
Three lectures on derived symplectic geometry
and topological field theories

Damien Calaque

Abstract. We give an informal introduction to the new field of derived symplectic geom-
etry, and present some applications to topological field theories. We in particular try to
explain that derived symplectic geometry provides a suitable framework for the so-called
AKSZ construction (after Alexandrov-Kontsevich-Schwartz-Zaboronski). We start with a
brief summary of the main features of derived algebraic geometry. We then continue with
the definition of n-symplectic and Lagrangian structures, after Pantev-Toën-Vaquié-Vezzosi
(PTVV), and provide examples such as

• (for shifted symplectic structures) BG,
[
g∗/G

]
, mapping stacks with symplectic target

and “compact oriented” source.

• (for Lagrangian structures) moment maps, quasi-Hamiltonian structures, mapping stacks
with boundary conditions.

We finally explain how this can be used to construct (fully extended) topological field theories
with values in (higher) categories of Lagrangian correspondences.
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Short introduction

These lecture notes are aimed at people working in the fields of Poisson Geometry and Mathematical
Physics, and that have already been exposed to some ideas from advanced homological algebra and
homotopy theory (derived/dg categories, simplicial methods, higher categories,...). The reader shall
have some familiarity with algebraic geometry, even though we try to provide some differential geometric
intuition where this is possible.

Our first motivation comes from physics, and more precisely Quantum Field Theory. Assume that
we have a space of fields X and an action functional S : X → k, and that we aim at computing some
path integral perturbatively around classical solutions of the equations of motion. Doing this is usually
problematic if the critical point of S one is looking at is degenerate. Here people seem to use a kind of
trick (that is at the heart of the so-called BV formalism [4]) which consists in adding fields, and that we
would like to understand:

• to every field xi (i.e. coordinates on X) one associates corresponding anti-fields ξi.

• to every infinitesimal generator of symmetries of S (Chevalley generators) one associates a new field
(called ghost). Note that there are also ghosts for ghosts, which come from higher symmetries.

• anti-ghosts (i.e. anti-fields for ghosts).

The need for derived schemes. Anti-fields naturally appear whenever one computes the derived critical
locus of S. Namely the critical locus of S is nothing but the intersection of the graph of dS with the zero
section in T∗X, and we will see that derived intersections are better behaved than genuine ones.
The need for stacks. Ghosts naturally appear whenever one takes the quotient by symmetries. Namely,

the quotient might be very pathological and shall be replaced by a homotopy quotient (which is a stack).
The presence of higher symmetries requires the use of higher stacks.

Remark 0.1. The reason for the appearance of anti-ghosts is that symmetries are Hamiltonian and thus
one rather wants to apply some kind of symplectic reduction to the derived critical locus than just taking
out symmetries. This is when one takes the derived zero level set of the moment map that anti-ghosts
appear.

Our second motivation is to understand why some very interesting moduli spaces are symplectic (or
Lagrangian). Let us give some famous examples:

• the (smooth locus of the) moduli space of flat connections (or local systems) on a closed differen-
tiable surface Σ.

• if the above Σ is the boundary of a compact 3-fold M then the submanifold consisting of those
connections that extend to M is Lagrangian.

• the (smooth locus of the) moduli space of G-bundles on a K3 surface S, G being a reductive group,
is symplectic (see [19]).

Let us start by explaining on the first Example why introducing derived stacks might be a good idea to
understand these facts. First of all observe that there is moduli stack of G-local systems on a surface
Σ that can be obtained as a mapping stack. Namely, given a triangulation of Σ we get a simplicial set
ΣB; looking at the simplicial set of simplicial maps from ΣB to the nerve of G we get (the nerve of) the
groupoid of flat discrete G-connections on Σ:

g h

gh

In other words FlatG(Σ) = MapSt(ΣB, BG). Such a mapping stack can be naturally endowed with
a derived structure by considering the derived mapping stack MapdSt(ΣB, BG). As such it naturally
carries an obstruction theory and we thus have access to nice gadgets like virtual fundamental classes.
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Finally, the transgression procedure works well for derived stacks (and not for genuine ones), so that
the natural 2-shifted symplectic structure on BG (see below) transgresses to a symplectic structure on
MapdSt(ΣB, BG)... on the smooth locus it coincides with the usual one.

It is worth mentioning the survey [22] of Bertrand Toën, which is much more accurate and complete. In
comparison the present set of lecture notes puts more emphasis on potential applications to Mathematical
Physics.

Notation and conventions

All along the paper we work over a field k of zero characteristic.

We sometimes use the language of higher categories and homotopical algebra. More precisely:

• an (∞, 1)-category C has a space of morphisms HomC(X, Y) between two objects. As usual, now
that we have a space of morphisms, the axioms (for instance the associativity of the composition of
morphisms) of a category are only required to hold up to homotopy. We refer to the [16, Chapter
1] for a nice overview of higher category theory.

• all (∞, 1)-categories we are dealing with appear as arising from model categories, for which we
refer to [13] and references therein.

• homotopy limits and colimits, denoted holim and hocolim, can be understood either within a
given (∞, 1)-categories or within a model category that models it.

• an (∞, n)-category is a category having an (∞, n−1)-category of morphisms between two objects.
We refer to [15] for an introduction to (∞, n)-categories and their relevance for topological field
theories.

• an (∞, n)-category can be thought of as a higher category with k-morphisms being invertible for all
k > n. Namely, we have a space of n-morphisms, in which paths, 2-cells, etc... can be interpreted
as invertible (n+ 1)-morphisms, (n+ 2)-morphisms, etc...

• according to the above, (∞, 0)-categories are spaces, that we interpret as ∞-groupoids.

We might also sometimes make implicit use of the following equivalences of (∞, 1)-categories:

• between topological spaces and simplicial sets (using singular chains and geometric realization).

• between non-negatively graded cochain complexes of k-modules and simplicial k-modules (see [17,
§1.2.3 & §1.2.4] for a review of the Dold-Kan correspondences and its ∞-categorical version). In
particular, any dg-category can thus be viewed as an (∞, 1)-category.

Given an object O equipped with a specified algebraic structure (an algebra, a group, ...), we write
O-mod for the dg-category of complexes of linear representations of O. We also write Cpx := k-mod.
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1 Lecture 1: derived algebraic geometry

We would like to warn the reader that the contents of this first Lecture is far from being accurate. It
only gives the rough philosophy without providing actual definitions. The reader who really wants to
learn derived algebraic geometry should consult foundational references such as [23] (see also the survey
[24]).

1.1 Affine derived schemes

We denote by cdga≤0 the category of non-positively graded commutative differential graded algebras (or,
dg≤0-algebras for short). For any dg≤0-algebra A, we write A♯ for the underlying commutative graded
algebra (i.e. we forget about the differential). The category cdga≤0 has the following main feature: any
morphism B −→ A can be factored into

B −→ Ã −→ A , (1)

where Ã −→ A a quasi-isomorphism that is degreewise surjective in negative degrees and B −→ Ã is a

semi-free morphism. The latter means that there is a subcomplex V ⊂ Ã such that Ã♯ ∼=
(
B⊗Sym(V)

)♯
.

Remark 1.1. The above factorization property is the shadow of what is called a model structure on
cdga≤0 (the projective model structure).

One shall think of a dg≤0-algebra A as the “ring of functions” on a geometric object, that we call an
affine derived scheme, denoted Spec(A). A nice feature of (affine) derived schemes is that they behave
well under fiber products (and, in particular, intersections).

Some recollection about ordinary fiber products of affine schemes

We will restrict ourselves to intersections of curves in the affine plane for simplicity. We start with the
intersection of two lines in the plane.

{(0, 0)} = {x = 0} ∩ {y = 0} ⊂ A2
k.

Algebraically: k[x, y]/(x) ⊗
k[x,y]

k[x, y]/(y) = k[x, y]/(x, y) = k︸︷︷︸
k-dimension 1

.

Intersection of schemes actually keeps track of multiplicities:

k[x, y]/(y− x2) ⊗
k[x,y]

k[x, y]/(y) = k[x, y]/(y− x2, y) = k[x]/(x2) = k⊕ xk︸ ︷︷ ︸
k-dimension 2

.

The above intersections are both of zero dimension (as schemes). A problem arises when one deals with
self-intersections:

k[x, y]/(y) ⊗
k[x,y]

k[x, y]/(y) = k[x, y]/(y) = k[x].

Spec(k[x]) doesn’t have the expected dimension (its dimension is 1 instead of 0).

Derived fiber products

We have seen in the previous § that fiber products of affine schemes are nothing but tensor products
of algebras. We now derive this construction. Let us consider two morphisms B −→ Ai, i = 1, 2, of
dg≤0-algebras. Their derived tensor product is defined as

A1

L
⊗
B
A2 := Ã1 ⊗

B
A2 .

Remark 1.2. If one permutes A1 and A2, then one gets a quasi-isomorphic dg≤0-algebra.
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The derived fiber product of X1 = Spec(A1) and X2 = Spec(A2) over Y = Spec(B) is then

X1

R
×
Y
X2 = Spec

(
A1

L
⊗
B
A2

)
.

Let us now compute the derived self-intersection of a line in A2
k:

• we have to compute k[x]
L
⊗

k[x,y]
k[x].

• wet set k̃[x] := k[x, y, ξ], where ξ is a variable of (cohomological) degree −1 and the differential is
determined by d(x) = d(y) = 0, d(ξ) = y.

• k[x]
L
⊗

k[x,y]
k[x] = k̃[x] ⊗

k[x,y]
k[x] = k[x, ξ], with differential determined by d(x) = d(ξ) = 0.

• the (virtual) dimension of the resulting affine derived scheme is 0. We obtain it as the difference
between the number of even and odd generators (we will later define it as the Euler characteristic
of the cotangent complex of a given derived scheme).

Sanity check. We have to check that when the usual intersection is nice enough then the derived
intersection gives an equivalent result. E.g. going back to the intersection of {y = 0} and {x = 0} inside
A2

k, the derived intersection is

k[x]
L
⊗

k[x,y]
k[y] = k̃[x] ⊗

k[x,y]
k[y] =

(
k[y, ξ], d(y) = ξ

)
∼= k .

1.2 Derived schemes

Definition 1.3. A derived scheme is a pair X = (X0,OX) of a scheme X0 and a sheaf OX of dg≤0-algebras
on X0 such that H0(OX) = OX0

and Hi(OX) is a quasi-coherent OX0
-module for every i < 0. We call X0

the underlying scheme of X and OX the structure sheaf of X.

Recall that on an ordinary scheme X0, an OX0
-module M is quasi-coherent if its restriction MU on

an open affine subscheme Spec(A) = U ⊂ X0 is the OU-module associated with an A-module MU. For
people who are not familiar with algebraic geometry, this is fair enough to think of a derived scheme as
a non-negatively graded Q-manifold (see [2]).

� The category of Q-manifolds doesn’t have the appropriate morphisms. One should localize it with
respect to suitable weak equivalences.

Note that any affine derived scheme is a derived scheme: if A is a dg≤0-algebra then we have a derived
scheme Spec(A) having underlying scheme Spec

(
H0(A)

)
and structure sheaf induced by A.

The category of derived schemes satisfies a factorization property similar to (1) (this was first noticed
in [10]1). In particular we can still define derived fiber products.

Example 1.4 (Derived critical locus). Let X be a smooth algebraic variety together with a function

S : X → A1. The derived critical locus RCrit(S) of S is the derived intersection X
R
×

T∗X
X of the zero section

0 : X → T∗X with the graph ddRS : X → T∗X of ddRS. Let us first resolve the zero section X → T∗X: we
define

O
X̃
:=

(
SymOX

(
TX[1]⊕ TX

)
, d

)
,

where d is defined as the identity on TX[1] (which is a degree one morphism from TX[1] to TX). Picking
local coordinates x1, . . . , xn on X, we get that O

X̃
is freely generated by ξi’s (of degree −1) and yi’s (of

degree 0) over OX, and d(ξi) = yi. When restricted to the classical critical locus Crit(S), O
X̃
and OX

are OT∗X-dg-algebras, where the former is equipped with the following OT∗X-algebra structure:

xi 7→ xi and yi 7→
∂S

∂xi
.

1Even though the authors consider dg-schemes rather than derived schemes.
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We get that RCrit(S) =
(
Crit(S),ORCrit(S)

)
, where

ORCrit(S) = (O
X̃
)|Crit(S)

L
⊗

(OT∗X)|Crit(S)

(OX)|Crit(S) =
(
SymOX

(
TX[1]

)
|Crit(S)

, d
)
,

with d(ξi) =
∂S
∂xi

. In other words, d = ιddRS. We refer to [25] for more details.

There is another description of derived schemes, by means of the functor of points approach, that we
now describe.

Recollection on the functor of points

Any scheme X defines a functor

X : (Aff)op = Rings −→ Sets

S = Spec(A) 7−→ X(S) := {S-points in X} = HomSchemes(S, X) ,

where Aff is the category of affine schemes.

Example 1.5. X = {x2 + 1 = 0} ⊂ A1. We have X
(
Spec(C)

)
= {solutions of x2 + 1 = 0 in C} = ∗

∐
∗,

while X
(
Spec(R)

)
= {solutions of x2 + 1 = 0 in R} = ∅.

Schemes can be characterized as those functors satisfying the following two properties (we are using
that Aff is a site, i.e. a category equipped with a Grothendieck topology):

(⋆) local representability.

(⋆⋆) local-to-global property (i.e the functor is a sheaf).

Remark 1.6. This is similar to the following characterization of differentiable n-manifolds as functors
from the opposite category of open subsets of Rn to sets. Namely, any n-manifold M gives rise to such
a functor M : U 7→ HomMan(U,M) which satisfies the following analogs of (⋆) and (⋆⋆):

• the restriction of M to a small enough U is naturally isomorphic to V for some open V ⊂ Rn.

• M(U) can be computed from M(Ui)’s if {Ui}i is an open cover of U.

These two properties actually characterize differentiable n-manifolds.

Derived schemes as locally representable sheaves

Any derived scheme X defines a functor X : (dAff)op = cdga≤0 −→ Sets, which sends an affine scheme
Spec(A) to the set of morphisms of derived schemes from Spec(A) to X. It can be proven that the
functor X satisfies the following property:

(ø) it sends quasi-isomorphisms of dg≤0-algebras to bijections.

Any functor satisfying the above property (ø) descends to a functor Ho(cdga≤0) −→ Sets, where
Ho(cdga≤0) is the localization of cdga≤0 with respect to the class of quasi-isomorphisms (i.e. it is
obtained from cdga≤0 by formally inverting quasi-isomorphisms). Then it has been proven (see [23,

Lemma 2.2.2.13]) that Ho(dAff) =
(
Ho(cdga≤0)

)op
is a site, so that conditions (⋆) and (⋆⋆) still make

sense for these functors that satisfy (ø). Derived schemes can therefore be characterized as functors
(dAff)op −→ Sets satisfying (ø), (⋆), and (⋆⋆).

Remark 1.7. One should note the following subtlety: while the local representability condition (⋆) is
concerned with Zariski open immersions (open submanifolds in the context of differentiable geometry),
the local-to-global property (⋆⋆) uses the topology on Ho(dAff) which is defined by means of étale
morphisms (local diffeomorphisms in the context of differential geometry). We refer to [23, §1.2.6, §1.2.7
and §2.2.2] for derived analogs of the standard properties (Zariski open, flat, smooth, étale) of morphisms
in algebraic geometry.
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1.3 Derived (∞-)stacks

1-stacks

If one replaces Sets by Groupoids then one gets the notion of 1-stacks. Namely, 1-stacks are functors2

Rings −→ Groupoids satisfying a weak local-to-global property (which we won’t write: one should
simply know that we want to glue object only up to isomorphisms) with respect to the étale topology;
see [14].

Example 1.8. Let G be group scheme acting on a scheme X. We define a functor (Aff)op −→
Groupoids sending S to the groupoid

G(S)× X(S) ⇒ X(S)

of the action of G(S) on X(S). It is not a stack, but there is a stackification process (very similar to the
sheafification process of presheaves) that provides us with a stack

[
X/G

]
. In the case when X = ∗ then

we have an explicit description of BG :=
[
∗ /G

]
:
[
∗ /G

]
(S) is the groupoid of G-torsors over S.

There are two kinds of representability (sometimes called geometricity) assumptions one usually puts
on stacks:

• Artin stacks are quotients stacks of smooth groupoids (recall that smooth is the algebro-geometric
analog for submersive).

• Deligne-Mumford stacks are quotient stacks of étale groupoids (i.e. stacks having finite isotropy
groups).

∞-stacks

One can actually go further and replace groupoids by higher groupoids. It has been known for a long
time that simplicial sets (more precisely, Kan complexes, which are fibrant objects for a certain model
structure on sSets) are good models for weak ∞-groupoids. We then define ∞-stacks as simplicial
presheaves, i.e. functors X : Rings −→ sSets, satisfying the following two properties:

(a) it takes values in weak ∞-groupoids (i.e. objectwise fibrantness of the simplicial presheaf).

(b) it satisfies a homotopy local-to-global property (a.k.a. étale descent, meaning that the functor is
an ∞-sheaf): for any étale cover Ui → U, the map

X(U) −→ holim


∏

i

X(Ui) ⇒
∏

i,j

X(Ui ×
U
Uj) · · ·




is an equivalence.

From now, we might omit ∞ and simply talk about “stacks”. As for 1-stacks, there is a stackification
process which sends a simplicial presheaf to its associated stack3.

Example 1.9 (Classifying stacks). Let G be an affine group scheme. We define BG =
[
∗ /G

]
as the

stack associated with the simplicial presheaf sending S to the nerve of G(S). In other words,
[
∗ /G

]
(S)

is the nerve of the groupoid of G-torsors over S.
Actually, any 1-stack X gives rise to an ∞-stack, sending an affine scheme S to the nerve of the

groupoid X(S).

Example 1.10 (Betti stacks). Let X be a topological space. We define the Betti stack XB of X as the
stack associated with the constant simplicial presheaf

S 7−→ Sing(X) (the simplical set of singular chains on X) .

2We shall rather call them pseudo-functors, as the target category happens to be a bicategory.
3This can be made very explicit using model categories. The standard model structure on sSets provides a model

structure on simplicial presheaves, in which fibrant objects are those ones satisfying condition (a). One can perform a
left Bousfield localization (see [12]) of this model structure w.r.t. Čech nerves of étale covers. Fibrant objects for the
new model structure are those satisfying (a) and (b) (i.e. are stacks). The stackification functor is “simply” the left
derived functor of the identity.
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Derived stacks

The definition of a derived stack is in a sense a combination of the ones of a derived scheme and a stack.
More precisely, derived (∞-)stacks are functors X : cdga≤0 −→ sSets satisfying properties (a), (b) and

(o) it sends quasi-isomorphisms of dg≤0-algebras to weak equivalences of simplicial sets.

We denote by dSt the (∞, 1)-category of derived stacks.

Example 1.11 (Derived mapping stacks). Let X, Y be derived ∞-stacks. There is a derived ∞-stack
Map(X, Y) defined as follows: for any derived affine scheme S we have

Map(X, Y)(S) := HomdSt(X× S, Y) .

It is called the derived mapping stack from X to Y.

A (derived) stack is called n-Artin if it can be obtained as the quotient of a smooth groupoid in
(derived) (n − 1)-Artin stacks, with 0-Artin stacks being (derived) schemes (see [22, §2.5] for a more
precise definition). A (derived) stack is called Artin if it is n-Artin for some n.

Note that any genuine ∞-stack X can be viewed as a derived stack in a canonical way and thus there is
a derived mapping stack Map(X, Y) for any derived stack Y. In particular, if X = MB is the Betti stack
of a finite homotopy type, or is a proper smooth algebraic variety, then one can show that the derived
mapping stack Map(X, Y) is Artin whenever Y is (see [23]).

Remark 1.12. Note that if X and Y are genuine ∞-stacks, there is also a genuine ∞-stack Map(X, Y)

defined in the obvious way. But Map(X, Y) is NOT the derived stack associated with Map(X, Y). For
instance, if X = ΣB is the Betti stack of a compact surface Σ and Y = BG for a reductive group G then

• the cotangent complex (defined below) of Map(X, Y) = LocG(Σ) sits in degrees 0 and 1.

• while the cotangent complex of Map(X, Y) = LocG(Σ) sits in degrees −1 to 1.

It has the following important consequence for our purposes: the derived stack LocG(Σ) of G-local
systems on Σ admits a symplectic structure which induces a symplectic structure only on the smooth
locus of the underived stack LocG(Σ).

1.4 A first excursion into TFTs

We denote by Cobn the category with objects being closed (n − 1)-manifolds and morphisms being
diffeomorphism classes of n-cobordisms. Composition is provided by gluing along the boundary, and is a
well-defined operation as morphisms are diffeomorphisms classes (composition happens to be associative
for the very same reason). The disjoint union

∐
provides Cobn with the structure of a symmetric

monoidal category.

Definition 1.13. A topological field theory (TFT) is a symmetric monoidal functor from Cobn to
another symmetric monoidal category.

We denote by Corr(dSt) the category with objects being derived stacks and morphisms being weak
equivalence classes of correspondences: HomCorr(dSt)(X, Y) := {Z → X × Y}/ ∼. Composition of V →

X × Y with W → Y × Z is defined as V
R
×
Y
W → X × Z, which is well-defined up to weak equivalences.

Corr(dSt) is symmetric monoidal, with monoidal product the product of derived stacks ×.

For any stack X we have a symmetric monoidal functor ZX : Cobn −→ Corr(dSt) which is defined
as ZX := Map

(
(−)B, X

)
. In other words, one can associate a TFT to every object of Corr(dSt).

Digression 1. Observe that Map
(
(∗)B, X

)
= X. This is a strong evidence that ZX can be actually

upgraded to a fully extended TFT in the sense of Lurie [15]. This is indeed the case: one can construct an
(∞, n)-category of iterated correspondences in dSt, denoted Corrn(dSt), and Map

(
(−)B, X

)
defines

a symmetric monoidal (∞, n)-functor Bordn −→ Corrn(dSt). Recall from [15] that Bordn can be
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informally described in the following way: objects are compact 0-dimensional manifolds, 1-morphisms are
1d cobordisms between these, 2-morphisms are 2d cobordisms between 1d cobordisms, . . . , n-morphisms
are nd cobordisms between (n−1)d cobordisms, (n+1)-morphisms are diffeomorphisms of these, (n+2)-
morphisms are homotopies between these, . . . Corrn(dSt) admits a similar informal description: objects
are stacks, 1-morphisms are correspondences, 2-morphisms are correspondences of correspondences (2-
correspondences), . . . , n-morphisms are n-correspondences, (n + 1)-morphisms are weak equivalences
between n-correspondences, (n + 2)-morphisms are homotopies between these, . . . We refer to [7] for
more details.
Note that this agrees with the philosophy of the cobordism hypothesis [3, 15], which says that fully
extended TFTs are completely determined by their value on the point.

1.5 Quasi-coherent sheaves

With a dg≤0-algebra A we associate two symmetric monoidal (∞, 1)-categories4

Perf
(
Spec(A)

)
⊂ QCoh

(
Spec(A)

)
:= A-mod ,

where Perf
(
Spec(A)

)
is the full subcategory of perfect (or dualizable) A-modules. This is a stack (in

the sense that it satisfies étale descent) and thus the functor of points approach automatically provides
us with an (∞, 1)-category QCoh(X) of quasi-coherent sheaves for any derived stack X,

QCoh(X) := holim
Spec(A)→X

(A-mod) .

together with a full subcategory

Perf(X) := holim
Spec(A)→X

(
Perf

(
Spec(A)

))
.

Observe that there is a forgetful functor A-mod −→ k-mod for every A, so that we get a functor
QCoh(X) −→ k-mod, that we denote RΓ . In the case when X is a genuine scheme RΓ coincides, on
associated homotopy categories, with the usual derived global sections functor.

Example 1.14. If X is presented by a simplicial scheme X•, meaning that X = hocolim(Xj), then
QCoh(X) = holim

(
QCoh(Xj)

)
. In concrete terms, a quasi-coherent sheaf on X is a cosimplicial quasi-

coherent sheaf E• on X•: for every n we have a quasi-coherent sheaf En on Xn and for every f : [n] → [m]

we have a morphism Ef : X∗
fE

n → Em in QCoh(Xm) such that Ef◦g = X∗
g(E

f) ◦ Eg.

Example 1.15 (Classifying stacks). Let G be an affine algebraic group and X = BG :=
[
∗ /G

]
, which

can be presented by the simplicial scheme given by the nerve of G:

BG = hocolim (∗ ⇔ G · · · ) .

There is a functor equiv : G-mod −→ QCoh(BG) which sends a complex of G-modules V to the
cosimplicial quasi-coherent sheaf V• := OG• ⊗ V (the cosimplicial structure comes from the nerve of the
action of G on V). One can prove that:

• equiv is an equivalence of symmetric monoidal dg-categories.

• RΓ ◦ equiv coincides with the functor C(G,−) of G-cochains (which is the right derived functor of
invariants).

Actually, if V = holim(Vj) for a cosimplicial object (Vj)j of G-mod then equiv(V) = holim
(
equiv(Vj)

)

can be described as follows:
equiv(V)• = OG• ⊗ V• .

Example 1.16 (Quotient stacks). Let G be an affine algebraic group acting on a smooth algebraic
variety X, and let Y :=

[
X/G

]
. In a way similar to Example 1.15 one can prove that QCoh(Y) is

equivalent to the category of complexes of G-equivariant quasi-coherent sheaves of X.

4They are actually symmetric monoidal dg-categories (meaning that they are enriched categories over cochain complexes).
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Digression 2. There is an (∞, n+1)-category C̃orrn(dSt) which is very similar to Corrn(dSt) apart
from the fact that (n+ 1)-morphisms are morphisms between n-correspondences (rather than just weak
equivalences between those). The functor QCoh is actually an (∞, 2)-functor

C̃orr1(dSt) −→ (∞, 1)-Cat .

Very roughly: derived stacks are sent to their (∞, 1)-category of quasi-coherent sheaves, correspondences
are sent to functors, and morphisms of correspondences to natural transformations.
Under some reasonable assumptions on a derived stack X it seems that QCoh

Map
(
(−)B,X

) gives rise

to a TFT (see [5]).
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2 Lecture 2: shifted symplectic structures

Most of the material in this lecture is a simplified reformulation of [20] (see also [6]).

2.1 The cotangent complex

Let A be a dg≤0-algebra. One can construct the A-module of differentials Ω1
A. Recall that

Ω1
A := ker(m)/ ker(m)2 , where m : A⊗2 → A is the product.

We derive this construction to get the cotangent complex:

LA := A⊗
Ã
Ω1

Ã
∈ A-mod ,

where Ã is a smooth resolution of A under k. Using the functor of points approach one automatically
gets an object LX ∈ QCoh(X) for any derived stack X.

Example 2.1 (Classifying stacks). Let G be an affine algebraic group and X = BG :=
[
∗ /G

]
, which

can be presented by the simplicial scheme given by the nerve of G. Then we have seen in Example 1.15
that QCoh(X) ∼= G-mod, and one can check that LBG is just LG• = Ω1

G• = OG• ⊗ (g∗)⊕•. Hence one
has that LBG = equiv(g∗[−1]), where g∗[−1] = B(g∗) = holim

(
(g∗)⊕j

)
. From now we will abuse a bit

the notation and write that LBG
∼= g∗[−1].

Remark 2.2. Let us provide a heuristic evidence for the fact that LBG = g∗[−1]. We rather explain that
TBG = g[1], where TBG := (LBG)

∗. Let f : X → BG be a point. Since BG classifies G-bundles then f is
nothing but a G-bundle P on X. If P belongs to the smooth locus of the moduli of G-bundles on X, then
recall that we have

T[P]

(
BunG(X)

)
= H1

(
X,P×

G
g
)
.

A derived generalization of this statement is as follows:

T[P]

(
BunG(X)

)
= RΓ

(
P×

G
g[1]

)
.

Finally observe the following general nonsense:

T[P]

(
BunG(X)

)
= Tf

(
Map(X,BG)

)
= RΓ

(
f∗TBG

)
= RΓ

(
P×

G
TBG

)
.

Hence we get that TBG = g[1].

Example 2.3 (Quotient stacks). Let G be an affine algebraic group acting on a smooth algebraic variety
X, and let Y :=

[
X/G

]
. In a way similar to Example 2.1 one can show that the cotangent complex LY of

Y, viewed as a complex of G-equivariant sheaves on X, is

· · · −→ 0 −→
0

Ω1
X −→

1

OX ⊗ g∗ −→ 0 −→ · · · ,

where the middle map is the transpose of the infinitesimal action g −→ TX.

2.2 Forms

Let A be a dg≤0-algebra. One can construct the A-module of ℓ-forms

Ωℓ
A := Symℓ

A

(
Ω1

A[−1]
)
[ℓ] .

We derive this construction and get
Aℓ(A) := Ωℓ

Ã

that we only consider as a complex of k-modules. Using the functor of points approach one automatically
gets a complex Aℓ(X) for any derived stack X:

Aℓ(X) := holim
Spec(A)→X

(
Aℓ(A)

)
= RΓ

(
SℓOX

(LX[−1])[ℓ]
)
.

We define the space Aℓ(X,n) of ℓ-forms of degree n as the space HomCpx

(
k,Aℓ(X)[n]

)
of n-cocycles in

Aℓ(X).
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Example 2.4 (Classifying stacks). Let G be an affine algebraic group. Using that there is a natural
transformation from G-invariants to derived G-invariants, and borrowing the notation from Examples
1.15 and 2.1, we get that there is a morphism of complexes

(
Sℓ
(
g∗
)
[−ℓ]

)G
−→ Aℓ(BG)

(note that the differential on the left-most complex is trivial as it is concentrated in one degree). In
particular, any invariant symmetric bilinear form on g defines a 2-form of degree 2 on the classifying
stack BG.

Example 2.5 (Quotient stacks). Let G be an affine algebraic group acting on a smooth algebraic variety
X, and let Y :=

[
X/G

]
. One can show that there is a morphism of complexes


 ⊕

p+q=ℓ

Ωp(X)⊗k Sq
(
g∗
)
[−q]




G

−→ Aℓ(Y) ,

where the differential on the left-most complex can be described as follows: an element α can be viewed
as G-equivariant function on g with values in forms on X, and for any x ∈ g we have (dα)(x) = −ι~x(α)(x).

2.3 Closed forms

Let A be a dg≤0-algebra. One can construct its de Rham algebra DR(A):

DR(A)♯ =
∏

n≥0

Ωn
A♯ [−n]

is equipped with the differential dA + ddR, where dA is the original differential one each Ωn
A and ddR

naturally extends the A → Ω1
A (which we view as a degree one derivation on A with values in Ω1

A[−1]).
It is a complete filtered dg-algebra, with k-th filtration piece defined by

FkDR(A)♯ =
∏

n≥k

Ωn
A♯ [−n] .

We also introduce the ℓ-th truncated de Rham complex

Ωℓ,cl
A := FℓDR(A)[ℓ] .

Deriving this construction one gets the complex of closed ℓ-forms

Aℓ,cl(A) := Ωℓ,cl

Ã
∈ Cpx .

One can prove that the functor Aℓ,cl(−) is actually a derived stack (i.e. it satisfies étale descent, which
is a non-trivial result from [20]), and hence one can apply the functor of points approach to automatically
get a complex Aℓ,cl(X) for any derived stack X:

Aℓ,cl(X) := holim
Spec(A)→X

(
Aℓ,cl(A)

)
.

We define the space Aℓ,cl(X,n) of closed ℓ-forms of degree n as the space HomCpx

(
k,Aℓ,cl(X)[n]

)
of

n-cocycles in Aℓ,cl(X).
In very concrete terms, a closed ℓ-form of degree n on Spec(A) is a sequence α = (αi)i≥0 such that

• αi is a degree n− i element in Ωℓ+i

Ã♯
.

• ddR(αi) = dA(αi+1).

In particular α0 is an n-cocycle in Ωℓ

Ã
, that is an ℓ-form of degree n which we call the underlying ℓ-form

of α. Observe that this is functorial in A, so that we get an “underlying form” morphism of stacks
Aℓ,cl −→ Aℓ.
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Example 2.6 (Classifying stacks). Let G be an affine algebraic group. There is a morphism of complexes


⊕

i≥0

Sℓ+i
(
g∗
)
[−ℓ− 2i]




G

−→ Aℓ,cl(BG)

(observe that the differential on the left-most complex is trivial as it sits in even degrees). Then any
invariant symmetric bilinear form on g defines a closed 2-form of degree 2 on the classifying stack BG.

Example 2.7 (Quotient stacks). Let G be an affine algebraic group acting on a smooth algebraic variety
X, and let Y :=

[
X/G

]
. One can show that there is a morphism of complexes


 ⊕

p+q≥ℓ

Ωp(X)⊗k Sq
(
g∗
)
[ℓ− p− 2q]




G

−→ Aℓ,cl(Y) ,

where the differential on the left-most complex can be described as follows, borrowing the notation from
Example 2.5: the differential of an element α is ddR

(
α(x)

)
+ (dα)(x).

2.4 n-symplectic structures

Let X be a derived Artin stack which is locally of finite presentation5. These technical assumptions are
sufficient to get that LX is a dualizable object in QCoh(X), so that we have TX := (LX)

∗.

Definition 2.8. An n-symplectic structure on X is a point in A2,cl(X,n) such that the underlying
element of A2(X,n) provides a weak equivalence TX−̃→LX[n].

Example 2.9 (Genuine symplectic varieties). Let X be a genuine smooth algebraic variety. Then
LX

∼= Ω1
X and thus a 0-symplectic structure is simply a genuine symplectic structure on X.

Example 2.10 (Shifted cotangent stacks). The n-shifted cotangent stack T∗[n]X of X is n-symplectic (see
[20, Proposition 1.21]). In particular we get that, for any affine algebraic group G,

[
g∗/G

]
= T∗[1]

[
∗/G

]

is 1-symplectic. We now describe, for later purposes, this 1-symplectic structure in a very explicit way.
Recall that, as complexes of G-equivariant sheaves on g∗

L[
g∗/G

] = · · · −→ 0 −→
0

Og∗ ⊗ g
︸ ︷︷ ︸
=Ω1

g∗

−→
1

Og∗ ⊗ g∗ −→ 0 −→ · · · .

Pick coordinates (xi)i on g∗, denote by (ξi)i the dual basis of g
∗, and define ω0 := (ddRxi)ξ

i. It defines
a 2-form of degree 1 as ξ’s have degree 1 and, borrowing the notation from Example 2.5, d(ω)(x) =

−ιx(ω0)(x) = [x, x]g = 0 (viewd as a function on g∗). Moreover, it is trivially closed as ddR(ω) = 0

(because in fact, ω0 = ddR(xiξ
i)). It is non-degenerate because that the pairing between g and g∗ is

(namely, g is finite dimensional).

Example 2.11 (Classifying stack of a reductive group). We now assume thatG is reductive. In particular
there exists a non-degenerate invariant pairing c ∈ S2(g∗)G. We already know (see Example 2.6) that c
defines a closed 2-form of degree 2. It is easy to check that the non-degeneracy of the underlying 2-form
is equivalent to the non-degeneracy of c.

2.5 Lagrangian structures

Let (X,ω) be an n-symplectic stack and L a derived Artin stack of finite presentation.

5A derived stack X is locally of finite presentation if there exists a smooth epimorphism U → X with U being a disjoint union
of derived affine schemes which are finitely presented. An affine scheme Spec(A) is finitely presented if Homcdga≤0

(A,−)

commutes with filtered homotopy colimits.
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Definition 2.12. A Lagrangian structure on a morphism f : L −→ X is a non-degenerate isotropic
structure on it. An isotropic structure on f is a homotopy from 0 to f∗ω; it is called non-degenerate if
the induced map f∗TX −→ (TX)

◦ := hofib
(
f∗TX → LL[n]

)
is a weak equivalence6.

Example 2.13 (Genuine Lagrangian subvarieties). Let L, X be genuine smooth algebraic varieties and
let f : L →֒ X be a closed embedding. We have seen that 0-symplectic structures on X are genuine
symplectic structures. One can actually show that the space of 0-symplectic structures on X is the
discrete space of genuine symplectic forms on X. Hence, given a symplectic form ω on X, f admits a
Lagrangian structure if and only if f∗ω equals 0, i.e. if and only if L is Lagrangian in the usual sense.

Example 2.14 (Moment maps). Let (X,ω) be a genuine smooth symplectic variety. Assume that there
is an affine algebraic group G acting by symplectomorphisms on X and that there is a moment map
µ : X −→ g∗ for the action of G. Then we have

(ddR + d)(ω) = d(ω) = −
∑

i

ι−→xi
(ω)ξi = µ∗(ddRxi)ξ

i = [µ]∗
(
(ddRxi)ξ

i
)
,

where [µ] :
[
X/G

]
−→

[
g∗/G

]
is the quotient of µ (note that the above computation has been made in

the subcomplex of the complex of closed 2-forms on
[
X/G

]
appearing in Example 2.7).

Lie group valued moment maps (see [1]) can also be understood in terms of Lagrangian morphisms;
see [6, 21] and below.

Exercise 2.15 (Symplectic is Lagrangian). Denote by ∗(n) the point equipped with its canonical n-
symplectic structure (this is just 0). Show that a Lagrangian structure on X → ∗(n) is exactly the same
as an (n− 1)-symplectic structure on X.

6The homotopy fiber hofib(f) of a morphism f : E → F in a dg-category is another name for the mapping cocone of f:

hofib(f) = holim

(

E
f
⇒

0
F

)

.
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3 Lecture 3: (semi-)classical TFTs

3.1 Lagrangian correspondences

Let X, Y, Z be n-symplectic stacks, and let f : L → X× Y and g : M → Y × Z be Lagrangian maps. note
that Z means that we consider Z equipped with the opposite n-symplectic structure: ωZ := −ωZ.

Theorem 3.1. There exists a natural Lagrangian structure on L
R
×
Y
M −→ X× Z.

Sketch of proof. Since f is Lagrangian then we have a homotopy from f∗π∗
XωX to f∗π∗

YωY in A2,cl(L, n).
Since g is Lagrangian then we have a homotopy from g∗π∗

YωY to g∗π∗
ZωZ in A2,cl(M,n). Moreover,

we have a homotopy from π∗
Lf

∗π∗
YωY to π∗

Mg∗π∗
YωY in A2,cl

(
L

R
×
Y
M,n

)
. Hence there is a homotopy

from π∗
Lf

∗π∗
XωX to π∗

Mg∗π∗
ZωZ in A2,cl

(
L

R
×
Y
M,n

)
, which defines an isotropic structure on the map

L
R
×
Y
M −→ X× Z. We refer to [6, Theorem 4.4] for the proof that it is non-degenerate.

Example 3.2 (Derived Lagrangian intersections). Let X = Z = ∗(n). Hence we have Lagrangian
maps L → Y and M → Y. The above result tells us that there is a natural Lagrangian structure on
L×

Y
M → ∗(n), and thus there is an (n− 1)-symplectic structure on L×

Y
M (recall Exercise 2.15).

We now explain two interesting applications of the above example.

Example 3.3 (Derived critical locus). We let Y = T∗N be the cotangent space of a genuine smooth
scheme N, we set L = M = N, and we let f, resp. g, be the inclusion of N into T∗N as the zero section,
resp. as the inclusion of the graph of dS for a given function S : X → A1. L and M are thus genuine
Lagrangian subvarieties inside T∗N. Their derived intersection is the derived critical locus of Example
1.4 RCrit(S) of the function S. By the above RCrit(S) is hence (−1)-symplectic: borrowing the notation
of Example 1.4 the (−1)-symplectic structure is ddRx

iddRξi (it is trivially closed). We refer to [25] for
more details.

Example 3.4 (Derived symplectic reduction). Let (X,ω) be a genuine smooth symplectic scheme,
equipped with an action of a reductive group G that preserves ω. Recall from Example 2.14 that any
moment map µ : X → g∗ induces a Lagrangian structure on the map [µ] :

[
X/G

]
→

[
g∗/G

]
between

the corresponding quotient stacks. For any coadjoint orbit O ⊂ g∗ we in particular have a Lagrangian
structure on

[
O/G

]
→

[
g∗/G

]
. Therefore the derived fiber product

[
X/G

] R
×[

g∗/G
]
[
O/G

]
=

[
X

R
×
g∗

O/G
]
=

[
Rµ−1(O)/G

]
=:

[
X//OG

]

is 0-symplectic. If G acts nicely and O is the coadjoint orbit of a regular value of µ, then the derived
reduced stack coincides with the usual reduced variety Xred := µ−1(O)/G and we recover that it inherits
a symplectic structure from the one of X.

Quasi-Hamiltonian reduction (see [1]) can also be understood in a similar way; see [6, 21] and below.

Given n-symplectic stacks X, Y, Z, W and Lagrangian morphisms L → X × Y, M → Y × Z and
N → Z×W, then it follows from Theorem 3.1 that the two vertical arrows in

(L
R
×
Y
M)

R
×
Z
N L

R
×
Y
(M

R
×
Z
N)

X×W

∼
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carry Lagrangian structures. Going through the proof of the Theorem, one can easily check that these
Lagrangian structures are identified via the horizontal equivalence.
Hence we have a genuine category Sympn having n-symplectic derived stacks as objects and weak

equivalence classes of Lagrangian correspondences as morphisms. Theorem 3.1 tells us that we can
compose them, and the above discussion shows that the composition is associative.

Example 3.5 (Moore-Tachikawa’s category of Hamiltonian correspondences). Let us consider the full
subcategory MT of Symp1 defined as follows:

• objects of MT are the 1-symplectic derived stacks of the form
[
g∗/G

]
, where G is an affine algebraic

group (see Example 2.10). Hence we can simply say that that objects of MT are affine algebraic
groups.

• morphisms from G1 to G2 are equivalence classes 0-symplectic derived schemes X together with a
Hamiltonian action of G1 × G2 and a moment map X → g∗1 ⊕ g∗2. Note that, after Example 2.14,
these are nothing but a Lagrangian structure on

[
X/G1 ×G2

]
−→

[
g∗1 ⊕ g∗2/G1 ×G2

]
.

Given a morphism X from G1 to G2 and a morphism Y from G2 to G3, recall that their composition is
obtained by performing the derived intersection

[
X/G1 ×G2

] R
×[

g∗
2
/G2

]
[
Y/G2 ×G3

]
=

[[
X× Y//0G2

]
/G1 ×G3

]
,

where
[
X× Y//0G2

]
is the derived reduction of X× Y with respect to the difference of the moment maps

X → g∗2 and Y → g∗2, borrowing the notation from Example 3.4. Apart from an additional C∗-action
that we ignore here on purpose, this gives a derived algebro-geometric approach to Moore-Tachikawa’s
category of “holomorphic symplectic varieties with Hamiltonian action” [18, §3.1].

Digression 3. One can construct (∞, n)-categories of iterated m-Lagrangian correspondences, denoted
Lagm

n , which we roughly describe now. Given an m-symplectic stack X we can define an (∞, 0)-category
Lag0(X) of maps Y → X equipped with a Lagrangian structure. Assuming we have been able to construct
an (∞, n)-category Lagn(X) for any m-symplectic stack X (and any m), we then define (∞, n + 1)-
categories Lagn+1(X) with objects being morphisms f : Y → X equipped with a Lagrangian structure
and having Lagn(Y1 ×

h
X Y2) as (∞, n)-category of morphisms from Y1 → X to Y2 → X. Then we define

Lagm
n := Lagn(∗(m+1)). Note that Sympm is the homotopy category of Lagm

1 . Finally observe that
Lagm

n carries a symmetric monoidal structure (given by ×).
There is an obvious forgetful functor Lagm

n −→ Corrn. Let X be a derived stack and consider the
fully extended TFT

ZX := Map
(
(−)B, X

)
: Bordn −→ Corrn

introduced in Digression 1. A lift of ZX to an oriented fully extended TFT

Bordor
n −→ Lagm

n

shall be completely determined, according to the cobordism hypothesis [3, 15], by its value on the point
and thus by the corresponding m-shifted symplectic structure on X. Conversely, one can show that any
m-shifted symplectic structure on X determines such a lift.
Below we provide an explicit description of the oriented TFT associated with an m-symplectic derived
stack.

3.2 Transgression: AKSZ-PTVV construction

Let Σ be a derived stack. There is a notion called O-compactness for Σ (see [20, Definition 2.1]) that
allows to get the following gadget: for any other derived stack X there exists a map

Ap(,cl)(Σ× X) → RΓ(OΣ)⊗Ap(,cl)(X) .

Now, an m-orientation on an O-compact stack Σ is the data of a map [Σ] : RΓ(OΣ) → k[−m] such that
for any perfect OΣ-module E the pairing

RΓ(E)⊗ RΓ(E∗)[m] −→ RΓ(OΣ)[m]
[Σ]
−→ k
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is non-degenerate. Hence for any other derived stack X we get a map

∫

[Σ]

: Ap(,cl)(Σ× X) −→ Ap(,cl)(X)[−m] .

Construction 3.6 (Transgression). Let Σ be an O-compact m-oriented stack and let X be a stack together
with a closed p-form α of degree n. Denote by ev the evaluation map Σ×Map(Σ,X) → X. The following
defines a closed p-form of degree n−m: ∫

[Σ]

ev∗α

Theorem 3.7 (Theorem 2.5 in [20]). Keeping the above notation, we let p = 2. Assuming that X and
Map(Σ,X) are derived Artin stacks locally of finite presentation and that α is non-degenerate (i.e. α is
an n-symplectic structure), then

∫
[Σ]

ev∗α is non-degenerate (i.e. is an (n−m)-symplectic structure).

Let us now give three Examples of applications of this Theorem (we refer to [20] for the details).

Example 3.8 (G-local systems). If Σ = MB with M an oriented m-dimensional closed manifold then
Σ is O-compact and m-oriented. Moreover Map(Σ,X) is Artin under the assumption that X is. In
particular, recalling from Example 2.11 that BG has a 2-symplectic structure whenever G is a reductive
group, we get that LocG(M) = Map(Σ,BG) has a (2 − m)-symplectic structure. Hence if M is an
oriented surface we “recover” that the derived moduli stack of G-local systems on M is 0-symplectic
(and on its smooth locus we get back an actual symplectic structure).

Remark 3.9. In the above Example, if M = S1 then Map(MB, BG) =
[
G/G

]
inherits a 1-symplectic

structure. One can prove (see [6, 21]) that a Lie group valued moment map µ : Y −→ G in the sense
of [1] induces a Lagrangian structure on the morphism [µ] :

[
Y/G

]
−→

[
G/G

]
. For any conjugacy class

C ⊂ G we in particular have a Lagrangian structure on
[
C/G

]
→

[
G/G

]
. Therefore the derived fiber

product
[
Y/G

] R
×[

G/G
]
[
C/G

]
=

[
Y

R
×
G
C/G

]
=

[
Rµ−1(C)/G

]
=:

[
Y//CG

]

is 0-symplectic. If G acts nicely and C is the conjugacy class of a regular value of µ, then the derived
reduced stack coincides with the usual reduced variety Yred := µ−1(C)/G and we recover that it inherits
a symplectic structure ([1]).

Example 3.10 (G-bundles). If Σ is a smooth Calabi-Yau variety of dimension m then it is O-compact
and m-oriented. Moreover Map(Σ,X) is Artin under the assumption that X is. Hence, if G is reductive
then we get a (2 −m)-symplectic structure on BunG(M) = Map(Σ,BG). One can get back that way
Mukai’s result [19] on the symplecticity of the moduli space of G-bundles on a K3-surface or on an abelian
surface.

Example 3.11 (Higgs bundles). If Σ = T[1]Y is the shifted tangent stack of a smooth proper algebraic
variety Y of dimension m then Σ is O-compact and 2m-oriented. Moreover Map(Σ,X) is Artin under
the assumption that X is. Therefore, if G is reductive then we get a (2 − 2m)-symplectic structure on
HiggsG(Y) = Map(Σ,BG). One can get back that way the symplecticity of the moduli space of Higgs
bundles on a smooth algebraic curve.

3.3 Boundary structures

Let ϕ : Σ → Σ ′ be a morphism between O-compact stacks, and assume that Σ carries an m-orientation
[Σ]. A boundary structure w.r.t. [Σ] on ϕ is a homotopy [ϕ] from 0 to [Σ]. There is a notion of non-
degeneracy for boundary structures (see [6, Definition 2.10] for a precise definition). The data of an
orientation on Σ and a non-degenerate boundary structures on ϕ is also called a relative orientation in
[6, 22].
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Construction 3.12 (Transgression with boundary7). Let ϕ : Σ → Σ ′ as above and let X be a stack together
with a closed p-form α of degree n. Denote by ev, resp. ev ′ the evaluation map Σ ×Map(Σ,X) → X,
resp. Σ ′ × Map(Σ ′, X) → X. Recall from Construction3.6

∫
[Σ]

ev∗α defines a closed p-form of degree

n−m on Map(Σ,X). Therefore,

rest∗
∫

[Σ]

ev∗α =

∫

[Σ]

(ϕ× id)∗ev ′∗α =

∫

ϕ∗[Σ]

ev ′∗α ,

where rest := (... ◦ ϕ) : Map(Σ ′, X) → Map(Σ,X), defines a closed p-form of degree n − m on
Map(Σ ′, X). The following defines a homotopy from 0 to rest∗

∫
[Σ]

ev∗α in Ap,cl
(
Map(Σ ′, X), n−m

)
:

∫

[ϕ]

ev ′∗α .

Theorem 3.13 (Theorem 2.11 in [6]). Keeping the above notation, we let p = 2. Assuming that X,
Map(Σ,X) and Map(Σ ′, X) are derived Artin stacks locally of finite presentation and that α is non-
degenerate (i.e. α is an n-symplectic structure), then

∫
[ϕ]

ev ′∗α is non-degenerate (i.e. it is a Lagrangian

structure on rest).

Example 3.14 (G-local systems). We borrow the notation from Example 3.8; if Σ ′ = NB, where N

is an oriented (m + 1)-dimensional compact manifold with ∂N = M, then Σ ′ is O-compact and the
map ι : Σ → Σ ′ given by the inclusion ∂N ⊂ N carries a non-degenerate boundary structure [6, §3.1].
Moreover Map(Σ ′, X) is also Artin under the assumption that X is. Hence, if G is reductive then we
get that LocG(N) → LocG(M) has a Lagrangian structure.

Remark 3.15. If one takes m = 1 in the above Example, then M is a disjoint union of k circles (k ∈ N)
and the resulting Lagrangian structure on the morphism LocG(N) −→

[
Gk/Gk

]
is precisely the one

induced by the quasi-Hamiltonian structure8 on LocG(N). In order to get a symplectic moduli stack
on must constraint the monodromy on each boundary circle to lie in fixed conjugacy classes C1, . . . , Ck,
which can be done by performing quasi-Hamiltonian reduction (see Remark 3.9 and [6, 21]).

Example 3.16 (G-bundles). We borrow the notation from Example 3.10; if Σ ′ is a smooth proper
algebraic variety of dimension m + 1 admitting Σ has a divisor which has anticanonical class, then the
map ι : Σ → Σ ′ carry a non-degenerate boundary structure [6, §3.2]. Hence, if G is reductive then we
get that BunG(Σ

′) → BunG(Σ) has a Lagrangian structure.

The oriented (semi-)classical TFT associated with an m-symplectic stack

According to Digression 3 there is an oriented fully extended TFT

Bordor
n −→ Lagm

n

associated with every m-symplectic stack (X,ω). In this § we only describe the induced oriented TFT

ZX,ω : Cobor
n −→ Sympm−n+1 .

Claim 3.17. ZX,ω = Map
(
(−)B, X

)

More precisely, it sends an oriented cobordism N with ∂N = M+

∐
Mop

− to the Lagrangian corre-

spondence Map
(
(N)B, X

)
−→ Map

(
(M+)B, X

)
×Map

(
(M−)B, X

)
given by Theorem 3.13.

7Note that this has nothing to do with Sokal’s hoax!
8This quasi-Hamiltonian structure has been described in [1]
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3.4 TFTs with boundary conditions

Note that there is a variation Cobbc
n on Cobn where objects are now manifolds with boundary and

morphisms are given by cobordisms with boundary. E.g. the strip
• •

• •
is a self-cobordism (with

boundary) of the closed interval
•
•
.

We claim that any morphism f : L → X together with an m-symplectic structure ω on X and a
Lagrangian structure γ on f gives rise to an oriented TFT with boundary

Z : Cobor,bc
n −→ Sympm−n+1 .

Without going too much into details, this relies on the following.

Let ϕ : Σ → Σ ′ be a morphism of O-compact derived stacks together with a relative m-orientation
([Σ], [ϕ]). Assume that all mapping stacks involved are derived Artin stacks locally of finite presentation.
Then recall (notation shall be clear from the context):

• from Theorem 3.7 we get that
∫
[Σ]

ev∗Xω is an (m− n+ 1)-symplectic structure on Map(Σ,X).

• from Theorem 3.13 we get that
∫
[ϕ]

ev ′∗
X ω is a Lagrangian structure on rest, i.e. a non-degenerate

homotopy from 0 to rest∗
∫
[Σ]

ev∗Xω =
∫
f∗[Σ]

ev ′∗
Xω.

On the other hand
∫
[Σ]

ev∗Lγ defines a homotopy 0 to
∫
[Σ]

ev∗Lf
∗ω = f∗

∫
[Σ]

ev∗Xω, which can be proven to

be non-degenerate. In other words, it defines a Lagrangian structure on f : Map(Σ, L) → Map(Σ,X).
According to Theorem 3.1 and Example 3.2, composing

∫
[ϕ]

ev ′∗
Xω with

∫
[Σ]

ev∗Lγ provides us with a

non-degenerate self-homotopy η of 0, which can be understood as an (m− n)-symplectic structure on

Map(ϕ, f) := Map(Σ ′, X)
R
×

Map(Σ,X)
Map(Σ, L) .

Now observe that we have a map ι : Map(Σ ′, L) −→ Map(ϕ, f). When pull-backed along this map
the self-homotopy η becomes the composition of

∫
[ϕ]

ev ′∗
L ω with

∫
[Σ]

ev ′∗
L γ. This composed homotopy

is homotopic to the zero one via
∫
[ϕ]

ev ′∗
L γ, which can be proven to be non-degenerate. Hence we get a

Lagrangian structure on ι (the existence of which is stated in [22, §4.3]).

3.5 Towards a derived description of the Poisson sigma-model

Let (X, π) be a smooth Poisson variety9 and consider the π-twisted and 1-shifted derived cotangent stack
Y = T∗[1]πX of X. It is affine over X and can be defined as Spec

(
SymOX

(TX[−1]), [π,−]S
)
, where [−,−]S

is the Schouten bracket on the sheaf SymOX
(TX[−1]) of poly-vector fields.

The derived stack Y, resp. the zero section morphism X −→ Y, can be shown to carry a 1-symplectic
structure, resp. a Lagrangian structure10. Hence we get a 2d oriented TFT with boundary conditions

Z(X,π) : Cobor,bc
2 −→ Symp0 ,

which sends the object
•
•

of Cobor,bc
2 (a 1-dimensional manifold with boundary) to the relative derived

mapping stack from
(
(
•
•
)B → (

•
•
)B
)
to (X → Y), which is nothing but the derived self-intersection

G := X
R
×Y X (and is indeed 0-symplectic).

Note that the cobordism with boundary then gives us a Lagrangian correspondence between G×G

and G. This turns G into an algebra object in Symp0. Namely, associativity of composition is given by
the following diffeomorphism:

∼=

9Note that one can make all this work in the differentiable setting as well.
10Poisson structures can actually be defined as Lagrangian morphisms in the derived setting ([8]).
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In [11] Contreras and Scheimbauer prove that G is actually a Calabi-Yau algebra in Lag0
1 (in the sense

of [15, §4.2]). This in particular provides a very nice interpretation of the rather mysterious axioms of a
relational symplectic groupoid introduced in [9].
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