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1. Summary of the research plan

2. Research plan

2.1. Current stage of research in the field. Factorization algebras over a topo-

logical space X have been introduced very recently in [20] (see also [37] for a slightly

different and more abstract context) as a natural notion appearing in perturbative

quantum field theory. They are a topological version of a notion introduced by

Beilinson and Drinfeld in [3].

In [18, 19] Costello produces a translation invariant factorization algebra over C

by means of a holomorphic Chern–Simon theory with values in a cotangent space

T ∗X, which shed some light on the Witten genus [44] when taking derived global

sections after passing to the quotient by a lattice. This factorization algebra is

conjecturally related to the algebra of chiral differential operators introduced in

[28].

A more elementary (and detailed) version of Costello’s result is being working

out in [27] for the case of a one-dimensional real Chern–Simons theory with values

in T ∗X. In this situation one get a locally constant factorization algebra on R

being equivalent to the (sheaf of) algebra of differential operator on X, the Witten

genus being replaced by the Todd genus. In this work some results of Fedosov [24],

Bressler, Nest and Tsygan [5] are recovered.

The first aim of the present project is to extend and precise the above mentioned

pioneer works in two directions:

• higher dimensional Chern–Simons theories. In two dimensions we aim at

recovering Kontsevich’s formality theorem [34] for smooth manifolds as well

as its more general variant [21] and their extensions to more general geo-

metric contexts [7, 14, 13]. In dimension 2, the theory will take its values

in a shifted cotangent space T ∗[1]X and it will give a more conceptual

approach to the derivation of Kontsevich’s formality from a Σ-model pre-

sented in [16]. It will actually allow to recover Tamarkin’s formality [41]

from the Σ-model.
1



2 RESEARCH PLAN

• Chern–Simons theories with values in other symplectic manifolds than

cotangent spaces. For real Chern–Simons in dimension 1 we expect to

fully recover Fedosov’s approach to deformation quantization. For complex

Chern–Simons in dimension 1 we expect to discover a new object: namely,

a (gerbe of) chiral analog of deformation quantization algebra. This last

project will require to understand better the relation between vertex alge-

bras and factorization algebras over C, which can be seen as a topologi-

cal analog of Lian Zuckerman conjecture on the action of chains over the

(framed) little disk operad on a topological vertex operator algebra [36].

One of the main ideas of [18, 19, 27] is to re-interpret Σ-models appearing in

the so-called AKSZ construction [1] as gauge theories, in the perturbative setting,

for a peculiar Lie(∞)-algebra encoding the geometry of the target manifold. This

Lie algebra has been introduced and studied by Kapranov [29] (see also [30]) in

the holomorphic context, and allows one to treat complex manifolds (and more

generally algebraic varieties, or even sheaves of Lie algebroids) “as Lie algebras”.

The second aim of the present proposal is therefore to develop a dictionary

between Lie theory and algebraic geometry, that would give some new insight if

both domains. In addition to the recent work of the applicant and his coauthors on

this subject (described in the next §), there is an amazing evidence for the existence

of such a dictionary: the similarity between Lévi decomposition theorem in Lie

theory (implying that any complex finite dimensional Lie algebra is a semi-direct

product of a nilpotent factor, an abelian one, and a semi-simple one) and Bogomolov

decomposition theorem [4] in complex geometry (stating that any compact Kahler

manifold with c1 = 0 has a finite unramified cover by a product of a Calabi–Yau,

complex tori, and irreducible holomorphic symplectic manifolds).

2.2. Current stage of your own research. The research of the applicant stands

at the crossroad of deformation quantization with other fields of mathematics.

After his proof with Van den Bergh [14] of a claim by Kontsevich [34] on the

ring structure on Hochschild cohomology of a complex manifold (using technics

from deformation quantization), Damien Calaque started to work on a conjectural

relation of this claim with the Duflo isomorphism in Lie theory [22]. The book

[10] written with Rossi, and which emerged after a series of lectures given by the

applicant at ETH, is the first attempt at a unifying approach. In particular both

the Duflo isomorphism and the description of the cohomology ring of a complex

manifold are produced from a local formula valid for any graded Q-manifold.

At present a satisfying unified framework is still missing, but several progresses

have been made in parallel in the two areas (complex/algebraic geometry on one

side, Lie theory on the other side). In [11, 12] Calaque and Rossi proved a version of

the Duflo isomorphism for coinvariants and extended it to homology (like Pevzner
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and Torossian [39] did from invariants to cohomology). Part of this work has

been later used by the two authors together with Van den Bergh [13] to complete

the proof of Caldararu’s conjecture [15] about the ring and module structures on

Hochschild cohomology and homology of a smooth algebraic variety.

We mention that the formalism developped in [14, 13] produces an approach

to formal geometry that allows to treat the C∞, complex analytic, and algebro-

geometric settings in a unified way. This seems very relevant for the purposes of

the first part of the project concerning perturbative Chern–Simons theories.

More recently, together with Caldararu and Tu [6], the applicant gave a (both

necessary and sufficiant) condition for a PBW type theorem to hold for an inclusion

of Lie algebras h ⊂ g. This condition is a perfect analog of a condition discovered

by Arinkin and Caldararu [2] for a Hochschild-Kostant-Rosenberg (HKR) type

theorem to hold in the case of a closed embedding X →֒ Y of smooth algebraic

varieties. PBW/HKR type results are the first step toward an attempt at proving

more general Duflo type results [23] or, on the geometric side, describing the ring

structure on Ext algebras of subvarieties (a-k-a “branes”).

2.3. Detailed research plan.

2.3.1. Deformation quantization of symplectic manifolds via Chern–Simons theory.

The starting point of any project related to deformation quantization have to be the

case of symplectic manifolds. From this perspective we aim at recovering most of

Fedosov’s results on deformation quantization from an appropriate Chern–Simons

theory in dimension 1. To be more precise, given a (curved) L∞-algebra g equipped

with a degree −2 ND invariant pairing we can associate a Chern–Simons theory

via the classical BV formalism (see e.g. [17]). Given a curve C (i.e. R or S1), fields

are (compactly supported) forms on C with values in g. The BV pairing is given

by the pairing on g followed by integration, the free term for the action by the de

Rham differential on C, and interacting terms by the L∞ structure maps.

Then we aim at quantizing this classical BV theory. In contrast with the situation

in [27] (where they deal with formal cotangents) we can not separate variables. We

will therefore have to consider C
∗-invariant quantization with a slightly different

weight: we assign, like in [24], weight 2 to ~ (instead of 1 in [20]) and weight 1 to

g.

By using very similar technics as in [27], but in contrast with their situation,

we expect the quantization to be obstructed, with obstruction given by a universal

expression involving structure maps of g. In the case where g = gX is the Atiyah

Lie algebra encoding the geometry of a C∞ manifold X (which is such that the

Chevalley-Eilenberg complex of gX provides a resolution of OX), this obstruction

will nevertheless be zero due to acyclicity of C∞ sheaves. Notice that having a
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pairing of the appropriate degree here is insured by the data of a symplectic form

ω on X.

Quantum observables will produce a locally constant and translation invariant

factorization algebra on R deforming OX , and therefore a deformation quantization

of OX in the usual sens (according to the fact that locally constant factorization

algebras on R “are” strong homotopy associative algebras, and using that we are

deforming the strict associative algebra OX).

Notice that the Deligne class 1

~
ω of the canonical Fedosov star-product is ho-

mogeneous with respect to the weight we introduced. We may obtain other classes

in the affine space 1

~
ω + H2(X)[[~]] by allowing more flexibility than C

∗-invariance

(like a preserving filtration condition). More refined results like trace formulæ will

be obtained by considering the low-energy effective action on global observables on

the circle (using the crucial fact that we have a translation invariant factorization

algebra to descend to S1, and that derived global sections of a locally constant

factorization algebra on the circle are nothing else than Hochschild chains).

In the holomorphic and algebraic setting, we will find refinements of known

conditions for the existence of quantization (see e.g. [38, 9]). Moreover, even in the

presence of obstructions we expect that the obstruction class will define a gerbe

that will allow us to get a twisted sheaf of algebra (or algebroid stack) quantizing

OX , like in [9, 33, 40].

Finally, we will also study the situation with a boundary (C = [0,+∞[ or [0, 1]).

In principle it should lead to quantization of coisotropic submanifolds as modules

over the quantized algebra, and their derived intersections. It would be interesting

to relate this to the recent work [42] of Boris Tsygan on oscillatory modules.

2.3.2. Formality theorems via Chern–Simons theory, and generalizations. If we

want to consider Chern–Simons theory in dimension 2 (resp. in arbitrary dimension

n) then we will need the pairing on g to have degree −1 (resp. n− 3). In particular

in the geometric setting we will require the presence of a symplectic structure of

degree 1 (resp. n − 1) on X. Such a symplectic structure is canonically given on

any shifted cotangent bundle T ∗[1]M (resp. T ∗[n − 1]M).

Here we will see that the obstruction to quantization vanishes by virtue of [34]

(resp. [31] in higher dimension)1. Applying the machinery of Costello-Gwilliam will

then produce a locally constant (and translation invariant) factorization algebra

F2 on R
2 (resp. Fn on R

n) given by quantum observables. Following [37], locally

constant factorization algebras on R
n are En-algebras. We will then prove the

following

1Actually if we are only interested by source manifolds without boundary, then easier arguments

(see [32]) are sufficient.
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Theorem 2.1. Fn is equivalent, as an En-algebra, to the Hochschild cochain com-

plex of OM viewed as an En−1-algebra.

Remember that in [37] the Hochschild cochain complex of an En-algebra A is

defined as the centralizer of id : A → A in the (∞, 1)-category of En-algebras, and

is therefore an E1�En
∼= En+1-algebra.

Moreover, there is also an en-algebra structure on effective global observables at

scale ∞ (i.e. low energy). Explicitly we find S(T ∗[n − 1]M) with its commutative

product and degree 1 − n bracket. We expect to be able to prove the following

Theorem 2.2. Fn is equivalent as an En-algebra to S(T ∗[n − 1]M).

In the case when n = 2 it will give a quantum field theoretic proof of Tamarkin’s

G∞-extension [41] of Kontsevich’s formality theorem [34].

There are further generalizations of this picture. We can e.g. consider a version

with a boundary, replacing R
n by R

n−1 × [0,+∞[, and starting with the shifted

conormal bundle of a submanifold N ⊂ M viewed as a Lagrangian into the shifted

cotangent bundle T ∗[n−1]M . It will produce a formality theorem for the Hochschild

cochains of OM acting on an appropriate En−1-algebra (functions on the shifted

conormal space). In the case when N = M (physicists would speak about a “space-

filling brane”) it boils down to the action of the Hochschild cochains on the En−1-

algebra OM itself.

In dimension n = 2, using translation invariance we can descend to an half-tube

T = S1 × [0,+∞[ (topologically, this is a pointed closed disk) and then push-

forward to a quotient space T̃ obtained by identifying the boundary circle with a

single point. I expect to prove the following result:

Theorem 2.3. 1. The (∞, 1)-category of factorization algebras on T̃ is equivalent

to the one of strong homotopy precalculus algebras.

2. The (∞, 1)-category of S1-equivariant factorization algebras on T̃ is equivalent

to the one of strong homotopy calculus algebras.

To do so I will use Kontsevich-Soibelman topological model for the Calc∞-operad

[35], by means of tubes with disks and a marked point on the boundary. It will give

a new proof of the Calc∞-formality of [21] as well as a generalization to arbitrary

submanifolds N ⊂ M (and not just M itself).

2.3.3. From Lie theory to algebraic geometry, and back. The previously mentioned

formality theorem [21] can be used to prove both the Duflo theorem and its gener-

alizations to (co)homology, and Caldararu’s conjecture [15]; but without explicit

formulæ. In [14, 12, 13], proofs with explicit formulæ involving essentially the

square root of the Todd genus have been given.
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Together with the papers [2, 6] on HKR/PBW isomorphisms for “inclusions” it

suggests the following ad hoc dictionnary between Lie theory and algebraic geometry

(that we summarize in an array):

Lie theory Algebraic geometry
(

S(g∗[−1]), dCE

)

OX

D(g-mod) D(X) := D(OX -mod)

characters of g line bundles on X

L.A. object g L.A. object TX [−1]

algebra object U(g) algebra object HH∗
X

(−)g = Homg(1,−) Γ(−) = HomOX
(OX ,−)

adjoint action ad ∈
(

g∗ ⊗ End(g)
)g

Atiyah class at ∈ H1
(

X,Ω1
X
⊗ End(TX)

)

inclusion of L.A. h ⊂ g closed embedding X →֒ Y

Res : g-mod → h-mod i∗ : D(Y ) → D(X)

Ind : h-mod → g-mod i! : D(X) → D(Y )

U(g)/U(g)h = Ind
(

Res(1)
)

i∗i!OX

There are many approaches to a precise dictionary. Let us sketch two of them.

The first one is to deal with derived/homotopical geometry2 and view the g-module

g as TX [−1] for X = Bg, Bg being (to keep it simple) the DG spectrum of the

Chevalley-Eilenberg algebra (S(g∗[−1]), dCE). The second one is to consider a 2-

category VarLie with objects being pairs (X, g), where X is an algebraic variety and

g is a Lie algebra object in the derived category D(X) of OX -modules. Morphisms

should be given by a suitable subcategory of kernels in D(X × Y ). There is an

obvious forgetful functor VarLie → Var to varieties with morphisms being the

category of kernels. An adjoint to this functor should be X 7→ (X,TX [−1]).

In parallel to our efforts to find a mathematically precise dictionary, we will use

our ad hoc correspondence to attack a conjecture of Duflo [23] for homogeneous

spaces. Duflo’s conjecture states that for a certain character λ of h, the Poisson

center of
(

S(g)/〈h − λ〉
)h

is isomorphic as an algebra to the center of the asso-

ciative algebra
(

U(g)/U(g)(h − λ)
)h

= Homg

(

Ind(1λ), Ind(1λ)
)

. Forgetting for a

moment about the character λ, and considering the analogous situation in algebraic

geometry, it appears that we are looking at the derived self-intersection X ×R

Y
X

of X into Y . This is a derived Y -scheme groupoid with base X, and we have a

conjectural description of its associated Lie algebroid. The normal bundle exact

sequence provides a map ρ : N [−1] → TX in D(X) (N is the normal bundle of

X into Y ). Moreover N [−1] is the derived relative tangent sheaf (a-k-a tangent

complex) of X over Y , and as such it is equipped with a Lie bracket [, ]. This turns

N [−1] into a Lie algebroid, and its universal enveloping algebra U(N [−1]) is an

object in D(OX×X -mod) set-theoretically suppported on the diagonal. We aim at

proving the following

2There would be too many people to cite here.
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Theorem 2.4. 1) N [−1] is the Lie algebroid of X ×R

Y
X, and as kernels we have

that U(N [−1]) ∼= i∗i!.

2) The obstruction class of [2] for HKR to hold is the class of

0 → N [−1] → U≤2
+ (N [−1]) → S2(N [−1]) → 0 .

Moreover, it is zero if and only if the filtration on U(N [−1]) splits.

The strategy would then be to apply the standard Duflo theorem for Lie alge-

broids (which the applicant knows how to prove in the non derived context, by

using the methods in the book [10]) in this context, and solve an analog of Duflo’s

conjecture. Finally we should in principle be able to recover the original Duflo

conjecture by first allowing to twist by a line bundle, and then considering the

inclusion of DG schemes

Spec
(

S(h∗[−1]), dCE

)

→ Spec
(

S(g∗[−1]), dCE

)

.

I conclude this part of the project with a discussion on the possible use of the

above dictionary to make significant progresses towards the classification of (com-

pact) irreducible holomorphic symplectic manifolds. In principle they should cor-

respond to simple Lie algebras: we know only a few examples up to deformation

equivalence and they satisfy an analog of the Chevalley theorem (after [43] their

even cohomology is truncated polynomial algebra).

We have already noticed that Bogomolov decomposition theorem [4] is analogous

to Lévi decomposition for Lie algebras. It is interesting to notice that Bogomolov

imposes the condition that c1 = 0 which for Lie algebras would correspond to

tr(ad) = 0 and would be too restrictive. But Lie algebras satisfy a weaker con-

dition saying that the derivation of S(g)g given by tr(ad) is actually trivil. This

condition does not seem to be satisfied by Lie super-algebras, for which the Lévi

decomposition is known to fail. It would be interesting to see if the later condition3

is a good criteria to have decompositions theorems.

It is commonly accepted that the analog of the Cartan-Killing form on g is played

by the symplectic structure ω on X, but the Cartan-Killing form being defined as

tr(ad2), its analog might also be tr(t2) as well. It is therefore a natural question to

ask how the 2-form ω and the second Chern character ch2 = tr(at2) are related.

2.3.4. Chiral deformation quantization of symplectic manifolds. In [18, 19] Kevin

Costello uses holomorphic (perturbative) Chern–Simons theory in (complex) di-

mension 1 to construct a (sheaf of) factorization algebra FM on C associated to

any cotangent bundle T ∗M in the situation when ch2(M) vanishes. It is expected

that even when ch2(M) does not vanish one should be able to construct a twisted

sheaf (or factorization algebroid) as it was already mentioned above. By descending

to an elliptic curve (using translation invariance) he is then able to describe global

3The analog in geometry would be that tr(at) act by zero on H(X,∧TX).
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derived sections on this elliptic curve by means of differential forms on T ∗M in a

way very similar to the Fedosov-Nest-Tsygan result (with Witten genus replacing

Todd one).

Once we will have dealt with the project described in §2.3.1, it will be straight-

forward to adapt it to holomorphic Chern–Simons theory and associate a (twisted

sheaf of) factorization algebra on C to any symplectic manifold X.

The most interesting feature of the factorization algebra FM constructed by

Costello is that it is guessed to be related to chiral differential operators [28]. Chiral

differential operators form a twisted sheaf of vertex algebras (or a vertex algebroid)

on M .

I plan to construct a functor from vertex algebras/algebroids to translation in-

variant factorization algebras/algebroids on C in the following way. It was observed

by Beilinson and Drinfeld [3] that vertex algebras are actually the same as transla-

tion invariant chiral algebras on C. The same authors constructed an equivalence of

categories between chiral algebras over a given complex algebraic variety Y to fac-

torizing O-modules on the Ran space of Y (equipped with Zariski topology). Using

GAGA we can then produce out of a chiral algebra a factorizing Oan-module on the

Ran space of Y an. It is known (see again [3]) that factorizing O- and Oan-modules

are naturally equipped with a flat connection. Taking compactly supported flat

sections we then get a factorizing cosheaf (i.e. a factorization algebra) on Y an.

Remark 2.5. It is interesting that starting with a topological vertex operator algebra

with suitable properties, we should be able to get some holonomic connection, and

thus an associated factorizing cosheaf that would be constructible. According to

[37] this means that the factorization algebra we get in the end is locally constant.

Since locally constant factorization algebras on C = R
2 are nothing but E2 algebra,

the above construction then gives a nice conceptual explanation (and proof) of part

of the Lian-Zuckerman conjecture (see e.g. [36, 26, 25]).

Conversely, it is an interesting question to ask under which condition a transla-

tion invariant factorization algebra on C actually comes from a vertex algebra.

All this suggests that there should exist a direct construction of a vertex algebroid

on any symplectic manifold, without dealing with factorization algebras.

2.4. Schedule and milestones. Trying to write carefully the first steps of part

2.3.1 of the present project is a very good starting point for a PhD student. It

is an excellent way of getting into both deformation quantization and the work

of Costello-Gwilliam on factorization algebras in the BV formalism. There are

no major difficulties, but there are a lot of technical details to be dealt with. In

particular, this would be a good opportunity to re-write Fedosov’s constructions

using the unifying approach of [14] to formal geometry, and therefore to learn both
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of them. A good PhD student should not spend more than a year on this. Then

he or she could turn to more difficult problems like situations with a boundary and

trace formulæ, or chiral versions (see below).

I plan to ask a post-doc to work on the holomorphic and algebraic version of the

story, especially on how one could adapt Costello-Gwilliam constructions to allow

not only sheaves of factorization algebras but also twisted sheaves (i.e. factorization

algebroids). It would be a good thing to have François Petit (who is finishing his

PhD with Pierre Schapira) as a post-doc to work on this, since he is already working

on deformation quantization algebroids (but from a slightly different point of view).

For the results expected in Section 2.3.2, I have already started to work infor-

mally on this with Grégory Ginot (Paris). We both have the appropriate expertise

to deal with the technical issues related to this project. We have both worked

on formality theorems and Hochschild (co)homology, and Grégory has a strong

background in algebraic topology that might appear to be useful. Also, the part

involving locally constant factorization algebras on half-spaces (and more generally

quadrants) requires a systematic study of generalized swiss-cheese operads, which

is something the applicant is already working on (it is related to my work with

Felder, Ferrario and Rossi [8]). I consider this part being too ambitious to ask a

PhD student to work on it, unless he or she would be exceptional.

Concerning the dictionary between Lie theory and algebraic geometry, there

are two main directions. One is related to Hochschild (co)homology, Ext algebras

of subvarieties, and Duflo’s conjecture. For this, Andrei Caldararu, Junwu Tu

and I have a quite clear idea (described in Section 2.3.3) of the main steps to

be achieved: first prove that the kernel i∗i! is the universal enveloping algebra of

the Lie algebroid N [−1] (we are close to this), then extend this to DG schemes

and re-interpret Duflo’s conjecture as a geometric statement concerning spectra

of Chevalley-Eilenberg DG algebras, and finally prove a Duflo type result for Lie

algebroids in this DG context (using [10]). There are many technical issues, so it

may take time (a few years) to achieve this program completely. It might therefore

be a good thing to have Junwu Tu as a post-doc with me.

The second direction in the study of the relation between Lie theory and algebraic

geometry concerns structure and classification results. I would like to ask a PhD

student to work on this part of the project. It would be a good point for he or

she to have an algebraic geometer as a coadvisor (e.g. Andrei Caldararu or Julien

Grivaux). His or her two main tasks will be:

• to prove a Bogomolov decomposition theorem under a weaker condition

than c1 = 0 (namely when c1 acts trivially on H(X,∧TX)).

• to understand how the trace of squared Atiyah class tr(at2
X

) and the holo-

morphic symplectic form ω are related for an irreducible holomorphic sym-

plectic manifold X.
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These questions, with in mind the classification of irreducible holomorphic sym-

plectic manifolds, should be given to a very good student.

Finally, I plan to check by myself in the next few months that vertex algebras

define translation invariant (but not locally constant) factorization algebras on C.

Together with the PhD student working on deformation quantization of symplectic

manifolds using real Chern–Simons theory, we will then apply holomorphic Chern–

Simons theory to construct sheaves of vertex algebras on symplectic manifolds that

will locally look like the chiral de Rham complex. This will be one of the very last

achievements of the present project.

2.5. Importance and impact. The present project is quite amibitious. I person-

naly expect that it will produce significant advances in the field, and that it will be

a source of inspiration for other researchers working in related areas.

The results will be published in peer-reviewed jourals, and PhD students and

post-doc will be encouraged to present them in seminars and conferences.
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