} \end{aligned}$$

Gaussian model: free energy and specific heat

$$F_0[h] = -k_{\rm B}T \ln \mathcal{Z}_0[h] = -\frac{1}{2}\int_q \left(\frac{|h(q)|^2}{r+q^2} + k_{\rm B}TV \ln \frac{2\pi k_{\rm B}T}{r+q^2}\right)$$

Leading singularity in *specific heat*:

$$C_{h=0} = -T\left(\frac{\partial^2 F_0}{\partial T^2}\right)_{h=0} \approx \frac{Vk_{\rm B}(aT_c^0)^2}{2} \int_q \frac{1}{(r+q^2)^2} \ .$$

*d* > 4: integral UV-divergent; regularized by cutoff Λ (Brillouin zone boundary) → α = 0 as in mean-field theory
 *d* = *d<sub>c</sub>* = 4: integral diverges logarithmically:

$$\int_0^{\Lambda\xi} \frac{k^3}{(1+k^2)^2} \, dk \sim \ln(\Lambda\xi)$$

• d < 4: with  $k = q/\sqrt{r} = q\xi$ , surface area  $K_d = \frac{2\pi^{d/2}}{\Gamma(d/2)}$ :

$$C_{\rm sing} \approx \frac{V k_{\rm B} (a T_c^0)^2 \, \xi^{4-d}}{2^d \pi^{d/2} \, \Gamma(d/2)} \int_0^\infty \frac{k^{d-1}}{(1+k^2)^2} \, dk \propto |T - T_c^0|^{-\frac{4-d}{2}}$$

 $\rightarrow$  diverges; *stronger singularity* than in mean-field theory

# Renormalization group program in statistical physics

- ► Goal: *critical* (IR) singularities; perturbatively inaccessible.
- Exploit fundamental new symmetry: divergent correlation length induces scale invariance.
- Analyze theory in ultraviolet regime: integrate out short-wavelength modes / renormalize UV divergences.
- Rescale onto original Hamiltonian, obtain recursion relations for effective, now scale-dependent *running couplings*.
- Under such RG transformations:
  - $\rightarrow$  *Relevant* parameters grow: set to 0: *critical surface*.
  - → Certain couplings approach *IR-stable fixed point*: scale-invariant behavior.
  - $\rightarrow$  *Irrelevant* couplings vanish: origin of *universality*.
- Scale invariance at critical fixed point → infer correct IR scaling behavior from (approximative) analysis of UV regime → derivation of scaling laws.
- Dimensional expansion: e = d<sub>c</sub> − d small parameter, permits perturbational treatment → computation of critical exponents.

# Wilson's momentum shell renormalization group

RG transformation steps:

(1) Carry out the partition integral over all Fourier components S(q) with wave vectors  $\Lambda/b \le |q| \le \Lambda$ , where b > 1: eliminates short-wavelength modes

(2) Scale transformation with the same scale parameter b > 1:  $x \rightarrow x' = x/b, q \rightarrow q' = b q$ 



Accordingly, we also need to *rescale the fields*:

$$S(x) \rightarrow S'(x') = b^{\zeta}S(x), \ S(q) \rightarrow S'(q') = b^{\zeta-d}S(q)$$

Proper choice of  $\zeta \rightarrow$  rescaled Hamiltonian assumes original form  $\rightarrow$  scale-dependent effective couplings, analyze dependence on b Notice semi-group character: RG transformation has no inverse Momentum shell RG: Gaussian model

$$\mathcal{H}_0[S_{<}] + \mathcal{H}_0[S_{>}] = \left(\int_q^{<} + \int_q^{>}\right) \left[\frac{r+q^2}{2} |S(q)|^2 - h(q) S(-q)\right]$$
  
where  $\int_q^{<} \ldots = \int_{|q| < \Lambda/b} \frac{d^d q}{(2\pi)^d} \ldots, \int_q^{>} \ldots = \int_{\Lambda/b \le |q| \le \Lambda} \frac{d^d q}{(2\pi)^d} \ldots$ 

Choose  $\zeta = \frac{d-2}{2} \rightarrow r \rightarrow r' = b^2 r$ ,

$$h(q) 
ightarrow h'(q') = b^{-\zeta} h(q) \,, \, h(x) 
ightarrow h'(x') = b^{d-\zeta} h(x)$$

r, h both relevant  $\rightarrow$  critical surface: r = 0 = h

- Correlation length:  $\xi \to \xi' = \xi/b \to \xi \propto r^{-1/2}$ :  $\nu = \frac{1}{2}$
- Correlation function:  $C'(x') = b^{2\zeta} C(x) \rightarrow \eta = 0$

Add other couplings:

• 
$$c \int d^d x \, (\nabla^2 S)^2$$
:  $c \to c' = b^{d-4-2\zeta} c = b^{-2} c$ , irrelevant

- ►  $u \int d^d x S(x)^4$ :  $u \to u' = b^{d-4\zeta} u = b^{4-d} u$ ; relevant for d < 4, (dangerously) irrelevant for d > 4, marginal at  $d = d_c = 4$
- ►  $v \int d^d x S(x)^6$ :  $v \to v' = b^{6-2d}v$ , marginal for d = 3; irrelevant near  $d_c = 4$ :  $v' = b^{-2}v$

### Momentum shell RG: general structure

General choice:  $\zeta = rac{d-2+\eta}{2} \ o \ au' = b^{1/
u} au$ ,  $h' = b^{(d+2-\eta)/2} h$ 

- Only *two relevant* parameters  $\tau$  and h
- Few marginal couplings  $u_i \rightarrow u'_i = u^*_i + b^{-x_i}u_i$ ,  $x_i > 0$
- Other couplings *irrelevant*:  $v_i \rightarrow v'_i = b^{-y_i}v_i$ ,  $y_i > 0$

After single RG transformation:

$$f_{\rm sing}(\tau, h, \{u_i\}, \{v_i\}) = b^{-d} f_{\rm sing}\left(b^{1/\nu}\tau, b^{d-\zeta}h, \left\{u_i^* + \frac{u_i}{b^{x_i}}\right\}, \left\{\frac{v_i}{b^{y_i}}\right\}\right)$$

After sufficiently many  $\ell \gg 1$  RG transformations:

$$f_{\rm sing}(\tau, h, \{u_i\}, \{v_i\}) = b^{-\ell d} f_{\rm sing}\left(b^{\ell/\nu}\tau, b^{\ell(d+2-\eta)/2}h, \{u_i^*\}, \{0\}\right)$$

Choose matching condition  $b^{\ell} |\tau|^{\nu} = 1 \rightarrow$  scaling form:

$$f_{
m sing}( au, extsf{h}) = | au|^{d
u} \, \widehat{f}_{\pm}\left( extsf{h}/| au|^{
u(d+2-\eta)/2} 
ight)$$

Correlation function scaling law: use  $b^\ell = \xi/\xi_\pm$  ightarrow

$$C(\tau, x, \{u_i\}, \{v_i\}) = b^{-2\ell\zeta} C\left(b^{\ell/\nu}\tau, \frac{x}{b^{\ell}}, \{u_i^*\}, \{0\}\right) \to \frac{C_{\pm}(x/\xi)}{|x|^{d-2+\eta}}$$

### Perturbation expansion

Nonlinear interaction term:

$$\mathcal{H}_{\mathrm{int}}[S] = rac{u}{4!} \int_{|q_i| < \Lambda} S(q_1) S(q_2) S(q_3) S(-q_1 - q_2 - q_3)$$

Rewrite *partition function* and *N*-point *correlation functions*:

$$\mathcal{Z}[h] = \mathcal{Z}_{0}[h] \left\langle e^{-\mathcal{H}_{\text{int}}[S]} \right\rangle_{0}, \ \left\langle \prod_{i} S(q_{i}) \right\rangle = \frac{\left\langle \prod_{i} S(q_{i}) e^{-\mathcal{H}_{\text{int}}[S]} \right\rangle_{0}}{\left\langle e^{-\mathcal{H}_{\text{int}}[S]} \right\rangle_{0}}$$

*contraction*:  $S(q)S(q') = \langle S(q)S(q') \rangle_0 = C_0(q)(2\pi)^d \delta(q+q')$  $\rightarrow$  Wick's theorem:

$$\langle S(q_1)S(q_2)\dots S(q_{N-1})S(q_N) 
angle_0 =$$
  
=  $\sum_{\substack{\text{permutations} \\ i_1(1)\dots i_N(N)}} \underbrace{S(q_{i_1(1)})S(q_{i_2(2)})\dots S(q_{i_{N-1}(N-1)})S(q_{i_N(N)})}_{i_1(1)\dots i_N(N)}$ 

 $\rightarrow$  compute all expectation values in the *Gaussian ensemble* 

#### First-order correction to two-point function

Consider 
$$\langle S(q)S(q')\rangle = C(q)(2\pi)^d \delta(q+q')$$
 for  $h = 0$ ; to  $O(u)$ :  
 $\left\langle S(q)S(q') \left[ 1 - \frac{u}{4!} \int_{|q_i| < \Lambda} S(q_1)S(q_2)S(q_3)S(-q_1 - q_2 - q_3) \right] \right\rangle_0$ 

► The remaining twelve contributions are of the form  

$$\int_{|q_i| < \Lambda} \underbrace{S(q)S(q_1) S(q_2)S(q_3) S(-q_1 - q_2 - q_3)S(q')}_{= C_0(q)^2 (2\pi)^d \delta(q + q') \int_{|p| < \Lambda} C_0(p)} = C(q) = C_0(q) \left[ 1 - \frac{u}{2} C_0(q) \int_{|p| < \Lambda} C_0(p) + O(u^2) \right]$$

re-interpret as first-order self-energy in Dyson's equation:

$$C(q)^{-1} = r + q^2 + \frac{u}{2} \int_{|p| < \Lambda} \frac{1}{r + p^2} + O(u^2)$$

Notice: to first order in u, there is only "mass" renormalization, no change in momentum dependence of C(q)

#### Wilson RG procedure: first-order recursion relations

*Split field variables* in outer  $(S_{>})$  / inner  $(S_{<})$  momentum shell:

- simply re-exponentiate terms  $\sim u \int S_{<}^{4} e^{-\mathcal{H}_{0}[S]}$
- contributions such as  $u \int S_{<}^{3} S_{>} e^{-\mathcal{H}_{0}[\hat{S}]}$  vanish
- ▶ terms ~  $u \int S^4_{>} e^{-\mathcal{H}_0[S]} \rightarrow \text{const.}$ , contribute to free energy
- contributions  $\sim u \int S_{<}^2 S_{>}^2 e^{-\mathcal{H}_0}$ : Gaussian integral over  $S_{>}$

With 
$$S_d = K_d/(2\pi)^d = 1/2^{d-1}\pi^{d/2}\Gamma(d/2)$$
 and  $\eta = 0$  to  $O(u)$ :  
 $r' = b^2 \left[ r + \frac{u}{2} A(r) \right] = b^2 \left[ r + \frac{u}{2} S_d \int_{\Lambda/b}^{\Lambda} \frac{p^{d-1}}{r + p^2} dp \right]$   
 $u' = b^{4-d} u \left[ 1 - \frac{3u}{2} B(r) \right] = b^{4-d} u \left[ 1 - \frac{3u}{2} S_d \int_{\Lambda/b}^{\Lambda} \frac{p^{d-1} dp}{(r + p^2)^2} \right]$   
 $r \gg 1$ : fluctuation contributions disappear, Gaussian theory  
 $r \ll 1$ : expand  
 $A(r) = S_d \Lambda^{d-2} \frac{1 - b^{2-d}}{d - 2} - r S_d \Lambda^{d-4} \frac{1 - b^{4-d}}{d - 4} + O(r^2)$ 

$$B(r) = S_d \Lambda^{d-4} \frac{1-b^{4-a}}{d-4} + O(r)$$

Differential RG flow, fixed points, dimensional expansion

*Differential RG flow*: set  $b = e^{\delta \ell}$  with  $\delta \ell \to 0$ :

$$\frac{d\tilde{r}(\ell)}{d\ell} = 2\tilde{r}(\ell) + \frac{\tilde{u}(\ell)}{2}S_d\Lambda^{d-2} - \frac{\tilde{r}(\ell)\tilde{u}(\ell)}{2}S_d\Lambda^{d-4} + O(\tilde{u}\tilde{r}^2,\tilde{u}^2)$$
$$\frac{d\tilde{u}(\ell)}{d\ell} = (4-d)\tilde{u}(\ell) - \frac{3}{2}\tilde{u}(\ell)^2S_d\Lambda^{d-4} + O(\tilde{u}\tilde{r},\tilde{u}^2)$$

Renormalization group *fixed points*:  $d\tilde{r}(\ell)/d\ell = 0 = d\tilde{u}(\ell)/d\ell$ 

- ► Gauss:  $u_0^* = 0 \iff lsing$ :  $u_I^* S_d = \frac{2}{3} (4 d) \Lambda^{4-d}$ , d < 4
- Linearize  $\delta \tilde{u}(\ell) = \tilde{u}(\ell) u_{\mathrm{I}}^*$ :  $\frac{d}{d\ell} \delta \tilde{u}(\ell) \approx (d-4)\delta \tilde{u}(\ell)$

 $ightarrow \ u_0^*$  stable for d> 4,  $u_{
m I}^*$  stable for d< 4

- Small expansion parameter:  $\epsilon = 4 d = d_c d$  $u_t^*$  emerges continuously from  $u_0^* = 0$
- ► Insert:  $r_{\rm I}^* = -\frac{1}{4} u_{\rm I}^* S_d \Lambda^{d-2} = -\frac{1}{6} \epsilon \Lambda^2$ : non-universal, describes *fluctuation-induced downward*  $T_c$ -shift
- ► RG procedure generates new terms ~ S<sup>6</sup>, ∇<sup>2</sup>S<sup>4</sup>, etc; to O(ϵ<sup>3</sup>), feedback into recursion relations can be neglected

## Critical exponents

Deviation from true  $T_c$ :  $\tau = r - r_I^* \propto T - T_c$ Recursion relation for this (relevant) *running coupling*:

$$\frac{d\tilde{\tau}(\ell)}{d\ell} = \tilde{\tau}(\ell) \left[ 2 - \frac{\tilde{u}(\ell)}{2} S_d \Lambda^{d-4} \right]$$

Solve near Ising fixed point:  $\tilde{\tau}(\ell) = \tilde{\tau}(0) \exp\left[\left(2 - \frac{\epsilon}{3}\right)\ell\right]$ Compare with  $\tilde{\xi}(\ell) = \xi(0) e^{-\ell} \rightarrow \nu^{-1} = 2 - \frac{\epsilon}{3}$ Consistently to order  $\epsilon = 4 - d$ :

$$\nu = rac{1}{2} + rac{\epsilon}{12} + O(\epsilon^2), \ \eta = 0 + O(\epsilon^2)$$

Note at  $d = d_c = 4$ :  $\tilde{u}(\ell) = \tilde{u}(0)/[1 + 3\,\tilde{u}(0)\,\ell/16\pi^2]$ 

→ *logarithmic corrections* to mean-field exponents

Renormalization group procedure:

- Derive scaling laws.
- $\blacktriangleright$  Two relevant couplings  $~\rightarrow~$  independent critical exponents.
- Compute scaling exponents via power series in  $\epsilon = d_c d$ .

### Selected literature:

- J.J. Binney, N.J. Dowrick, A.J. Fisher, and M.E.J. Newman, *The theory of critical phenomena*, Oxford University Press (Oxford, 1993).
- ▶ J. Cardy, *Scaling and renormalization in statistical physics*, Cambridge University Press (Cambridge, 1996).
- M.E. Fisher, The renormalization group in the theory of critical behavior, Rev. Mod. Phys. 46, 597–616 (1974).
- N. Goldenfeld, Lectures on phase transitions and the renormalization group, Addison–Wesley (Reading, 1992).
- S.-k. Ma, Modern theory of critical phenomena, Benjamin-Cummings (Reading, 1976).
- G.F. Mazenko, *Fluctuations, order, and defects*, Wiley–Interscience (Hoboken, 2003).
- A.Z. Patashinskii and V.L. Pokrovskii, *Fluctuation theory of phase transitions*, Pergamon Press (New York, 1979).
- U.C. Täuber, Critical dynamics A field theory approach to equilibrium and non-equilibrium scaling behavior, Cambridge University Press (Cambridge, 2014), Chap. 1.
- ► K.G. Wilson and J. Kogut, The renormalization group and the *ϵ* expansion, Phys. Rep. **12 C**, 75–200 (1974).

#### Lecture 3: Field Theory Approach to Critical Phenomena

### Perturbation expansion

O(n)-symmetric Hamiltonian (henceforth set  $k_{\rm B}T = 1$ ):

$$\mathcal{H}[S] = \int d^d x \sum_{\alpha=1}^n \left[ \frac{r}{2} S^{\alpha}(x)^2 + \frac{1}{2} \left[ \nabla S^{\alpha}(x) \right]^2 + \frac{u}{4!} \sum_{\beta=1}^n S^{\alpha}(x)^2 S^{\beta}(x)^2 \right]$$

Construct *perturbation expansion* for  $\langle \prod_{ij} S^{\alpha_i} S^{\alpha_j} \rangle$ :

$$\frac{\left\langle \prod_{ij} S^{\alpha_i} S^{\alpha_j} e^{-\mathcal{H}_{\rm int}[S]} \right\rangle_0}{\left\langle e^{-\mathcal{H}_{\rm int}[S]} \right\rangle_0} = \frac{\left\langle \prod_{ij} S^{\alpha_i} S^{\alpha_j} \sum_{l=0}^{\infty} \frac{(-\mathcal{H}_{\rm int}[S])^l}{l!} \right\rangle_0}{\left\langle \sum_{l=0}^{\infty} \frac{(-\mathcal{H}_{\rm int}[S])^l}{l!} \right\rangle_0}$$

Diagrammatic representation:

• Propagator  $C_0(q) = \frac{1}{r+q^2}$ 

$$\blacktriangleright$$
 Vertex  $-\frac{u}{6}$ 

$$\frac{q}{\beta} = C_0(q) \,\delta^{\alpha\beta}$$



α

Generating functional for correlation functions (cumulants):

$$\mathcal{Z}[h] = \left\langle \exp \int d^d x \sum_{\alpha} h^{\alpha} S^{\alpha} \right\rangle, \ \left\langle \prod_i S^{\alpha_i} \right\rangle_{(c)} = \prod_i \frac{\delta(\ln) \mathcal{Z}[h]}{\delta h^{\alpha_i}} \Big|_{h=0}$$

# Vertex functions



ightarrow propagator self-energy:  $C(q)^{-1}=C_0(q)^{-1}-\Sigma(q)$ 

Generating functional for vertex functions,  $\Phi^{\alpha} = \delta \ln \mathcal{Z}[h] / \delta h^{\alpha}$ :

$$\begin{split} \Gamma[\Phi] &= -\ln \mathcal{Z}[h] + \int d^d x \sum_{\alpha} h^{\alpha} \, \Phi^{\alpha} \,, \ \Gamma^{(N)}_{\{\alpha_i\}} = \prod_i^N \frac{\delta \Gamma[\Phi]}{\delta \Phi^{\alpha_i}} \Big|_{h=0} \\ &\rightarrow \ \Gamma^{(2)}(q) = C(q)^{-1} \,, \ \left\langle \prod_{i=1}^4 S(q_i) \right\rangle_c = -\prod_{i=1}^4 C(q_i) \, \Gamma^{(4)}(\{q_i\}) \end{split}$$

 $\rightarrow$  one-particle irreducible Feynman graphs Perturbation series in nonlinear coupling  $u \leftrightarrow$  loop expansion

### Explicit results



*four-point vertex function* to one-loop order:

$$\Gamma^{(4)}(\{q_i=0\}) = u - \frac{n+8}{6} u^2 \int_k \frac{1}{(r+k^2)^2}$$



### Ultraviolet and infrared divergences

Fluctuation correction to four-point vertex function:

$$d < 4: u \int \frac{d^d k}{(2\pi)^d} \frac{1}{(r+k^2)^2} = \frac{u r^{-2+d/2}}{2^{d-1} \pi^{d/2} \Gamma(d/2)} \int_0^\infty \frac{x^{d-1}}{(1+x^2)^2} dx$$

effective coupling  $u r^{(d-4)/2} \to \infty$  as  $r \to 0$ : infrared divergence  $\to$  fluctuation corrections singular, modify critical power laws

$$\int_0^{\Lambda} \frac{k^{d-1}}{(r+k^2)^2} \, dk \sim \left\{ \begin{array}{cc} \ln(\Lambda^2/r) & d=4 \\ \Lambda^{d-4} & d>4 \end{array} \right\} \to \infty \quad \text{as } \Lambda \to \infty$$

*ultraviolet* divergences for  $d > d_c = 4$ : *upper critical dimension Power counting* in terms of arbitrary momentum scale  $\mu$ :

• 
$$[x] = \mu^{-1}, [q] = \mu, [S^{\alpha}(x)] = \mu^{-1+d/2};$$

- $[r] = \mu^2 \rightarrow relevant$ ,  $[u] = \mu^{4-d}$  marginal at  $d_c = 4$
- only divergent vertex functions:  $\Gamma^{(2)}(q)$ ,  $\Gamma^{(4)}(\{q_i = 0\})$
- field dimensionless at *lower critical dimension*  $d_{lc} = 2$

# Dimension regimes and dimensional regularization

| dimension           | perturbation     | O(n)-symmetric        | critical            |
|---------------------|------------------|-----------------------|---------------------|
| interval            | series           | $\Phi^4$ field theory | behavior            |
| $d \leq d_{lc} = 2$ | IR-singular      | ill-defined           | no long-range       |
|                     | UV-convergent    | u relevant            | order ( $n \ge 2$ ) |
| 2 < <i>d</i> < 4    | IR-singular      | super-renormalizable  | non-classical       |
|                     | UV-convergent    | u relevant            | exponents           |
| $d = d_c = 4$       | logarithmic IR-/ | renormalizable        | logarithmic         |
|                     | UV-divergence    | u marginal            | corrections         |
| <i>d</i> > 4        | IR-regular       | non-renormalizable    | mean-field          |
|                     | UV-divergent     | u irrelevant          | exponents           |

Integrals in *dimensional regularization*: even for non-integer  $d, \sigma$ :

$$\int \frac{d^d k}{(2\pi)^d} \, \frac{k^{2\sigma}}{(\tau+k^2)^s} = \frac{\Gamma(\sigma+d/2)\,\Gamma(s-\sigma-d/2)}{2^d\,\pi^{d/2}\,\Gamma(d/2)\,\Gamma(s)} \,\,\tau^{\sigma-s+d/2}$$

in effect: discard divergent surface integrals

• UV singularities  $\rightarrow$  *dimensional poles* in Euler  $\Gamma$  functions

#### Renormalization

Susceptibility 
$$\chi^{-1} = C(q=0)^{-1} = \Gamma^{(2)}(q=0) = \tau = r - r_c$$
  
 $\rightarrow r_c = -\frac{n+2}{6} u \int_k \frac{1}{r_c + k^2} + O(u^2) = -\frac{n+2}{6} \frac{u K_d}{(2\pi)^d} \frac{\Lambda^{d-2}}{d-2}$ 

(non-universal) T<sub>c</sub>-shift: additive renormalization

$$\Rightarrow \chi(q)^{-1} = q^2 + \tau \left[ 1 - \frac{n+2}{6} \, u \int_k \frac{1}{k^2(\tau+k^2)} \right]$$

Multiplicative renormalization:

absorb UV poles at  $\epsilon = 0$  into *renormalized* fields and parameters:

$$S_R^{\alpha} = Z_S^{1/2} S^{\alpha} \rightarrow \Gamma_R^{(N)} = Z_S^{-N/2} \Gamma^{(N)}$$
  
$$\tau_R = Z_\tau \tau \mu^{-2}, \ u_R = Z_u \, u \, A_d \, \mu^{d-4}, \ A_d = \frac{\Gamma(3 - d/2)}{2^{d-1} \pi^{d/2}}$$

*Normalization point* outside IR regime,  $\tau_R = 1$  or  $q = \mu$ :

$$egin{aligned} O(u_R): & Z_{ au} = 1 - rac{n+2}{6} rac{u_R}{\epsilon} \,, \,\, Z_u = 1 - rac{n+8}{6} rac{u_R}{\epsilon} \ O(u_R^2): & Z_S = 1 + rac{n+2}{144} rac{u_R^2}{\epsilon} \end{aligned}$$

#### Renormalization group equation

Unrenormalized quantities cannot depend on arbitrary scale  $\mu$ :

$$0 = \mu \frac{d}{d\mu} \Gamma^{(N)}(\tau, u) = \mu \frac{d}{d\mu} \left[ Z_S^{N/2} \Gamma_R^{(N)}(\mu, \tau_R, u_R) \right]$$

 $\rightarrow$  renormalization group equation:

$$\left[\mu \frac{\partial}{\partial \mu} + \frac{N}{2} \gamma_{S} + \gamma_{\tau} \tau_{R} \frac{\partial}{\partial \tau_{R}} + \beta_{u} \frac{\partial}{\partial u_{R}}\right] \Gamma_{R}^{(N)}(\mu, \tau_{R}, u_{R}) = 0$$

with Wilson's flow and RG beta functions:

$$\gamma_{S} = \mu \frac{\partial}{\partial \mu} \Big|_{0} \ln Z_{S} = -\frac{n+2}{72} u_{R}^{2} + O(u_{R}^{3})$$
  

$$\gamma_{\tau} = \mu \frac{\partial}{\partial \mu} \Big|_{0} \ln \frac{\tau_{R}}{\tau} = -2 + \frac{n+2}{6} u_{R} + O(u_{R}^{2})$$
  

$$\beta_{u} = \mu \frac{\partial}{\partial \mu} \Big|_{0} u_{R} = u_{R} \Big[ d - 4 + \mu \frac{\partial}{\partial \mu} \Big|_{0} \ln Z_{u} \Big]$$
  

$$= u_{R} \Big[ -\epsilon + \frac{n+8}{6} u_{R} + O(u_{R}^{2}) \Big]$$

#### Method of characteristics

Susceptibility 
$$\chi(q) = \Gamma^{(2)}(q)^{-1}$$
:  
 $\chi_R(\mu, \tau_R, u_R, q)^{-1} = \mu^2 \hat{\chi}_R(\tau_R, u_R, \frac{q}{\mu})^{-1}$ 

solve RG equation: method of characteristics

$$\mu \to \mu(\ell) = \mu \,\ell$$
  

$$\chi_R(\ell)^{-1} = \chi_R(1)^{-1} \,\ell^2 \,\exp\left[\int_1^\ell \gamma_S(\ell') \,\frac{d\ell'}{\ell'}\right] \qquad u(l)$$
  

$$\tau(l) \qquad \tau(l)$$

¥

with *running couplings*, initial values  $\tilde{\tau}(1) = \tau_R$ ,  $\tilde{u}(1) = u_R$ :

$$\ell \, rac{d ilde{ au}(\ell)}{d\ell} = ilde{ au}(\ell) \, \gamma_{ au}(\ell) \, , \, \, \ell \, rac{d \, ilde{u}(\ell)}{d\ell} = eta_u(\ell)$$

Near infrared-stable RG fixed point:  $\beta_u(u^*) = 0$ ,  $\beta'_u(u^*) > 0$ 

$$\tilde{\tau}(\ell) \approx \tau_R \, \ell^{\gamma_\tau^*}, \ \chi_R(\tau_R, q)^{-1} \approx \mu^2 \, \ell^{2+\gamma_s^*} \, \hat{\chi}_R\left(\tau_R \, \ell^{\gamma_\tau^*}, u^*, \frac{q}{\mu \, \ell}\right)^{-1}$$

matching  $\ell = |{m q}|/\mu ~
ightarrow$  scaling form with  $~\eta = -\gamma_{{\sf S}}^*,~
u = -1/\gamma_{ au}^*$ 

# Critical exponents

Systematic  $\epsilon = 4 - d$  expansion:  $\beta_u = u_R \left[ -\epsilon + \frac{n+8}{6} u_R + O(u_R^2) \right]$  $\rightarrow u_0^* = 0, \ u_H^* = \frac{6\epsilon}{n+8} + O(\epsilon^2)$ 

d > 4: Gaussian fixed point u<sub>0</sub><sup>\*</sup> ⇒ η = 0, ν = <sup>1</sup>/<sub>2</sub> (mean-field)
 d < 4: Heisenberg fixed point u<sub>H</sub><sup>\*</sup> stable

$$\to \eta = \frac{n+2}{2(n+8)^2} \epsilon^2 + O(\epsilon^3), \ \nu^{-1} = 2 - \frac{n+2}{n+8} \epsilon + O(\epsilon^2)$$

•  $d = d_c = 4$ : logarithmic corrections:

$$\begin{split} \tilde{u}(\ell) &= \frac{u_R}{1 - \frac{n+8}{6} \, u_R \, \ln \ell} \,, \ \tilde{\tau}(\ell) \sim \frac{\tau_R}{\ell^2 (\ln |\ell|)^{(n+2)/(n+8)}} \\ &\to \xi \propto \tau_R^{-1/2} \, (\ln \tau_R)^{(n+2)/2(n+8)} \end{split}$$

 Accurate exponent values: Monte Carlo simulations; or: Borel resummation; non-perturbative "exact" (numerical) RG

### Non-perturbative RG, critical dynamics

Non-perturbative RG: numerically solve exact RG flow equation for effective potential Γ = Γ<sub>k→0</sub>

$$\partial_t \Gamma_k = rac{1}{2} \operatorname{Tr} \int_q \left[ \Gamma_k^{(2)}(q) + R_k(q) 
ight]^{-1} \partial_t R_k(q)$$

with appropriately chosen *regulator*  $R_k$ ,  $t = \ln(k/\Lambda)$ 

• Critical dynamics: relaxation time  $t_c(\tau) \sim \xi(\tau)^z \sim |\tau|^{-z\nu}$ with dynamic critical exponent z; time scale separation  $\rightarrow$ Langevin equations for order parameter and conserved fields:  $\partial_t S^{\alpha}(x,t) = F^{\alpha}[S](x,t) + \zeta^{\alpha}(x,t), \ \langle \zeta^{\alpha}(x,t) \rangle = 0$  $\langle \zeta^{\alpha}(x,t) \zeta^{\beta}(x',t') \rangle = 2L^{\alpha} \, \delta(x-x') \, \delta(t-t') \, \delta^{\alpha\beta}$ 

map onto Janssen-De Dominicis response functional:

$$\langle A[S] \rangle_{\zeta} = \int \mathcal{D}[S] A[S] \mathcal{P}[S], \ \mathcal{P}[S] \propto \int \mathcal{D}[i\widetilde{S}] e^{-\mathcal{A}[\widetilde{S},S]} \\ \mathcal{A}[\widetilde{S},S] = \int d^{d}x \int_{0}^{t_{f}} dt \sum_{\alpha} \left[ \widetilde{S}^{\alpha} \left( \partial_{t} S^{\alpha} - F^{\alpha}[S] \right) - \widetilde{S}^{\alpha} L^{\alpha} \widetilde{S}^{\alpha} \right]$$

# Non-equilibrium dynamic scaling

Field theory representations for non-equilibrium dynamical systems:

- Coarse-grained effective Langevin description:
  - → Janssen–De Dominicis functional
- Interacting / reacting particle systems:
  - $\rightarrow$  Doi-Peliti field theory from stochastic master equation
- Non-equilibium quantum dynamics:

→ Keldysh–Baym–Kadanoff Green function formalism

All contain *additional field* encoding non-equilibrium dynamics *anisotropic* (d + 1)-dimensional field theory: *dynamic exponent(s)* RG fixed points  $\rightarrow$  dynamic scaling properties, characterize:

- non-equilibrium stationary states / phases
- universality classes for non-equilibrium phase transitions
- non-equilibrium relaxation and aging scaling features
- properties of systems displaying generic scale invariance

## Selected literature:

- D.J. Amit, Field theory, the renormalization group, and critical phenomena, World Scientific (Singapore, 1984).
- M. Le Bellac, Quantum and statistical field theory, Oxford University Press (Oxford, 1991).
- C. Itzykson and J.M. Drouffe, *Statistical field theory*, Vol. I, Cambridge University Press (Cambridge, 1989).
- A. Kamenev, Field theory of non-equilibrium systems, Cambridge University Press (Cambridge, 2011).
- ► G. Parisi, Statistical field theory, Addison–Wesley (Redwood City, 1988).
- P. Ramond, *Field theory A modern primer*, Benjamin–Cummings (Reading, 1981).
- U.C. Täuber, Critical dynamics A field theory approach to equilibrium and non-equilibrium scaling behavior, Cambridge University Press (Cambridge, 2014).
- A.N. Vasil'ev, The field theoretic renormalization group in critical behavior theory and stochastic dynamics, Chapman & Hall / CRC (Boca Raton, 2004).
- J. Zinn-Justin, Quantum field theory and critical phenomena, Clarendon Press (Oxford, 1993).