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Let X be a smooth algebraic variety (over a field of zero characteristic). We define
its Hochschild cohomology ring to be

HH ·(X) := Ext·X×X(∆∗OX ,∆∗OX) ,

where ∆ : X → X ×X is the diagonal map.

1. Hochschild cohomology as the (hyper)cohomology of
poly-differential operators

1.1. Local Hochschild cochains. We have the following sequence of ring iso-
morphisms:

Ext·X×X(∆∗OX ,∆∗OX) ∼= RΓ
(
X ×X,RHomOX×X

(∆∗OX ,∆∗OX)
)

∼= RΓ
(
X,RHom(π1)∗OX×X

(OX ,OX)
)

∼= RΓ
(
X,RHom(π1)∗OX̂×X

(OX ,OX)
)
,

where π1 is the first projection and X̂ ×X is the formal neighborhood of the
diagonal in X ×X. The last identification comes from the fact that (π1)∗OX̂×X
is flat over (π1)∗OX×X .

Below we provide an explicit description of the algebra

RHom(π1)∗OX̂×X
(OX ,OX)

)
of local Hochschild cochains, as an algebra object in D(OX−mod).

1.2. Local Hochschild cochains as Lie algebroid Hochschild cochains. Let
L be a Lie algebroid over X which is locally free of finite rank as an OX -module.
As an example to keep in mind, one can consider the tangent Lie algebroid L = TX .
There are several algebraic objects one can associate to L, such as:

• its universal envelopping algebra U(L), which is a filtered Hopf algebroid.
Whenever L = TX , U(L) is the algebra of differential operators on X.

• its jet algebra J(L), defined as the OX -linear dual to U(L), and that one
can view as the algebra on the formal groupoid integrating L.
Whenever L = TX , J(L) is isomorphic to (π1)∗OX̂×X .

Sketch of proof of this fact. The isomorphism sends a section f of (π1)∗OX̂×X
to the jet jf defined as follows: jf sends a differential operator P to
(id⊗ P )(f), which is a section of OX because P has finite order. �

• its Hochschild cohomology ring HH ·L := ExtJ(L)(OX ,OX).

The upshot is that we can describe the algebra of local Hochschild cochains as

RHomJ(L)(OX ,OX) ,

with L = TX .
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1.3. An explicit description of Lie algebroid Hochschild cochains. Bor-
rowing the notation from above, we have the following:

Proposition 1.1 ([2]). There is an isomorphism of algebras

RHomJ(L)(OX ,OX) ∼= (Dpoly,·L,X )op

in D(OX−mod). Here Dpoly,nL,X := U(L)⊗OX
n, the product is the concatenation, and

the differential is the Cartier (a-k-a co-Hochschild) differential for the coalgebra
U(L).

Whenever L = TX , Dpoly,nL,X (U) is the subcomplex of the Hochschild complex of

OX(U) consisting of these cochains that are differential operators in each argu-
ment.

Sketch of proof of the Proposition. Note that J(L) is a topological algebra, and
that the morphism

RHomcont.
J(L) (OX ,OX)→ RHomJ(L)(OX ,OX)

is an isomorphism in D(OX−mod). Let us now give an explicit resolution B·J(L)
of OX as a topological J(L)-module:

BnJ(L) = J(L)⊗̂(n+1)

and the differential sends j0 ⊗ · · · ⊗ jn to

j0j1 ⊗ · · · ⊗ jn + · · ·+ (−1)nj0 ⊗ · · · ⊗ jn−1jn + (−1)n+1j0 ⊗ · · · ⊗ jn−1jn(1) .

We conclude by noting there is a (right) action of Dpoly,·L,X on B·J(L). �

2. Hochschild cohomology as the cohomology of poly-vector fields

2.1. The Hochschild–Kostant–Rosenberg (HKR) theorem. Let L be a Lie
algebroid as above. The skew-symmetrization map

∧·OX
L −→ Dpoly,·L,X

u1 ∧ · · · ∧ um 7−→ 1

m!

∑
σ∈Sm

εσuσ(1) ⊗ · · · ⊗ uσ(m)

is a quasi-isomorphism of sheaves, known as the Hochschild–Kostant–Rosenberg
(or, HKR) morphism. It induces in particular as isomorphism of graded vector
spaces

HKR : H ·(X,∧·L) −̃→HH ·L(X) .
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2.2. A multiplicative version of the HKR morphism. Consider the short
exact sequence

0→ L → U(L)≤2+ → S2
OX
L → 0 ,

where U(L)+ denotes the augmentation ideal of U(L), i.e. L-differential operators
vanishing on constants. This extension defines the Atiyah class of L:

AtL ∈ Ext1X
(
S2(TX), TX

)
→ Ext1X

(
T⊗2X , TX

) ∼= Ext1X
(
TX , End(TX)

) ∼= H1
(
X,Ω1

X⊗End(TX)
)
.

We derived from it the Todd genus of L:

TdL := det

√
AtL

1− exp(−AtL)
∈ ⊕kHk(X,ΩkX) .

It is given by a formal expression involving sums of products of ck = tr(AtkL)’s.

Theorem 2.1 ([1]). Composing the HKR morphism together with the contraction
against the Todd genus leads to a ring isomorphism

HKR ◦ (TdLx−) : H ·(X,∧·L) −̃→HH ·L(X) .

2.3. Sanity check: the original HKR morphism is not multiplicative. Let
us show that when X is a K3 surface and L = TX the HKR morphism is not a ring
isomorphism in cohomology. Using Theorem 2.1 above this is equivalent to show
that the contraction TdTX

x− against the Todd genus is not a ring isomorphism.
Note that, for degree reasons, in the case of a K3 surface the Todd genus takes
the form exp(ac1 + bc2), with a and b non-zero. Since the contraction c1x− with
c1 is known to be a derivation, we are left to show that the contraction with c2 is
not a derivation.

Sketch of proof that c2x− is not a derivation. Let ω be the symplectic form on X
and Π be the corresponding Poisson bivector. Observe that c2 is proportional to
[ω ∧ ω̄] ∈ H2(X,Ω2

X).
One the one hand, we have that c2x(Π∧Π) = 0 (Π∧Π = 0 because of dimension).

On the other hand, (c2xΠ) ∧ Π = Π ∧ (c2xΠ) is proportional to [ω̄ ∧ Π], which is
non-zero in H2(X,∧2TX). Hence c2x− is not a derivation. �
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