
Lectures on Duflo isomorphisms in Lie algebras

and complex geometry

Damien Calaque and Carlo A. Rossi



Contents

1 Lie algebra cohomology and the Duflo isomorphism 6

1.1 The original Duflo isomorphism . . . . . . . . . . . . . . . . . . . . 7

1.2 Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Chevalley-Eilenberg cohomology . . . . . . . . . . . . . . . . . . . 11

1.4 The cohomological Duflo isomorphism . . . . . . . . . . . . . . . . 14

2 Hochschild cohomology and spectral sequences 15

2.1 Hochschild cohomology . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Spectral sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Application: Chevalley-Eilenberg vs Hochschild cohomology . . . . 20

3 Dolbeault cohomology and the Kontsevich isomorphism 24

3.1 Complex manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Atiyah and Todd classes . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Hochschild cohomology of a complex manifold . . . . . . . . . . . . 27

3.4 The Kontsevich isomorphism . . . . . . . . . . . . . . . . . . . . . 30

4 Superspaces and Hochschild cohomology 31

4.1 Supermathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Hochschild cohomology strikes back . . . . . . . . . . . . . . . . . 34

5 The Duflo-Kontsevich isomorphism for Q-spaces 38

5.1 Statement of the result . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Application: proof of the Duflo Theorem . . . . . . . . . . . . . . . 40

5.3 Strategy of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Configuration spaces and integral weights 46

6.1 The configuration spaces C+
n,m . . . . . . . . . . . . . . . . . . . . 46

6.2 Compactification of Cn and C+
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Introduction

Since the fundamental results by Harish-Chandra and others, it is now well-known
that the algebra of invariant polynomials on the dual of a Lie algebra of a particular
type (solvable [18], simple [24] or nilpotent) is isomorphic to the center of the cor-
responding universal enveloping algebra. This fact was generalized to an arbitrary
finite-dimensional real Lie algebra by M. Duflo in 1977 [19]. His proof is based on
Kirillov’s orbits method that parametrizes infinitesimal characters of unitary irre-
ducible representations of the corresponding Lie group in terms of co-adjoint orbits
(see e.g. [28]). This isomorphism is called the Duflo isomorphism. It happens to
be a composition of the well-known Poincaré-Birkhoff-Witt isomorphism (which is
only an isomorphism at the level of vector spaces) with an automorphism of the
space of polynomials (which descends to invariant polynomials), whose definition
involves the power series j(x) := sinh(x/2)/(x/2).

In 1997 Kontsevich [29] proposed another proof, as a consequence of his con-
struction of deformation quantization for general Poisson manifolds. Kontsevich’s
approach has the advantage to work also for Lie super-algebras and to extend the
Duflo isomorphism to a graded algebra isomorphism on the whole cohomology.

The inverse power series j(x)−1 = (x/2)/sinh(x/2) also appears in Kontsevich’s
claim that the Hochschild cohomology of a complex manifold is isomorphic as an
algebra to the cohomology ring of holomorphic polyvector fields on this manifold.
We can summarize the analogy between the two situations into the following table:

Lie algebra Complex geometry

symmetric algebra sheaf of algebra of holomorphic

polyvector fields

universal enveloping algebra sheaf of algebra of holomorphic

polydifferential operators

taking invariants taking global holomorphic sections

Chevalley-Eilenberg cohomology sheaf cohomology

These lecture notes provide a self-contained proof of the Duflo isomorphism
and its complex geometric analogue in a unified framework, and gives in particu-
lar a unifying explanation of the reason why the series j(x) and its inverse appear.
The proof is strongly based on Kontsevich’s original idea, but actually differs from
it (the two approaches are related by a conjectural Koszul type duality recently
pointed out in [39], this duality being itself a manifestation of Cattaneo-Felder
constructions for the quantization of a Poisson manifold with two coisotropic sub-
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manifolds [12]).

Note that the series j(x) also appears in the wheeling theorem by Bar-Natan,
Le and Thurston [4] which shows that two spaces of graph homology are isomor-
phic as algebras (see also [31] for a completely combinatorial proof of the wheeling
theorem, based on Alekseev and Meinrenken’s proof [1, 2] of the Duflo isomor-
phism for quadratic Lie algebras). Furthermore this power series also shows up in
various index theorems (e.g. Riemann-Roch theorems).

Throughout these notes we assume that k is a field with char(k) = 0. Unless
otherwise specified, algebras, modules, etc... are over k.

Each chapter consists (more or less) of a single lecture.
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1 Lie algebra cohomology and the Duflo

isomorphism

Let g be a finite dimensional Lie algebra over k. In this chapter we state the
Duflo theorem and its cohomological extension. We take this opportunity to in-
troduce standard notions of homological algebra and define the cohomology theory
associated to Lie algebras, which is called Chevalley-Eilenberg cohomology.

Preliminaries: tensor, symmetric, and universal envelopping
algebras For k-vector space V we define the tensor algebra T (V ) of V as the
vector space

T (V ) :=
⊕

n≥0

V ⊗n (V ⊗0 = k by convention)

equipped with the product given by the concatenation. It is a graded algebra,
whose subspace of homogeneous elements of degree n is Tn(V ) := V ⊗n.

The symmetric algebra of V , which we denote by S(V ), is the quotient of the
tensor algebra T (V ) by its two-sided ideal generated by

v ⊗ w − w ⊗ v (v, w ∈ V ) .

Since the previous relations are homogeneous, then S(V ) inherits a grading from
the one on T (V ).

Finally, if V = g, one can define the universal enveloping algebra U(g) of g as
the quotient of the tensor algebra T (g) by its two-sided ideal generated by

x⊗ y − y ⊗ x− [x, y] (x, y ∈ V ) ,

where [x, y] denotes the Lie bracket between x and y. As the relations are not
homogeneous, the universal enveloping algebra only inherits a filtration from the
grading on the tensor algebra.
Notation. Dealing with non-negatively graded vector spaces, we will use the
symbol ̂ to denote the corresponding degree completions. Namely, if M is a
graded k-vector space, then

M̂ :=
∏

n≥0

Mn

is the set of formal series

∑

n≥0

m(n) , (m(n) ∈Mn) .
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1.1 The original Duflo isomorphism

The Poincaré-Birkhoff-Witt theorem
Recall the Poincaré-Birkhoff-Witt (PBW) theorem: the symmetrization map

IPBW : S(g) −→ U(g)

x1 · · ·xn 7−→
1

n!

∑

σ∈Sn

xσ1
· · ·xσn

,

is an isomorphism of filtered vector spaces, which further induces an isomorphism
of the corresponding graded algebras S(g) → Gr

(
U(g)

)
.

Let us write ∗ for the associative product on S(g) defined as the pullback of
the multiplication on U(g) through IPBW . For any two homogeneous elements
u, v ∈ S(g), u ∗ v = uv + l.o.t. (where l.o.t. stands for “lower order terms”).

IPBW is obviously NOT an algebra isomorphism, unless g is abelian (since
S(g) is commutative while U(g) is not).

Remark 1.1. There are different proofs of the PBW Theorem: standard proofs
may be found in [16], to which we refer for more details. More conceptual proofs,
involving Koszul duality between quadratic algebras, may be found in [6, 37]. A
proof of the PBW Theorem stemming from Kontsevich’s Deformation Quantiza-
tion may be found in [39, 8].

Geometric meaning of the PBW theorem
We consider a connected, simply connected Lie group G with corresponding

Lie algebra g.
Then S(g) can be viewed as the algebra of distributions on g supported at the

origin 0 with (commutative) product given by the convolution with respect to the
(abelian) additive group law on g.

In the same way U(g) can be viewed as the algebra of distributions on G
supported at the origin e with product given by the convolution with respect to
the group law on G.

One sees that IPBW is nothing but the transport of distributions through the
exponential map exp : g → G (recall that it is a local diffeomorphism). The expo-
nential map is obviously Ad-equivariant. In the next paragraph we will translate
this equivariance in algebraic terms.

g-module structure on S(g) and U(g)
On the one hand there is a g-action on S(g) obtained from the adjoint action

ad of g on itself, extended to S(g) by Leibniz’ rule: for any x, y ∈ g and n ∈ N∗,

adx(y
n) = n[x, y]yn−1 .
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On the other hand there is also an adjoint action of g on U(g): for any x ∈ g

and u ∈ U(g),
adx(u) = xu− ux .

It is an easy exercise to verify that adx ◦ IPBW = IPBW ◦ adx for any x ∈ g.
Therefore IPBW restricts to an isomorphism (of vector spaces) from S(g)g to

the center Z(Ug) = U(g)g of Ug.
Now we have commutative algebras on both sides. Nevertheless, IPBW is not

yet an algebra isomorphism. Theorem 1.3 below is concerned with the failure of
this map to preserve the product.

Duflo element J
We define an element J ∈ Ŝ(g∗) (the set of formal power series on g) as follows:

J(x) := det
(1 − e−adx

adx

)
.

It can be expressed as a formal power series w.r.t. ck := tr((ad)k).

Let us explain what this means. Recall that ad is the linear map g → End(g)
defined by adx(y) = [x, y] (x, y ∈ g). Therefore ad ∈ g∗ ⊗ End(g) and thus
(ad)k ∈ T k(g∗)⊗End(g). Consequently tr((ad)k) ∈ T k(g∗) and we regard it as an
element of Sk(g∗) through the projection T (g∗) → S(g∗).
Notation. Here and below, for a vector space V we denote by End(V ) the algebra
of endomorphisms of V , and by V ∗ the vector space of linear forms on V .

Claim 1.2. ck is g-invariant.

Here the g-module structure on S(g∗) is the coadjoint action on g∗ extended
by Leibniz’ rule.

Proof. Let x, y ∈ g. Then

〈y · ck, x
n〉 = −〈ck,

n∑

i=1

xi[y, x]xn−i−1〉 = −
n∑

i=1

tr(adixad[y,x]adn−i−1
x )

= −
n∑

i=1

tr(adix[ady, adx]adn−i−1
x ) = −tr([ady, adnx ]) = 0

This proves the claim. 2

The Duflo isomorphism
Observe that an element ξ ∈ g∗ acts on S(g) as a derivation as follows: for any

x ∈ g

ξ · xn = nξ(x)xn−1 .
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By extension an element (ξ)k ∈ Sk(g∗) acts as follows:

(ξ)k · xn = n · · · (n− k + 1)ξ(x)kxn−k .

This way the algebra Ŝ(g∗) acts on S(g).1 Moreover, one sees without difficulty

that Ŝ(g∗)g acts on S(g)g. We have:

Theorem 1.3 (Duflo,[19]). IPBW ◦ J1/2· defines an isomorphism of algebras
S(g)g → U(g)g.

The proof we will give in these lectures is based on deformation theory and
homological algebra, following the deep insight of M. Kontsevich [29] (see also [38]).

Remark 1.4. c1 is a derivation of S(g), thus exp(c1) defines an algebra auto-
morphism of S(g). Therefore one can obviously replace J by the modified Duflo
element

J̃(x) = det

(
eadx/2 − e−adx/2

adx

)
.

Remark 1.5. It has been proved by Duflo that, for any finite-dimensional Lie
algebra g, the trace of odd powers of the adjoint representation of g acts trivially
on S(g)g. In [30, Theorem 8], Kontsevich states that such odd powers act as
derivations on S(g)g, where now g may be a finite-dimensional graded Lie algebra
(see Chapter 4). It is not known if, for a finite-dimensional graded Lie algebra
g, the traces of odd powers of the adjoint representation act trivially on S(g)g: if
not, they would provide a non-trivial incarnation of the action of the Grothendieck–
Teichmueller group on deformation quantization.

1.2 Cohomology

Our aim is to show that Theorem 1.3 is the degree zero part of a more general
statement. For this we need a few definitions.

Definition 1.6. 1. A DG vector space is a Z-graded vector space C• = ⊕n∈ZC
n

equipped with a graded linear endomorphism d : C → C of degree one (i.e.
d(Cn) ⊂ Cn+1) such that d ◦ d = 0. d is called the differential.

2. A DG (associative) algebra is a DG vector space (A•, d) equipped with an
associative product which is graded (i.e. Ak · Al ⊂ Ak+l) and such that d is

1This action can be regarded as the action of the algebra of differential operators with constant
coefficients on g∗ (of possibly infinite order) onto functions on g∗.
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a graded derivation of degree 1: for homogeneous elements a, b ∈ A d(a · b) =
d(a) · b+ (−1)|a|a · d(b).

3. Let (A•, d) be a DG algebra. A DG A-module is a DG vector space (M•, d)
equipped with an A-module structure which is graded (i.e. Ak ·M l ⊂Mm+l) and
such that d satisfies d(a ·m) = d(a) ·m+(−1)|a|a ·d(m) for homogeneous elements
a ∈ A, m ∈M .

4. A morphism of DG vector spaces (resp. DG algebras, DG A-modules) is
a degree preserving linear map that intertwines the differentials (resp. and the
products, the module structures).

DG vector spaces are also called cochain complexes (or simply complexes) and
differentials are also known as coboundary operators. Recall that the cohomology
of a cochain complex (C•, d) is the graded vector space H•(C, d) defined by the
quotient ker(d)/im(d):

Hn(C, d) :=
{c ∈ Cn|d(c) = 0}

{b = d(a)|a ∈ Cn−1}
=

{n-cocycles}

{n-coboundaries}
.

Any morphism of cochain complexes induces a degree preserving linear map at the
level of cohomology. The cohomology of a DG algebra is a graded algebra.

Example 1.7 (Differential-geometric induced DG algebraic structures). Let M
be a differentiable manifold. Then the graded algebra of differential forms Ω•(M)
equipped with the de Rham differential d = ddR is a DG algebra. Recall that for
any ω ∈ Ωn(M) and v0, . . . , vn ∈ X(M)

d(ω)(u0, · · · , un) :=
n∑

i=0

(−1)iui
(
ω(u0, . . . , ûi, . . . , un)

)

+
∑

0≤i<j≤n

(−1)i+jω([ui, uj ], u0, . . . , ûi, . . . , ûj , . . . , un) .

In local coordinates (x1, . . . , xn), the de Rham differential reads d = dxi ∂
∂xi . The

corresponding cohomology is denoted by H•
dR(M).

For any C∞ map f : M → N one has a morphism of DG algebras given by the
pullback of forms f∗ : Ω•(N) → Ω•(M).
Let E →M be a vector bundle and recall that a connection ∇ on M with values
in E is given by the data of a linear map ∇ : Γ(M,E) → Ω1(M,E) such that for
any f ∈ C∞(M) and s ∈ Γ(M,E) one has ∇(fs) = d(f)s+ f∇(s). Observe that
it extends in a unique way to a degree one linear map ∇ : Ω•(M,E) → Ω•(M,E)
such that for any ξ ∈ Ω•(M) and s ∈ Ω•(M,E), ∇(ξs) = d(ξ)s + (−1)|ξ|ξ∇(s).
Therefore if the connection is flat (which is basically equivalent to the requirement
that ∇ ◦ ∇ = 0) then Ω•(M,E) becomes a DG Ω(M)-module. Conversely, any
differential ∇ that turns Ω(M,E) in a DG Ω(M)-module defines a flat connection.
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Definition 1.8. A quasi-isomorphism is a morphism that induces an isomorphism
at the level of cohomology.

Example 1.9 (Poincaré lemma). Let us regard R as a DG algebra concentrated
in degree zero and with d = 0. The inclusion i : (R, 0) →֒ (Ω•(Rn),d) is a quasi-
isomorphism of DG algebras. The proof of this claim is quite instructive as it
makes use of a standard method in homological algebra.

Proof. We construct a degree −1 graded linear map κ : Ω•(Rn) → Ω•−1(Rn) such
that

d ◦ κ+ κ ◦ d = id − i ◦ p , (1.1)

where p : Ω•(M) → k takes the degree zero part of a form and evaluates it at the
origin: p(f(x,dx)) = f(0, 0) (here we write locally a form as a “function” of the
“variables” x1, . . . , xn,dx1, . . . ,dxn)2. Then it is obvious that any closed form lies
in the image of i up to an exact one; in other words, we have proved that p admits
a homotopy inverse. It is left as an exercise to check that κ defined by κ(1) = 0
and

κ| ker(p)(f(x,dx)) = xiι∂i

(∫ 1

0

f(tx, tdx)
dt

t

)

obeys the desired requirements. 2

Notice that we have proved at the same time that p : (Ω•(M),d) → (k, 0) is
also a quasi-isomorphism. Moreover, one can check that κ ◦ κ = 0. This allows
us to decompose Ω•(M) as ker(∆) ⊕ im(d) ⊕ im(κ), where ∆ is defined to be the
l.h.s. of (1.1). ∆ is often called the Laplacian and thus elements lying in its kernel
are said harmonic3.

1.3 Chevalley-Eilenberg cohomology

The Chevalley-Eilenberg complex
Let V be a g-module. The associated Chevalley-Eilenberg complex C•(g, V ) is

defined as follows: Cn(g, V ) = ∧n(g)∗ ⊗ V is the space of linear maps ∧n(g) → V

2This comment will receive a precise explanation in chapter 4, where we consider superspaces.
3This terminology is chosen by analogy with the Hodge-de Rham decomposition of Ω•(M)

when M is a Riemannian manifold. Namely, let ∗ be the Hodge star operator and define κ :=
± ∗ d∗. Then ∆ is precisely the usual Laplacian, and harmonic forms provide representatives of
de Rham cohomology classes.
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and the differential dC is defined on homogeneous elements by

(dC(l))(x0, . . . , xn) :=
∑

0≤i<j≤n

(−1)i+j l([xi, xj ], x0, . . . , x̂i, . . . , x̂j , . . . , xn)

+

n∑

i=0

(−1)ixi · l(x0, . . . , x̂i, . . . , xn) .

We prove below that dC ◦ dC = 0.
The corresponding cohomology is denoted H•(g, V ).

Remark 1.10. Below we implicitely identify ∧(g) with antisymmetric elements in
T (g). Namely, we define the total antisymmetrization operator alt : T (g) → T (g):

alt(x1 ⊗ · · · ⊗ xn) :=
1

n!

∑

σ∈Sn

(−1)σxσ(1) ⊗ · · · ⊗ xσ(n) .

It is a projection, and it factors through an isomorphism ∧(g)−̃→ ker(alt − id),
that we also denote by alt. In particular this allows us to identify ∧(g∗) with
∧(g)∗.

Cup product
If V = A is equipped with an associative g-invariant product, meaning that for

any x ∈ g and any a, b ∈ A

x · (ab) = (x · a)b+ a(x · b) ,

then C•(g, A) naturally becomes a graded algebra with product ∪ defined as fol-
lows: for any ξ, η ∈ ∧(g∗) and a, b ∈ A

(ξ ⊗ a) ∪ (η ⊗ b) = ξ ∧ η ⊗ ab .

Another way to write the product is as follows: for l ∈ ∧m(g)∗⊗A, l′ ∈ ∧n(g)∗⊗A
and x1, . . . , xm+n ∈ g

(l∪l′)(x1, . . . , xm+n) =
1

(m+ n)!

∑

σ∈Sm+n

(−1)σl(xσ(1), . . . , xσ(m))l
′(xσ(m+1), . . . , xσ(m+n))

Remark 1.11. Observe that since l and l′ are already antisymmetric then it is
sufficient to take m!n!

(m+n)! times the sum over (m,n)-shuffles (i.e. σ ∈ Sm+n such

that σ(1) < · · · < σ(m) and σ(m+ 1) < · · · < σ(m+ n)).

Exercise 1.12. Check that ∪ is associative and satisfies

dC(l ∪ l′) = dC(l) ∪ l′ + (−1)|l|l ∪ dC(l′) . (1.2)



1.3 Chevalley-Eilenberg cohomology 13

The Chevalley-Eilenberg complex is a complex
In this paragraph we prove that dC ◦ dC = 0.
Let us first prove it in the case when V = k is the trivial module. Let ξ ∈ g∗

and x, y, z ∈ g, then

((dC ◦ dC)(ξ))(x, y, z) = −(dC(ξ))([x, y], z) + (dC(ξ))([x, z], y) − (dC(ξ))([y, z], x)

= ξ([[x, y], z] − [[x, z], y] + [[y, z], x]) = 0 .

Since ∧(g∗) is generated as an algebra (with product ∪ = ∧) by g∗ then it follows
from (1.2) that dC ◦ dC = 0.

Let us come back to the general case. Observe that C•(g, V ) = ∧•(g∗) ⊗ V is
a graded ∧•(g∗)-module: for any ξ ∈ ∧•(g∗) and η ⊗ v ∈ ∧•(g∗) ⊗ V ,

ξ · (η ⊗ v) := (ξ ∧ η) ⊗ v .

Since C•(g, V ) is generated by V as a graded ∧•(g∗)-module, and thanks to the
fact (the verification is left as an exercise) that

dC
(
ξ · (η ⊗ v)

)
= (dC(ξ)) · (η ⊗ v) + (−1)|ξ|ξ · dC(η ⊗ v) ,

then it is sufficient to prove that (dC ◦ dC)(v) = 0 for any v ∈ V . We do this now:
if x, y ∈ g then

((dC ◦ dC)(v))(x, y) = −(dC(v))([x, y]) + x · (dC(v))(y) − y · (dC(v))(x)

= −[x, y] · v + x · (y · v)) − y · (x · v) = 0 . 2

Interpretation of H0(g, V ), H1(g, V ) and H2(g, V )
We will now give an algebraic interpretation of the low degree components of

Chevalley-Eilenberg cohomology.
• Obviously, the 0-th cohomology space H0(g, V ) is equal to the space V g of

g-invariant elements in V (i.e. those elements on which the action is zero).
• 1-cocycles are linear maps l : g → V such that l([x, y]) = x · l(y) − y · l(x)

for x, y ∈ g. In other words 1-cocycles are g-derivations with values in V . 1-
coboundaries are those derivations lv (v ∈ V ) of the form lv(x) = x · v (x ∈ g),
which are called inner derivations. Thus H1(g, V ) is the quotient of the space of
derivations by inner derivations.

• 2-cocycles are linear maps ω : ∧2g → V such that

ω([x, y], z) + ω([z, x], y) + ω([y, z], x)−

− x · ω(y, z) + y · ω(x, z) − z · ω(y, z) = 0 (x, y, x ∈ g) .

This last condition is equivalent to the requirement that the space g⊕V equipped
with the bracket

[(x, u), (y, v)] = ([x, y], x · v − y · u) + ω(x, y) (x, y ∈ g , v, w ∈ V )
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is a Lie algebra. Such objects are called extensions of g by V . 2-coboundaries
ω = dC(l) correspond exactly to those extensions that are trivial (i.e. such that
the resulting Lie algebra structure on g ⊕ V is isomorphic to the one given by
ω0 = 0; the isomorphism is given by (x, v) 7→ (x, l(x) + v)).

1.4 The cohomological Duflo isomorphism

From the PBW isomorphism IPBW : S(g) −̃→U(g) of g-modules one obtains
an isomorphism of cochain complexes C•(g, S(g)) −̃→C•(g, U(g)). This is obvi-
ously not a DG algebra morphism (even at the level of cohomology).

The following result is an extension of the Duflo Theorem 1.3. It has been
rigourously proved by M. Pevzner and C. Torossian in [35], after the deep insight
of M. Kontsevich.

Theorem 1.13. IPBW ◦ J1/2· induces an isomorphism of algebras at the level of
cohomology

H•(g, S(g)) −̃→ H•(g, U(g)) .

Again, one can obviously replace J by J̃ .



2 Hochschild cohomology and spectral

sequences

In this chapter we define a cohomology theory for associative algebras, which is
called Hochschild cohomology, and explain the meaning of it. We also introduce
the notion of a spectral sequence and use it to prove that, for a Lie algebra g, the
Hochschild cohomology of U(g) is the same as the Chevalley-Eilenberg cohomology
of g.

2.1 Hochschild cohomology

The Hochschild complex
Let A be an associative algebra and M an A-bimodule (i.e. a vector space

equipped with two commuting A-actions, one on the left and the other on the
right).

The associated Hochschild complex C•(A,M) is defined as follows: Cn(A,M)
is the space of linear maps A⊗n →M and the differential dH is defined on homo-
geneous elements by the formula

(dH(f))(a0, . . . , an) = a0f(a1, . . . , an) +

n∑

i=1

(−1)if(a0, . . . , ai−1ai, . . . , an)

+(−1)n+1f(a0, . . . , an−1)an .

It is easy to prove that dH ◦ dH = 0; the corresponding cohomology is denoted by
H•(A,M).

If M = B is an algebra such that for any a ∈ A and any b, b′ ∈ B a(bb′) = (ab)b′

and (bb′)a = b(b′a) (e.g. B = A the algebra itself) then (C•(A,B), dH) becomes a
DG algebra; the product ∪ is defined on homogeneous elements by

(f ∪ g)(a1, . . . , am+n) = f(a1, . . . , am)g(am+1, . . . , am+n) .

If M = A then we write HH•(A) := H•(A,A).

Interpretation of H0(A,M) and H1(A,M)
We will now interpret the low degree components of Hochschild cohomology.
• Obviously, the 0-th cohomology space H0(A,M) is equal to the space MA of

A-invariant elements in M (i.e. those elements on which the left and right actions
coincide). In the case M = A is the algebra itself we then have H0(A,A) = Z(A).



16 2 Hochschild cohomology and spectral sequences

• 1-cocycles are linear maps l : A → M such that l(ab) = al(b) + l(a)b for
a, b ∈ A, i.e. 1-cocycles are A-derivations with values in M . 1-coboundaries are
those derivations lm (m ∈ M) of the form lm(a) = ma − am (a ∈ A), which are
called inner derivations. Thus H1(A,M) is the quotient of the space of derivations
by inner derivations.

Interpretation of HH2(A) and HH3(A): deformation theory
Now let M = A be the algebra itself.
• An infinitesimal deformation of A is an associative ǫ-linear product ∗ on

A[ǫ]/ǫ2 such that a∗b = ab mod ǫ. This last condition means that for any a, b ∈ A,
a ∗ b = ab+µ(a, b)ǫ, with µ : A⊗A→ A. The associativity of ∗ is then equivalent
to

aµ(b, c) + µ(a, bc) = µ(a, b)c+ µ(ab, c)

which is exactly the 2-cocycle condition. Conversely, any 2-cocycle allows us to
define an infinitesimal deformation of A

Two infinitesimal deformations ∗ and ∗′ are equivalent if there is an isomor-
phism of k[ǫ]/ǫ2-algebras (A[ǫ]/ǫ2, ∗) → (A[ǫ]/ǫ2, ∗′) that is the identity mod ǫ.
This last condition means that there exists l : A → A such that the isomorphism
maps a to a+ l(a)ǫ. Being a morphism is then equivalent to

µ(a, b) + l(ab) = µ′(a, b) + al(b) + l(a)b

which is equivalent to µ− µ′ = dH(l)
Therefore HH2(A) is the set of infinitesimal deformations of A up to equiva-

lences.
• An order n (n > 0) deformation of A is an associative ǫ-linear product ∗ on

A[ǫ]/ǫn+1 such that a ∗ b = ab mod ǫ. This last condition means that the product
is given by

a ∗ b = ab+

n∑

i=1

ǫiµi(a, b) ,

with µi : A⊗A→ A. Let us define µ :=
∑n
i=1 µiǫ

i ∈ C2(A,A[ǫ]). The associativity
is then equivalent to

dH(µ)(a, b, c) = µ(µ(a, b), c) − µ(a, µ(b, c)) mod ǫn+1

Proposition 2.1 (Gerstenhaber,[22]). If ∗ is an order n deformation then the
linear map νn+1 : A⊗3 → A defined by

νn+1(a, b, c) :=
n∑

i=1

(
µi(µn+1−i(a, b), c) − µi(a, µn+1−i(b, c))

)

is a 3-cocycle, i.e. dH(νn+1) = 0.
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Proof. Let us define ν(a, b, c) := µ(µ(a, b), c)−µ(a, µ(b, c)) ∈ A[ǫ]. The associativ-
ity condition then reads dH(µ) = ν mod ǫn+1 and νn+1 is precisely the coefficient
of ǫn+1 in ν. Therefore it remains to prove that dH(ν) = 0 mod ǫn+2.

We leave as an exercise to prove that

dH(ν)(a, b, c, d) = µ(a, dH(µ)(b, c, d)) − dH(µ)(µ(a, b), c, d) + dH(µ)(a, µ(b, c), d)

−dH(µ)(a, b, µ(c, d)) + µ(dH(µ)(a, b, c), d)

Then it follows from the associativity condition that mod ǫn+2 the l.h.s. equals

ν(µ(a, b), c, d) − ν(a, µ(b, c), d) + ν(a, b, µ(c, d)) − µ(ν(a, b, c), d) + µ(a, ν(b, c, d)) .

Finally, a straightforward computation shows that this last expression is identically
zero. 2

Given an order n deformation one can ask if it is possible to extend it to an
order n+1 deformation. This means that we ask for a linear map µn+1 : A⊗A→ A
such that

n+1∑

i=0

µi(µn+1−i(a, b), c) =

n+1∑

i=0

µi(a, µn+1−i(b, c)) ,

which is equivalent to dH(µn+1) = νn+1.
In other words, the only obstruction for extending deformations lies inHH3(A).

This deformation-theoretical interpretation of Hochschild cohomology is due
to M. Gerstenhaber [22].

2.2 Spectral sequences

Spectral sequences are essential algebraic tools for working with cohomology.
They were invented by J. Leray [32, 33].

Definition
A spectral sequence is a sequence (Er, dr)r≥0 of bigraded spaces

Er =
⊕

(p,q)∈Z2

Ep,qr

together with differentials

dr : Ep,qr −→ Ep+r,q−r+1
r , dr ◦ dr = 0

such that H(Er, dr) = Er+1 (as bigraded spaces).
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One says that a spectral sequence converges (to E∞) or stabilizes if for any
(p, q) there exists r(p, q) such that for all r ≥ r(p, q), Ep,qr = Ep,qr(p,q). We then

define Ep,q∞ := Ep,qr(p,q). It happens when dp+r,q−r+1
r = dp,qr = 0 for r ≥ r(p, q).

A convenient way to think about spectral sequences is to draw them :

Ep,q+1
∗ Ep+1,q+1

∗ Ep+2,q+1
∗

Ep,q∗

dp,q
1 //

dp,q
0

OO

dp,q
2

**UUUUUUUUUUUUUUUUUUUUU Ep+1,q
∗ Ep+2,q

∗

Ep,q−1
∗ Ep+1,q−1

∗ Ep+2,q−1
∗

The spectral sequence of a filtered complex
A filtered complex is a decreasing sequence of complexes

C• = F 0C• ⊃ · · · ⊃ F pC• ⊃ F p+1C• ⊃ · · · ⊃
⋂

i∈N

F iC• = {0} .

Here we have assumed that the filtration is complatible with differentials and
separated (∩pF

pCn = {0} for any n ∈ Z).

Let us construct a spectral sequence associated to a filtered complex (F ∗C•, d).
We first define

Ep,q0 := Grp(Cp+q) =
F pCp+q

F p+1Cp+q

and d0 = d : Ep,q0 → Ep,q+1
0 . It is well-defined as d is compatible with the filtration.

We then define

Ep,q1 := Hp+q(Grp(Cp+q)) =
{a ∈ F pCp+q|d(a) ∈ F p+1Cp+q+1}

d(F pCp+q−1) + F p+1Cp+q

and d1 = d : Ep,q1 → Ep+1,q
1 .

More generally, we define

Ep,qr :=
{a ∈ F pCp+q|d(a) ∈ F p+rCp+q+1}

d(F p−r+1Cp+q−1) + F p+1Cp+q
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and dr = d : Ep,qr → Ep+r,q−r+1
r . Here the denominator is implicitely understood

as {denominator as written} ∩ {numerator}.

Exercise 2.2. Prove that H(Er, dr) = Er+1.

We now observe that the cohomology of a (not necessarily separated) filtered
complex (F •C•,d) inherits a natural filtration, namely

F pHq(C•) = π
(
ker{d : Cq → Cq+1} ∩ F pCq

)
,

where π is the natural surjective projection onto the cohomology. In more down-
to-earth terms, the filtration on the complex defines automatically a filtration on
the subspace of cocycles; the surjective projection from cocycles onto cohomology
induces naturally a filtration.

We now have the following

Proposition 2.3. If the spectral sequence (Er)r associated to a filtered complex
(F ∗C•, d) converges then

Ep,q∞ = GrpHp+q(C•) .

Proof. Let (p, q) ∈ Z2. For r ≥ max
(
r(p, q), p+ 1

)
,

Ep,qr =
{a ∈ F pCp+q|d(a) = 0}

d(Cp+q−1) + F p+1Cp+q

=
F pHp+q(C•)

F p+1Hp+q(C•)
= GrpHp+q(C•) .

This proves the proposition. 2

Example 2.4 (Spectral sequences of a double complex). Assume we are given
a double complex (C•,•, d, d′), i.e. a Z2-graded vector space together with degree
(1, 0) and (0, 1) linear maps d′ and d′′ such that d′ ◦ d′ = 0, d′′ ◦ d′′ = 0 and
d′ ◦ d′′ + d′′ ◦ d′ = 0. Then the total complex (C•

tot, dtot) is defined as

Cntot :=
⊕

p+q=n

Cp,q , dtot := d′ + d′′ .

There are two filtrations, and thus two spectral sequences, naturally associated to
(C•

tot, dtot):

F ′kCntot :=
⊕

p+q=n
q≥k

Cp,q and F ′′kCntot :=
⊕

p+q=n
p≥k

Cp,q .
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Therefore the first terms of the corresponding spectral sequences are:

E′p,q
1 = Hq(C•,p, d′) with d1 = d′′

E′′p,q
1 = Hq(Cp,•, d′′) with d1 = d′ .

In the case the d′-cohomology is concentrated in only one degree q then the
spectral sequence stabilizes at E2 and the total cohomology is given by H•

tot =
H•−q

(
Hq(C, d′), d′′

)
.

Spectral sequences of algebras
A spectral sequence of algebras is a spectral sequence such that each Er is

equipped with a bigraded associative product that turns (Er, dr) into a DG alge-
bra. Of course, we require that H(Er, dr) = Er+1 as algebras.

As in the previous paragraph a filtered DG algebra (F ∗A•, d) gives rise to a
spectral sequence of algebras (Er)r such that

• Ep,q0 := Grp(Ap+q),

• Ep,q1 := Hp+q(Grp(Ap+q)),

• if it converges then Ep,q∞ = GrpHp+q(A•).

2.3 Application: Chevalley-Eilenberg vs Hochschild
cohomology

Let M be a U(g)-bimodule. Then M is equipped with a g-module structure
via

∀x ∈ g , ∀m ∈M , x ·m = xm−mx .

We want to prove the following

Theorem 2.5. 1. There is an isomorphism H•(g,M) ∼= H•(U(g),M).
2. If M = A is equipped with a U(g)-invariant associative product then the previous
isomorphism becomes an isomorphism of (graded) algebras.

We define a filtration on the Hochschild complex C•(U(g),M): F pCn(U(g),M)
is given by linear maps U(g)⊗n →M that vanish on

⊕

i1+···+in<p

U(g)≤i1 ⊗ · · · ⊗ U(g)≤in .
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Computing E0

First of all it follows from the PBW theorem that

Ep,q0 = Grp
(
Cp+q(U(g),M)

)
=

⊕

i1+···+ip+q=p

Hom
(
Si1(g) ⊗ · · · ⊗ Sip+q (g),M

)
.

If we pick a class in Ep,q0 represented by P in F pCp+q(U(g),M), then the isomor-
phism sends the class of P to

P (x̃1, . . . , x̃p+q) ∈M, xi ∈ S(g), i = 1, . . . , p+ q,

where xi are homogeneous and x̃i denotes any lift of xi in S(g) to U(g).

We then compute d0. We have

dH(P )(x0, . . . , xp+q) =x̃0P (x̃1, . . . , x̃p+q) +

p+q∑

k=1

(−1)kP (x̃0, . . . , x̃k−1x̃k, . . . , x̃p+q)+

+ (−1)p+q+1P (x̃0, . . . , x̃p+q−1)x̃p+q =

=ǫ(x0)P (x1, . . . , xp+q) +

p+q∑

k=1

(−1)kP (x0, . . . , xk−1xk, . . . , xp+q)

+ (−1)p+q+1P (x0, . . . , xp+q−1)ǫ(xp+q) ,

where the augmentation map ǫ : S(g) → k is the projection onto its piece of degree
0.

Therefore d0 is the coboundary operator for the Hochschild cohomology of Ŝ(g)
with values in the bimodule M (where the left and right action coincide and are
given by ǫ).

Computing E1

We first need to compute H(Ŝ(g),M) = H(Ŝ(g), k) ⊗ M . For this we will
need a standard lemma from homological algebra: one can define an inclusion of
complexes (∧•(g)∗, 0) →֒ C•(Ŝ(g), k) as the transpose of the composed map

⊗nŜ(g) −→ ⊗ng −→ ∧ng .

We therefore need the following standard result of homological algebra:

Lemma 2.6. For a finite-dimensional vector space V over k, the natural inclu-
sion ∧•(V ∗) →֒ C•(Ŝ(V ), k), resp. the projection C•(Ŝ(V ), k) ։ (∧•(V ∗), 0), is
a quasi-isomorphism of complexes that induces a (graded) algebra isomorphism

∧•(V )∗ ∼= H•(Ŝ(V ), k) at the level of cohomology, resp. a quasi-isomorphism of
DG algebras.
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Proof. First observe that elements of T •(V ∗) may be viewed in a natural way as

Hochschild cochains on Ŝ(V ): namely, we consider Ŝ(V ) as the (filtered) algebra
of formal Taylor series on V ∗, thus, an element of V ∗ acts on such a Taylor series
by taking the corresponding directional derivative evaluated at 0. It is easy to
verify that T •(V ∗) is annihilated by dH .

We then leave as an exercise to prove that Hochschild cocycles lying in the
kernel of the surjective graded algebra morphism p : C•(Ŝ(V ), k) ։ T •(V ∗) are
coboundaries.

Thus, H•(Ŝ(V ), k) is the quotient of the tensor algebra T •(V ∗) by its two-sided
ideal generated by the image of p◦dH . The only non-trivial elements in the image
of p ◦ dH are

(p ◦ dH)(ξ1 ⊗ · · · ⊗ ξiξi+1 ⊗ · · · ⊗ ξn) = ξ1 ⊗ · · · ⊗ (ξi ⊗ ξi+1 + ξi+1 ⊗ ξi)⊗ · · · ⊗ ξn,

whence H•(Ŝ(V ), k) ∼= T •(V ∗)/ 〈ξ ⊗ η + η ⊗ ξ, ξ, η ∈ V ∗〉 = ∧•(V ∗). 2

Remark 2.7. Lemma 2.6 is also the statement that Ŝ(V ) and ∧(V ∗) are Koszul
dual to each other: an alternative proof of it, more conceptual, consists in iden-
tifying the cohomology of the Hochschild complex of Ŝ(g) with values in the aug-

mentation (bi)module with Ext•
bS(V )

(k, k) in the category of left Ŝ(V )-modules, for

whose computation we may also use the Koszul complex of differential forms on
V ∗ with formal Taylor series as coefficients.

Lemma 2.6 yields

Ep,q1 =

{
Hom(∧p(g), k) ⊗M, q = 0

{0}, otherwise .

Hence, the spectral sequence converges and E∞ = E2 = H(E1, d1). It remains to
prove that d1 = dC .

It suffices to prove this on degree 0 and 1 elements, thus

(d1(m))(x) = (dH(m))(x) = xm−mx = (dC(m))(x),

and

(d1(ℓ))(x1, x2) =(dH(ℓ))(x1, x2) − (dH(ℓ))(x2, x1) =

=x1ℓ(x2) − ℓ(x1x2) + ℓ(x1)x2 − x2ℓ(x1) + ℓ(x2x1) − ℓ(x2)x1 =

=(dC(ℓ))(x1, x2),

for ℓ : g → M , xi in g, i = 1, 2. The first identity follows from Lemma 2.6: we
leave it as an exercise to check that such an isomorphism is explicitly provided by
the assignment

E2,0
1 ∋ [ℓ] 7→ {g ⊗ g ∋ x1 ⊗ x2 7→ ℓ(x1, x2) − ℓ(x2, x1)} ,
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where [ℓ] denotes the class of ℓ in C2(U(g),M) in E2,0
1 . Hence, the first equality

follows immediately; the second one follows immediately from the definition of
U(g).

This ends the proof of the first part of Theorem 2.5: H•(U(g),M) = E2 =
H•(g,M).

The second part of the theorem follows from the fact that H•(U(g), A) with
multiplication defined in §2.1 is isomorphic to its associated graded algebra. 2



3 Dolbeault cohomology and the

Kontsevich isomorphism

The main goal of this chapter is to present an analogous statement, for complex
manifolds, of the Duflo theorem. It was proposed by M. Kontsevich in his seminal
paper [29]. We first begin with a crash course in complex geometry (mainly its
algebraic aspect) and then define the Atiyah and Todd classes, which play a rôle
analogous to the adjoint action and Duflo element, respectively. We continue with
the definition of the Hochschild cohomology of a complex manifold and state the
result.

Throughout this chapter k = C is the field of complex numbers.

3.1 Complex manifolds

An almost complex manifold is a differentiable manifold M together with an
automorphism J : TM → TM of its tangent bundle such that J2 = −id. In
particular M is even dimensional. Then the complexified tangent bundle TCM =
TM ⊗C decomposes as the direct sum T ′⊕T ′′ of two eigenbundles corresponding
to the eigenvalues ±i of J .

A complex manifold is an almost complex manifold (M,J) that is integrable,
i.e. such that one of the following equivalent conditions is satisfied:

• T ′ is stable under the Lie bracket,

• T ′′ is stable under the Lie bracket.

Sections of T ′ (resp. T ′′) are called vector fields of type (1, 0) (resp. of type (0, 1)).

The graded space Ω•(M) = Γ(M,∧•T ∗
C
M) of complex-valued differential forms

therefore becomes a bigraded space. Namely

Ωp,q(M) = Γ(M,∧p(T ′)∗ ⊗ ∧q(T ′′)∗) .

For any ω ∈ Ωp,q(M) one has that

dω ∈ Γ(M, (∧p(T ′)∗ ⊗ ∧q(T ′′)∗) ∧ T ∗
CM) = Ωp+1,q(M) ⊕ Ωp,q+1(M) ,

therefore d = ∂+∂̄ with ∂ : Ω•,•(M) → Ω•+1,•(M) and ∂̄ : Ω•,•(M) → Ω•,•+1(M).
The integrability condition is actually equivalent to ∂̄ ◦ ∂̄ = 0. Therefore one can
define a DG algebra (Ω0,•(M), ∂̄), the Dolbeault algebra.
The corresponding cohomology is denoted H•

∂̄
(M).
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Let E be a differentiable C-vector bundle (i.e. fibers are C-vector spaces). The
space Ω(M,E) of forms with values in E is bigraded as above. In general one can
NOT turn Ω0,•(M,E) into a DG vector space with differential ∂̄ extending the
one on Ω0,•(M) in the following way: for any ξ ∈ Ω0,•(M) and any s ∈ Γ(M,E)

∂̄(ξs) = (∂̄ξ)s+ (−1)|ξ|ξ∂̄(s) .

Such a differential is called a ∂̄-connection and it is uniquely determined by its
restriction on degree zero elements

∂̄ : Γ(M,E) −→ Ω0,1(M,E) .

A complex vector bundle E equipped with a ∂̄-connection is called a holomor-
phic vector bundle. Therefore, given a holomorphic vector bundle E one has an
associated Dolbeault cohomology H•

∂̄
(M,E).

For a comprehensible introduction to complex manifolds we refer to the first
chapters of the standard monography [23].

Interpretation of H0
∂̄
(M,E)

There is an alternative (but equivalent) definition of complex manifolds: a
complex manifold is a topological space locally homeomorphic to Cn and such
that transition functions are biholomorphic.

In this framework, in local holomorphic coordinates (z1, . . . , zn) one has ∂ =
dzi ∂

∂zi , ∂̄ = dz̄i ∂
∂z̄i , and J is simply given by complex conjugation. Therefore a

holomorphic function, i.e. a function that is holomorphic in any chart of holo-
morphic coordinates, is a C∞ function f satisfying ∂̄(f) = 0.

Similarly, a holomorphic vector bundle is locally homeomorphic to Cn × V (V
is the typical fiber) with transition functions being End(V )-valued holomorphic
functions. Again one can locally write ∂̄ = dzi ∂

∂z̄i and holomorphic sections,
i.e. sections that are holomorphic in small enough charts, are C∞ sections s such
that ∂̄(s) = 0.

In other words, the 0-th Dolbeault cohomology H0
∂̄
(M,E) of a holomorphic

vector bundle E is its space of global holomorphic sections.

Interpretation of H1
∂̄

(
M, End(E)

)
Let E be a C∞ vector bundle.
Observe that given two ∂̄-connections ∂̄1 and ∂̄2, their difference ξ = ∂̄2−∂̄1 lies

in Ω0,1
(
M,End(E)

)
(since ∂̄i(fs) = ∂̄(f)s + f∂̄i(s)). Therefore the integrability

condition ∂̄i ◦ ∂̄i = 0 implies that ∂̄1 ◦ ξ + ξ ◦ ∂̄1 + ξ ◦ ξ = 0. Therefore any
infinitesimal deformation ∂̄ǫ of a holomorphic structure ∂̄ on E (i.e. a C[ǫ]/ǫ2-
valued ∂̄-connection ∂̄ǫ = ∂̄ mod ǫ) can be written as ∂̄ǫ = ∂̄ + ǫξ with ξ ∈
Ω0,1

(
M,End(E)

)
satisfying ∂̄ ◦ ξ + ξ ◦ ∂̄ = 0.

Such an infinitesimal deformation is trivial, meaning that it identifies with ∂̄
under an automorphism of E (over C[ǫ]/ǫ2) that is the identity mod ǫ, if and only
if there exists a section s of End(E) such that ξ = ∂̄ ◦ s− s ◦ ∂̄.
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Consequently the space of infinitesimal deformations of the holomorphic struc-
ture of E up to the trivial ones is given by H1

∂̄

(
M,End(E)

)
.

Remark 3.1. Here we should emphazise the following obvious facts we implicitely
use.

First of all, if E is a holomorphic vector bundle then so is E∗. Namely, for any
s ∈ Γ(M,E) and ζ ∈ Γ(M,E∗) one defines 〈∂̄(ζ), s〉 := ∂̄

(
〈ζ, s〉

)
− 〈ζ, ∂̄(s)〉.

Then, if E1 and E2 are holomorphic vector bundles then so is E1⊗E2: for any
si ∈ Γ(M,Ei) (i = 1, 2) ∂̄(s1 ⊗ s2) := ∂̄(s1) ⊗ s2 + s1 ⊗ ∂̄(s2).

Thus, if E is a holomorphic vector bundle then so is End(E) = E∗ ⊗ E: for
any s ∈ Γ

(
End(E)

)
one has ∂̄(s) = ∂̄ ◦ s− s ◦ ∂̄.

3.2 Atiyah and Todd classes

Let E → M be a holomorphic vector bundle. In this paragraph we introduce
Atiyah and Todd classes of E. Any connection ∇ on M with values in E, i.e. a
linear operator

∇ : Γ(M,E) −→ Ω1(M,E)

satisfying the Leibniz rule ∇(fs) = (df)s+ f(∇s), decomposes as ∇ = ∇′ + ∇′′,
where ∇′ (resp. ∇′′) takes values in Ω1,0(M,E) (resp. Ω0,1(M,E)). Connections
such that ∇′′ = ∂̄ are said to be compatible with the complex structure.

A connection compatible with the complex structure always exists. Namely, it
always exists locally and one can then use a partition of unity to conclude. Let us
choose such a connection ∇ and consider its curvature R ∈ Ω2(M,End(E)): for
any u, v ∈ X(M)

R(u, v) = ∇u∇v −∇v∇u −∇[u,v] .

In other words ∇ ◦∇ = R·.
One can see that in the case of a connection compatible with the complex structure
the curvature tensor does not have (0, 2)-component: R = R2,0 +R1,1.

Remember that locally a connection can be written as ∇ = d + Γ, with Γ ∈
Ω1(U,End(E|U )). The compatibility with the complex structure imposes that
Γ ∈ Ω1,0(U,End(E|U )). Then one can check easily that R1,1 = ∂̄(Γ) (locally!).
Therefore ∂̄(R1,1) = 0. We define the Atiyah class of E as the Dolbeault class

atE := [R1,1] ∈ H1
∂̄

(
(T ′)∗ ⊗

(
End(E)

))
.

Lemma 3.2. atE is independent of the choice of a connection compatible with the
complex structure.
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Proof. Let ∇ and ∇̃ be two such connections. We see that ∇−∇̃ is a 1-form with
values in End(E): for any f ∈ C∞(M) and s ∈ Γ(M,E)

(∇− ∇̃)(fs) = (df)s+ f(∇s) − (df)s− f(∇̃s) = f(∇− ∇̃)(s) .

Therefore Γ − Γ̃ is a globally well-defined tensor and R1,1 − R̃1,1 = ∂̄(Γ − Γ̃) is a
Dolbeault coboundary. 2

For any n > 0 one defines the n-th scalar Atiyah class an(E) as

an(E) := tr(atnE) ∈ Hn
∂̄

(
M,∧n(T ′)∗

)
.

Observe that tr
(
(R1,1)n

)
lies in Ω0,n(M,⊗n(T ′)∗), but we regard it as an element

in Ω0,n(M,∧n(T ′)∗) thanks to the natural projection ⊗(T ′)∗ → ∧(T ′)∗.
The Todd class of E is then

tdE := det
( atE

1 − e−atE

)
.

One sees without difficulties that it can be expanded formally in terms of an(E).

Remark 3.3. We want to observe that there is an alternative definition of the
Atiyah class: as has been noted before, a holomorphic vector bundle E over a
complex manifold X always admits a connection compatible with the complex
structure. On the other, we may say that a connection ∇ on E is holomorphic, if it
maps holomorphic sections to holomorphic sections: again, it is clear that, locally,
holomorphic connections exist. Still, one cannot in general glue local holomorphic
connections to a global one: the Atiyah class of E may be also viewed as the
obstruction against the existence of a global holomorphic connection on E. For
more details on the Atiyah class, we refer to [26].

We notice briefly that in the case of a Kähler manifold X and a holomorphic
vector bundle E over X, the n-th Chern class of E coincides with the n-th scalar
Atiyah class of E. We refer again to [26] for more details on this issue.

3.3 Hochschild cohomology of a complex manifold

Hochschild cohomology of a differentiable manifold
Let M be a differentiable manifold. We introduce the differential graded al-

gebras T •
polyM and D•

polyM of polyvector field and polydifferential operators on
M .

First of all T •
polyM := Γ(M,∧•TM) with product ∧ and differential d = 0.
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The algebra of differential operators is the subalgebra of End(C∞(M)) gener-
ated by functions and vector fields. Then we define the DG algebra D•

polyM as

the DG subalgebra of
(
C•(C∞(M), C∞(M)),∪, dH

)
whose elements are cochains

being differential operators in each argument (i.e. if we fix all the other arguments
then it is a differential operator in the remaining one).

The following result, due to J. Vey [42] (see also [29]), computes the cohomology
of D•

polyM . It is an analogue for smooth functions of the original Hochschild-
Kostant-Rosenberg theorem [25] for regular affine algebras.

Theorem 3.4. The degree 0 graded map

IHKR : (T •
polyM, 0) −→ (D•

polyM,dH)

v1 ∧ · · · ∧ vn 7−→
(
f1 ⊗ · · · ⊗ fn 7→

1

n!

∑

σ∈Sn

(−1)ε(σ)vσ(1)(f1) · · · vσ(n)(fn)
)

is a quasi-isomorphism of complexes that induces an isomorphism of (graded) al-
gebras at the level of cohomology.

Here we have used the signature ε, which is a group morphism Sn → {±1}
that is defined by ε

(
(i, i+ 1)

)
= −1 on transpositions.

Proof. First of all it is easy to check that it is a morphism of complexes (i.e. images
of IHKR are cocycles).

Then one can see that everything is C∞(M)-linear: the products ∧ and ∪, the
differential dH and the map IHKR. Moreover, one can see that D•

poly is nothing
but the Hochschild complex of the algebra J∞

M of ∞-jets of functions on M with
values in C∞(M).1

As an algebra J∞
M can be identified (non canonically) with global sections of

the bundle of algebras Ŝ(T ∗M), and ǫ with the projection on degree 0 elements.
Therefore the statement follows immediatly if one applies Lemma 2.6 fiberwise to
V = T ∗

mM (m ∈M). 2

Hochschild cohomology of a complex manifold
Let us now return to the case of a complex manifold M .

First of all for any vector bundle E over M we define T ′•
poly(M,E) := Γ(M,E⊗

∧•T ′).

1Recall that J∞

M
:= HomC∞(M)(D

1
polyM, C∞(M)) with product given by

j1 · j2(P ) := (j1 ⊗ j2)(∆(P )) (j1, j2 ∈ J∞

M , P ∈ D1
polyM) ,

where ∆(P ) ∈ D2
polyM is defined by ∆(P )(f, g) := P (fg). The module structure on C∞(M) is

given by the projection ǫ : J∞

M
→ C∞(M) obtained as the transpose of C∞(M) →֒ D1

polyM .
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Then we define ∂-differential operators as endomorphisms of C∞(M) generated
by functions and type (1, 0) vector fields, and for any vector bundle E we define
E-valued ∂-differential operators as linear maps C∞(M) → Γ(M,E) obtained by
composing ∂-differential operators with a section of E or T ′⊗E (sections of T ′⊗E
are E-valued type (1, 0) vector fields).

The complex D′•
poly(M,E) of E-valued ∂-polydifferential operators is defined

as the subcomplex of
(
C•(C∞(M),Γ(M,E)), dH

)
consisting of cochains that are

∂-differential operators in each argument.

We have the following obvious analogue of Theorem 3.4:

Theorem 3.5. The degree 0 graded map

IHKR :
(
T ′•

poly(M,E), 0
)

−→
(
D′•

poly(M,E), dH
)

(v1 ∧ · · · ∧ vn) ⊗ s 7−→
(
f1 ⊗ · · · ⊗ fn 7→

1

n!

∑

σ∈Sn

(−1)σvσ(1)(f1) · · · vσ(n)(fn)s
)

is a quasi-isomorphism of complexes. 2

Now observe that ∧•T ′ is a holomorphic bundle of graded algebras with product
being ∧. Namely, T ′ has an obvious holomorphic structure: for any v ∈ Γ(M,T ′)
and any f ∈ C∞(M)

(∂̄(v))(f) := ∂̄(v(f)) − v(∂̄(f)) ,

and it extends uniquely to a holomorphic structure on ∧•T ′, which is a derivation
with respect to the product ∧: for any v, w ∈ Γ(M,T ′•

poly)

∂̄(v ∧ w) = ∂̄(v) ∧ w + (−1)|v|v ∧ ∂̄(w) .

Therefore ∂̄ turns Ω0,•(M,∧•T ′) = T ′•
poly(M,∧•(T ′′)∗) into a DG algebra.

One also has an action of ∂̄ on ∂-differential operators defined in the same way:
for any f ∈ C∞(M)

(∂̄(P ))(f) = ∂̄(P (f)) − P (∂̄(f)) .

It can be extended uniquely to a degree one derivation of the graded algebra
D′•

poly(M,∧•(T ′′)∗), with product given by

(P ∪Q)(f1, . . . , fm+n) = (−1)m|Q|P (f1, . . . , fm) ∧Q(fm+1, . . . , fm+n) ,

where | · | refers to the exterior degree.
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3.4 The Kontsevich isomorphism

Theorem 3.6. The map IHKR ◦ td
1/2
T ′ · induces an isomorphism of (graded) alge-

bras
H∂̄(∧T

′)−̃→H
(
(∧T ′′)∗ ⊗D′

poly, dH + ∂̄
)

at the level of cohomology.

This result has been stated by M. Kontsevich in [29] (see also [10]) and proved
in a more general context in [9].

Remark 3.7. Since a1(T
′) is a derivation of H∂̄(∧T

′) then ea1(T
′) is an algebra

automorphism of H∂̄(∧T
′). Therefore, as for the usual Duflo isomorphism (see

Remark 1.4), one can replace the Todd class of T ′ by the modified Todd class

t̃dT ′ := det

(
atT ′

eatT ′/2 − e−atT ′/2

)
.



4 Superspaces and Hochschild

cohomology

In this chapter we provide a short introduction to supermathematics and deduce
from it a definition of the Hochschild cohomology for DG associative algebras.
Moreover we prove that the Hochschild cohomology of the Chevalley algebra
(∧•(g)∗, dC) of a finite dimensional Lie algebra g is isomorphic to the Hochschild
cohomology of its universal envelopping algebra U(g).

4.1 Supermathematics

Definition 4.1. A super vector space (simply, a superspace) is a Z/2Z-graded
vector space V = V0 ⊕ V1.

In addition to the usual well-known operations on G-graded vector spaces (di-
rect sum ⊕, tensor product ⊗, spaces of linear maps Hom(−,−), and duality (−)∗)
one has a parity reversion operation Π: (ΠV )0 = V1 and (ΠV )1 = V0.

In the sequel V is always a finite dimensional super vector space.

Supertrace and Berezinian
For any endomorphism X of V (also refered as a supermatrix on V ) one can

define its supertrace str as follows: if we write X =

(
x00 x10

x01 x11

)
, meaning that

X = x00 + x10 + x01 + x11 with xij ∈ Hom(Vi, Vj), then

str(X) := tr(x00) − tr(x11) .

On invertible endomorphisms we also have the Berezinian Ber (or superdetermi-
nant) which is uniquely determined by the two defining properties:

Ber(AB) = Ber(A)Ber(B) and Ber(eX) = estr(X) .

A very nice, short and complete introduction to the Berezinian can be found in [15],
to which we refer for more details.

Symmetric and exterior algebras of a super vector space
The (graded) symmetric algebra S(V ) of V is the quotient of the tensor algebra

T (V ) of V by its two-sided ideal generated by

v ⊗ w − (−1)|v||w|w ⊗ v ,
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where v and w are homogeneous elements of degree |v| and |w| in V , respectively.
It has two different (Z-)gradings:

• the first one (by the symmetric degree) is obtained by assigning degree 1
to elements of V . Its degree n homogeneous piece, denoted by Sn(V ), is
the quotient of the space V ⊗n by the action of the symmetric group Sn by
super-permutations:

(i , i+1) · (v1 ⊗ · · · ⊗ vn) := (−1)|vi||vi+1|v1 ⊗ · · · vi ⊗ vi+1 · · · ⊗ vn .

• the second one (the internal grading) is obtained by assigning degree i ∈
{0, 1} to elements of Vi. Its degree n homogeneous piece is denoted by
S(V )n, and we write |x| for the internal degree of a homogeneous element
x ∈ S(V ).

Example 4.2. (a) If V = V0 is purely even then S(V ) = S(V0) is the usual
symmetric algebra of V0, S

n(V ) = Sn(V0) and S(V ) is concentrated in degree 0
for the internal grading.
(b) If V = V1 is purely odd then S(V ) = ∧(V1) is the exterior algebra of V1.
Moreover, Sn(V ) = ∧n(V1) = S(V )n.

The (graded) exterior algebra ∧(V ) of V is the quotient of the tensor algebra
T (V ) of V by its two-sided ideal generated by

v ⊗ w + (−1)|v||w|w ⊗ v .

It has two different (Z-)gradings:

• the first one (by the exterior degree) is obtained by assigning degree 1 to
elements of V . Its degree n homogeneous piece is, denoted ∧n(V ), is the
quotient of the space of V ⊗n by the action of the symmetric group Sn by
signed super-permutations:

(i , i+1) · (v1 ⊗ · · · ⊗ vn) := −(−1)|vi||vi+1|v1 ⊗ · · · vi ⊗ vi+1 · · · ⊗ vn .

• the second one (the internal grading) is obtained by assigning degree i ∈
{0, 1} to elements of V1−i. Its degree n homogeneous piece is denoted by
∧(V )n, and we write |x| for the internal degree of a homogeneous element
x ∈ ∧(V ). In other words,

|v1 ∧ · · · ∧ vn| = n−
n∑

i=1

|vi| .

Example 4.3. (a) If V = V0 is purely even then ∧(V ) = ∧(V0) is the usual
exterior algebra of V0 and ∧n(V ) = ∧n(V0) = ∧(V )n.
(b) If V = V1 is purely odd then ∧(V ) = S(V1) is the symmetric algebra of V1.
Moreover, ∧n(V ) = Sn(V1) and ∧(V ) is concentrated in degree 0 for the internal
grading.
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Observe that one has an isomorphism of bigraded vector spaces

S(ΠV ) −̃→ ∧(V )

v1 · · · vn 7−→ (−1)
Pn

j=1(j−1)|vj |v1 ∧ · · · ∧ vn . (4.1)

Remark that it remains true without the sign on the right. The motivation for
this quite mysterious sign modification we make here is explained in the next
paragraph.

Graded-commutative algebras

Definition 4.4. A graded algebra A• is graded-commutative if for any homoge-
neous elements a, b one has a · b = (−1)|a||b|b · a.

Example 4.5. (a) the symmetric algebra S(V ) of a super vector space is graded-
commutative with respect to its internal grading.
(b) the graded algebra Ω•(M) of differentiable forms on a smooth manifold M is
graded-commutative.

The exterior algebra of a super vector space, with product ∧ and the internal
grading, is NOT a graded-commutative algebra in general: for vi ∈ Vi (i = 0, 1)
one has

v0 ∧ v1 = −v1 ∧ v0 .

One way to correct this drawback is to define a new product • on ∧(V ) as follows:
let v ∈ ∧k(V ) and w ∈ ∧l(V ) then

v • w := (−1)k(|w|+l)v ∧ w .

In this situation one can check (this is an exercise) that the map (4.1) defines a
graded algebra isomorphism

(
S(ΠV ), ·

)
−→

(
∧ (V ), •

)
.

Graded Lie algebras

Definition 4.6. A graded Lie algebra is a Z-graded vector space g• equipped with
a degree zero graded linear map [, ] : g⊗g → g that is graded-skew-symmetric, i.e.

[x, y] = −(−1)|x||y|[y, x] ,

and satisfies the graded Jacobi identity

[x, [y, z]] = [[x, y], z] + (−1)|x||y|[y, [x, z]] .
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Examples 4.7. (a) Let A• be a graded associative algebra. Then A equipped
with the super-commutator

[a, b] = ab− (−1)|a||b|ba

is a graded Lie algebra.
(b) Let A• be a graded associative algebra and consider the space Der(A)

of super derivations of A: a degree k graded linear map d : A → A is a super
derivation if

d(ab) = d(a)b+ (−1)k|a|ad(b) .

Der(A) is stable under the super-commutator inside the graded associative alge-
bra End(A) of (degree non-preserving) linear maps A → A (with product the
composition).

The previous example motivates the following definition:

Definition 4.8. Let g• be a graded Lie algebra.
1. A graded g-module is a graded vector space V with a degree zero graded

linear map g ⊗ V → V such that

x · (y · v) − (−1)|x||y|y · (x · v) = [x, y] · v .

In other words it is a morphism g → End(V ) of graded Lie algebras.
2. If V = A is a graded associative algebra, then one says that g acts on A by
derivations if this morphism takes values in Der(A). In this case A is called a
g-module algebra.

4.2 Hochschild cohomology strikes back

Hochschild cohomology of a graded algebra
Let A be a graded associative algebra. Its (shifted) Hochschild (cochain) com-

plex C•(A,A) is defined as the sum of spaces of (not necessarily graded) linear maps
A⊗(•−1) → A. Let us denote by | · | the degree of those linear maps; the grading
on C•(A,A) is given by the total degree, denoted || · ||. For any f : A⊗m → A,
||f || = |f | +m− 1. The differential dH is given by

(dH(f))(a1, . . . , am+1) = (−1)||f ||(|a1|−1)a1f(a2, . . . , am+1)+ (4.2)

+

m∑

i=1

(−1)i−1+
Pi−1

j=1 |aj |f(a1, . . . , aiai+1, . . . , am+1)

+ f(a1, . . . , am)am+1 . (4.3)

Again, it is easy to prove that dH ◦ dH = 0.
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As in Paragraph 2.1
(
C•(A,A), dH

)
is a DG algebra with product ∪ defined

by

(f ∪ g)(a1, . . . , am+n) := (−1)|g|(|a1|+···+|am|)f(a1, . . . , am)g(am+1, . . . , am+n) .

Hochschild cohomology of a DG algebra
Let A be a graded associative algebra. We now prove that C•(A,A) is naturally

a Der(A)-module.

For any d ∈ Der(A) and any f ∈ C•(A,A) one defines

d(f)(a1, . . . , am) = d
(
f(a1, . . . , am)

)
+

− (−1)||d||||f ||
m∑

i=1

(−1)||d||(i−1+
Pi−1

j=1 |aj |)f(a1, . . . , dai, . . . , am) .

In other words, d is defined as the unique degree |d| derivation for the cup product
that is given by the super-commutator on linear maps A→ A.

Moreover, one can easily check that d ◦ dH + dH ◦ d = 0.

Therefore if (A•, d) is a DG algebra then its Hochschild complex is C•(A,A)
together with dH + d as a differential. It is again a DG algebra, and we denote its
cohomology by HH•(A, d).

Remark 4.9 (Deformation theoretic interpretation). In the spirit of the dis-
cussion in Paragraph 2.1 one can prove that HH2(A, d) is the set of equivalence
classes of infinitesimal deformations of A as an A∞-algebra (an algebraic struc-
ture introduced by J. Stasheff in [40]) and that the obstruction to extending such
deformations order by order lies in HH3(A, d).

More generally, if (M,dM ) is a DG-bimodule over (A, dA) then the (shifted)
Hochschild complex C•(A,M) of A with values in M consists of linear maps
A⊗n →M (n ≥ 0) and the differential is dH + d, with dH given by (4.2) and

d(f)(a1, . . . , am) = dM
(
f(a1, . . . , am)

)
+

− (−1)||d||||f ||
m∑

i=1

(−1)||d||(i−1+
Pi−1

j=1 |aj |)f(a1, . . . , dAai, . . . , am) .

Hochschild cohomology of the Chevalley–Eilenberg algebra
One has the following important result:

Theorem 4.10. Let g be a finite dimensional Lie algebra. Then there is an
isomorphism of graded algebras HH•(∧g∗, dC) −̃→HH•(U(g)).
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Let us emphazise that this result is related to some general considerations
about Koszul duality for quadratic algebras (see e.g. [36]).

Observe that, although we are interested here mainly in finite-dimensional Lie
algebras concentrated in degree 0), the above Theorem holds true for any finite-
dimensional graded Lie algebra g with due changes.

Proof. Thanks to Theorem 2.5 it suffices to prove thatHH•(∧g∗, dC) −̃→H•(g, U(g)).
Let us define a linear map

C(∧g∗,∧g∗) = ∧g∗ ⊗ T (∧g) −→ ∧g∗ ⊗ U(g) = C(g, U(g)) , (4.4)

given by the projection p : T (∧g) ։ T (g) ։ U(g).
The previous map defines a morphism of DG algebras

(
C(∧g∗,∧g∗), dH + dC

)
−→

(
C(g, U(g)), dC) .

It can be checked directly that, using the previous identification for Hochschild
chains and the restriction morphism to T (g∗), the only Hochschild cochains f
whose differentials dH + dC are not annihilated by the restriction morphism must
contain factors only in g or ∧2(g) (while the only factor ∧(g∗) is left untouched).
The quadratic factors, which w.l.o.g. may be written as x1 ∧ x2, are sent by the
sum of the Hochschild and Chevalley–Eilenberg differentials to

(x1 ∧ x2) ⊗ 1 + 1 ⊗ (x1 ∧ x2) + x1 ⊗ x2 − x2 ⊗ x1 − [x1, x2] ;

such terms are annihilated precisely by the projection p. It is left as an exercise

to check that the remaining terms contribute exactly to the Chevalley–Eilenberg
differential.

It remains to prove that it is a quasi-isomorphism, for which we use a spectral
sequence argument.

Lemma 4.11. We equip k (endowed with the trivial differential) with the (∧g∗, dC)-
DG-bimodule structure given by the projection ǫ : ∧g∗ → k (left and right actions
coincide). Then H•

(
(∧g∗, dC), k

)
∼= U(g).

Proof of lemma. We consider the filtration F pCn
(
(∧g∗, dC), k

)
, consisting of lin-

ear forms on ⊕

k≥0
i1+···+ik=k−n

∧i1(g∗) ⊗ · · · ⊗ ∧ik(g∗)

that vanish on the components for which n− k < p. Then we have

Ep,q0 = Hom


 ⊕

i1+···+iq=−p

∧i1(g∗) ⊗ · · · ⊗ ∧iq (g∗), k


 d0 = dH .
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Applying a “super” version of Lemma 2.6 to V = Π(g∗) one obtains that

Ep,q1 = E−q,q
1 = ∧q

(
Π(g∗)∗

)
= Sq(g) ,

and that the spectral sequence stabilizes at E1. Consequently Gr
(
H•
(
(∧g∗, dC), k

))
∼=

S(g) = Gr
(
U(g)

)
and the isomorphism is given by the following composed map

T
(
∧ (g)

)
−→ T (g) −→ S(g) .

This ends the proof of the lemma. 2

Lemma 4.12. The map (4.4) is a quasi-isomorphism: HH•(∧g∗, dC) ∼= H•(g, U(g)).

Proof of the lemma. Let us consider the descending filtration on the Hochschild
complex that is induced from the following descending filtration on ∧g∗:

Fn(∧g∗) :=
⊕

k≥n

∧kg∗ .

Thus, the 0-th term of the associated spectral sequence (of algebras) is

E•,•
0 = ∧•g∗ ⊗ C•

(
(∧g∗, dC), k) with d0 = id ⊗ (dH + dC) .

Using Lemma 4.11, one obtains that E•,•
1 = E•,0

1 = ∧•g∗ ⊗ U(g) with d1 = dC .
Therefore the spectral sequence stabilizes at E2 and the result follows. 2

This ends the proof of the Theorem. 2



5 The Duflo-Kontsevich isomorphism for

Q-spaces

In this chapter we prove a general Duflo-type result for Q-spaces, i.e. superspaces
equipped with a vector field of degree 1, which squares to 0. This result im-
plies in particular the cohomological version of Duflo’sTheorem 1.13, and will be
used in the sequel to prove Kontsevich’s theorem 3.6. This approach makes more
transparent the analogy between the adjoint action and the Atiyah class.

5.1 Statement of the result

Let V be a superspace.

Hochschild–Kostant–Rosenberg for superspaces
We introduce

• OV := S(V ∗), the graded super-commutative algebra of functions on V ;

• XV := Der(OV ) = S(V ∗) ⊗ V , the graded Lie super-algebra of vector fields
on V ;

• TpolyV := S(V ∗ ⊕ ΠV ) ∼= ∧OV
XV , the XV -module algebra of polyvector

fields on V .

We now describe the gradings we will consider.

The grading on OV is the internal one: elements in V ∗
i have degree i.

The grading on XV is the restriction of the natural grading on End(OV ): ele-
ments in V ∗

i have degree i and elements in Vi have degree −i.
There are three different gradings on TpolyV :

(i) the one given by the number of arguments: degree k elements lie in ∧kOV
XV .

In other words elements in V ∗ have degree 0 and elements in V have degree
1;

(ii) the one induced by XV : elements in V ∗
i have degree i and elements in Vi

have degree −i. It is denoted by | · |;

(iii) the total (or internal) degree: it is the sum of the previous ones. Elements
in V ∗

i have degree i and elements in Vi have degree 1 − i. It is denoted by
|| · ||.
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Unless otherwise precised, we always consider the total grading on TpolyV in the
sequel.

We also have

• the XV -module algebra DV of differential operators on V , which is the sub-
algebra of End(OV ) generated by OV and XV ;

• the XV -module algebra DpolyV of polydifferential operators on V , which
consists of multilinear maps OV ⊗· · ·⊗OV → OV being differential operators
in each argument.

The grading on DV is the restriction of the natural grading on End(OV ). As
for Tpoly there are three different gradings on Dpoly: the one given by the number
of arguments, the one induced by DV (denoted | · |), and the one given by their
sum (denoted || · ||). Dpoly is then a subcomblex of the Hochschild complex of the
algebra OV introduced in the previous chapter, since it is obviously preserved by
the differential dH .

An appropriate super-version of Lemma 2.6 gives the following result:

Proposition 5.1. The natural inclusion IHKR : (TpolyV, 0) →֒ (DpolyV, dH)
is a quasi-isomorphism of complexes, that induces an isomorphism of algebras in
cohomology.

Cohomological vector fields

Definition 5.2. A cohomological vector field on V is a degree one vector field
Q ∈ XV that is integrable: [Q,Q] = 2Q ◦ Q = 0. A superspace equipped with a
cohomological vector field is called a Q-space.

LetQ be a cohomological vector field on V : then, (TpolyV,Q·) and (DpolyV, dH+
Q·) are DG algebras, where Q· denotes its natural adjoint action on both TpolyV
and DpolyV by graded commutators. By a spectral sequence argument one can
show that IHKR still defines a quasi-isomorphism of complexes between them.
Nevertheless it no longer preserves the product at the level of cohomology. In a
way similar to Theorems 1.13 and 3.6, Theorem 5.3 below remedies to this situa-
tion.

Let us remind the reader that the graded algebra of differential forms on V is
Ω(V ) := S(V ∗ ⊕ ΠV ∗) and that it is equipped with the following structures:

• for any element x ∈ V ∗ we write dx for the corresponding element in ΠV ∗,
and then we define a differential on Ω(V ), the de Rham differential, given
on generators by d(x) = dx and d(dx) = 0;

• there is an action ι of differential forms on polyvector fields by contraction,
where x ∈ V ∗ acts by left multiplication and dx acts by derivation in the
following way: for any y ∈ V ∗ and v ∈ ΠV one has

ιdx(y) = 0 and ιdx(v) = 〈x, v〉 .
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We then define the (super)matrix valued one-form Ξ ∈ Ω1(V )⊗End(V [1]) with
coefficients explicitly given by

Ξji := d

(
∂Qj

∂xi

)
=

∂2Qj

∂xk∂xi
dxk ,

where {xi}, i = 1, . . . , n, are coordinates on V associated to a linear basis of V .
A direct computation shows that a change of basis of V produces a conjugation
of the matrix-valued 1-form Ξji by a constant matrix (naturally associated to the
base change): thus, if we set

j(Ξ) := Ber

(
1 − e−Ξ

Ξ

)
∈ Ω(V ) .

then j(Ξ) does not depend on the choice of linear coordinates on V .

Theorem 5.3. IHKR ◦ ιj(Ξ)1/2 : (TpolyV,Q·) −→ (DpolyV, dH + Q·) defines a
quasi-isomorphism of complexes that induces an algebra isomorphism on cohomol-
ogy.

As for Theorems 1.3, 1.13 and 3.6 one can replace j(Ξ) by

j̃(Ξ) := Ber

(
eΞ/2 − e−Ξ/2

Ξ

)
.

5.2 Application: proof of the Duflo Theorem

In this paragraph we discuss an important application of Theorem 5.3, namely
the “classical” Theorem of Duflo (see Theorem 1.3 and 1.13): before entering
into the details of the proof, we need to establish a correspondence between the
algebraic tools of Duflo’s Theorem and the differential-geometric objects of 5.3.

We consider a finite dimensional Lie algebra g, to which we associate the su-
perspace V = Πg. In this setting, we have the following identification:

OV
∼= ∧•g∗,

i.e. the superalgebra of polynomial functions on V is identified with the graded
vector space defining the Chevalley–Eilenberg graded algebra for g with values
in the trivial g-module; we observe that the natural grading of the Chevalley-
Eilenberg complex of g corresponds to the aforementioned grading of OV . The
Chevalley-Eilenberg differential dC identifies, under the above isomorphism, with
a vector field Q of degree 1 on V ; Q is cohomological, since dC squares to 0.
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In order to make things more understandable, we make some explicit computa-
tions w.r.t. supercoordinates on V . For this purpose, a basis {ei} of g determines
a system of (purely odd) coordinates {xi} on V : the previous identification can
be expressed in terms of these coordinates as

xi1 · · ·xip 7→ εi1 ∧ · · · ∧ εip , 1 ≤ i1 < · · · < ip ≤ n,

{εi} being the dual basis of {ei}. Hence, w.r.t. these odd coordinates, Q can be
written as

Q = −
1

2
cijkx

jxk
∂

∂xi
,

where cijk are the structure constants of g w.r.t. the basis {ei}. It is clear that Q
has degree 1 and total degree 2.

Lemma 5.4. The DG algebra (TpolyV,Q·) identifies naturally with the Chevalley-
Eilenberg DG algebra (C•(g, S(g)), dC) associated to the g-module algebra S(g).

Proof. By the very definition of V , we have an isomorphism of graded algebras

S(V ∗ ⊕ ΠV ) ∼= ∧•(g∗) ⊗ S(g).

More explicitly, in terms of the aforementioned supercoordinates, the previous
isomorphism is given by

xi1 · · ·xip∂xj1 ∧ · · · ∧ ∂xjq 7→ εi1 ∧ · · · ∧ εip ⊗ ej1 · · · ejq ,

where the indices (i1, . . . , ip) form a strictly increasing sequence.

It remains to prove that the action of Q on TpolyV coincides, under the previous
isomorphism, with the Chevalley-Eilenberg differential dC on ∧•(g∗) ⊗ S(g). It
suffices to prove the claim on generators, i.e. on the coordinates functions {xi}
and on the derivations {∂xi}: the action of Q on both of them is given by

Q · xi = Q(xi) = −
1

2
cijkx

jxk,

Q · ∂xi = [Q, ∂xi ] = −ckijx
j∂xk .

Under the above identification between TpolyV and ∧•(g∗) ⊗ S(g), it is clear that
Q identifies with dC , thus the claim follows. 2

Similar arguments and computations imply the following

Lemma 5.5. There is a natural isomorphism from the DG algebra (DpolyV, dH +
Q·) to the DG algebra (C•(∧g∗,∧g∗), dH + dC).
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Coupling these results with Lemma 4.12, we obtain the following commutative
diagram of quasi-isomorphisms of complexes, all inducing algebra isomorphisms
at the level of cohomology:

(TpolyV,Q·)
IHKR◦ι

1/2

j(Ξ) // (DpolyV, dH +Q·) (C•(∧g∗,∧g∗), dH + dC)

��
(C•(g, S(g)), dC)

IP BW ◦J1/2· // (C•(g, Ug), dC) .

Using the previously computed explicit expression for the cohomological vector
field Q on V , one can easily prove the following

Lemma 5.6. Under the obvious identification V [1] ∼= g, the supermatrix valued
1-form Ξ, restricted to g (which we implicitly identify with the space of vector fields
on V with constant coefficients) satisfies

Ξ = ad.

Proof. Namely, since

Q = −
1

2
cijkx

jxk∂xi ,

we have

Ξij = d(∂xjQi) = −cijkdx
k = cikjdx

k,

and the claim follows by a direct computation, when e.g. evaluating Ξ on ek =
∂xk . 2

Hence, Theorem 5.3, together with Lemma 5.4, 5.5 and 5.6 implies Theo-
rem 1.13; we observe that Ξ is in this case an even endomorphism of V , whence
its Berezinian reduces to the standard determinant.

5.3 Strategy of the proof

The proof of Theorem 5.3 occupies the next three chapters. In this paragraph
we explain the strategy we are going to adopt in chapters 6, 7, 8 and 9.

The homotopy argument
Our approach relies on a homotopy argument (in the context of deformation

quantization, this argument is briefly sketched by Kontsevich in [29] and proved
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in detail by Manchon and Torossian in [34] in a particular case). Namely, we
construct a quasi-isomorphism of complexes1

UQ : (TpolyV,Q·) −→ (DpolyV, dH +Q·)

and a degree −1 map

HQ : TpolyV ⊗ TpolyV −→ DpolyV

satisfying the homotopy equation

UQ(α) ∪ UQ(β) − UQ(α ∧ β) =

= (dH +Q·)(HQ(α, β)) + HQ(Q · α, β) + (−1)||α||HQ(α,Q · β)
(5.1)

for any polyvector fields α, β ∈ TpolyV .

We sketch below the construction of UQ and HQ.

Formulæ for UQ and HQ, and the scheme of the proof
For any polyvector fields α, β ∈ TpolyV and functions f1, . . . , fm we set

UQ(α)(f1, . . . , fm) :=
∑

n≥0

1

n!

∑

Γ∈Gn+1,m

WΓBΓ(α,Q, . . . , Q︸ ︷︷ ︸
n times

)(f1, . . . , fm) (5.2)

and

HQ(α, β)(f1, . . . , fm) :=
∑

n≥0

1

n!

∑

Γ∈Gn+2,m

W̃ΓBΓ(α, β,Q, . . . , Q︸ ︷︷ ︸
n times

)(f1, . . . , fm) .

(5.3)
The sets Gn,m consist of suitable directed graphs with two types of vertices, to

which we associate scalar (integral) weights WΓ and W̃Γ and polydifferential op-
erators BΓ.

We define in the next paragraph the sets Gn,m and the associated polydiffer-

ential operators BΓ. The weights WΓ and W̃Γ are introduced in chapter 6 and
8, respectively. In chapter 7 (resp. 8) we prove that U(α ∧ β) and U(α) ∪ U(β)
(resp. the r.h.s. of (5.1)) are given by a formula similar to (5.3) with new weights
W0

Γ and W1
Γ (resp. −W2

Γ), so that, in fine, the homotopy property (5.1) reduces
to

W0
Γ = W1

Γ + W2
Γ .

1It is the first structure map of Kontsevich’s tangent L∞-quasi-isomorphism [29].
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Polydifferential operators associated to a graph
Let us consider, for given positive integers n and m, the set Gn,m of directed

graphs described as follows:

1. there are n vertices of the “first type”, labeled by 1, . . . , n;

2. there are m ordered vertices of the “second type”, labeled by 1, . . . ,m;

3. the vertices of the second type have no outgoing edge;

4. there are no short loops (a short loop is a directed edge having the same
source and target) and no multiple edges (a multiple edge is a set of edges
of cardinality strictly bigger than 1 with common source and target);

Let us define τ = idV0
− idV1

∈ V ∗⊗V , and let it acts as a derivation on S(ΠV )⊗
S(V ∗) simply by contraction. In other words, using coordinates (xi)i on V and
dual odd coordinates (θi)i on ΠV ∗ one has

τ =
∑

i

(−1)|x
i|∂θi

⊗ ∂xi .

This action naturally extends to S(V ∗⊕ΠV )⊗S(V ∗⊕ΠV ) (the action on additional
variables is zero). For any finite set I and any pair (i, j) of distinct elements in I
we denote by τij the endomorphism of S(V ∗ ⊕ ΠV )⊗I given by τ which acts by
the identity on the k-th factor for any k 6= i, j.

Let us then choose a graph Γ ∈ Gn,m, polyvector fields γ1, . . . , γn ∈ TpolyV =
S(V ∗ ⊕ ΠV ), and functions f1, . . . , fm ∈ OV ⊂ S(V ∗ ⊕ ΠV ). We define

BΓ(γ1, . . . , γn)(f1, . . . , fm) := ǫ
(
µ
( ∏

(i,j)∈E(Γ)

τij(γ1 ⊗ · · · ⊗ γn ⊗ f1 ⊗ · · · ⊗ fm)
))
,

(5.4)
where E(Γ) denotes the set of edges of the graph Γ, µ : S(V ∗ ⊕ ΠV )⊗(n+m) →
S(V ∗ ⊕ΠV ) is the product, and ǫ : S(V ∗ ⊕ΠV ) ։ S(V ∗) = OV is the projection
onto 0-polyvector fields, defined by setting θi to 0.

Remark 5.7. (a) If the number of outgoing edges of a first type vertex i differs
from |γi| then the r.h.s. of (5.4) is obviously zero.

(b) We could have allowed edges outgoing from a second type vertex, but in
this case the r.h.s. of (5.4) is obviously zero.

(c) There is an ambiguity in the order of the product of endomorphisms τij .
Since each τij has degree one, there is a sign ambiguity in the r.h.s. of (5.4).
Fortunately the same ambiguity appears in the definition of the weights WΓ and
W̃Γ, ensuring that expressions (5.2) and (5.3) for UQ and HQ are well-defined.

Example 5.8. Consider three polyvector fields γ1 = γijk1 θiθjθk, γ2 = γlp2 θlθp and
γ3 = γqr3 θqθr, and functions f1, f2 ∈ OV . If Γ ∈ G3,2 is given by the Figure 1 then

BΓ(γ1, γ2, γ3)(f1, f2) = ± γijk1 (∂i∂qγ
lp
2 )(∂jγ

qr
3 )(∂lf1)(∂r∂p∂kf2)
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Figure 1 - An admissible graph Γ in G3,2



6 Configuration spaces and integral

weights

The main goal of this chapter is to define the weights WΓ appearing in the defining
formula (5.2) for UQ. These weights are defined as integrals over suitable config-
uration spaces of points in the upper half-plane. We therefore introduce these
configuration spaces, and also their compactifications à la Fulton-MacPherson,
which ensure that the integral weights truly exists. Furthermore, the algebraic
identities illustrated in chapters 7 and 8 follow from factorization properties of
these integrals, which in turn rely on Stokes’ Theorem: thus, we need to discuss
the boundary stratification of the compactified configuration spaces.

6.1 The configuration spaces C+
n,m

We denote by H+ the complex upper half-plane, i.e. the set of all complex
numbers, whose imaginary part is strictly bigger than 0; further, R denotes here
the real line in the complex plane.

Definition 6.1. For any two positive integers n, m, we denote by Conf+n,m the
configuration space of n points in H+ and m ordered points in R, i.e. the set of
n+m-tuples

(z1, . . . , zn, q1, . . . , qm) ∈ (H+)n × Rm,

satisfying zi 6= zj if i 6= j and q1 < · · · < qm.

It is clear that Conf+n,m is a real manifold of dimension 2n+m.
We consider further the semidirect product G2 := R+ ⋉R, where R+ acts on R

by rescalings: it is a Lie group of real dimension 2. The group G2 acts on Conf+n,m
by translations and homotheties simultaneously on all components, by the explicit
formula

((a, b), (z1, . . . , zn, q1, . . . , qm)) 7−→ (az1 + b, . . . , azn + b, aq1 + b, . . . , aqm + b),

for any pair (a, b) in G2. It is easy to verify that G2 preserves Conf+n,m; easy

computations also show that G2 acts freely on Conf+n,m precisely when 2n+m ≥ 2.

In this case, we may take the quotient space Conf+n,m/G2, which will be denoted

by C+
n,m: in fact, we will refer to it, rather than to Conf+n,m, as to the configuration

space of n points in H+ and m points in R. It is also a real manifold of dimension
2n+m− 2.
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Remark 6.2. We will not be too much concerned about orientations of config-
uration spaces; anyway, it is still useful to point out that C+

n,m is an orientable

manifold. In fact, Conf+n,m is an orientable manifold, as it possesses the natural
volume form

Ω := dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn ∧ dq1 ∧ · · · dqm,

using real coordinates z = x+iy for a point in H+. It is then easy to prove that the
natural projection Conf+n,m → C+

n,m defines a locally-trivial principal G2-bundle,
if 2n + m ≥ 2 (it is not difficult to construct many different local sections, and
we invite the interested reader to do it himself): then, we define an orientation
on C+

n,m by declaring any local trivialization to be orientation-preserving. Thus,

the orientability of Conf+n,m implies the orientability of C+
n,m: we refer to [3] for

explicit (local) computations of the volume form of C+
n,m in terms of possible local

trivializations of the principal G2-bundle Conf+n,m → C+
n,m.

We also need to introduce another kind of configuration space.

Definition 6.3. For a positive integer n, we denote by Confn the configuration
space of n points in the complex plane, i.e. the set of all n-tuples of points in C,
such that zi 6= zj if i 6= j.

It is a complex manifold of complex dimension n, or also a real manifold of
dimension 2n.

We consider the semidirect product G3 = R+ ⋉ C, which is a real Lie group of
dimension 3; it acts on Confn by the following rule:

((a, b), (z1, . . . , zn)) 7−→ (az1 + b, . . . , azn + b).

The action of G3 on Confn is free, precisely when n ≥ 2: in this case, we define the
(open) configuration space Cn of n points in the complex plane as the quotient
space Confn/G3, and it can be proved that Cn is a real manifold of dimension
2n−3. Following the patterns of Remark 6.2, one can show that Cn is an orientable
manifold.

6.2 Compactification of Cn and C+
n,m à la Fulton–

MacPherson

In order to clarify forthcoming computations in chapter 8, we need certain
integrals over the configuration spaces C+

n,m and Cn: these integrals are a priori
not well-defined, and we have to show that they truly exist. Later, we make use
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of Stokes’ Theorem on these integrals to deduce the relevant algebraic properties
of UQ: therefore we will need the boundary contributions to the aforementioned

integrals. Kontsevich [29] introduced for this purpose nice compactifications C
+

n,m

of C+
n,m which solve, on the one hand, the problem of the existence of such inte-

grals (their integrands extend smoothly to C
+

n,m, and so they can be understood
as integrals of smooth forms over compact manifolds); on the other hand, the

boundary stratifications of C
+

n,m and Cn and their combinatorics yield the desired
aforementioned algebraic properties.

Definition and examples
The main idea behind the construction of C

+

n,m and Cn is that one wants to
keep track not only of the fact that certain points in H+, resp. in R, collapse
together, or that certain points of H+ and R collapse together to R, but one
wants also to record, intuitively, the corresponding rate of convergence. Such
compactifications were first thoroughly discussed by Fulton–MacPherson [21] in
the algebro-geometric context: Kontsevich [29] adapted the methods of [21] for
the configuration spaces of the type C+

n,m and Cn.

We introduce first the compactification Cn of Cn, which will play an important

rôle also in the discussion of the boundary stratification of C
+

n,m. We consider the
map from Confn to the product of n(n−1) copies of the circle S1, and the product
of n(n− 1)(n− 2) copies of the 2-dimensional real projective space RP2

(z1, . . . , zn)
ιn7−→
∏

i6=j

arg(zj − zi)

2π
×

∏

i6=j, j 6=k
i6=k

[|zi − zj | : |zi − zk| : |zj − zk|] .

ιn descends in an obvious way to Cn, and defines an embedding of the latter into
a compact manifold. Hence the following definition makes sense.

Definition 6.4. The compactified configuration space Cn of n points in the com-
plex plane is defined as the closure of the image of Cn w.r.t. ιn in (S1)n(n−1) ×
(RP2)n(n−1)(n−2).

Next, we consider the open configuration space C+
n,m. First of all, there is

a natural imbedding of Conf+n,m into Conf2n+m, which is obviously equivariant
w.r.t. the action of G2,

(z1, . . . , zn, q1, . . . , qm)
ι+n,m
7−→ (z1, . . . , zn, z1, . . . , zn, q1, . . . , qm) .

Moreover, ι+n,m descends to an embedding C+
n,m → C2n+m.1 We may thus com-

pose ι+n,m with ι2n+m in order to get a well-defined imbedding of C+
n,m into

1To see this, first remember that G3 = G2 ⋉ R, and then observe that any orbit of R (acting
by simultaneous imaginary translations) intersects ι+n,m

`

Conf+n,m

´

in at most one point.
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(S1)(2n+m)(2n+m−1) × (RP2)(2n+m)(2n+m−1)(2n+m−2), which justifies the following
definition.

Definition 6.5. The compactified configuration space C
+

n,m of n points in H+ and
m ordered points in R is defined as the closure of the image w.r.t. to the imbedding
ι2n+m ◦ ι+n,m of C+

n,m into (S1)(2n+m)(2n+m−1) × (RP2)(2n+m)(2n+m−1)(2n+m−2).

We notice that there is an obvious action of Sn, the permutation group of
n elements, on Cn, resp. C+

n,m, by permuting the points in the complex plane,

resp. the n points in H+: the action of Sn extends to an action on Cn and C
+

n,m.

Thus, we may consider more general configuration spaces CA and C+
A,B , where

now A (resp. B) denotes a finite (resp. finite ordered) subset of N; they also admit

compactifications CA and C
+

A,B , which are defined similarly as in Definition 6.4
and 6.5.

Another important property of the compactified configuration spaces CA and

C
+

A,B has to do with projections. Namely, for any non-empty subset A1 ⊂ A
(resp. pair A1 ⊂ A, B1 ⊂ B such that A1 ⊔ B1 6= ∅) there is a natural projection
π(A,A1) (resp. π(A,A1),(B,B1)) from CA onto CA1

(resp. from CA,B onto CA1,B1
)

given by forgetting the points labelled by indices which are not in A1 (resp. not in
A1 ⊔ B1). The projection π(A,A1) (resp. π(A,A1),(B,B1)) extends to a well-defined

projection between CA and CA1
(resp. CA,B and CA1,B1

). Moreover, both projec-
tions preserve the boundary stratifications of all compactified configuration spaces
involved.

Finally, we observe that the compactified configuration spaces Cn and C
+

n,m

inherit both orientation forms from Cn and C+
n,m respectively; the boundary strat-

ifications of both spaces, together with their inherited orientation forms, induce
in a natural way orientation forms on all boundary strata. We ignore here the

orientation choices of the boundary strata of Cn and C
+

n,m, referring to [3] for all
important details.

Examples 6.6. (i) The configuration space C+
0,m can be identified with the open

(m− 2)-simplex, consisting of m− 2-tuples (q1, . . . , qm−2) in Rm−2, such that

0 < q1 < · · · < qm−2 < 1.

This is possible by means of the free action of the group G2 on Conf+0,m, m ≥ 2,
namely by fixing the first coordinate to 0 by translations and rescale the last one

to 1. However, the compactified space C
+

0,m, for m > 3, does not correspond to
the closed simplex △m−2: the strata of codimension 1 of △m−2 correspond to the
collapse of only two consecutive coordinates, while the strata of codimension 1 of

C
+

0,m comprise the collapse of a larger number of consecutive points. C
+

0,m actually
is the (m− 2)-th Stasheff polytope [40].

(ii) The configuration space C+
1,1 can be identified with an open interval: more
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precisely, by means of the action of G2 on Conf+1,1, we can fix the point q1 in R to 0

and the modulus of the point z1 in H+ to be 1. Hence, C+
1,1

∼= S1∩H+ ∼= (0, 1). The

corresponding compactified configuration space C
+

1,1 is simply the closed interval
[0, 1]: in terms of collapsing points, the two boundary strata correspond to the
situation where the point z1 in H+ approaches R on the left or on the right of the
point q1 in R.

(iii) The configuration space C2 can be identified with S1: by means of the
action of the group G3 on Conf2, e.g. the first point can be fixed to 0 and its
distance to the second point fixed to 1. Thus, C2 = C2

∼= S1.
(iv) The configuration space C+

2,0 can be identified with H+ r {i}: by means of
the action of G2, we can fix e.g. the first point p1 in H+ to i. The corresponding

compactified configuration space C
+

2,0 is often referred to as the Kontsevich eye:
in fact, its graphical depiction resembles to an eye. More precisely, the boundary

stratification of C
+

2,0 consists of three boundary strata of codimension 1 and two
boundary strata of codimension 2. In terms of configuration spaces, the boundary

strata of codimension 1 are identified with C2
∼= S1 and C

+

1,1
∼= [0, 1], while the

boundary strata of codimension 2 are both identified with C
+

0,2
∼= {0}: the stratum

C2, resp. C
+

1,1, corresponds to the collapse of both point z1 and z2 in H+ to a single
point in H+, resp. to the situation where one of the points z1 and z2 approaches
R, while both strata of codimension 2 correspond to the situation where both z1,
z2 approach R, and the ordering on points on R yields two possible configurations.
Pictorially, the boundary stratum C2 corresponds to the pupil of the Kontsevich

eye; the boundary strata C
+

1,1 correspond to eyelids of the Kontsevich eye, and,
finally, the codimension 2 strata to the two interchapter points of the two eyelids.
Pictorially,
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Figure 2 - A graphical representation of the Kontsevich eye



6.2 Compactification of Cn and C+
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For the sake of simplicity, from now on, points in H+, resp. R, are said to be
of the first, resp. second type.

Description of a few boundary components
Now, for the main computations of chapter 8, we need mostly only boundary

strata of codimension 1 and, in Section 7.3, particular boundary strata of codi-

mension 2 of C
+

n,m: we list here the relevant boundary strata of codimension 1
and of codimension 2, which are needed. For the boundary strata of codimension
1, we are concerned with two situations:

i) For a subset A ⊂ {1, . . . , n}, the points zi of the first type, i ∈ A, collapse
together to a single point of the first type; more precisely, we have the
factorization

∂AC
+

n,m
∼= CA × C

+

n−|A|+1,m;

here, 2 ≤ |A| ≤ n denotes the cardinality of the subset A. Intuitively, CA

describes the configurations of distinct points of the first type in C
+

n,m which
collapse to a single point of the first type.

ii) For a subset A ⊂ {1, . . . , n} and an ordered subset B ⊂ {1, . . . ,m} of con-
secutive integers, the points of the first type zi, i ∈ A, and the points of
the second type qi in R collapse to a single point of the second type; more
precisely, we have the factorization

∂A,BC
+

n,m
∼= C

+

A,B × C
+

n−|A|,m−|B|+1.

Intuitively, C
+

A,B describes the configurations of points of the first type and

of the second type in C
+

n,m, which collapse together to a single point of the
second type.

As for the codimension 2 boundary strata, which will be of importance to us, we
have the following situation: there exist disjoint subsets A1, A2 of {1, . . . , n}, and
disjoint ordered subsets B1, B2 of {1, . . . ,m} of consecutive integers, such that
the corresponding boundary stratum of codimension 2 admits the factorization

C
+

A1,B1
× C

+

A2,B2
× C

+

n−|A1|−|A2|,m−|B1|−|B2|+2.

Intuitively, C
+

A1,B1
and C

+

A2,B2
parametrize disjoint configurations of points of the

first and of the second type, which collapse together to two distinct points of
the first type. We will write later on such a boundary stratum a bit differently,
namely, after reordering of the points after collapse, the third factor in the previous

factorization can be written as C
+

A3,B3
, for a subset A3 of {1, . . . , n} of cardinality

n− |A1| − |A2|, for an ordered subset B3 of {1, . . . ,m} of cardinality m− |B1| −
|B2| + 2.
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6.3 Directed graphs and integrals over configura-
tion spaces

The standard angle function
We introduce now the standard angle function2. For this purpose we consider

a pair of distinguished points (z, w) in H+ ⊔ R and we denote by ϕ(z, w) the
normalized hyperbolic angle in H+ ⊔ R between z and w; more explicitly,

ϕ(z, w) =
1

2π
arg

(
z − w

z − w

)
.

Pictorially,

ϕ(z, w)

zw

Figure 3 - The hyperbolic angle function ϕ(z, w)

Observe that the assignement C+
2,0 ∋ (z, w) 7−→ ϕ(z, w) ∈ S1 obviously extends

to a smooth map from C
+

2,0 to S1, which enjoys the following properties (these
properties play an important rôle in the computations of chapters 7 and 8):

i) the restriction of ϕ to the boundary stratum C2
∼= S1 equals the standard

angle coordinate on S1 (possibly up to addition of a constant term);

ii) the restriction of ϕ to the boundary stratum C
+

1,1, corresponding to the
upper eyelid of the Kontsevich eye (in other words, when z approaches R),
vanishes.

We will refer to ϕ as to the angle function.

2As observed by Kontsevich [29] one could in principle choose more general angle functions,
starting from the abstract properties of the standard angle function.
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Integral weights associated to graphs
We consider, for given positive integers n and m, directed graphs Γ with m+n

vertices labelled by the set E(Γ) = {1, . . . , n, 1, . . . ,m}. Here, “directed” means
that each edge of Γ carries an orientation. Additionally, the graphs we consider
are required to have no loop (a loop is an edge beginning and ending at the same
vertex).

To any edge e = (i, j) ∈ E(Γ) of such a directed graph Γ, we associate the
smooth map

ϕe : C+
n,m −→ S1 ; (z1, . . . , zn, z1, . . . , zm) 7−→ ϕ(zi, zj) ,

which obviously extends to a smooth map from C
+

n,m to S1.
To any directed graph Γ without short loops and with set of edges E(Γ) we

associate a differential form
ωΓ :=

∧

e∈E(Γ)

dϕe (6.1)

on the (compactified) configuration space C
+

n,m.

Remark 6.7. We observe that, a priori, it is necessary to choose an ordering
of the edges of Γ since ωΓ is a product of 1-forms: two different orderings of the
edges of Γ simply differ by a sign. This sign ambiguity precisely coincides (and
thus cancels) with the one appearing in the definition of BΓ, as it is pointed out
in Remark 5.7.

We recall from Sections 6.1 and 6.2 that C
+

n,m is orientable, and that the

orientation of C
+

n,m specifies an orientation for any boundary stratum thereof.

Definition 6.8. The weight WΓ of the directed graph Γ is

WΓ :=

∫

C
+
n,m

ωΓ. (6.2)

Observe that the weight (6.2) indeed exists, because it is an integral of a smooth
differential form over a smooth compact manifold (with corners).

Vanishing lemmata
It follows immediately from the definition of WΓ that it is non-trivial only if

• the cardinality of E(Γ) equals 2n+m− 2 (i.e. ωΓ is a top-degree form),

• Γ has no multiple edges,

• second type vertices do not have outgoing edges.

In particular, WΓ is non-trivial only if Γ ∈ Gn,m.
For later purposes, we need a few non-trivial vanishing Lemmata concerning

the above integral weights, which we use later on in chapters 7, 8 and 9.
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Lemma 6.9. If Γ in Gn,m has a vertex v of the first type with exactly one incoming
and one outgoing edge (see Figure 4), its integral weight WΓ vanishes.

v

v

v

Figure 4 - Three possible situations, where the bivalent vertex v appears

We observe that the target of the outgoing edge may be of the first or of the second
type, while the source of the incoming edge must be of the first type.

Sketch of proof. Exemplarily, we consider the case where the vertices v1, v2 con-
nected to v are of the first type (v1 points to v and v points to v2); the corre-

sponding points in C
+

n,m are denoted by z1 and z2 respectively.
Using Fubini’s Theorem, we isolate in the weight WΓ the factor

∫

H+r{z1,z2}

dϕe1 ∧ dϕe2 . (6.3)

The rest of the proof consists in showing that (6.3) vanishes.
We observe that (6.3) is a function depending on (z1, z2). We first show that

it is a constant function. Namely, (6.3) is the integral along the fiber of the

integrand form w.r.t. the natural projection C
+

3,0

π
։ C

+

2,0 ; (z1, z, z2) 7→ (z1, z2):
independence of z1 and z2 follows by means of the generalized Stokes’ Theorem

applied to the fibration C
+

3,0

π
։ C

+

2,0 (we observe that the initial, resp. final, man-
ifold of the fibration, as well as the fiber itself, is a smooth manifold with corners;
for the precise statement of the generalized Stokes’ Theorem in this framework,
we refer to [5, 11], where an extensive use of it is made)

d(π∗(dϕe1 ∧ dϕe2)) = ±π∗
(
d
(
dϕ(v1,v) ∧ dϕ(v,v2)

))
± π∂∗(dϕe1 ∧ dϕe2) ,

where the second term on the right hand-side corresponds to the boundary con-
tributions coming from fiber integration. Since the integrand is obviously closed,
it remains to show the vanishing of the boundary contributions. It is clear that
there are three boundary strata of codimension 1 of the fibers of π, corresponding
to i) the approach of z to z1 or z2, or ii) the approach of z to R. The properties
of the angle function imply that the contribution from ii) vanishes, while the two
contributions from i) cancel together.

Hence, we may choose e.g. z1 = i and z2 = 2i: for this particular choice,
the involution z 7→ −z of H+ r {i, 2i} reverses the orientation of the fibers, but
preserves the integrand form, whence the claim follows. 2
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Lemma 6.10. For a positive integer n ≥ 3, the integral over Cn of the product
of 2n− 3 forms of the type d(arg(zi − zj)), i 6= j, vanishes.

Proof. The proof relies on an analytic argument, which involves a tricky compu-
tation with complex logarithms; for a complete proof we refer to [29] and [27] (see
also [13, Appendix]). 2
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In this chapter we first discuss and then prove remarkable properties of the map
UQ defined by the formula (5.2). Namely, we first prove that UQ is a quasi-
isomorphism of complexes, and we then give, for any polyvecor fields α, β, explicit
formulæ for UQ(α ∧ β) and UQ(α) ∪ UQ(β) in terms of new weights associated to
graphs.

The proof follows closely the treatment of Manchon and Torossian [34], and
strongly uses the remarkably rich combinatorics of the boundary stratification of
the compactified configuration spaces introduced in the previous chapter.

7.1 The quasi-isomorphism property

The present Section is devoted to the proof of the following result.

Proposition 7.1. The map UQ : TpolyV −→ DpolyV defined by equation (5.2)
is a quasi-isomorphism of complexes, i.e. for any polyvector field α

UQ(Q · α) = (dH +Q·) (UQ(α)) , (7.1)

and UQ induces an isomorphism of graded vector spaces on cohomology.

Sketch of the proof. We first sketch the proof of equation (7.1). The fact that it
induces an isomorphism in cohomology then follows from a straightforward spectral
sequence argument.

Let Γ ∈ Gn+1,m+1 be a graph with 2n+m edges, the first type vertex 1 having
exactly n + m outgoing edges, and all other first type vertices having a single
outgoing edge. We apply Stokes’ Theorem

∫

∂C
+
n+1,m+1

ωΓ =

∫

C+
n+1,m+1

dωΓ = 0 .

and discuss the meaning of the following resulting identity: for any poly-vector
field α with n+m arguments, and any functions f1, . . . , fm+1,

∑

C

±
∑

Γ∈Gn+1,m+1

(∫

C

ωΓ

)
BΓ(α,Q, . . . , Q︸ ︷︷ ︸

n times

)(f1, . . . , fm+1) = 0 .

Here, C runs over all boundary strata of codimension 1 of C
+

n+1,m+1, and the sign

depends on the induced orientation from C
+

n+1,m+1.
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We now discuss the possible non-trivial contributions of each boundary stratum
C. Using Fubini’s Theorem we find (up to signs coming from orientation choices)
the following factorization property:

∫

C

ωΓ =

∫

Cint

ωΓint

∫

Cout

ωΓout
, (7.2)

where Γint (resp. Γout) is the subgraph of Γ whose edges are those with both source
and target lying in the subset of collapsing points (resp. is the quotient graph of
Γ by its subgraph Γint).

Let us begin with the boundary components of the form C = ∂AC
+

n+1,m+1 (with
|A| ≥ 2). It follows from Lemma 6.10 that there is no contribution if |A| ≥ 3. If
|A| = 2 then Γint consists of a single edge and the first factor in the factorization
on the r.h.s. of (7.2) equals 1. There are two possibilities:

• either 1 /∈ A and thus, taking the sum of the contributions of all graphs Γ
leading to the same pair (Γint,Γout), one obtains something proportional to

WΓout
BΓout

(α,Q, . . . , Q ◦Q︸ ︷︷ ︸
=0

, . . . , Q)(f1, . . . , fm+1) = 0 .

• or 1 ∈ A and thus, again taking the sum of the contributions of all graphs Γ
leading to the same pair (Γint,Γout), and adding up the terms coming from
the same graphs Γ after reversing the unique arrow of Γint, one obtains

WΓout
BΓout

(Q · α,Q, . . . , Q︸ ︷︷ ︸
n−1 times

)(f1, . . . , fm+1) . (7.3)

We then continue with the boundary components of the form C = ∂A,BC
+

n+1,m+1
∼=

C+
A,B×C

+
n−|A|,m−|B|+1: in this situation, we set Cint = C+

A,B and Cout = C+
n−|A|,m−|B|+1.

Again there are two possibilities:

• either 1 /∈ A. The integral associated to ωint is non-trivial, only if its degree
equals the dimension of Cint. The boundary conditions satisfied by Kontse-
vich’s angle form implies that no edge can depart from A (i.e. there is no
edge connecting A to its complement), whence the non-triviality condition
corresponds to |A| = 2|A| + |B| − 2, i.e. |A| + |B| = 2. Therefore, the graph
Γint can only be one of the following three graphs
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C
+
A,B

C
+
n+1−|A|,m+2−|B|

C
+
A,B

C
+
n+1−|A|,m+2−|B| C

+
n+1−|A|,m+2−|B|

C
+
A,B

i i + 1 i

Figure 5 - The three possible boundary strata, when 1 /∈ A

Summing the contributions of all graphs leading to the same pair (Γint,Γout),
one obtains

WΓout
BΓout

(α,Q, . . . , Q︸ ︷︷ ︸
n times

)(f1, . . . , fifi+1, . . . , fm+1) (7.4)

for the first type of graphs, and

WΓout
BΓout

(α,Q, . . . , Q︸ ︷︷ ︸
n−1 times

)(f1, . . . , Q · fi, . . . , fm+1) (7.5)

for the second one. The third type of graph does not contribute since its
weight vanishes by Lemma 6.9.

• or 1 ∈ A: in this case, we consider the differential form ωout, whose integral
over Cout is non-trivial, only if its degree equals the dimension of Cout. Since
the special vertex 1 belongs to A, and again since no edge may depart from
A, the non-triviality condition reads 2(n+ 1− |A|) +m− |B| = n+ 1− |A|,
i.e. |A|+ |B| = n+1+m. Additionally, since 0 ≤ |A| ≤ n+1 and 2 ≤ |B| ≤
m+ 1, Γout must be one of the following three graphs:



7.1 The quasi-isomorphism property 59

�� ���� �� ���� ���� ����

�
�
�
�����

����

�
�
�
�

����

��
��
��
��

����

��
��
��
��

��

m + 1

C
+
A,B

C
+
n+1−|A|,m+2−|B| C
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C
+
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1 2 m m + 1
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Figure 6 - The three possible boundary strata, when 1 ∈ A

The corresponding contributions (after summing over graphs leading to the
same decomposition) respectively are

WΓint


f1BΓint

(α,Q, . . . , Q︸ ︷︷ ︸
n times

)(f2, . . . , fm+1) ±BΓint
(α,Q, . . . , Q︸ ︷︷ ︸

n times

)(f1, . . . , fm)fm+1




(7.6)
for the first one and

WΓint
Q ·


BΓint

(α,Q, . . . , Q︸ ︷︷ ︸
n−1 times

)(f1, . . . , fm+1)


 (7.7)

for the second one.

We now summarize all non-trivial contributions: (7.4) gives the l.h.s. of equa-
tion (7.1), (7.6) together with (7.4) gives dHUQ(α), and (7.7) together with (7.5)
gives Q · UQ(α). Therefore equation (7.1) is satisfied and it remains to prove
that UQ induces an isomorphism at the level of cohomology. For this, we con-
sider the mapping cone C•

Q of UQ together with the decreasing filtration on it
coming from the grading on TpolyV and DpolyV induced by the degree we have
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denoted by | · | in chapter 5. The 0-th term of the corresponding spectral se-
quence is given by the mapping cone of the Hochschild-Kostant-Rosenberg map
IHKR : (TpolyV, 0) −→ (DpolyV, dH), and thus E1 = {0} (as IHKR is a quasi-
isomorphism). This ends the proof of the Proposition. 2

7.2 The cup product on polyvector fields

In the present Section, we consider the cup product between any two polyvector
fields α and β: we want to express the result of applying (5.2) on the cup product

α ∧ β in terms of integral weights over a suitable submanifold Z0 ⊂ C
+

n+2,m, that
we define now.

We recall from Section 6.2 that the compactified configuration space C
+

2,0 can
be depicted as the Kontsevich eye. We choose a general point x in the boundary

stratum C2
∼= S1 ⊂ C

+

2,0. Furthermore, for any two positive integers n and m

we consider the projection F := π{1,2},∅ from C
+

n+2,m onto C
+

2,0, using the same

notation as in Section 6.2. Then we denote by Z0 the submanifold of C
+

n+2,m given
by the preimage w.r.t. F of the point x; accordingly, to a graph Γ ∈ Gn+2,m we
associate a new weight W0

Γ given by

W0
Γ :=

∫

Z0

ωΓ ,

using the same notation of Paragraph 6.3.

Proposition 7.2. For any two polyvector fields α and β on V , the following
identity holds true:

UQ(α ∧ β) =
∑

n≥0

1

n!

∑

Γ∈Gn+2,m

W0
ΓBΓ(α, β,Q, . . . , Q︸ ︷︷ ︸

n times

). (7.8)

Notice in particular that the r.h.s. of (7.8) does not depend on the choice of
x ∈ C2 (it is a consequence of the generalized Stokes Theorem).

Proof. The proof relies on the following key lemma:

Lemma 7.3. The integral weight W0
Γ vanishes, for any graph Γ ∈ Gn+2,m, unless

Γ contains no edge connecting the vertices of the first type 1 and 2, in which case

W0
Γ = W

eΓ ,

where Γ̃ is the graph in Gn+1,m obtained from Γ by collapsing the vertices 1 and 2.
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Proof. First of all, Z0 intersects non-trivially only boundary strata of the form

CA × C
+

n−|A|+3,m, where A is a subset of {1, . . . , n + 2} and containing 1 and 2.
Using Fubini’s Theorem, we obtain

W0
Γ =

∫
ωΓ

Z0∩∂AC
+
n+2,m

=

∫

Z0∩CA

ωΓint

∫

C
+
n−|A|+3,m

ωΓout
. (7.9)

The points corresponding to the vertices 1 and 2 of the first type are fixed by
assumption.

By dimensional reasons, the only (possibly) non-trivial contributions to the
first factor in the factorization on the right hand-side of (7.9) occur only if the
degree of the integrand ωΓint

equals 2|A| − 4. The corresponding integral vanishes
if |A| ≥ 3 by the arguments in the proof of Kontsevich’s Lemma 6.10, for which
we refer to [29]: suffice it to mention that, in the proof in [29], Kontsevich reduces
the case of the integral over Cn of a product of 2n − 3 forms to the case of the
integral over a manifold of the form Z0∩Cn (i.e. he fixes two vertices) and then he
extracts from the integrand the 1-form, corresponding to the edge joining the two
fixed points (i.e. there is no edge between the two fixed vertices). Then, he shows
that the latter integral vanishes by complicated analytical arguments (tricks with
logarithms and distributions): anyway, the very same arguments imply that the
first factor in the factorization (7.9) vanishes.

Hence, we are left with the case |A| = 2, i.e. A = {1, 2}: therefore, we obtain,
again using Fubini’s Theorem,

W0
Γ =

∫
ωΓ

Z0∩∂{1,2}C
+
n+2,m

=

∫

Z0∩C2

ωΓint

∫

C
+
n+1,m

ωΓout
.

It is clear that Γout is exactly the graph Γ̃ ∈ Gn+1,m in the claim of the Lemma.
On the other hand, by properties of the angle function, when restricted to the
boundary stratum C2, we have

∫

Z0∩C2

ωΓint
= 1 ,

observing that Γint consists of two vertices of the first type, with no edge connecting
them.

For |A| = 2, if there is an edge connecting the two vertices, then the corre-
sponding contribution vanishes, as it contains the derivative of a constant angle
(1 and 2 are infinitely near to each other w.r.t. a fixed direction).

Thus, we have proved the claim. 2

We consider now, for a graph Γ̃ in Gn+1,m and with α, β and Q as before,
the polydifferential operator B

eΓ(α∧β,Q, . . . , Q), where there are n cohomological
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vector fields Q. By the very construction of BΓ and by the definition of ∧, we have

B
eΓ(α ∧ β,Q, . . . , Q) =

∑

Gn+2,m∋Γ7→eΓ

BΓ(α, β,Q, . . . , Q),

where the sum is over all possible graphs Γ in Gn+2,m, which are obtained from

Γ̃ by separating the vertices 1 and 2 of the first type without inserting any edge
between them; it is clear that contraction of the vertices 1 and 2 of a graph Γ
as before gives the initial graph Γ̃. This collapsing process is symbolized by the
writing Γ 7→ Γ̃.

We finally compute
∑

eΓ∈Gn+1,n

W
eΓBeΓ(α ∧ β,Q, . . . , Q) =

∑

eΓ∈Gn+1,m

∑

Gn+2,m∋Γ7→eΓ

W
eΓBΓ(α, β,Q, . . . , Q)

=
∑

eΓ∈Gn+1,m

∑

Gn+2,m∋Γ7→eΓ

W0
ΓBΓ(α, β,Q, . . . , Q)

=
∑

Γ∈Gn+2,m

W0
ΓBΓ(α, β,Q, . . . , Q) .

The second and third equality follow from Lemma 7.3. This ends the proof of the
Proposition. 2

7.3 The cup product on polydifferential operators

Applying UQ on polydifferential operators α and β, we may then take their cup
product in the Hochschild complex of polydifferential operators. We want to show
that, in analogy with Proposition 7.2, this product can be expressed in terms of

integral weights over a suitable submanifold Z1 of C
+

n+2,m, that we define now.

Let y be the unique point sitting in the copy of C+
0,2 inside ∂C

+

2,0 in which the
vertex 1 stays on the left of the vertex 2. Then for any two positive integers n and
m, using the same notation as in the previous Section, we define Z1 := F−1(y) ⊂

C
+

n+2,m and

W1
Γ :=

∫

Z1

ωΓ .

Proposition 7.4. Under the same assumptions of Proposition 7.2, the following
identity holds true:

UQ(α) ∪ UQ(β) =
∑

n≥0

1

n!

∑

Γ∈Gn+2,m

W1
ΓBΓ(α, β,Q, . . . , Q︸ ︷︷ ︸

n times

) . (7.10)
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Proof. By the very definition of the cup product in Hochschild cohomology, we
obtain

UQ(α) ∪ UQ(β) =
∑

k,l≥0

1

k!l!

∑

Γ1∈ eGk+1,m1
Γ2∈Gl+1,m2

WΓ1
WΓ2

BΓ1
(α,Q, . . . , Q︸ ︷︷ ︸

k times

)BΓ2
(α,Q, . . . , Q︸ ︷︷ ︸

l times

)

=
∑

k,l≥0

1

k!l!

∑

Γ1∈ eGk+1,m1
Γ2∈Gl+1,m2

WΓ1⊔Γ2
BΓ1⊔Γ2

(α, β,Q, . . . , Q︸ ︷︷ ︸
k+l times

) ,

(7.11)
where, for any two graphs Γ1 ∈ Gk+1,m1

and Γ2 ∈ Gl+1,m2
, we have denoted by

Γ1 ⊔ Γ2 their disjoint union: it is again a graph in Gk+l+2,m1+m2
. The vertices of

Γ1⊔Γ2 are re-numbered starting from the numberings of the vertices of Γ1 and Γ2

to guarantee the last equality in the previous chain of identities: namely, denoting
by an index i = 1, 2 the graph to which belongs a given vertex labelled by i, the
new numbering of the vertices of Γ1 ⊔ Γ2 is

{11, 12, 21, 31, . . . , (k + 1)1, 22, 32, . . . , (l + 1)2} .

Lemma 7.5. The integral weight W1
Γ vanishes for any graph Γ in Gn+2,m, unless

Γ = Γ1 ⊔ Γ2, with Γi ∈ Gki,mi
, i = 1, 2, in which case

W1
Γ = WΓ1

WΓ2
.

Proof. It follows from its very definition that Z1 intersects non-trivially only those

boundary strata ∂TC
+

n+2,m of C
+

n+2,m of codimension 2 which possess the following
factorization, according to Section 6.2:

C
+

A1,B1
× C

+

A2,B2
× C

+

A3,B3
,

where the vertex 1 and the vertex 2 lie in C
+

A1,B1
and C

+

A2,B2
respectively; finally,

the positive integers ni := |Ai| and mi := |Bi| obviously satisfy

n1 + n2 + n3 = n+ 2 and m1 +m2 + (m3 − 2) = m.

For a graph Γ ∈ Gn+2,m, we denote by Γ1
int, resp. Γ2

int, resp. Γout, the subgraph of
Γ, whose vertices are labelled by A1 ⊔B1, resp. A2 ⊔B2, resp. by contracting the
subgraphs Γ1

int and Γ2
int to two distinct vertices of the second type.

Using Fubini’s Theorem once again, we get
∫

Z1∩∂TC
+
n+2,m

ωΓ =

∫

C
+
A1,B1

ωΓ1
int

∫

C
+
A2,B2

ωΓ2
int

∫

C
+
A3,B3

ωΓout
. (7.12)

By the properties of the angle function, there cannot be vertices of Γ1
int or Γ2

int,
from which departs an external edge, i.e. an edge whose target lies in the set of
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vertices of Γout: otherwise, there would be an edge in Γout, whose source is of the
second type. Hence, since the polyvector fields α and β are respectively associated
to vertices in A1 ⊔ B1 and A2 ⊔ B2, then only copies of Q can be associated to
the vertices of Γout. Therefore the vertices of Γout have all exactly one outgoing
edge, and consequently Γout can be only the trivial graph with no vertex of the
first type and exactly two vertices of the second type. In other words, Γ is the
disjoint union Γ1

int ⊔ Γ2
int. Summarizing all these arguments, we get

WΓ =

∫

Z1∩∂TC
+
n+2,m

ωΓ =

∫

C
+
A1,B1

ωΓ1
int

∫

C
+
A2,B2

ωΓ2
int

= WΓ1
int
WΓ2

int
.

For any other graph Γ, it follows from the previous arguments that WΓ = 0. 2

Combining Lemma 7.5 with (7.11), we finally obtain

UQ(α) ∪ UQ(β) =
∑

k,l≥0

1

k! l!

∑

Γ1∈Gk+1,m1
Γ2∈Gl+1,m2

WΓ1⊔Γ2
BΓ1⊔Γ2

(α, β,Q, . . . , Q︸ ︷︷ ︸
k+l times

)

=
∑

n≥0

1

n!

∑

Γ∈Gn+2,m

W1
ΓBΓ(α, β,Q, . . . , Q︸ ︷︷ ︸

n times

) .

The combinatorial factor 1
n! appears, instead of 1

k!l! , as a consequence of the fact
that the sum is over graphs which split into a disjoint union of two subgraphs,
and we have to take care of the possible equivalent graphs splitting into the same
disjoint union. 2

Remark 7.6. We could have chosen y to be the unique point sitting in the other

copy of C+
0,2 inside ∂C

+

2,0, i.e. the one in which the vertex 2 is on the left of the
vertex 1. In this case Proposition 7.4 remains true if one replaces the l.h.s. of
(7.10) by ±UQ(β) ∪ UQ(α). Since ∪ is known to be commutative at the level of
cohomology, the choice of the copy of C+

0,2 is not really important.



8 The map HQ and the homotopy

argument

In this chapter we define the weights W̃Γ appearing in the defining formula (5.3)
for HQ and prove that, together with UQ, it satisfies the homotopy equation (5.1).
We continue to follow closely the treatment of Manchon and Torossian [34]. To
evaluate certain integral weights, we again need the explicit description of bound-

ary strata of codimension 1 of C
+

n,m, for whose discussion we refer to the end of
Paragraph 6.2.

8.1 The complete homotopy argument

We have proved in Sections 7.2 and 7.3, that the expressions UQ(α ∧ β) and
UQ(α)∪UQ(β) can be rewritten in terms of the integral weights over Z0 = F−1(x)

and Z1 = F−1(y), where we recall that F := π{1,2},∅ : C
+

n+2,m ։ C
+

2,0, and

x ∈ C2 ⊂ ∂C
+

2,0 and y ∈ C+
0,2 ⊂ ∂C

+

2,0 are arbitrary.

It is thus natural to consider a continuous path ℓ : [0; 1] → C
+

2,0 such that

x := ℓ(0) ∈ C2, y := ℓ(1) ∈ C+
0,2, and ℓ(t) ∈ C+

2,0 for any t ∈ (0, 1). We therefore
define

Z := F−1
(
ℓ((0, 1))

)
⊂ C

+

n+2,m .

Its closure Z is the preimage of ℓ([0, 1]) under the projection F . Then the boundary
of Z splits into the disjoint union

∂Z = Z0 ⊔ Z1 ⊔ (Z ∩ ∂C
+

n+2,m) . (8.1)

The third boundary component will be denoted by Y .
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Figure 7 - The curve ℓ on the Kontsevich eye
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Since, by assumption, ℓ((0, 1)) lies in the interior C+
2,0 ⊂ C

+

2,0, then it follows
that Y intersects only the following five types of boundary strata of codimension

1 of C
+

n+2,m:

i) there is a subset A1 of {1, . . . , n+ 2}, containing 1, but not 2, such that the
points of the first type labelled by A1 collapse together to a single point of
the first type;

ii) there is a subset A2 of {1, . . . , n+ 2}, containing 2, but not 1, such that the
points of the first type labelled by A2 collapse together to a single point of
the first type;

iii) there is a subset A of {1, . . . , n + 2}, containing neither 1 nor 2, such that
the points of the first type labelled by A collapse together to a single point
of the first type;

iv) there is a subset A of {1, . . . , n + 2}, containing neither 1 nor 2, and an
ordered subset B of {1, . . . ,m} of consecutive integers, such that the points
labelled by A (of the first type) and by B (of the second type) collapse
together to a single point of the second type;

v) there is a subset A of {1, . . . , n+2}, containing both 1 and 2, and an ordered
subset B of {1, . . . ,m} of consecutive integers, such that the points labelled
by A (of the first type) and by B (of the second type) collapse together to a
single point of the second type.

Remark 8.1. We observe that there is no intersection with a boundary stratum
for which there is a subset A of {1, . . . , n+ 2} containing {1, 2} and such that the
points labelled by A collapse together to a single point of the first type. This is
because such a boundary stratum (by the arguments of Proposition 7.2) intersects
non-trivially Z0, and Y , Z0 and Z1 are pairwise disjoint.

For a graph Γ ∈ Gn+2,m we define new weights

W2
Γ =

∫

Y

ωΓ, and W̃Γ =

∫

Z

ωΓ,

with the same notation as in Definition 6.8 of Section 6.3. Stokes’ Theorem implies

∫

∂Z

ωΓ =

∫

Z

dωΓ = 0.

Using the orientation choices for Z, for which we refer to [34], together with (8.1),
the previous identity implies the relation

W0
Γ = W1

Γ + W2
Γ .
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Using Proposition 7.2, Proposition 7.4 and the above identity involving Stokes’
Theorem, we obtain that the l.h.s. of the homotopy equation (5.1) equals

−
∑

n≥0

1

n!

∑

Γ∈Gn+2,m

W2
ΓBΓ(α, β,Q, . . . , Q︸ ︷︷ ︸

n times

).

Hence, to prove that HQ, given by (5.3), satisfies (5.1) together with UQ, it remains
to show that for fixed n and m, the following identity holds true:

∑

Γ∈Gn+2,m

W2
ΓBΓ(α, β,Q, . . . , Q︸ ︷︷ ︸

n times

) = −
∑

Γ∈Gn+2,m

W̃ΓdH(BΓ(α, β,Q, . . . , Q︸ ︷︷ ︸
n times

))

− n


 ∑

Γ∈Gn+1,m

W̃ΓQ · (BΓ(α, β,Q, . . . , Q︸ ︷︷ ︸
n−1 times

)) +
∑

Γ∈Gn+1,m

W̃Γ(BΓ(Q · α, β,Q, . . . , Q︸ ︷︷ ︸
n−1 times

))

+(−1)||α||
∑

Γ∈Gn+1,m

W̃Γ(BΓ(α,Q · β,Q, . . . , Q︸ ︷︷ ︸
n−1 times

))


 .

(8.2)
In the forthcoming Section 8.2 we sketch the proof of Identity (8.2). For a more
detailed treating of signs appearing in the forthcoming arguments, we refer to [34].

Summarizing, the sum of (8.3) and (8.4) from Paragraph 8.2.1, and of (8.6)
from Paragraph 8.2.2, we get the term in (8.2) involving the Hochschild differential
of (5.2). The sum of (8.5) from Paragraph 8.2.1 and of (8.7) from Paragraph 8.2.2
yields the term with the action of the cohomological vector field Q on DpolyV . In
Paragraph 8.2.3 one obtains the vanishing of terms which contain the action of Q
on itself. Finally, (8.8) and (8.9) from Paragraph 8.2.4 yield the remaining terms
in (8.2). Thus, we have proved (5.1).

8.2 Contribution to W2
Γ of boundary components

in Y

The discussion is analogous to the one sketched in the proof of Proposition 7.1.

8.2.1 Boundary strata of type v)
We consider a boundary stratum C of Y of type v): there exists a subset A of

{1, . . . , n+ 2} and an ordered subset B of {1, . . . ,m} of consecutive integers, such
that

C = Z ∩ (C
+

A,B × C
+

n−|A|+2,m−|B|+1) .
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Accordingly, by means of Fubini’s Theorem, the integral weight of a graph Γ ∈
Gn+2,m, restricted to C, can be rewritten as

WΓ|C =

∫

∂CZ

ωΓ =

∫

Z∩C
+
A,B

ωΓint

∫
ωΓout

C
+
n−|A|+2,m−|B|+1

.

Here we have used the same improper notation as in the proof of Lemma 7.3, and,
as usual, Γint (resp. Γout) denotes the subgraph of Γ whose vertices are labelled
by A⊔B (resp. the subgraph obtained by contracting Γint to a single point of the
second type).

The polyvector fields α and β have been put on the vertices labelled by 1 and
2, which belong to A: hence, only copies of the cohomological vector field Q can
be put on the first type vertices of Γout. In other words, first type vertices of Γout

have a single outgoing edge. Then, for the same combinatorial reason as in the
proof of Proposition 7.1 Γout can be of the form

�� ���� �� ���� ���� ����

��
��
��
����

��

��

��

��

����

����

��

1

C
+
n+2−|A|,m+1−|B| C

+
n+2−|A|,m+1−|B|

Z ∩ C
+
A,B

Z ∩ C
+
A,B

Z ∩ C
+
A,B

C+
n+2−|A|,m+1−|B|

1 2 m m + 1

m

Figure 8 - The three possible boundary strata of type v)

In all three cases, the integral weight corresponding to Γout is normalized, up to
some signs coming from orientation choices (which we will again ignore, as before).

The directed subgraph Γint belongs obviously to Gn+2,m−1, resp. Gn+1,m, since
in case i), |A| = n + 2 and |B| = m − 1, whereas, in case ii), |A| = n + 1
and |B| = m. Case i), furthermore, includes two subcases, namely, since |B| =
m−1, and since B consists only of consecutive integers, it follows immediately that
B = {1, . . . ,m− 1} or B = {2, . . . ,m}. From the point of view of polydifferential
operators, the graph Γout corresponds, in both subcases of i), to the multiplication
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operator, whereas, in case ii), it corresponds to the action of the cohomological
vector field Q, placed on the vertex of the first type, on a function on V , placed
on the vertex of the second type.

All these arguments yield the following expressions for the contributions to the
left hand-side of (8.2) coming from boundary strata of type v):

∑

Γ∈Gn+2,m−1

±W̃Γf1(BΓ(α, β,Q, . . . , Q︸ ︷︷ ︸
n times

)(f2, . . . , fm)), (8.3)

∑

Γ∈Gn+2,m−1

±W̃Γ(BΓ(α, β,Q, . . . , Q︸ ︷︷ ︸
n times

)(f2, . . . , fm))fm, (8.4)

∑

Γ∈Gn+1,m

±W̃ΓQ · (BΓ(α, β,Q, . . . , Q︸ ︷︷ ︸
n−1 times

)(f1, . . . , fm)). (8.5)

Remark 8.2. The actual contribution of (8.5) has to be multiplied by n since
there are precisely n dinstinct subgraphs Γint of Γ ∈ Gn+2,m that coincides in
Gn+1,m.

8.2.2 Boundary strata of type iv)

We consider now a boundary stratum C of Y of the fourth type: in this case,
there exists a subset A of {1, . . . , n+ 2}, containing neither the vertex labelled by
1 nor by 2, and an ordered subset B of {1, . . . ,m} of consecutive elements, such
that

C = Z ∩ (C
+

A,B × C
+

n−|A|+2,m−|B|+1) .

One more, Fubini’s Theorem implies the factorization

WΓ|C =

∫

C

ωΓ =

∫
ωΓint

C
+
A,B

∫
ωΓout

Z∩C
+
n−|A|+2,m−|B|+1

.

The vertices labelled by 1 and 2, to which we have put the polyvector vector fields
α and β, are vertices of the graph Γout: hence, every first type vertex of Γint has
exactly one outgoing edge. Again, as in the proof of Proposition 7.1 and thanks
to the vanishing Lemma 6.9, Γint can be only of the following three forms:
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Z ∩ C
+
n+2−|A|,m+1−|B| Z ∩ C

+
n+2−|A|,m+1−|B|

C
+
A,B

i

C
+
A,B

i i + 1

C
+
A,B

Z ∩ C
+
n+2−|A|,m+1−|B|

Figure 9 - The three possible boundary strata of type iv)

In the first, resp. second, case, Γout is a graph in Gn+2,m−1, resp. in Gn+1,m. In the
first case A = ∅ and B = {i, i+ 1} (since points of the second type are ordered), for
i = 1, . . . ,m, while in the second case A = {i} and B = {j}, for i = 1, . . . , n+2 and
j = 1, . . . ,m. The third contribution vanishes once again in view of Lemma 6.9.

Up to signs arising from orientation choices, which we have ignored so far, both
integrals corresponding to i) and ii) are normalized. The graph Γint corresponds,
in terms of the polydifferential operators BΓ, to the product of two functions on
V , which have been put to the vertices labelled by i and i+ 1, in case i); on the
other hand, in case ii), the graph Γint corresponds to the situation, where the
cohomological vector fields Q acts, as a derivation, on a function on V , which has
been put on the vertex j.

Using all previous arguments, we obtain the following two expressions for the
contributions to the left hand-side of (8.2) coming from boundary strata of type
iv):

m−1∑

i=1

∑

Γ∈Gn+2,m−1

±W̃ΓBΓ(α, β,Q, . . . , Q︸ ︷︷ ︸
n times

)(f1, . . . , fifi+1, . . . , fm), (8.6)

m∑

i=1

∑

Γ∈Gn+1,m

±W̃ΓBΓ(α, β,Q, . . . , Q︸ ︷︷ ︸
n−1 times

)(f1, . . . , Q · fi, . . . , fm), (8.7)

for any collection {f1, . . . , fm} of m functions on V .
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8.2.3 Boundary strata of type iii)
We examine a boundary stratum C of Y of the third type, thus, there is a

subset A of {1, . . . , n + 2}, containing neither the vertex labelled by 1 nor by 2,
such that

C = Z ∩ (CA × C
+

n−|A|+3,m) .

The contribution coming from C to the integral weight is, again by means of
Fubini’s Theorem,

WΓ|C =

∫

C

ωΓ =

∫

CA

ωΓint

∫
ωΓout

Z∩C
+
n−|A|+3,m

.

Since the polyvector fields α and β have been put on the vertices labelled by
1 and 2, which do not belong to A, it follows that only copies of Q have been
put on the vertices of Γint. We focus in particular on the integral contributions
coming from Γint: by Lemma 6.10, if |A| ≥ 3, such contributions vanish, whence
we are left with only one possible directed subgraph Γint, namely Γint consists of
exactly two vertices of the first type joined by exactly one edge. The corresponding
weight is normalized, by the properties of the angle function. The graph Γout is
easily verified to be in Gn+1,m; the polydifferential operator corresponding to Γint

represents the adjoint action of Q on itself, by its very construction. Since Q is,
by assumption, a cohomological vector field, it follows that such a contribution
vanishes by the property [Q,Q] = 1

2Q ◦ Q = 0. It thus follows that boundary
strata of type iii) do not contribute to the left hand-side of (8.2).

8.2.4 Boundary strata of type i) and ii)
We consider a boundary stratum C of Y of type i). By its very definition, for

such a stratum C there exists a subset A1 of {1, . . . , n+ 2}, containing the vertex
labelled by 1, but not the vertex labelled by 2, such that

C = Z ∩ (CA1
× C

+

n−|A|+3,m) .

By means of Fubini’s Theorem, we obtain the following factorization for the inte-
gral weight WΓ, when restricted to C,

WΓ|C =

∫

C

ωΓ =

∫

CA1

ωΓint

∫
ωΓout

Z∩C
+
n−|A|+3,m

.

We focus our attention on the integral contribution coming from Γint: as in Sub-
section 8.2.3, by means of Lemma 6.10, the only possible subgraph Γint yielding a
non-trivial integral contribution is the graph consisting of two vertices of the first
type joined by exactly one edge, in which case the contribution is normalized (up
to some signs, coming from orientation choices, which we ignore, as we have done
before). By assumption, one of the two vertices is labelled by 1 and the other
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one is labelled by a i 6= 2: there are hence two possible graphs, namely, i) when
the edge has, as target, the vertex labelled by 1, and ii) when the edge has, as
source, the vertex labelled by 1. Since the other vertex is not labelled by 2, in
terms of polydifferential operators, we have two situations: a copy of Q acts, as
a differential operator of order 1, on the components of the polyvector field α, in
case i), or one of the derivations of the polyvector field α acts, as a differential
operator of order 1, on the components of Q, in case ii). Finally, the graph Γout

belongs obviously to Gn+1,m.

By the previous arguments, and by the very definition of the Lie XV -module
structure on polyvector fields, the contributions to the left hand-side of (8.2) com-
ing from boundary strata of type i) can be written as

∑

Γ∈Gn+1,m

±W̃ΓBΓ(Q · α, β,Q, . . . , Q︸ ︷︷ ︸
n−1 times

) . (8.8)

As for boundary strata of Y of type ii), we may repeat almost verbatim the previous
arguments, the only difference in the final result being that the rôle played by the
polyvector field α will be now played by β, hence the contributions to the left
hand-side of (8.2) coming from boundary strata of type ii) are exactly

∑

Γ∈Gn+1,m

±W̃ΓBΓ(α,Q · β,Q, . . . , Q︸ ︷︷ ︸
n−1 times

) . (8.9)

Remark 8.3. The actual contribution of (8.8) and (8.9) has to be multiplied
by n. e.g. for (8.8) one sees that there are precisely n dinstinct subgraphs Γ ∈
Gn+2,m that induces the same Γout ∈ Gn+1,m (they are given by A = {1, k},
k = 3, . . . , n+ 2).

8.3 Twisting by a supercommutative DG algebra

We consider finally a supercommutative DG algebra (m,dm): typically, instead
of considering TpolyV and DpolyV , for a superspace V as before, we consider their
twists w.r.t. m:

Tm
polyV := TpolyV ⊗ m and Dm

polyV := DpolyV ⊗ m .

Since m is supercommutative, the Lie bracket on XV determines a graded Lie
algebra structure on Xm

V := XV ⊗ m:

[v ⊗ µ,w ⊗ ν] = (−1)|w||µ|[v, w] ⊗ µν .
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Hence, for any choice of a supercommutative DG algebra (m,dm), there are two
graded Lie Xm

V -modules Tm
polyV and Dm

polyV . Moreover the differential dm extends
naturally to a differential on Tm

polyV and Dm
polyV . It is easy to verify that the

differential dm (super)commutes with the Hochschild differential dH on Dm
polyV .

We now consider an m-valued vector field Q ∈ Xm
V of degree 1 which addition-

ally satisfies the so-called Maurer-Cartan equation

dmQ+
1

2
[Q,Q] = dmQ+Q ◦Q = 0 .

We observe that, if m = k (with k placed in degree 0) then Q is simply a cohomo-
logical vector field on V as in Definition 5.2. The Maurer-Cartan equation implies
that dm +Q· is a linear operator of (total) degree 1 on Tm

polyV , which additionally
squares to 0; moreover, the product ∧ on TpolyV extends naturally to a super-
commutative graded associative product ∧ on Tm

polyV , and dm +Q· is obviously a
degree one derivation of this product. Therefore,

(
Tm

polyV,∧,dm +Q·
)

is a DG algebra.
One obtains in exactly the same way a DG algebra

(
Dm

polyV,∪, dH + dm +Q·
)
.

Theorem 5.3 can be generalized to these DG algebras as follows.

Theorem 8.4. For any degree one solution Q ∈ Xm
V of the Maurer-Cartan equa-

tion, the m-linear map UQ given by (5.2) defines a morphism of complexes

(
Tm

polyV,∧,dm +Q·
) UQ
−→

(
Dm

polyV,∪, dH + dm +Q·
)
,

which induces an isomorphism of (graded) algebras on the corresponding cohomolo-
gies.

Proof. The proof follows along the same lines as the proof of Theorem 5.3, which
can be repeated almost verbatim. The differences arises when discussing

• the morphism property (7.1) for UQ,

• the homotopy property (5.1) for UQ and HQ.

In both cases one must replace (dH + Q·) where it appears in the equation by
(dH + dm +Q·).

For the homotopy property (5.1), the core of the proof lies in the discussion of
the boundary strata for the configuration spaces appearing in (8.2): the relevant
boundary strata in the present proof are those of Subsection 8.2.3. We can repeat
the same arguments in the discussion of the corresponding integral weights: using
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the very same notation as in Subsection 8.2.3, the polydifferential operator corre-
sponding to Γint is one half times the adjoint action of Q on itself, which, in this
case, does not square to 0, but equals (up to sign) dmQ by the Maurer-Cartan
equation. Using the graded Leibniz rule for dm, we get all homotopy terms which
contain dm. The discussion of the remaining boundary strata remains unaltered.

The very same argument also works for the morphism property (7.1). Never-
theless, we see in the next chapter that (7.1) can be obtained as a consequence of
the explicit form of UQ, avoiding the discussion on possible contributions of the
boundary components in the proof of Proposition 7.1. 2



9 The explicit form of UQ

In this chapter we derive an explicit expression for the quasi-isomorphism UQ (5.2),
following closely [9, chapter 8]. Namely, we first argue about the possible shapes of
the graphs Γ involved in the construction of UQ: by the way, this was already done,
although not as precisely as in the present chapter, in the proof of Proposition 7.4.

9.1 Graphs contributing to UQ

We now recall that, in (5.2), we need a polyvector field α on the superspace V
and a cohomological vector field Q. We consider a graph Γ ∈ Gn+1,m, appearing
in (5.2): on one of its vertices of the first type, we put α, while, on the remaining
n vertices of the first type we put copies of Q.

Since Q is a vector field, from any edge, where Q has been put, departs exactly
one edge. A simple dimensional argument implies that Γ has no 0-valent vertices;
similarly, Γ does not contain vertices, with exactly one edge landing or departing
from it. Additionally, Lemma 6.9 from Section 6.3 implies that Γ cannot contain
vertices of the first type with exactly one ingoing and one outgoing edge. In
summary, a vertex of the first type, where a copy of Q has been put, has exactly
one outgoing edge and at least two incoming edges. One can prove inductively
w.r.t. the number of vertices that such a vertex has exactly two incoming edges,
one of which comes from another vertex of the first type, where Q has been put,
while the other one comes from the vertex of the first type, where α has been put.

Thus, a general graph Γ ∈ Gn+1,m, contributing (possibly) non-trivially to
(5.2), is a wheeled tree, i.e. there is a chosen vertex c of the first type, and a
partition of {1, . . . , n} into k disjoint subsets, such that from c departs m edges,
joining c to the m vertices of the second type of Γ, and such that to c are attached,
by means of outgoing directed edges, k wheels, the i-th wheel having exactly li
vertices (of the first type).
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2

· · ·

· · ·

1 m

Figure 10 - A general wheeled tree

For a wheeled tree Γ in Gn+1,m, associated to k wheels, whose length is li, i =

1, . . . , k, and
∑k
i=1 li = n, we denote by Σli , i = 1, . . . , k, resp. Am, the i-th wheel

with li vertices, resp. the graph with exactly one vertex of the first type and m
vertices of the second type, and m edges, whose directions and targets are obvious.

m

Σli

Am

1

· · ·

2

Figure 11 - The graph Am and a wheel σl

Lemma 9.1. For any positive integer m ≥ 1, the identity holds true

WAm
=

1

m!
.

Sketch of proof. The configuration space corresponding to the graph Am is C+
1,m.

A direct computation using the explicit form of Kontsevich’s angle function shows
that the assignement

C+
1,m → △m

[(z1, q1, ,̇qm)] 7→ (ϕ(z, q1), . . . , ϕ(z, qm)) ,
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is an orientation-preserving diffeomorphism from C+
1,m to the closed m-simplex

△m. Thus, in particular, the weight we want to compute is exactly the volume of
the closed m-simplex, whence the claim follows.

2

Lemma 9.2. If l is an odd integer, then WΣl
vanishes.

Sketch of the proof. All vertices of the wheel Σl are of the first type: the corre-
sponding configuration space is C+

l,0. The action of G2 permits to fix the central
vertex of the wheel to i (this corresponds to a local trivialization of the principal
G2-bundle Conf+l,0 → C+

l,0): in this setting, C+
l,0 equals the (compactified) configu-

ration space of l−1 points of the complex upper half-plane, which do not coincide
with i. Then, the involution z 7→ −z on the complex upper half-plane extends to
an involution of C+

l,0, which changes the sign of the integrand and preserves the

orientation of C+
l,0, since l − 1 is even. 2

9.2 UQ as a contraction

By Lemma 9.2 we are concerned only with wheeled trees whose wheels have
an even number of vertices. In order to compute explicitly the weight of such a
wheeled tree Γ in Gn+1,m, we use the action of G2 on C+

n+1,m to put the central

vertex of Γ in i, similarly to what was done in Lemma 9.2. Denoting by C the
compactification of C+

n+1,m, where one point of the first type has been put in i,
the weight of Γ can be rewritten as

WΓ =

∫

C

(
n∧

i=1

dϕgi

)
∧




n∧

j=1

dϕei


 ∧

(
m∧

k=1

dϕfi

)
,

where the big wedge products are ordered according to the indices, i.e.

n∧

i=1

dϕgi
= dϕg1 ∧ · · · ∧ dϕgn

and so on. Further, the notation is as follows: gi, resp. ej , resp. fk, denotes the
only edge outgoing from the i-th vertex of the first type (where the vertex labelled
by i does not coincide with the central vertex c), resp. the edge connecting the
central vertex c to the j-th vertex of the first type, resp. the edge connecting the
central vertex c to the k-th vertex of the second type.

At this point, we may use the fact that there is an action of the permutation

group Sn ⊂ Sn+1 on C
+

n+1,m, where Sn contains all permutations which keep the
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point of the first type corresponding to the central vertex c of Γ fixed. We choose
a permutation σ in such a way that the weight of Γ takes the form

WΓ =

∫

C

(
n∧

i=1

dϕgσ(i)

)
∧




n∧

j=1

dϕeσ(i)


 ∧

(
m∧

k=1

dϕpi

)
.

The permutation σ is chosen so that for each wheel Σl of Γ the i-th vertex of
Σl has the only outgoing edge gσ(i) and the two incoming edges gσ(i−1) (modulo
the length of the wheel) and eσ(i). After reordering of the differential forms, the
weight of Γ can be finally rewritten as

WΓ = (−1)

P

1≤p<q≤k

lplq
∫

C




l1∧

i1=1

dϕgσ(i1)
∧

l1∧

j1=1

dϕgσ(j1)


 ∧ · · ·

· · · ∧




lk∧

ik=lk−1+1

dϕgσ(ik)
∧

lk∧

jk=lk−1+1

dϕgσ(jk)


 ∧

(
m∧

k=1

dϕpi

)
,

(9.1)

where, again, the ordering of the 1-forms in the big wedge products are w.r.t. the
natural ordering of the indices. In (9.1), li, i = 1, . . . , k, denotes the length of
the i-th wheel. The sign in front of the integral comes from the reordering of the
wheels. The integrand in (9.1) is the product of the integrands corresponding to
the wheels of Γ and to Am: Fubini’s Theorem (together with Lemma 9.1) implies
the following factorization of the weight of Γ,

WΓ = (−1)

P

1≤p<q≤k

lplq WΣl1
· · ·WΣlk

m!
. (9.2)

Using the same notation for the edges of a wheeled tree Γ as in (9.1), the polydif-
ferential operator corresponding to Γ takes the explicit form

BΓ(α,Q, . . . , Q︸ ︷︷ ︸
n times

)(f1, . . . , fm) =

= αp1,...,pn,q1,...,qm

(
∂pσ(1)

∂rσ(l1)
Qrσ(1)∂pσ(2)

∂rσ(1)
Qrσ(2) · · · ∂pσ(l1)

∂rσ(l1−1)
Qrσ(l1)

)
· · ·

· · · (∂q1(f1) · · · ∂qm
(fm)) ,

where the product is over all wheels of Γ, and σ is the same permutation as
before, needed to reorganize the orderings of the wheels. In order to simplify
notation in the previous formula, we introduce the supermatrix-valued 1-form
Ξ ∈ Ω1(V ) ⊗ End(V [1]), which is explicitly given by the formula

Ξji = d(∂iQ
j) = ∂k∂iQjdx

k , (9.3)

using (global) supercoordinates {xi} on V .
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Then using (9.3) and the supertrace of endomorphisms of a finite-dimensional
supervector space we have the following identity:

BΓ(α,Q, . . . , Q︸ ︷︷ ︸
n times

)(f1, . . . , fm) =
〈
α; str(Ξl1) ∧ · · · ∧ str(Ξlk) ∧ df1 ∧ · · · ∧ dfm

〉
,

where 〈−;−〉 denotes the pairing between differential forms and polyvector fields
on V . The product between supermatrix-valued differential forms is the wedge
product on the form part and multiplication of supermatrices for the supermatrix-
part: then, str(Ξl) is an l-form on V . Using the contraction ι of polyvector
fields w.r.t. differential forms and recalling that contraction is adjoint to wedge
multiplication w.r.t. the pairing 〈−;−〉, the expression on the right hand-side of
the previous identity is (neglecting, as before, any sign contribution)

〈
α , str(Ξl1) ∧ · · · ∧ str(Ξlk) ∧ df1 ∧ · · · ∧ dfm

〉

=
〈
ιstr(Ξl1 )∧···∧str(Ξlk )α; , df1 ∧ · · · ∧ dfm

〉
(9.4)

= m!
(
IHKR

(
ιstr(Ξl1 )∧···∧str(Ξlk )α

))
(f1, . . . , fm) .

Hence, for a wheeled tree Γ in Gn+1,m as before, using (9.2) for the weight
WΓ and (9.4) for the polydifferential operator BΓ, we get the following simpler
expression

WΓBΓ(α,Q, . . . , Q︸ ︷︷ ︸
n times

) = IHKR ((Xlk · · ·Xl1)α) , (9.5)

where we have set
Xli := WΣli

ιstr(Ξli ) .

In order to compute an explicit expression for (5.2), we have to sum over all wheeled
trees Γ in Gn+1,m. More precisely, we need to take into account the number of
graphs isomorphic to Γ, for any wheeled tree Γ in Gn+1,m, since we do not want
to count too many wheeled trees.

Since the central vertex of the wheeled tree Γ is fixed, permutations of the n
vertices of the first type of Γ yield isomorphic wheeled trees to Γ. On the other
hand, denoting by τi the number of wheels of length i of Γ, it is clear that any
permutation of the τi wheels produces a wheeled tree isomorphic to Γ. Further, we
have also to keep into account the number of cyclic permutations of the vertices of
each wheel: with the same notation as above, for the wheel of length i, the number
of such permutations, taking into accout that Γ contains τi wheels of length i, is
exactly iτi . Hence, the number of isomorphic wheeled trees with a partition of
wheels of the form

{1, . . . , 1︸ ︷︷ ︸
τ1-times

, 2, . . . , 2︸ ︷︷ ︸
τ2-times

, . . . , n, . . . , n︸ ︷︷ ︸
τn-times

}

is given by
n!∏n

i=1 τi!
∏n
i=1 i

τi
.



80 9 The explicit form of UQ

We only observe that, if a wheeled tree Γ belongs to Gn+1,m, the maximal size of
a wheel of Γ is n, by obvious reasons.

Summarizing all these facts, we find the following explicit expression for (5.2):

UQ(α) =
∑

n≥0

1∏n
i=1 τi!

∏n
i=1 i

τi
IHKR

(
Xτ1

1 · · ·Xτn
n (α)

)
=

= IHKR

(
eX1+

X2
2 +···+ Xn

n +···(α)
)
,

(9.6)

using the previous notation. Further, we may define, for a cohomological vector
field Q on V , a (formal) contraction operator on Tpoly via

Θ =
∑

n>0

1

n
Xn =

∑

n>0

1

n
WΣn

ιtr(Ξn), (9.7)

where Ξ is as in (9.3). Thus, using (9.7), we can finally rewrite the third expression
in the chain of identities (9.6) in the considerably simpler form

UQ(α) = IHKR
(
eΘ(α)

)
. (9.8)

9.3 The weight of an even wheel

We observe that the differential form (9.7) acts on the polyvector field α by
means of contraction. At the end, using results of Cattaneo–Felder–Willwacher [43]
and Van den Bergh [41], we can put (5.2) (in the form of (9.8)) into relationship
with the Todd class of V .

Theorem 9.3. The following identity holds true, for any choice of a vector field
Q on V :

eΘ = Ber



√
e

Ξ
2 − e−

Ξ
2

Ξ


 , (9.9)

with Ξ is the supermatrix-valued 1-form introduced in (9.3); Ber denotes the
Berezinian of the supervector space V , i.e. the superdeterminant of endomorphisms
of the superspace V .

Remark 9.4. The supermatrix-valued differential form e
Ξ
2 −e−

Ξ
2

Ξ has to be un-
derstood as obtained from the power series expansion of the function

B(t) =
e

t
2 − e−

t
2

t
,
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putting Ξ instead of t. Actually, the previous result may be restated as the fol-
lowing identity for formal power series

∑

n>0

Wn

n
tn =

1

2
log
(
B(t)

)
,

where Wn is the weight of the standard wheel of length n.

This ends the proof of Theorem 5.3.

Yet another way of computing weights of even wheels
Actually, Theorem 9.3 can be obtained as a consequence of the standard Duflo

Theorem (i.e Theorem 1.3 of the present text). More precisely, Let us consider the
case when V = Πg and Q is the cohomological vector field on OV = ∧(g∗) is given
by the Chevalley-Eilenberg differential, g being a finite dimensional Lie algebras.

On one hand, following what we have done in Section 5.2, one obtains that
UQ induces an isomorphism of algebras S(g)g−̃→U(g)g explicitly given by IPBW ◦
(eΘ·), with

Θ =
∑

n>0

1

2n
WΣ2n

tr(ad2n) .

On the other hand, IPBW ◦(j̃1/2·) also induces an algebra isomorphism S(g)g−̃→U(g)g

(this is precisely the original Duflo Theorem).

We now proceed by induction. Assume that we have proved that 1
2kWΣ2k

coincide with the coefficient b2k of t2k in the series 1
2 log (B(t)) introduced in

Remark 9.4 for any k < n.1 Observe that since IPBW ◦ (eΘ·) and IPBW ◦ (j̃1/2·)
are both algebra ismorphisms from S(g)g to U(g)g, then the action of the series

j̃1/2e−Θ defines an algebra automorphism of S(g)g.
In particular, the first non-vanshing term, which is, thanks to the induction

assumption,
(
b2n −

1

2n
WΣ2n

)
tr(ad2n) ,

acts as a derivation on the algebra S(g)g.
As it is not true that tr(ad2n) acts as a derivation on S(g)g for any Lie algebra

g (one can actually check this on slN (C) for N big enough), then

b2n =
1

2n
WΣ2n

.

This indirect argument was first used by Maxim Kontsevich in [29] to prove that
the algebra isomorphism S(g)g −→ U(g)g he constructed thanks to his formality
theorem was precisely the Duflo isomorphism.

1Coefficients of odd powers of t in B(t) obviously vanish.
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In this chapter we follow [7], i.e. we produce resolutions of
(
Ω0,•(M,T ′

poly), ∂̄,∧
)

and
(
Ω0,•(M,D′

poly), dH + ∂̄,∪
)

as DG algebras, for M a complex manifold. The
differentials in these resolutions will be obtained locally through the action of a
cohomological vector field so that we will be able to use the Duflo isomorphism for
Q-spaces to prove Theorem 3.6. We want to point out that in [9] is presented a
more general approach to the proof of Theorem 5.3 by introducing a variety, whose
points are Fedosov’s resolution (a sort of universal recipient for such resolutions).

10.1 Bundles of formal fiberwise geometric objects

In this paragraph we introduce some infinite dimensional bundles that will be
of some relevance in the sequel. These bundles (defined in [7]) are straightforward
adaptation, in framework of complex manifolds, of the ones introduced by Dolgu-
shev [17] in his approach to the globalization of Kontsevich’s formality theorem.
He himself was directly inspired from Fedosov’s construction [20] of ∗-products on
symplectic manifolds.

All these bundles being constructed through natural algebraic operations from
T ′, they all are holomorphic bundles. Here are their definitions:

• we first consider O := Ŝ
(
(T ′)∗

)
, the formally completed symmetric algebra

bundle of (T ′)∗. Sections of O are called formal fiberwise functions on T ′,
and can be written locally in the following form:

f =
∑

k≥0

fi1,...,ik(z, z̄)yi1 · · · yik ,

where yi = dzi are even coordinates (formal coordinates in the fibers);

• then consider the Lie algebra bundle T := Der(O) of formal fiberwise vector
fields on T ′. One has that T = O ⊗ T ′, and sections can be written locally
in the following form:

v =
∑

k≥0

vji1,...,ik(z, z̄)yi1 · · · yik
∂

∂yj
;

• one also has the graded algebra bundle T •
poly := ∧•

OT of formal fiberwise

polyvector fields on T ′. One has T •
poly = O ⊗

(
∧• (T ′)

)
, and sections can be
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written locally in the following form:

v =
∑

k≥0

vj1,...,jli1,...,ik
(z, z̄)yi1 · · · yik

∂

∂yj1
∧ · · · ∧

∂

∂yjl
;

• dualizing w.r.t. O, one obtains the DG algebra bundle A• = O⊗
(
∧• (T ′)∗

)

of formal fiberwise differentiable forms on T ′. sections have the following
local form:

ω =
∑

k≥0

ωi1,...,ik;j1,...,jl(z, z̄)y
i1 · · · yikdyj1 ∧ · · · ∧ dyjl .

One has a fiberwise de Rham differential df := dyi ∂
∂yi ;

• the bundle D of formal fiberwise differential operators consists of the subal-
gebra bundle of End(O) that is generated by O and T . As a bundle it is
O ⊗

(
S(T ′)

)
and thus its local sections locally look like as follows:

P =
∑

k≥0

P j1,...,jli1,...,ik
(z, z̄)yi1 · · · yik

∂j1+···+jl

∂yj1 · · · ∂yjl
;

• we finally consider the graded algebra bundle Dpoly := ⊗•
OD = O⊗

(⊗
S(T ′)

)

of formal fiberwise polydifferential operators. One has to be careful about the
following: while the product in D is given by the composition of operators the
(graded) product in Dpoly is given by the concatenation of poy-differential
operators. We leave as an exercise to write the explicit form of local sections
of Dpoly.

Observe that the Lie algebra bundle T acts on all these (possibly graded)
bundles:

• it acts on O by derivations (this is the definition of T ),

• it acts on itself by the adjoint action,

• as usual the action on O and T can be extended by derivations to an action
on T •

poly,

• T also acts on A• by the (fiberwise) Lie derivative,

• it also acts on D by taking the commutator,

• as usual the action on O and D can be extended by derivations to an action
on D•

poly.

Remark 10.1. Observe that, given a connection ∇ = ∇′ + ∂̄ compatible with
the complex structure on T ′, then one can identify D′ with S(T ′). Moreover, this
identification commutes with the action of ∂̄ on both sides (i.e. it is a morphism
of holomorphic bundles). Nevertheless, such an identification does NOT preserve
the product on both sides (since it is commutative only on one side).
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10.2 Resolutions of algebras

In this paragraph B (resp. B) will denote any of the O-modules O, T , Tpoly,
A, D or Dpoly (resp. the bundles C,1 T ′, T ′

poly, ∧(T ′)∗, D′ or D′
poly).

Let us consider the 1-form valued fiberwise vector field θ := dzi ∂
∂yi (Euler

vector field, obtained from the identity tensor id ∈ (T ′)∗ ⊗ T ′) and write δ := θ·
for the degree one derivation of Ω•,q(M,B), q ≥ 0, given by the action of θ on it.
Obviously, δ is a differential.

Proposition 10.2. 1. Hp
(
Ω•,q(M,B), δ

)
= {0} for p > 0.

2. H0
(
Ω•,q(M,B), δ

)
= Ω0,q(M,B) ∩ (ker δ).

3. In case B is an algebra bundle the previous equality is an equality of algebras.

Proof. This is essentially the Poincaré lemma (see example 1.9) ! Namely, we define
a degree −1 graded Ω0,q(M)-linear endomorphism κ of Ω•,q(M,B) as follows:
κ(1) = 0 and

κker(p)(f(y,dz)) = yiι ∂

∂zi

(∫ 1

0

f(ty, tdz)
dt

t

)
,

where p : Ω•,q(M,B) → Ω0,q(M,B) ∩ (ker δ) is the projection on (0, q)-forms that
are constant in the fibers; i.e. p(f(y,dz) = f(0, 0). As for the proof of the Poincaré
lemma κ is a homotopy operator: it satisfies

δ ◦ κ+ κ ◦ δ = id − i ◦ p , (10.1)

where i : Ω0,q(M,B) ∩ (ker δ) → Ω•,q(M,B) is the natural inclusion of B-valued
(0, q)-forms that are constant in the fibers into Ω•,q(M,B).

Finally, in the case B is an algebra bundle i and p are algebra morphisms. 2

Observe that one also has κ ◦ κ = 0. This fact will be very useful below.
Observe also that δ commutes with ∂̄, which means that we have injective quasi-
isomorphisms i :

(
Ω0,•(M,B) ∩ ker δ, ∂̄

)
→֒
(
Ω•(M,B), ∂̄ − δ

)
.

One has obvious isomorphisms B ∩ (ker δ) ∼= B of holomorphic bundles.2 Nev-
ertheless if B is T , resp. D, and B is T ′, resp. D′, then it does not preserve the
Lie bracket, resp. the product.

We will remedy to this problem in the rest of this chapter. More generally we
will perturb ∂̄ − δ and i to a new differential D on Ω•(M,B) and a new injective
quasi-isomorphism λ :

(
Ω0,•(M,B), ∂̄

)
→֒
(
Ω•(M,B),D

)
that intertwines the T ′-

and T -actions and preserves all algebraic structures.

1Here C is considered as a bundle, the trivial line bundle on M , whose sections are functions
on M .

2In the case when B is D, resp. Dpoly, and B is D′, resp. D′

poly, one needs to use the

identification of Remark 10.1.
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10.3 Fedosov differential

We keep the notation of the previous paragraph and assume that ∇ = ∇′ + ∂̄
is a connection compatible with the complex structure on T ′.

Thanks to the pairing between T ′ and (T ′)∗, ∇ defines a connection compatible
with the complex structure on (T ′)∗: for any v ∈ Γ(M,T ′) and ξ ∈ Γ(M, (T ′)∗)
one has

〈∇(ξ), v〉 = d〈ξ, v〉 − 〈ξ,∇(u)〉 .

We then extend it by derivations to a connection compatible with the complex
structure on O = Ŝ

(
(T ′)∗

)
; it it thus locally given by the following formula:

∇ = ∂ + ∂̄ − dziΓkij(z, z̄)y
j ∂

∂yk
. (10.2)

Formula (10.2) finally extends to a connection compatible with the complex struc-
ture on any of the bundles B, thanks to the T -module structure on them. Therefore
∇ defines a degree one derivation of the graded algebra Ω•(M,B).

Lemma 10.3. W.l.o.g. ∇ can be assumed to be torsion-free, in which case ∇δ +
δ∇ = 0.

Before proving the lemma we remind to the reader that the torsion of a con-
nection compatible with the complex structure on T ′ is the tensor T ∈ Ω2,0(M,T ′)
defined by T (u, v) := ∇′

uv −∇′
vu− [u, v]. Locally one has T kij = Γkij − Γkji.

Proof. Locally the zero torsion condition can be written as follows: Γkij −Γkji = 0.
Therefore one sees that a connection compatible with the complex structure on
T ′ having zero torsion always exists. Namely, given a covering (Uα)α of M by
trivializing opens one defines ∇α by taking (Γα)kij = 0. Let then (fα)α be a
partition of unity and defines ∇ :=

∑
α fα∇α.

Now we assume ∇ has zero torsion and compute: since d = ∂ + ∂̄ obviously
commutes with δ one has

∇δ + δ∇ =
[
dziΓkijy

j ∂

∂yk
,dzl

∂

∂yl
]
· = −dzi ∧ dzjΓkij

∂

∂yk
· = 0

This ends the proof of the lemma. 2

From now on, we assume that ∇ has zero torsion.
Let R = R2,0 + R1,1 ∈ Ω2(M,End

(
(T ′)∗

)
be the curvature tensor of ∇. Then

∇ ◦∇ acts on Ω•(M,B) as −R· = −Rlky
k ∂
∂yl ·; in other words

−
(1

2
dzi ∧ dzj(R2,0)ij

l

k + dz̄i ∧ dzj(R1,1)ij
l

k

)
yk

∂

∂yl
· .
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Theorem 10.4. There exists an element A ∈ Ω1(M, T≥2) such that κA = 0 and
the corresponding derivation D := ∇− δ +A· has square zero: D ◦D = 0.

Before proving the theorem let us observe that there is a filtration on the bundle
O that is given by the polynomial (i.e. symmetric) degree in the fibers (i.e. in y’s).
It induces a filtration on B (including T ). This is the filtration we consider in the
statement and proof of the theorem.

Proof. Since κ raises the degree in the filtration there is a unique solution A ∈
Ω1(M,B) to the following equation:

A = κ(−R+ ∇A+
1

2
[A,A]) (10.3)

First observe that κ◦κ = 0 implies that κ(A) = 0. Now let us show that A satisfies
equation

−R+ ∇A− δA+
1

2
[A,A] = 0 , (10.4)

which obviously implies that D ◦D = 0. Using (10.1) together with κ(A) = 0 =
p(A) one finds that

κδA = κ(−R+ ∇A+
1

2
[A,A]) (10.5)

Define C := −R + ∇A − δA + 1
2 [A,A]. One can rewrite Bianchi identities for ∇

in the following way: δR = 0 = ∇R. Thanks to these equalities and (10.1) on has

∇C − δC = (∇− δ)
(1
2
[A,A]

)
− [R,A] = [∇A− δA−R,A] = [C,A] ,

where the last equality follows from the (super-)Jacobi identity. Finally, due to
(10.5) one has κC = 0 and thus C = κ(∇C + [A,C]). Since the operator κ raises
the degree in the filtration this latter equation has a unique solution, that is zero.
Thus A satisfies (10.4) and the theorem is proved. 2

D is refered to as the Fedosov differential.

10.4 Fedosov resolutions

We keep the notation of the previous paragraphs.

Theorem 10.5. There exist a quasi-isomorphism ℓ :
(
Ω0,∗(M,B), ∂̄

)
→ (Ω∗(M,B),D

)

with the following properties:

1. for any f ∈ Ω0,∗(M) and any s ∈ Ω0,∗(M,B), ℓ(fs) = ℓ(f)ℓ(s);
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2. if B 6= T , ℓ is a morphism of DG algebras;

3. if B = Dpoly, ℓ commutes with Hochschild differentials and thus becomes a
quasi-isomorphism

(
Ω0,∗(M,B), ∂̄ + dH

)
→ (Ω∗(M,B),D + dH

)
;

4. ℓ is compatible with the contraction of polyvector fields by forms.

Proof. We first prove that H•
(
Ω∗(M,B),D

)
= H•

(
Ω0,∗(M,B) ∩ (ker δ), ∂̄

)
.

Observe that D = D′ + D′′, with D′ : Ω∗,∗(M,B) → Ω∗+1,∗(M,B) and D′′ :
Ω∗,∗(M,B) → Ω∗,∗+1(M,B), and let us compute the cohomology with respect to
D′. We consider the spectral sequence associated to the filtration given by the
degree in the fibers, for which D′ decreases the degree by one. We have d−1 = −δ.
Therefore thanks to Proposition 10.2

E•,•
0 = E0,0

0 = Ω0,∗(M,B) ∩ (ker δ) ,

and thus H•
(
Ω∗(M,B),D′

)
= H0

(
Ω∗(M,B),D′

)
= Ω0,∗(M,B) ∩ (kerD′).

Now since theD′-cohomology is concentrated in degree zero, theD-cohomology,
which is the cohomology of the double complex

(
Ω•,•(M,B),D′,D′′

)
, is

H•
(
Ω∗(M,B),D

)
= H•

(
H0
(
Ω∗(M,B),D′

)
,D′′

)
= H•

(
Ω0,∗(M,B)∩(kerD′),D′′

)
.

We then construct an isomorphism of complexes

λ :
(
Ω0,•(M,B) ∩ (ker δ), ∂̄

)
−→

(
Ω0,•(M,B) ∩ (kerD′),D′′

)
.

For any u ∈ Ω0,•(M,B) such that δ(u) = 0 we define

λ(u) := u+ κ
(
(D′ + δ)

(
λ(u)

))
.

This is well-defined (by iteration) since κ raises the filtration degree and D′ + δ
preserves it. Thanks to κ(u) = 0, p(λ(u)) = u, κ ◦ κ = 0 and equation (10.1), one
has

κ
(
D′
(
λ(u)

))
= κ

(
(D′ + δ)

(
λ(u)

))
− κ
(
δ
(
λ(u)

))
=
(
λ(u)− u

)
−
(
λ(u)− u

)
= 0 .

Setting Y := D′
(
λ(u)

)
one obtains κ(Y ) = 0 and δ(Y ) = (D′ + δ)(Y ). Therefore

using (10.1) again we see that

Y = κ
(
(D′ + δ)(Y )

)

which admits 0 as a unique solution (since κ raises the filtration degree). Conse-
quently, D′

(
λ(u)

)
= 0. λ is an isomorphism of graded vector spaces with λ−1 = p.

Moreover p (and so λ) is obviously a morphism of complexes since D′′ is given by
∂̄ plus something that raises the filtration degree.
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Finally, composing λ with the isomorphism B ∩ (ker δ) ∼= B, we obtain the
desired quasi-isomorphism ℓ, which obviously satisfies the first property.

Since B ∩ (ker δ) ∼= B is an algebra bundle isomorphism when B is either O,
Tpoly, A or Dpoly, the second property is satisfied in these cases. Moreover, the
fourth property is also obviously satisfied.

We now consider the situation when B = D.

Lemma 10.6. Let f, g ∈ C∞(M) and u, v ∈ Γ(M,T ′). Then ℓ(fg) = ℓ(f)ℓ(g),
ℓ(fv) = ℓ(f)ℓ(v), ℓ(v · f) = ℓ(v) · ℓ(f) and ℓ([u, v]) = [ℓ(u), ℓ(v)].

Proof of the lemma. There are only two non trivial equalities to check: ℓ(v · f) =
ℓ(v) · ℓ(f) and ℓ([u, v]) = [ℓ(u), ℓ(v)]. First observe that

ℓ(f) = f+yi
∂f

∂zi
+O(|y|2) and ℓ(u) = ℓ

(
ui

∂

∂zi
)

= ui
∂

∂yi
+yi

(∂uk
∂zi

+ujΓkij
) ∂

∂yk
+O(|y|2) .

Then compute:

ℓ(u) · ℓ(f) = ui
∂f

∂zi
+O(|y|) = u · f +O(|y|) = ℓ(u · f)

and

[ℓ(u), ℓ(v)] = ui
(∂vk
∂zi

+ vjΓkij
) ∂

∂yk
− vi

(∂uk
∂zi

+ ujΓkij
) ∂

∂yk
+O(|y|)

=
(
ui
∂vk

∂zi
− vi

∂uk

∂zi
) ∂

∂yk
+O(|y|)

= [u, v]k
∂

∂yk
+O(|y|) = ℓ([u, v])

The lemma is proved. 2

The algebra of ∂̄-differential operators is generated by C∞(M) and Γ(M,T ′),
and the defining relations are f ∗ g = fg, f ∗ u = fu, u ∗ f − f ∗ u = u · f and
u ∗ v − v ∗ u = [u, v]. Therefore the lemma proves that ℓ is an algebra morphism.

Moreover, it implies that for any ∂̄-diffferential operator P and any function f
one has

ℓ(P (f)) = ℓ(P )
(
ℓ(f)

)
.

This last identity can be used to prove that ℓ commutes with Hochschild differ-
entials when B = Dpoly (this is the third property). This ends the proof of the
theorem. 2
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10.5 Proof of Theorem 3.6

Observe that D is locally given on any holomorphic coordinate chart U by the
following formula:

D = ∂ + ∂̄ +QU · ,

where QU ∈ Ω1(U, T ). The square zero property of D is equivalent to the fact
that QU satisfies the Maurer-Cartan equation

(∂ + ∂̄)(QU ) +
1

2
[QU , QU ] = 0 .

By choosing a DG algebra (m,dm) =
(
Ω•(U),d = ∂ + ∂

)
, we are in the position of

applying Theorem 5.3 in its extension given by Theorem 8.4 and we thus obtain
a quasi-isomorphism

UQU
:
(
Ω
(
U, Tpoly

)
, ∂ + ∂̄ +QU

)
−→

(
Ω
(
U,Dpoly

)
, ∂ + ∂̄ +QU + dH

)

that induces an algebra isomorphism in cohomology. We remind the reader that
UQU

is given by the fiberwise HKR map Tpoly → Dpoly composed with
√

det
( ΞU
eΞU/2 − e−ΞU/2

)
∈
⊕

k

Ωk(U,Ak)
(
remember that (ΞU )ji := d(

∂QjU
∂yi

)
)

acting on Ω(U, Tpoly).
We now observe that, in the previous Formula, the Berezinian reduces to a de-

terminant of a matrix with values in 1-forms on U , but, unlike in Duflo’s Formula,
in the determinant appears the inverse of the matrix: this is due to the fact that,
in the present setting, ΞU is a purely odd endomorphism, precisely because of the
fact that ΞU is, by direct computations, a purely odd endomorphism of Ω•(U, T )
(as ΞU is a matrix-valued 1-form).

On a general overlap U∩V , for U , V open subsets of X, the difference QU−QV
is a linear vector field, and thus ΞU −ΞV = 0. In particular UQU

and UQV
coincide

on U ∩ V ; one therefore has a globally well-defined quasi-isomorphism

UQ :
(
Ω
(
M, Tpoly

)
, ∂ + ∂̄ +QU

)
−→

(
Ω
(
M,Dpoly

)
, ∂ + ∂̄ + dH +QU

)
.

Proposition 10.7. UQ induces an algebra isomorphism in cohomology.

Proof. On each holomorphic coordinate chart U there is a homotopy HQU
. On a

general overlap U ∩ V , one has

HQU
(α, β) =

∑

n≥0

1

n!

∑

Γ∈Gn+2,m

W̃ΓBΓ(α, β,QU , . . . , QU )

=
∑

n≥0

1

n!

∑

Γ∈Gn+2,m

W̃ΓBΓ(α, β,QV , . . . , QV ) = HQV
(α, β) ,
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where the second equality follows from the fact that W̃ΓBΓ vanishes if at least one
argument is a linear vector field; this last fact is in turn a consequence of a slight
variation of Lemma 6.9.

We therefore have a globally well-defined homotopy HQ. 2

Remember that thanks to Theorem 10.5 ℓ defines a quasi-isomorphism

(
Ω0,∗

(
M,∧(T ′)∗ ⊗ End(T ′)

)
, ∂̄
)

−→
(
Ω
(
M,A⊗ End(T )

)
,D
)
,

and one can check that it commutes with det. Therefore, to end the proof of
Theorem 3.6, it remains to prove that the class of Ξ is the Atiyah class:

Proposition 10.8. [Ξ] = atT ′ .

Proof. A direct computation using the recursion relation (10.3) shows that

A =
(1

2
dzi(R2,0)ij

l

k + dz̄i(R1,1)ij
l

k

)
yjyk

∂

∂yl
+O(|y|3) .

Therefore applying the morphism p (that sends dzi and yi onto zero) to the matrix
element

Ξlk := d
(∂Ql
∂yk

)
= d

(∂Al
∂yk

)

one gets

p(Ξlk) = dyjdz̄i
(
(R1,1)ij

l

k + (R1,1)ik
l

j

)
.

The proposition is proved. 2



A Deformation-theoretical intepretation

of the Hochschild cohomology of a

complex manifold

In this appendix, we discuss, from the point of view of Čech cohomology, an
interpretation of the second Hochschild cohomology group of X in the framework
of deformation theory. This is in a certain sense analogous to the deformation-
theoretical interpretation of the Hochschild cohomology of an associative algebra
A given by Gerstenhaber and sketched in Paragraph 2.1.

For a complex manifold X, we denote by D′
poly the holomorphic differential

graded algebra bundle of polydifferential operators on X of type (1, 0), i.e. the
local holomorphic sections of D′

poly are holomorphic differential operators on X;
the differential of D′

poly is the Hochschild differential, denoted by dH .

Definition A.1. The Hochschild cohomology of the complex manifold X is the
total cohomology of the double complex

(
Ω(0,•)(X,D′

poly), ∂ ± dH

)
.

A.1 Čech cohomology: a (very) brief introduction

We consider a general sheaf E of abelian groups over a topological space X.
Additionally, we consider an open covering U of X.

Definition A.2. The Čech complex of E w.r.t. U, denoted by Č•(U, E), is defined
as

Čp(U, E) =
∏

i0,...,ip

E(Ui0 ∩ · · · ∩ Uip) ,

where the product is over all p + 1-tuples of indices for elements of U, such that
all indices are distinct. The Čech differential δ̌ is given explicitly by the formula

(δ̌α)i0,...,ip+1
:=

p+1∑

j=0

(−1)jαi0,...,bij ,...,ip+1
,

where, to keep notation simple, we have omitted to write down the restriction
maps. The corresponding cohomology groups Ȟ•(U, E) form the Čech cohomology
of E w.r.t. the open covering U.
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Thus, a Čech cochain α of degree p consists of a family of local sections of
E over all non-trivial intersections of distinct open sets in U. It is possible to
show that, in fact, the Čech complex, as introduced in Definition A.2, is quasi-
isomorphic to the Čech complex with the same differential, but whose cochains
satisfy an antisymmetry relation w.r.t. the indices, i.e. for which we have

ασ(i0),...,σ(ip) = (−1)σαi0,...,ip , σ ∈ Sp+1 .

Further, we see that Čech cohomology depends on the choice of an open covering
of X. In order to define the Čech cohomology Ȟ(X, E) of X with values in E ,
we need the notion of refinement of coverings: without going into the details, an
open covering V is finer than U, if for any open subset Vj in V, there is an open
subset Uf(j) in U, which contains Vj . The notion of refinement of coverings yields

in turn a structure of direct system on Čech cohomology w.r.t. open coverings,
thus allowing to define the Čech cohomology Ȟ•(X, E) of X with values in E as
the direct limit

Ȟ•(X, E) = lim
→
U

Ȟ•(U, E) ,

w.r.t. the direct limit structure sketched above.
For completeness, we cite the (adapted version of the) famous Leray’s Theorem

on sheaf cohomology.

Theorem A.3 (Leray). If U is an acyclic open covering of X, i.e.

Ȟp(Ui0 ∩ · · · ∩ Uiq , E) = 0, p ≥ 1 ,

and for any non-trivial multiple intersection Ui0 ∩ · · · ∩Uiq of open sets in U, then

Ȟ•(U, E) ∼= Ȟ•(X, E) .

Remark A.4. We may also speak, a bit improperly, of Ȟ•(X, E) as of the sheaf
cohomology of X with values in E . More precisely, the sheaf cohomology of X with
values in a sheaf E of abelian groups is defined by means of the right derived functor
of the global section functor, which, to a sheaf E of abelian groups, associates the
set of its global sections. Then, the more general version of Theorem A.3 gives
an identification between the sheaf cohomology of X with values in a sheaf E of
abelian groups and the Čech cohomology of X w.r.t. an acyclic open covering of
X with values in E .

A.2 The link between Čech and Dolbeault coho-
mology: Dolbeault Theorem
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We assume now X to be a complex manifold, and we assume E → X to be
a holomorphic vector bundle over X. We want to build a relationship between
Dolbeault cohomology of X with values in E and sheaf cohomology of X with
values in the sheaf E of local holomorphic sections of E. For a complex manifold
X, we denote by OX the structure sheaf of X, i.e. the sheaf, whose local sections
are local holomorphic functions on X: the corresponding holomorphic bundle is
the trivial line bundle over X.

First of all, we need a complex version of Poincaré’s Lemma, which we state
without proof, referring e.g. to the 0-th chapter of [23].

Lemma A.5. If U is an open polydisk in Cn, then

H•
∂
(U) = H0

∂
(U) = O(U) .

In other words, the Dolbeault complex of a polydisk in Cn is acyclic.
Using Lemma A.5, we get Dolbeault’s Theorem, whose proof we only sketch,

referring, once again, to the 0-th chapter of [23].

Theorem A.6 (Dolbeault). Using the same notation as at the beginning of the
section, we have the isomorphism

H•
∂
(X,E) ∼= Ȟ•(X, E) .

Proof. We consider a sufficiently nice open covering U of X, i.e. an open covering
of X by holomorphic charts of X (e.g. by polydisk charts) and simultaneously by
local holomorphic trivializations of E. Since X is paracompact, the open covering
U is also locally finite.

The Čech–Dolbeault double complex of X w.r.t. U with values in E is defined
as

(Č•(U,Ω
(0,•)
E ), δ̌ ± ∂) ,

where Ω
(0,•)
E denotes the sheaf of smooth forms of type (0, •) on X with values in

E. To the Čech–Dolbeault double complex we can associate two natural spectral
sequences, according to the two gradations. The “first” degree is the Čech degree,
while the “second” degree is the one coming from the Dolbeault complex.

i) The first spectral sequence is associated to the filtration w.r.t. the second
degree. The 0-the term of the spectral sequence is therefore the Čech complex

of Ω
(0,•)
E w.r.t. U, hence the first term E1 is the Čech cohomology of Ω

(0,•)
E

w.r.t. U, which is localized in degree 0, since Ω
(0,•)
E is a sheaf of smooth forms

and X admits a smooth partition of unity:

E1 = Ȟ•(U,Ω
(0,•)
E ) = Ȟ0(U,Ω

(0,•)
E ) = Ω(0,•)(X,E) .

The corresponding differential d1 coincides therefore with the Dolbeault dif-
ferential ∂, and the spectral sequence abuts at the second term E2, which
equals then

E2 = H•
∂
(X,E) .
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ii) The second spectral sequence is associated to the filtration w.r.t. the first
degree. The corresponding 0-th term is the Dolbeault complex on multiple
non-trivial intersections of open subsets of U, hence the first term is, by
means of Lemma A.5,

E1 = Č•(U,H•
∂
) = Č•(U, E) .

Lemma A.5 can be applied to this situation, since the open sets of U locally
trivialize the holomorphic bundle E. The corresponding differential d1 cor-
responds to the Čech differential δ̌. Hence, the spectral sequence abuts also
at the second term E2, which then equals the Čech cohomology of X w.r.t.
U with values in E . If, additionally, the open covering U is acyclic in the
sense of Theorem A.3, then the latter cohomology coincides with the sheaf
cohomology of E .

The claim follows then by general arguments on spectral sequences. 2

We observe that we can consider the more general situation of a differential
graded holomorphic vector bundle (E•, dE) over X: Theorem A.6 can be further
generalized as

H•
∂
(X,E) ∼= H•(X, E) , (A.1)

where H•
∂
(X,E) denotes the total cohomology of the Dolbeault double complex

(Ω(0,•)(X,E•), ∂ ± dE)

and, denoting by E the complex (w.r.t. the differential dE) of sheaves of local
holomorphic sections of E, H•(X, E) denotes the hypercohomology of X with
values in E . The latter cohomology is defined, in this framework, as the total
cohomology of the Čech complex associated to E . Considering the generalization
(A.1) of Dolbeault Theorem A.6 to the differential graded holomorphic vector
bundle (D′

poly, dH) of Definition A.1, whose local holomorphic sections are, by
definition, local holomorphic differential operators on X, we may use the so-called
Čech–Hochschild double complex

(Č(U,Dpoly), δ̌ ± dH) ,

for a sufficiently nice open covering U of X, in order to compute the Hochschild co-
homology of X. Here, Dpoly denotes the sheaf of holomorphic differential operators
on X.

Remark A.7. Here we have to warn the reader that D′
poly is an infinite rank

vector bundle, therefore we should be careful when applying Lemma A.5. Never-
theless, the cohomology of the DG vector bundle (D′

poly, dH) is a finite rank vector
bundle: ∧(T ′). We can therefore compute the total cohomology of the Dolbeault
bicomplex (Ω0,•(U,D′

poly
•
), ∂ ± dH) by means of the spectral sequence associated



A.3 Twisted presheaves of algebras 95

to the filtration w.r.t. the first degree. Namely, the first term of the spectral
sequence is

E1 = Ω0,•(U,∧(T ′)) , d1 = ∂ .

Therefore if U is assumed to be an open polydisk trivializing T ′ (and thus ∧(T ′)
and D′

poly) the E2 term is E•,•
2 = E0,•

2 = Γ(U,∧•(T ′)).

A.3 Twisted presheaves of algebras

In order to give now a meaningful interpretation, in the framework of defor-
mations of structures, of the second Hochschild cohomology group of a complex
manifoldX, we need a new object, whose definition is presented in sheaf-theoretical
teminology.

For this purpose, we consider X, a general topological space, and U = {Uα}, a
sufficiently nice open covering of X.

Definition A.8. A twisted presheaf F of algebras overX (w.r.t. the open covering
U) consists of the following data:
i) a sheaf of associative algebras (possibly with unit) F(Uα), for a general

element Uα of U;

ii) for any two non-trivially intersecting elements Uα, Uβ of U, there is an iso-
morphism gαβ of sheaves of algebras from F(Uα)|Uα∩Uβ

to F(Uβ)|Uα∩Uβ
;

iii) for any three non-trivially intersecting elements Uα, Uβ , Uγ of U, there exists
an invertible element aαβγ of F(Uα)|Uα∩Uβ∩Uγ

, which additionally satisfies
the following relations

g−1
αγ ◦ gβγ ◦ gαβ = Ad(a−1

αβγ), (A.2)

aαβγaαγδ = g−1
αβ (aβγδ) aαβδ (A.3)

where Ad denotes here (improperly) the action by conjugation by invertible
elements, and, of course, Identity (A.3) has to be understood on a non trivial
overlap Uα ∩ Uβ ∩ Uγ ∩ Uδ.

We want to observe that Identity (A.3), which may be viewed as a twisted
cocycle condition (or a cocycle condition in non-commutative Čech cohomology)
for aαβγ , follows from a coherence requirement for the isomorphisms gαβ , in the
following sense: for any four open non-trivially intersecting elements Uα, Uβ , Uγ
and Uδ, we have

gγδ ◦ gβγ ◦ gαβ = gβδ ◦ Ad(a−1
βγδ) ◦ gαβ

= gβδ ◦ gαβ ◦ Ad(g−1
αβ (a−1

βγδ))

= gαδ ◦ Ad
(
a−1
αβδg

−1
αβ (a−1

βγδ)
)
.
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On the other hand, we have

gγδ ◦ gβγ ◦ gαβ = gγδ ◦ gαγ ◦ Ad(a−1
αβγ)

= gαδ ◦ Ad
(
a−1
αγδ a

−1
αβγ

)
,

whence, by comparison with the last expression in the previous chain of equalities,
Identity (A.3) follows.

We further observe that, if we assume the twisting elements aαβγ to be central
in the corresponding algebras, then the coherence relation (A.3) reduces to the
2-cocycle condition in Čech cohomology of X w.r.t. U (with values in the group of
invertible elements of the algebras F , for suitable elements of U).

Given two twisted presheaves of algebras A and B over the same topological
space X and w.r.t. the same open covering U, a morphism ϕ from A to B consists
of

i) a morphism ϕα from A(Uα) to B(Uα), for a general element Uα of U;

ii) an invertible element cαβ of B(Uβ)|Uα∩Uβ
, for two non-trivially intersecting

elements Uα, Uβ of U, such that

ϕβ ◦ gAαβ = Ad(c−1
αβ) ◦ gBαβ ◦ ϕα, (A.4)

ϕγ(aαβγ)cαγ = cβγg
B
βγ(cαβ)bαβγ , (A.5)

where gAαβ , resp. gBαβ , denotes the ismorphism in the twisted sheaf of algebras
A, resp. B; aαβγ and bαβγ are the corresponding twisting elements.

An isomorphism from A to B is a morphism from A to B, for which the morphisms
ϕα are invertible, for all elements Uα of U.

Let F be a complex twisted presheaf over the topological space X.

Definition A.9. An order n deformation of F is a twisted presheaf A of k[ǫ]/ǫn+1-
algebras over X, such that A/ǫA ∼= F as twisted presheaves of k-algebras.

In analogy with Gerstenhaber’s interpretation of the second Hochschild co-
homology group of an associative algebra A, we want to characterize the second
Hochschild cohomology of the complex manifold X in view of Definition A.9.
Namely, we want to elucidate the fact that the second Hochschild cohomology
group of X parametrizes infinitesimal (i.e. order 1) deformations of the sheaf OX

of holomorphic functions on X as a twisted presheaf of algebras, up to equivalence
(an equivalence being, as usual, an isomorphism that reduces to the identity mod
ǫ).

For this purpose, we consider a general 2-cocycle in the Čech–Hochschild double
complex of X w.r.t. a sufficiently nice open covering U of X in the sense specified
above. Such a 2-cocycle consists of three components P (i,j), where i and j are non
negative integers such that i+ j = 2, and P (i,j) ∈ Čj(U,Di

poly).
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Thus, P (2,0) is a Čech 0-cochain with values in the sheaf D2
poly of holomorphic

bidifferential operators on X, P (1,1) is a Čech 1-cochain with values in the sheaf
D1

poly = Dpoly of holomorphic differential operators on X, and finally P (0,2) is a

Čech 2-cochain with values in the sheaf OX . The cochain condition (δ̌±dH)P = 0
for the 2-cocycle P is equivalent to the following set of identities (taking into
account the Koszul sign convention for the Čech–Hochschild double complex):

dHP
(2,0) = 0 , (A.6)

dHP
(1,1) + δ̌P (2,0) = 0 , (A.7)

dHP
(0,2) − δ̌P (1,1) = 0 , (A.8)

δ̌P (0,2) = 0 . (A.9)

The component P (2,0) consists of a family of holomorphic bidifferential operators
on X for any open subset Uα in U: Identity (A.6) can be written more explicitly
as

fP (2,0)
α (g, h) + P (2,0)

α (f, gh) = P (2,0)
α (fg, h) + P (2,0)

α (f, g)h,

for any triple of holomorphic functions f , g, h on Uα. We may thus consider the
sheaf Aα to be the restriction of the sheaf OX [ǫ]/ǫ2 to Uα, with deformed product
given by

(f, g) = (f0 + ǫf1, g0 + ǫg1) 7→ f ⋆α g = f0g0 + ǫ
(
f0g1 + f1g0 + P (2,0)

α (f0, g0)
)

:

Identity (A.6) is easily verified to be equivalent to the fact that ⋆α is an associative
product modulo ǫ2; it is also obvious that the product ⋆α reduces to the usual
product modulo ǫ. We notice that, for a deformed product ⋆α, for a choice of an
open subset Uα, we still want the unit 1 (the constant holomorphic function 1) to
be a unit also w.r.t. ⋆α: this is easily achieved by adding the condition that the

holomorphic bidifferential operator P
(2,0)
α vanishes, whenever one of its arguments

is a constant:

(f0 + ǫf1) ⋆α 1 = 1 ⋆α (f0 + ǫf1) = f0 + ǫf1 ⇐⇒ P (2,0)
α (f0, 1) = P (2,0)

α (1, f0) = 0.

Further, the component P (1,1) consists of a family of holomorphic differential

operators P
(1,1)
αβ on each (non-trivial) double intersection Uα ∩ Uβ ; additionally,

Identity (A.7) can be rewritten as

P
(2,0)
β (f, g) + fP

(1,1)
αβ (g) + gP

(1,1)
αβ (f) = P (2,0)

α (f, g) + P
(1,1)
αβ (fg),

for any pair of holomorphic functions f , g on Uα ∩ Uβ . This means that the

holomorphic differential operator P
(1,1)
αβ defines an isomorphism

(Aα|Uα∩Uβ
, ⋆α)

ϕαβ // (Aβ |Uα∩Uβ
, ⋆β) ,
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where ϕαβ is explicitly given by the formula

f = f0 + ǫf1 7→ f0 + ǫ
(
f1 + P

(1,1)
αβ (f0)

)
.

We want additionally the isomorphism ϕαβ to preserve the unit of Aα and Aβ ,
which turns out to be equivalent to the fact that the holomorphic differential

operator P
(1,1)
αβ vanishes on constant functions:

ϕαβ(1) = 1 ⇔ P
(1,1)
αβ (1) = 0.

The third component P (0,2) is a family of holomorphic functions on each non-trivial
triple intersection Uα ∩Uβ ∩Uγ : since OX is a sheaf of commutative algebras, we
have dHP

(0,2) = 0. Hence, Identity (A.8) reduces to the simpler Čech cocycle
condition

P
(1,1)
αβ (f) + P

(1,1)
βγ (f) = P (1,1)

αγ (f),

for any holomorphic function on Uα∩Uβ∩Uγ . This identity is obviously equivalent
to the commutativity of the following diagram of sheaves (modulo ǫ and again by
the commutativity of OX):

(Aα|Uα∩Uβ∩Uγ
, ⋆α)

ϕαγ //

ϕαβ ))SSSSSSSSSSSSSS

(Aγ |Uα∩Uβ∩Uγ
, ⋆γ)

(Aβ |Uα∩Uβ∩Uγ
, ⋆β)

ϕβγ

55kkkkkkkkkkkkkk

.

(A.10)

Thanks to the observation made after Definition A.2, we may assume skew-symmetry
w.r.t. the indices of all Čech cochains involved, whence

P (1,1)
αα = 0,

which in turn implies ϕαα = id.
Summing up what was done until here, we get, for each open subset Uα, by

means of P
(2,0)
α , a sheaf (Aα, ⋆α), which is obviously an infinitesimal deformation

of the (trivial) twisted presheaf OX |Uα
; further, on each non-trivial intersection

Uα ∩ Uβ , P
(1,1)
αβ determines an isomorphism between the sheaves (Aα|Uα∩Uβ

, ⋆α)
and (Aβ |Uα∩Uβ

, ⋆β), which, by (A.10), satisfies the cocycle condition. Hence, the
sheaves (Aα, ⋆α) define descent data, which can be glued together to give a sheaf
A = A(P ), which is, by its very construction, an infinitesimal deformation of OX .

It remains to consider Identity (A.9), which can be written explicitly as

P
(0,2)
βγδ + P

(0,2)
αβδ = P

(0,2)
αγδ + P

(0,2)
αβγ

as a relation between functions on any non-trivial 4-fold intersection Uα ∩ Uβ ∩
Uγ ∩Uδ. We observe first that, if f is a holomorphic function on some open subset
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of X, which is contained in a non-trivial triple intersection Uα ∩ Uβ ∩ Uγ , then,
setting

aαβγ = 1 + ǫP
(0,2)
αβγ ,

we get an obviously invertible element of the algebras Aα, Aβ and Aγ restricted on
the triple intersection Uα ∩Uβ ∩Uγ , which is central in each of the three algebras
w.r.t. the corresponding products:

(f0 + ǫf1) ⋆α aαβγ = aαβγ ⋆α (f0 + ǫf1), (A.11)

and similar identities hold true, when ⋆α is replaced by ⋆β or ⋆γ : this follows

from the aforementioned fact that the holomorphic bidifferential operator P
(2,0)
α

vanishes if one of its arguments is a constant. Furthermore, the central element
aαβγ is preserved by the isomorphisms ϕαβ , ϕβγ and ϕαγ , again as a consequence

of the fact that the differential operators P
(1,1)
αβ , P

(1,1)
βγ and P

(1,1)
αγ vanish, if their

argument is a constant. Finally, the Čech cocycle relation can be reformulated as

aβγδ ⋆α aαβδ = aαγδ ⋆α aαβγ ; (A.12)

we can also exchange the product ⋆α by any other product ⋆β , ⋆γ or ⋆δ, again
the reason being that bidifferential operators vanish if one of their arguments is

constant. Assuming furthermore that P
(0,2)
αβγ is skew-symmetric w.r.t. the indices,

we have the additional relation
aαβγ = 1,

whenever two of the three indices are equal. Hence, the invertible elements aαβγ
define a twist in the sense of Definition A.8 on A: the triangle relation (A.2) for
the restriction morphisms on A is trivially satisfied thanks to (A.11), while the
coherence relation (A.3) holds true in view of (A.12).

Thus, a 2-cocycle P in Čech–Hochschild cohomology, which represents an ele-
ment of the second Hochschild cohomology group ofX, gives rise to an infinitesimal
deformation A of OX in the sense of Definition A.9. It remains to prove that two
cohomologous 2-cocycles P , Q in Čech–Hochschild cohomology give rise to iso-
morphic infinitesimal deformations AP , AQ of OX . We assume therefore P and
Q to be two cohomologous cocycles in the Čech–Hochschild double complex, i.e.
there is a Čech–Hochschild 1-cochain R, such that

P −Q = (dH ± δ̌)R,

which can be rewritten extensively as

P (2,0) −Q(2,0) = dHR
(1,0), (A.13)

P (1,1) −Q(1,1) = dHR
(0,1) − δ̌R(1,0), (A.14)

P (0,2) −Q(0,2) = δ̌R(0,1). (A.15)
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The component R(1,0) consists of a family of holomorphic differential operators

R
(1,0)
α on each element Uα of the chosen open covering. We define an isomorphism

ψα via

(Aα(P ), ⋆Pα )
ψα // (Aα(Q), ⋆Qα ) ,

where the isomorphism ψα is explicitly defined as

ψα(f) = ψα(f0 + ǫf1) = f0 + ǫ(f1 +R(1,0)(f0)).

Identity (A.13) can be rewritten explicitly as

P (2,0)
α (f, g) +R(1,0)(fg) = Q(2,0)

α (f, g) + fR(1,0)(g) + gR(1,0)(f),

for any two holomorphic functions on Uα: the previous identity can be reformu-
lated

ψα((f0 + ǫf1) ⋆
P
α (g0 + ǫg1)) = ψα(f0 + ǫf1) ⋆

Q
α ψα(g0 + ǫg1),

i.e. the isomorphism ψα is an algebra isomorphism, interchanging the deformed
products ⋆Pα and ⋆Qα .

Further, Identity (A.14) can be rewritten in a simpler form, since the Hochschild
differential of R(0,1) vanishes, due to the fact that OX is a sheaf of commutative
algebras, whence we get the simple relation

P
(1,1)
αβ +R

(1,0)
β = Q

(1,1)
αβ +R(1,0)

α

for holomorphic differential operators on any non-trivial double intersection Uα ∩
Uβ . It is easy to check that the previous identity implies the commutativity of the
following diagram:

(Aα(P )|Uα∩Uβ
, ⋆Pα )

ϕP
αβ //

ψα

��

(Aβ(P )|Uα∩Uβ
, ⋆Pβ )

ψβ

��
(Aα(Q)|Uα∩Uβ

, ⋆Qα )
ϕQ

αβ // (Aβ(Q)|Uα∩Uβ
, ⋆Qβ ) .

All these arguments imply that the local isomorphisms ψα can be glued together
to define an isomorphism ψ between the sheaves A(P ) and A(Q), associated to
the cocycles P and Q respectively by the above procedure.

Finally, we consider the holomorphic functions R
(0,1)
αβ on any non-trivial double

intersection Uα ∩ Uβ . If we set

cαβ = 1 + ǫR
(0,1)
αβ ,

we get elements of Aα(Q)(Uα ∩ Uβ) and of Aα(Q)(Uα ∩ Uβ). It is obvious that

cαβ is an invertible element; since any holomorphic bidifferential operator Q
(2,0)
α

vanishes, when one of its arguments is a constant, it follows that

cαβ ⋆
Q
α (f0 + ǫf1) = (f0 + ǫf1) ⋆

Q
α cαβ ,
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and the same identity holds true replacing ⋆Qα by ⋆Qβ . It is also easy to prove that
the isomorphism ψα (as well as ψβ and ψγ) preserves the central invertible element
aPαβγ , i.e.

ψα(aαβγ) = aαβγ ,

as a consequence of the fact that ψα preserves units w.r.t. the corresponding de-
formed products. The explicit form of Identity (A.15) is

P
(0,2)
αβγ +R(0,1)

αγ = Q
(0,2)
αβγ +R

(0,1)
αβ +R

(0,1)
βγ ,

which, using the centrality of aPαβγ , a
Q
αβγ w.r.t. the deformed product ⋆Qα (as well

as ⋆Qβ and ⋆Qγ ), implies the relation

ψα(aPαβγ) ⋆
Q
α cαγ = cβγ ⋆

Q
α cαβ ⋆

Q
α a

Q
αβγ ,

and similarly when making corresponding changes of the deformed products in-
volved, or of the isomorphisms ψα. Hence, the elements cαβ define a twist c for
the morphism ψ, which satisfies (A.4) because of the centrality of cαβ w.r.t. the
deformed products, and (A.5) by the previous identity.

Theorem A.10. The second Hochschild cohomology group of a complex manifold
X parametrizes infinitesimal (i.e. first order) deformations of OX as a twisted
presheaf of algebras.
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Norm. Sup. 10 (1977), 265–288.

[20] B. Fedosov, A simple geometrical construction of deformation quantization, J. Diff.
Geom. 40 (1994), 213–238.

[21] W. Fulton and R. Mac Pherson, A compactification of configuration spaces, Ann. of
Math. (2) 139 (1994), no. 1, 183–225.

[22] M. Gerstenhaber, On the deformation of rings and algebras, Ann. Math. 79 (1964),
no. 1, 59–103.

[23] P. Griffith and J. Harris, Principles of algebraic geometry, Wiley Classics Library,
1994.

[24] Harish-Chandra, On some applications of the universal enveloping algebra of a

semisimple Lie group, Trans. Amer. Math. Soc. 70 (1951), 28–96.

[25] G. Hochschild, B. Kostant, and A. Rosenberg, Differential forms on regular affine

algebras, Trans. Amer. Math. Soc. 102 (1962), 383–408.

[26] M. Kapranov, RozanskyWitten invariants via Atiyah classes, Compositio Mathe-
matica 115 (1999), 71–113.

[27] A. Khovanskii, On a lemma of Kontsevich, Funct. An. Appl. 31 (1997), no. 4, 296–
298.

[28] A. Kirillov, Elements of the Theory of Representations, Springer-Verlag 1975.

[29] M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys.
66 (2003), no. 3, 157–216.

[30] M. Kontsevich, Operads and morives in deformation quantization, Lett. Math. Phys.
48 (1999), no. 1, 35–72.

[31] A. Kricker, Non-commutative Chern-Weil theory and the combinatorics of wheeling,
preprint arXiv:math/0612653.

[32] J. Leray, L’anneau d’homologie d’une représentation, C.R.A.S. 222 (1946), 1366–
1368.

[33] J. Leray, Structure de l’anneau d’homologie d’une représentation, C.R.A.S. 222

(1946), 1419–1422.

[34] D. Manchon and C. Torossian, Cohomologie tangente et cup-produit pour la quan-

tification de Kontsevich, Ann. Math. Blaise Pascal 10 (2003), no. 1, 75–106.

[35] M. Pevzner and C. Torossian, Isomorphisme de Duflo et cohomologie tangentielle,
J. Geom. Phys. 51 (2004), no. 4, 486–505.

[36] L. Politsel’skii, Nonhomogeneous quadratic duality and curvature, Funkts. An. Pril.
27 (1993), no. 3, 57–66.

[37] A. Polischuk and L. Positselski, Quadratic Algebras, Amer. Math. Soc., Providence,
RI, 2005.

[38] B. Shoikhet, On the Duflo formula for L∞-algebras and Q-manifolds, preprint
arXiv:math.QA/9812009.



104 BIBLIOGRAPHY

[39] B. Shoikhet, Kontsevich formality and PBW algebras, preprint
arXiv:math/0708.1634.

[40] J. Stasheff, Homotopy associativity of H-spaces I & II, Trans. AMS 108 (1963),
275–312.

[41] M. Van den Bergh, The Kontsevich weight of a wheel with spokes pointing outward,
to appear in the special issue of Alg. Repr. Theory in honor of F. van Oystaeyen
(preprint arXiv.math/0710.2411).
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