Recollection on derived symplectic geometry

$A(B) := S_B (S^2_B [-1])$ graded dg-algebra of forms. (B semi-free resolution of B as a b-algebra)

$A : \text{dg } S_B \text{-alg} \rightarrow \text{dg } A_{\text{gr}}$ is a stack (i.e. it satisfies etale descent).

Hence it makes sense to define $A(X) := \text{holim } (A(B))_{\text{Spec}(B) \rightarrow X}$

Define the complex of p-forms $A^p(X) := A(X)^{(p)}[p]$, the homogeneous part of degree p

for the auxiliary grading shifted back by cohomological degree p.

Define the space of p-forms of degree a $A^a_p(X, \lambda) := n$-cycles in $A^p(X) = \text{Maps}(k, A^p(X)[n])$

Remark: $A^a(X) = \text{IR} \backslash S_B \text{(IL} X [1-1])$

Examples: $X = BG$, G group scheme. $\text{IR} : \text{Gp} \times (G\text{-mod}) \rightarrow \text{Gp}$ is given by G-cohomology (graded G-invariants)

$[IL_X = g^* [1]$. Hence we have a map $S(g^*[2]) \rightarrow A(x)$ in $\text{dg } A_{\text{gr}}$

Note that $S^2(g^*)G = S^2 (g^*[2])G [2+2].$

\Rightarrow any symmetric invariant bilinear pairing on g defines a 2-form of degree 2 on BG.

$X = [g^*/G]$. In a way similar to the previous example one has

a map $(S^2 g^*[2]) \otimes S(g^*[2]) \rightarrow A([g^*/G])$ in $\text{dg } A_{\text{gr}}$

where the differential on the source is generated by the transpose

$S^2 g^*[2] \rightarrow (g^*[2]) G$ of the infinitesimal action $g \rightarrow \Gamma(T_g)$.

When $Y = g^*$ one finds

$(S^2 g^*[2]) \otimes g^*[2] \rightarrow A^2([g^*/G], *)$

Hence the canonical element can $6 g^* g^* \text{ defines a 2-form of degree 1 on } [g^*/G].$

$C^G(X)$ (coordinates on g^* and $(*)$ dual basis of g^*) then $C^G = C_{\text{dr}(X)} \otimes \mathbb{F}^.$
\(A^{\varphi}(B) := \left(\mathcal{S}_{\varphi}^{\mathcal{S}}(S_{\varphi}^{\mathcal{S}}(\mathcal{S}_{\varphi}^{\mathcal{S}}(\cdot)), \varphi_{B} + \varphi_{B}^{\varphi} \right) \) filtered dg-Algebra of closed forms. Note that \(gr(A^{\varphi}(B)) \cong A(B) \).

\(\mathcal{A}^{\varphi} : \text{Diff}^{op} \rightarrow \text{dg-Alg}^{\mathcal{S}_{\varphi}} \) is a stack. Hence it makes sense to define \(A^{\varphi}(X) := \text{holim}(A^{\varphi}(B)) \).

Define the complex of closed \(p \)-forms \(A^{p,\varphi}(X) := F^p(A^{\varphi}(X))[p] \), where \(F^p(-) \) mean the \(p \)-th filtration of \(- \). The space of closed \(p \)-forms of degree \(\alpha \) is

\[A^{p,\varphi}(X, \alpha) := \text{cycles in } A^{p,\varphi}(X) = \text{holim}_{B \in \text{Diff}^{op}}(B, A^{p,\varphi}(X)[n]) \].

Examples:

- \(X = \mathbb{B}G \). Forms coming from invariant polynomials via the map \(S(g^*E) \rightarrow A(X) \) are canonically closed (\(S(g^*E) \) being concentrated in even degrees, there is no room for the de Rham differential to be non-trivial).

- If \(Y \) is a smooth affine scheme then a \(G \)-action then there is a map \((S_{\varphi}^*E \otimes S(g^*E)) \rightarrow A^{\varphi}(\mathbb{B}E) \) in \(\text{dg-Alg}^{\mathcal{S}_{\varphi}} \) where the differential on the source is \(\varphi + \varphi_{\text{deRham}} \otimes \text{id} \). When \(Y = g^*E \), the 2-form of degree 1 can is canonically closed.

From now we assume that \(LL_X \) is a perfect \(O_X \)-module.

Definition: An \(n \)-symplectic structure on \(X \) is a closed 2-form of degree \(n \) \(\omega \in A^{2,\varphi}(X, \alpha) \) such that the underlying \(2 \)-form \(\omega_0 := \varphi(\omega) \) is non-degenerate. This means that the induced map \(\mathcal{T}^*_{\varphi}X \rightarrow LL_X \) (by \(\omega_0 \)) is a quasi-isomorphism or weak equiv.

Note that \(\mathcal{T} \) denotes the "symbol map" from closed forms to forms.

Examples:

- Ordinary smooth schemes: symplectic structures \(\Leftrightarrow O \)-symplectic structures.

- \(X = \mathbb{B}G \). If \(\langle \cdot, \cdot \rangle \) is a \(\text{ND} \) symmetric invariant bilinear pairing on \(g^*E \), then the associated 2-form of degree 2 is \(\text{ND} \) as well: \(q^{\mathcal{S}} := \varphi(q^*E) \otimes g^*E \).

- \(X = [g^*E] \). The 2-form of degree 1 defined by \(\omega \) is \(\text{ND} \).

\[\mathcal{T}^{[g^*E]} = (\mathcal{S}[g^*E] \otimes g^*E) \oplus (\mathcal{S}[g^*E] \otimes g^*E) \]

\[LL_{[g^*E]} = (\mathcal{S}[g^*E] \otimes g^*E) \oplus (\mathcal{S}[g^*E] \otimes g^*E) \]

Can induces an isomorphism of complexes.
Lagrangian structures

\[X \xrightarrow{\phi} Y \] morphism between stacks having perfect coherent complexes. \(\omega \) n-symplectic structure on \(Y \).

Definition: a Lagrangian structure on \(Y \) is a path \(\gamma \) in \(A^2, \ell \) \((X,\nabla)\) from \(\phi^*\omega \) to \(0 \) (isotropic structure) that is non-degenerate.

Non-degeneracy means that the underlying path \(\gamma_0 \) in \(A^2(X,\nabla) \) is such that the induced map \(T_{X_0} \to T_{X_0}^0 \cong \mathbb{L} \cdot H^0(\nabla) \) is a quasi-isomorphism. The following diagram explains where this map comes from:

\[
\begin{array}{c}
\xrightarrow{\phi^*\omega} T_{X_0} \to \mathbb{L} \cdot H^0(\nabla) \\
\downarrow \quad \downarrow \\
\mathbb{L} \cdot H^0(\nabla) \to 0
\end{array}
\]

Examples:

- \(\gamma_0 \) point equipped with its canonical n-symplectic structure \((0) \).

Lagrangian structures on \(X \xrightarrow{\gamma_0} Y \) \(\iff \) \((n-1)\)-symplectic structures on \(X \).

Why? Essentially because \(\mathcal{S}_\omega \mathcal{A}^\phi(X,\nabla) \cong \mathcal{A}^\phi(X,\nabla) \).

One sees that the notions of ND coincide on both sides:

\[T_{X_0} \to \mathbb{L} \cdot H^0(\nabla) \]

- \(X \) smooth \(G \)-scheme together with a \(G \)-equivariant map \(\mu : X \to \mathbb{G}_m \).

We get a map \([\mu] : [X/\mathbb{G}_m] \to [\mathbb{G}_m/\mathbb{G}_m] \) of stacks.

Recall that \([\mathbb{G}_m/\mathbb{G}_m]\) has a 1-symplectic structure \(\omega = d_{\text{fr}}(\mathbf{1}) \otimes \delta^i \).

Let's see what it means to have a Lagrangian structure on \([\mu]\):

\[[\mu]^*\omega = d_{\text{fr}}(\mu^*x_i) \otimes \delta^i = \mu^*\omega. \]

Assume that \(\omega \) is in the image of \((S^2_{\mathbf{X}})^G \to \mathcal{A}^\phi(X) \).

Then \(d_{\text{fr}}(\mu^*x_i) \otimes \delta^i = (\nabla_i \omega) \otimes \delta^i \). I.e. \(\mu^*d_{\text{fr}}(x_i) = \nabla_i \omega \)

This is the moment map condition! Next we can assume \(d_{\text{fr}}(\omega) = 0 \)

and get a Lagrangian structure.

Let us check the condition for ND:

\[
\begin{array}{c}
T_{[X/\mathbb{G}_m]} = (\mathcal{O}_X \otimes \mathcal{O}[\mathcal{T}_X]) \\
\downarrow \quad \downarrow \quad \downarrow \\
\mathcal{L}_X = \mathcal{L}_X' = (\mu^*x_i \otimes [\mathcal{T}_X] \oplus \mathcal{T}_X')
\end{array}
\]

\(\Rightarrow \) our isotropic structure is ND iff \(\omega \) is ND.

Conclusion: moment maps are Lagrangian structures.
Lagrangian correspondences

Theorem: X, Y, Z derived stacks with n-symplectic structures.

$$L \xrightarrow{f} X \times Y \text{ and } M \xrightarrow{g} Y \times Z$$ maps with Lagrangian structures.

Then $L \times M \xrightarrow{f \times g} X \times Z$ has a Lagrangian structure.

Corollary [Piv]:

$$L \xrightarrow{f} Y + \text{Lagrangian structure} \Rightarrow L \times M \text{ (i-i)-symplectic.}$$

Proof of Corollary:

Consider $X = Z = \ast \ast$.

Application of corollary:

$X \xrightarrow{\psi} g^\ast$ moment map, $O \xrightarrow{\theta} g^\ast$ coadjoint orbit.

$$\Rightarrow [\psi O] \xrightarrow{\theta^\ast} [g^\ast] \text{ and } [\theta O] \xrightarrow{\psi^\ast} [g^\ast] \text{ Lagrangian.}$$

Hence $[\psi O] \times [\theta O] = \left[X \times O \right]$ is $\ast \ast$ or O-symplectic.

Application of theorem:

$\Psi: X \to Y$ symplectomorphism, i.e. $\text{graph}(\Psi): X \to X \times Y$ Lagrangian.

Then for any Lagrangian $L \to Y$, $\mathcal{R} L \subset \mathcal{R} \Psi^{-1}(L) = X \times Y \to X$ Lagrangian.

Proof of Theorem:

Lagrangian structure on $f: f^\ast \pi_x^\ast \omega_x \circ f^\ast \pi_y^\ast \omega_y$.

Lagrangian structure on $g: g^\ast \pi_y^\ast \omega_y \circ g^\ast \pi_z^\ast \omega_z$.

$$\Rightarrow \pi_x^\ast \omega_x = \pi_L^\ast f^\ast \pi_x^\ast \omega_x \sim \pi_L^\ast f^\ast \pi_y^\ast \omega_y \sim \pi_M^\ast g^\ast \pi_y^\ast \omega_y \sim \pi_M^\ast g^\ast \pi_z^\ast \omega_z = \pi_T^\ast \omega_z$$

We have an isotropic structure, denoted \mathfrak{g}, on $R: N := L \times M \to X \times Y$.

Let's prove it is ND.

- We have a fiber sequence $T_N \to T_L \oplus T_M \to T_Y$ (all sheaves are implicitly pulled-back on N for simplicity).
- $R: N \to X \times Z$ factors into $N \to (X \times Y) \times (Y \times Z) \to X \times Y \to X \times Z$.

Hence we have a fiber sequence $L_R \to L_N \to L_{X \times Y \times Z}$.

We therefore have a diagram:

$$\begin{array}{ccc} T_N & \xrightarrow{\text{given by } \delta} & T_L \oplus T_M \oplus T_Y \xrightarrow{\text{given by } \eta} \mathcal{R} \Psi \xrightarrow{\text{given by } \eta} \mathcal{R} \Psi \end{array}$$

- The left-most square commutes because η is the composition of δ^\ast and η^\ast.
- The other square does because δ^\ast and η^\ast are compatible (at $\mathcal{R} \Psi$)