Damien Calaque (Université de Montpellier)

Topological and Algebraic Advances in Quantum Field Theory

August 2-3, 2017

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- I. Fully extended TFTs
 - I.1. Ordinary TFTs

Definition

An *n*-dimensional topological field theory is a symmetric monoidal functor $\mathcal{Z} : Cob_n \rightarrow Vect$, where Cob_n is the symmetric monoidal category with:

- I. Fully extended TFTs
 - I.1. Ordinary TFTs

Definition

An *n*-dimensional topological field theory is a symmetric monoidal functor $\mathcal{Z} : Cob_n \rightarrow Vect$, where Cob_n is the symmetric monoidal category with:

- **objects** are compact (n-1)-dimensional manifolds.
- morphisms are diffeomorphism classes of *n*-cobordisms.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• monoidal product is the disjoint union \sqcup .

- I. Fully extended TFTs
 - I.1. Ordinary TFTs

Definition

An *n*-dimensional topological field theory is a symmetric monoidal functor $\mathcal{Z} : Cob_n \rightarrow Vect$, where Cob_n is the symmetric monoidal category with:

- **objects** are compact (n-1)-dimensional manifolds.
- morphisms are diffeomorphism classes of *n*-cobordisms.

• monoidal product is the disjoint union \sqcup .

In concrete terms, it associates:

• a vector space $\mathcal{Z}(\Sigma)$ to any (n-1)-manifold Σ .

- I. Fully extended TFTs
 - I.1. Ordinary TFTs

Definition

An *n*-dimensional topological field theory is a symmetric monoidal functor $\mathcal{Z} : Cob_n \rightarrow Vect$, where Cob_n is the symmetric monoidal category with:

- **objects** are compact (n-1)-dimensional manifolds.
- morphisms are diffeomorphism classes of *n*-cobordisms.
- monoidal product is the disjoint union \sqcup .

In concrete terms, it associates:

- a vector space $\mathcal{Z}(\Sigma)$ to any (n-1)-manifold Σ .
- a linear map $\mathcal{Z}(M)$: $\mathcal{Z}(\Sigma_0) \to \mathcal{Z}(\Sigma_1)$ to any cobordism

- I. Fully extended TFTs
 - I.1. Ordinary TFTs

Definition

An *n*-dimensional topological field theory is a symmetric monoidal functor $\mathcal{Z} : Cob_n \rightarrow Vect$, where Cob_n is the symmetric monoidal category with:

- **objects** are compact (n-1)-dimensional manifolds.
- morphisms are diffeomorphism classes of *n*-cobordisms.
- monoidal product is the disjoint union \sqcup .

In concrete terms, it associates:

- a vector space $\mathcal{Z}(\Sigma)$ to any (n-1)-manifold Σ .
- a linear map $\mathcal{Z}(M) : \mathcal{Z}(\Sigma_0) \to \mathcal{Z}(\Sigma_1)$ to any cobordism

• a tensor product to a disjoint union: $\mathcal{Z}(M \sqcup N) = \mathcal{Z}(M) \otimes \mathcal{Z}(N).$

I. Fully extended TFTs

I.1. Ordinary TFTs (continued)

Several variants: *e.g.* oriented, unoriented, framed, etc...

(ロ)、(型)、(E)、(E)、 E) の(の)

I. Fully extended TFTs

I.1. Ordinary TFTs (continued)

Several variants: e.g. oriented, unoriented, framed, etc...

Example

1-dimensional (un)oriented TFTs are in bijection with (selfdual) finite dimensional vector spaces.

- I. Fully extended TFTs
 - I.1. Ordinary TFTs (continued)

Several variants: e.g. oriented, unoriented, framed, etc...

Example

1-dimensional (un)oriented TFTs are in bijection with (selfdual) finite dimensional vector spaces.

Explanation

- \supset is sent to the evaluation map $V \otimes V^* \to k$.
- \subset is sent to the co-evaluation map $k \to V^* \otimes V$.
- the circle is sent to the dimension $dim(V) \in k = Hom(k, k)$.

I. Fully extended TFTs

I.1. Ordinary TFTs (continued)

Several variants: e.g. oriented, unoriented, framed, etc...

Example

1-dimensional (un)oriented TFTs are in bijection with (selfdual) finite dimensional vector spaces.

Explanation

- \supset is sent to the evaluation map $V \otimes V^* \to k$.
- \subset is sent to the co-evaluation map $k \to V^* \otimes V$.
- the circle is sent to the dimension $dim(V) \in k = Hom(k, k)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Can replace *Vect* with any symmetric monoidal category (C, \otimes) . Finite dimensional becomes **dualizable**.

I. Fully extended TFTs

I.1. Ordinary TFTs (continued)

Several variants: e.g. oriented, unoriented, framed, etc...

Example

1-dimensional (un)oriented TFTs are in bijection with (selfdual) finite dimensional vector spaces.

Explanation

- > is sent to the evaluation map $V \otimes V^* \to k$.
- \subset is sent to the co-evaluation map $k \to V^* \otimes V$.
- the circle is sent to the dimension $dim(V) \in k = Hom(k, k)$.

Can replace *Vect* with any symmetric monoidal category (C, \otimes) . Finite dimensional becomes **dualizable**.

Theorem

2-dimensional oriented TFTs are in bijection with commutative Frobenius algebras.

I. Fully extended TFTs

I.1. Ordinary TFTs (continued)

Several variants: e.g. oriented, unoriented, framed, etc...

Example

1-dimensional (un)oriented TFTs are in bijection with (selfdual) finite dimensional vector spaces.

Explanation

- \supset is sent to the evaluation map $V \otimes V^* \to k$.
- \subset is sent to the co-evaluation map $k \to V^* \otimes V$.
- the circle is sent to the dimension $dim(V) \in k = Hom(k, k)$.

Can replace *Vect* with any symmetric monoidal category (C, \otimes) . Finite dimensional becomes **dualizable**.

Theorem

2-dimensional oriented TFTs are in bijection with commutative Frobenius algebras.

No classification in higher dimension.

I. Fully extended TFTs

I.2. TFTs extended up

Introduce Cob_n^{∞} : ∞ -categorical version of Cob_n .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

I. Fully extended TFTs

I.2. TFTs extended up

Introduce Cob_n^{∞} : ∞ -categorical version of Cob_n . Between two objects Σ_0 and Σ_1 one now has a **space** of morphisms: the space of all cobordisms from Σ_0 to Σ_1 . Roughly:

I. Fully extended TFTs

I.2. TFTs extended up

Introduce Cob_n^{∞} : ∞ -categorical version of Cob_n . Between two objects Σ_0 and Σ_1 one now has a **space** of morphisms: the space of all cobordisms from Σ_0 to Σ_1 . Roughly:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• 1-morphisms are *n*-cobordisms.

I. Fully extended TFTs

I.2. TFTs extended up

Introduce Cob_n^{∞} : ∞ -categorical version of Cob_n . Between two objects Σ_0 and Σ_1 one now has a **space** of morphisms: the space of all cobordisms from Σ_0 to Σ_1 . Roughly:

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- 1-morphisms are *n*-cobordisms.
- 2-morphisms are diffeomorphisms of these.

I. Fully extended TFTs

I.2. TFTs extended up

Introduce Cob_n^{∞} : ∞ -categorical version of Cob_n . Between two objects Σ_0 and Σ_1 one now has a **space** of morphisms: the space of all cobordisms from Σ_0 to Σ_1 . Roughly:

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- 1-morphisms are *n*-cobordisms.
- 2-morphisms are diffeomorphisms of these.
- 3-morphisms are isotopies between diffeomorphisms.
- etc...

I. Fully extended TFTs

I.2. TFTs extended up

Introduce Cob_n^{∞} : ∞ -categorical version of Cob_n . Between two objects Σ_0 and Σ_1 one now has a **space** of morphisms: the space of all cobordisms from Σ_0 to Σ_1 . Roughly:

- 1-morphisms are *n*-cobordisms.
- 2-morphisms are diffeomorphisms of these.
- 3-morphisms are isotopies between diffeomorphisms.
- etc...

We still call an *n*-dimensional TFT a symmetric monoidal functor $Cob_n^{\infty} \to C$, where C is a symmetric monoidal $(\infty, 1)$ -category.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

I. Fully extended TFTs

I.2. TFTs extended up

Introduce Cob_n^{∞} : ∞ -categorical version of Cob_n . Between two objects Σ_0 and Σ_1 one now has a **space** of morphisms: the space of all cobordisms from Σ_0 to Σ_1 . Roughly:

- 1-morphisms are *n*-cobordisms.
- 2-morphisms are diffeomorphisms of these.
- 3-morphisms are isotopies between diffeomorphisms.
- etc...

We still call an *n*-dimensional TFT a symmetric monoidal functor $Cob_n^{\infty} \to C$, where C is a symmetric monoidal $(\infty, 1)$ -category. This is consistent as the homotopy category of Cob_n^{∞} is Cob_n .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

I. Fully extended TFTs

I.2. TFTs extended up

Introduce Cob_n^{∞} : ∞ -categorical version of Cob_n . Between two objects Σ_0 and Σ_1 one now has a **space** of morphisms: the space of all cobordisms from Σ_0 to Σ_1 . Roughly:

- 1-morphisms are *n*-cobordisms.
- 2-morphisms are diffeomorphisms of these.
- 3-morphisms are isotopies between diffeomorphisms.
- etc...

We still call an *n*-dimensional TFT a symmetric monoidal functor $Cob_n^{\infty} \to C$, where C is a symmetric monoidal $(\infty, 1)$ -category. This is consistent as the homotopy category of Cob_n^{∞} is Cob_n .

Example (Factorization Homology)

Let C be the symmetric monoidal ∞ -category having E_n -algebras as objects and bimodules as morphisms. Let A be an E_n -algebra.

I. Fully extended TFTs

I.2. TFTs extended up

Introduce Cob_n^{∞} : ∞ -categorical version of Cob_n . Between two objects Σ_0 and Σ_1 one now has a **space** of morphisms: the space of all cobordisms from Σ_0 to Σ_1 . Roughly:

- 1-morphisms are *n*-cobordisms.
- 2-morphisms are diffeomorphisms of these.
- 3-morphisms are isotopies between diffeomorphisms.
- etc...

We still call an *n*-dimensional TFT a symmetric monoidal functor $Cob_n^{\infty} \to C$, where C is a symmetric monoidal $(\infty, 1)$ -category. This is consistent as the homotopy category of Cob_n^{∞} is Cob_n .

Example (Factorization Homology)

Let C be the symmetric monoidal ∞ -category having E_n -algebras as objects and bimodules as morphisms. Let A be an E_n -algebra. The assignment $X \mapsto \int_X A := A \otimes_{E_n} \overline{Conf}(X)$ defines an *n*-dimensional *framed* TFT (this follows from \otimes -excision) with values in C.

I. Fully extended TFTs

I.2. TFTs extended up

Introduce Cob_n^{∞} : ∞ -categorical version of Cob_n . Between two objects Σ_0 and Σ_1 one now has a **space** of morphisms: the space of all cobordisms from Σ_0 to Σ_1 . Roughly:

- 1-morphisms are *n*-cobordisms.
- 2-morphisms are diffeomorphisms of these.
- 3-morphisms are isotopies between diffeomorphisms.
- etc...

We still call an *n*-dimensional TFT a symmetric monoidal functor $Cob_n^{\infty} \to C$, where C is a symmetric monoidal $(\infty, 1)$ -category. This is consistent as the homotopy category of Cob_n^{∞} is Cob_n .

Example (Factorization Homology)

Let C be the symmetric monoidal ∞ -category having E_n -algebras as objects and bimodules as morphisms. Let A be an E_n -algebra. The assignment $X \mapsto \int_X A := A \otimes_{E_n} \overline{Conf}(X)$ defines an n-dimensional framed TFT (this follows from \otimes -excision) with values in C. If n = 1 then we in particular have that $\int_{S^1} A \cong HH_{-*}(A)$ gets an action of $S^1 \cong Diff^{fr}(S^1)$.

- I. Fully extended TFTs
 - I.3. TFTs extended down to the point

Rough definition

We write $Bord_n$ for the symmetric monoidal (∞, n) -category with:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• compact 0-dimensional manifolds as objects.

- I. Fully extended TFTs
 - I.3. TFTs extended down to the point

Rough definition

We write $Bord_n$ for the symmetric monoidal (∞, n) -category with:

- compact 0-dimensional manifolds as objects.
- 1-dimensional cobordisms as 1-morphisms.

- I. Fully extended TFTs
 - I.3. TFTs extended down to the point

Rough definition

We write $Bord_n$ for the symmetric monoidal (∞, n) -category with:

- compact 0-dimensional manifolds as objects.
- 1-dimensional cobordisms as 1-morphisms.
- 2-dimensional cobordisms 2-morphisms.

etc. . .

- I. Fully extended TFTs
 - I.3. TFTs extended down to the point

Rough definition

We write $Bord_n$ for the symmetric monoidal (∞, n) -category with:

- compact 0-dimensional manifolds as objects.
- 1-dimensional cobordisms as 1-morphisms.
- 2-dimensional cobordisms 2-morphisms. etc...
- diffeomorphisms of *n*-dimensional cobordisms as (n + 1)-morphisms.

etc. . .

- I. Fully extended TFTs
 - I.3. TFTs extended down to the point

Rough definition

We write $Bord_n$ for the symmetric monoidal (∞, n) -category with:

- compact 0-dimensional manifolds as objects.
- 1-dimensional cobordisms as 1-morphisms.
- 2-dimensional cobordisms 2-morphisms. etc...
- diffeomorphisms of *n*-dimensional cobordisms as (*n*+1)-morphisms.

etc. . .

An example of a 2-morphism

- I. Fully extended TFTs
 - I.3. TFTs extended down to the point (continued)

Definition

A fully extended *n*-dimensional TFT is a symmetric monoidal functor $\mathcal{Z} : Bord_n \to \mathcal{C}$, where \mathcal{C} is a symmetric monoidal (∞, n) -category.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- I. Fully extended TFTs
 - I.3. TFTs extended down to the point (continued)

Definition

A fully extended *n*-dimensional TFT is a symmetric monoidal functor $\mathcal{Z} : Bord_n \to \mathcal{C}$, where \mathcal{C} is a symmetric monoidal (∞, n) -category.

Theorem (Lurie, Ayala–Francis)

Fully extended *n*-dimensional framed TFTs are in one-to-one correspondence with *n*-dualizable objects in C.

- I. Fully extended TFTs
 - I.3. TFTs extended down to the point (continued)

Definition

A fully extended *n*-dimensional TFT is a symmetric monoidal functor $\mathcal{Z} : Bord_n \to \mathcal{C}$, where \mathcal{C} is a symmetric monoidal (∞, n) -category.

Theorem (Lurie, Ayala–Francis)

Fully extended *n*-dimensional framed TFTs are in one-to-one correspondence with *n*-dualizable objects in C.

n-dualizable $\stackrel{\text{def}}{=}$ dualizable + (co)evaluation morphism admit adjoints + (co)unit admit adjoints + etc... up to n - 1.

- I. Fully extended TFTs
 - I.3. TFTs extended down to the point (continued)

Definition

A fully extended *n*-dimensional TFT is a symmetric monoidal functor \mathcal{Z} : $Bord_n \to \mathcal{C}$, where \mathcal{C} is a symmetric monoidal (∞, n) -category.

Theorem (Lurie, Ayala–Francis)

Fully extended *n*-dimensional framed TFTs are in one-to-one correspondence with *n*-dualizable objects in C.

n-dualizable $\stackrel{def}{=}$ dualizable + (co)evaluation morphism admit adjoints + (co)unit admit adjoints + etc... up to n - 1. In other words, $Bord_n^{fr}$ is the free symmetric monoidal (∞ , n)-category generated by an *n*-dualizable object.

- I. Fully extended TFTs
 - I.3. TFTs extended down to the point (continued)

An example of an adjunction in terms of cobordisms

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

- II. Factorization homology
 - II.2. The (∞, n) -category of E_n -algebras

The $(\infty, 1)$ -category of E_1 -algebras and bimodules

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• **objects** are *E*₁-algebras

- II. Factorization homology
 - II.2. The (∞, n) -category of E_n -algebras

The $(\infty, 1)$ -category of E_1 -algebras and bimodules

• objects are E₁-algebras; *i.e.* loc. const. fact. alg. on —

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- II. Factorization homology
 - II.2. The (∞, n) -category of E_n -algebras

The $(\infty, 1)$ -category of E_1 -algebras and bimodules

• objects are E₁-algebras; *i.e.* loc. const. fact. alg. on —

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

● morphisms are loc. const. fact. alg. on —

- II. Factorization homology
 - II.2. The (∞, n) -category of E_n -algebras

The $(\infty,1)$ -category of E_1 -algebras and bimodules

- objects are E₁-algebras; *i.e.* loc. const. fact. alg. on —
- morphisms are loc. const. fact. alg. on --- ; i.e. bimodules
- **composition** of morphisms is given by pushing-forward locally constant factorization algebras along the projection

- II. Factorization homology
 - II.2. The (∞, n) -category of E_n -algebras

The $(\infty,1)$ -category of E_1 -algebras and bimodules

- objects are E₁-algebras; *i.e.* loc. const. fact. alg. on —
- morphisms are loc. const. fact. alg. on ---- ; i.e. bimodules
- **composition** of morphisms is given by pushing-forward locally constant factorization algebras along the projection

The $(\infty, 1)$ -category of E_n -algebras and E_{n-1} -bimodules $(n = 2)^n$

• objects are *E_n*-algebras

- II. Factorization homology
 - II.2. The (∞, n) -category of E_n -algebras

The $(\infty,1)$ -category of E_1 -algebras and bimodules

- objects are E₁-algebras; *i.e.* loc. const. fact. alg. on —
- morphisms are loc. const. fact. alg. on ---- ; i.e. bimodules
- **composition** of morphisms is given by pushing-forward locally constant factorization algebras along the projection

The $(\infty, 1)$ -category of E_n -algebras and E_{n-1} -bimodules (n = 2)

• **objects** are *E_n*-algebras; *i.e.* loc. const. fact. alg. on

- II. Factorization homology
 - II.2. The (∞, n) -category of E_n -algebras

The $(\infty,1)$ -category of E_1 -algebras and bimodules

- objects are E₁-algebras; *i.e.* loc. const. fact. alg. on —
- morphisms are loc. const. fact. alg. on ---- ; i.e. bimodules
- **composition** of morphisms is given by pushing-forward locally constant factorization algebras along the projection

The $(\infty, 1)$ -category of E_n -algebras and E_{n-1} -bimodules (n = 2)

- **objects** are E_n -algebras; *i.e.* loc. const. fact. alg. on
- morphisms are loc. const. fact. alg. on

- II. Factorization homology
 - II.2. The (∞, n) -category of E_n -algebras

The $(\infty,1)$ -category of E_1 -algebras and bimodules

- objects are E₁-algebras; *i.e.* loc. const. fact. alg. on —
- morphisms are loc. const. fact. alg. on ---- ; i.e. bimodules
- **composition** of morphisms is given by pushing-forward locally constant factorization algebras along the projection

The $(\infty, 1)$ -category of E_n -algebras and E_{n-1} -bimodules $(n = 2)^n$

- **objects** are *E_n*-algebras; *i.e.* loc. const. fact. alg. on
- morphisms are loc. const. fact. alg. on
- composition is given by pushing-forward along the obvious projection.

II. Factorization homology

The (∞, n) -category of E_n -algebras (continued)

The $(\infty, 2)$ -category of E_2 -algebras, E_1 -bimodules, and bimodules of bimodules

• objects are loc. const. fact. alg. on

II. Factorization homology

The (∞, n) -category of E_n -algebras (continued)

- objects are loc. const. fact. alg. on
- 1-morphisms are loc. const. fact. alg. on

II. Factorization homology

The (∞, n) -category of E_n -algebras (continued)

The $(\infty, 2)$ -category of E_2 -algebras, E_1 -bimodules, and bimodules of bimodules

・ロト ・四ト ・ヨト ・ヨト ・ヨ

- objects are loc. const. fact. alg. on
- 1-morphisms are loc. const. fact. alg. on
- 2-morphisms are loc. const. fact. alg. on 🛉

II. Factorization homology

The (∞, n) -category of E_n -algebras (continued)

The $(\infty, 2)$ -category of E_2 -algebras, E_1 -bimodules, and bimodules of bimodules

- objects are loc. const. fact. alg. on
- 1-morphisms are loc. const. fact. alg. on
- 2-morphisms are loc. const. fact. alg. on 🛉
- horizontal and vertical compositions of 2-morphisms are given by pushing-forward along the respective projections

II. Factorization homology

The (∞, n) -category of E_n -algebras (continued)

- objects are loc. const. fact. alg. on
- 1-morphisms are loc. const. fact. alg. on
- 2-morphisms are loc. const. fact. alg. on 🛉
- horizontal and vertical compositions of 2-morphisms are given by pushing-forward along the respective projections

The symmetric monoidal struture is given by \otimes of E_n -algebras.

II. Factorization homology

The (∞, n) -category of E_n -algebras (continued)

The $(\infty, 2)$ -category of E_2 -algebras, E_1 -bimodules, and bimodules of bimodules

- objects are loc. const. fact. alg. on
- 1-morphisms are loc. const. fact. alg. on
- 2-morphisms are loc. const. fact. alg. on 🛉
- horizontal and vertical compositions of 2-morphisms are given by pushing-forward along the respective projections

The symmetric monoidal struture is given by \otimes of E_n -algebras. We thus have a symmetric monoidal (∞, n) -category Alg_n of E_n -algebras and iterated bimodules between those.

- II. Factorization homology
 - II.2. Factorization homology is a fully extented TFT

Theorem (C–Scheimbauer)

Given an E_n -algebra A, the assignment $X \mapsto \int_X A$ defines a fully extended TFT with values in Alg_n .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- II. Factorization homology
 - II.2. Factorization homology is a fully extented TFT

Theorem (C–Scheimbauer)

Given an E_n -algebra A, the assignment $X \mapsto \int_X A$ defines a fully extended TFT with values in Alg_n .

- We will explain how to prove it, essentially by drawing pictures (in the case n = 2 for simplicity).
- It is sufficient to explain how that works for *n*-morphisms.

- II. Factorization homology
 - II.3. Factorization algebras

Definition

- A factorization algebra E on a topological space X is the data of
 - a cochain complex E_U for every open subset $U \subset X$.

- II. Factorization homology
 - II.3. Factorization algebras

Definition

- A factorization algebra E on a topological space X is the data of
 - a cochain complex E_U for every open subset $U \subset X$.
 - a morphism $\bigotimes_{i \in I} E_{U_i} \longrightarrow E_V$ for every inclusion of pairwise disjoint open subsets $\coprod_{i \in I} U_i \subset V$.

- II. Factorization homology
 - II.3. Factorization algebras

Definition

- A factorization algebra E on a topological space X is the data of
 - a cochain complex E_U for every open subset $U \subset X$.
 - a morphism $\bigotimes_{i \in I} E_{U_i} \longrightarrow E_V$ for every inclusion of pairwise disjoint open subsets $\coprod_{i \in I} U_i \subset V$.

satisfying the following properties:

- II. Factorization homology
 - II.3. Factorization algebras

Definition

- A factorization algebra E on a topological space X is the data of
 - a cochain complex E_U for every open subset $U \subset X$.
 - a morphism $\bigotimes_{i \in I} E_{U_i} \longrightarrow E_V$ for every inclusion of pairwise disjoint open subsets $\coprod_{i \in I} U_i \subset V$.

satisfying the following properties:

• associativity :

- II. Factorization homology
 - II.3. Factorization algebras

Definition

- A factorization algebra E on a topological space X is the data of
 - a cochain complex E_U for every open subset $U \subset X$.
 - a morphism $\bigotimes_{i \in I} E_{U_i} \longrightarrow E_V$ for every inclusion of pairwise disjoint open subsets $\coprod_{i \in I} U_i \subset V$.

satisfying the following properties:

• associativity :

- II. Factorization homology
 - II.3. Factorization algebras

Definition

- A factorization algebra E on a topological space X is the data of
 - a cochain complex E_U for every open subset $U \subset X$.
 - a morphism $\bigotimes_{i \in I} E_{U_i} \longrightarrow E_V$ for every inclusion of pairwise disjoint open subsets $\coprod_{i \in I} U_i \subset V$.

satisfying the following properties:

• associativity :

• gluing property (one can reconstruct E_U from the data of a nice enough cover \mathcal{U} and $E_{\mathcal{U}}$).

- II. Factorization homology
 - II.3. Factorization algebras (Examples)

Examples

 The various "Disk algebras" from Hiro's talk produce factorization algebras on ℝⁿ. They are exactly the ones that are locally constant (w.r.t. a given stratification).

- II. Factorization homology
 - II.3. Factorization algebras (Examples)

Examples

- The various "Disk algebras" from Hiro's talk produce factorization algebras on \mathbb{R}^n . They are exactly the ones that are locally constant (w.r.t. a given stratification).
- if X is a (framed) manifolds, then the assignment $X \supset U \mapsto \int_U A$ defines a (locally constant) factorization algebras on X.

- II. Factorization homology
 - II.3. Factorization algebras (Examples)

Examples

- The various "Disk algebras" from Hiro's talk produce factorization algebras on \mathbb{R}^n . They are exactly the ones that are locally constant (w.r.t. a given stratification).
- if X is a (framed) manifolds, then the assignment $X \supset U \mapsto \int_U A$ defines a (locally constant) factorization algebras on X.

Abusing notation we will still denote $\int_X A$ this factorization algebra.

- II. Factorization homology
 - II.3. Factorization algebras (Examples)

Examples

- The various "Disk algebras" from Hiro's talk produce factorization algebras on \mathbb{R}^n . They are exactly the ones that are locally constant (w.r.t. a given stratification).
- if X is a (framed) manifolds, then the assignment $X \supset U \mapsto \int_U A$ defines a (locally constant) factorization algebras on X.

Abusing notation we will still denote $\int_X A$ this factorization algebra.

 if f : X → Y is a continuous map and E a factorization algebra on X then f_{*}E : U → E_{f⁻¹(U)} is a factorization algebra on Y.

- II. Factorization homology
 - II.3. Factorization algebras (Examples)

Examples

- The various "Disk algebras" from Hiro's talk produce factorization algebras on \mathbb{R}^n . They are exactly the ones that are locally constant (w.r.t. a given stratification).
- if X is a (framed) manifolds, then the assignment $X \supset U \mapsto \int_U A$ defines a (locally constant) factorization algebras on X.

Abusing notation we will still denote $\int_X A$ this factorization algebra.

• if $f : X \to Y$ is a continuous map and E a factorization algebra on X then $f_*E : U \mapsto E_{f^{-1}(U)}$ is a factorization algebra on Y.

 Λf_* does not preserve locally constantness (but it does if f is fiber bundle).

- II. Factorization homology
 - II.3. Factorization algebras (Examples)

A associative algebra (e.g. A = End(V)).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

II. Factorization homology

II.3. Factorization algebras (Examples)

A associative algebra (e.g. A = End(V)). $(\Phi_t)_t$ a 1-parameter group of automorphisms of A (e.g. $\Phi_t = e^{-\frac{it}{\hbar}H}$).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

II. Factorization homology

II.3. Factorization algebras (Examples)

A associative algebra (e.g. A = End(V)). $(\Phi_t)_t$ a 1-parameter group of automorphisms of A(e.g. $\Phi_t = e^{-\frac{it}{\hbar}H}$). M_r right A-module (e.g. V^*) and $v_{init} \in M_r$.

II. Factorization homology

II.3. Factorization algebras (Examples)

A associative algebra (e.g. A = End(V)). $(\Phi_t)_t$ a 1-parameter group of automorphisms of A(e.g. $\Phi_t = e^{-\frac{it}{\hbar}H}$). M_r right A-module (e.g. V^*) and $v_{init} \in M_r$. M_ℓ left A-module (e.g. V) and $v_{fin} \in M_\ell$.

II. Factorization homology

II.3. Factorization algebras (Examples)

A associative algebra (e.g. A = End(V)). $(\Phi_t)_t$ a 1-parameter group of automorphisms of A(e.g. $\Phi_t = e^{-\frac{it}{\hbar}H}$). M_r right A-module (e.g. V^*) and $v_{init} \in M_r$. M_ℓ left A-module (e.g. V) and $v_{fin} \in M_\ell$.

A factorization algebra on [0, 1] (bra-ket notation)

We set $E_{[0,s[} = M_r, E_{]t,u[} = A$ et $E_{]v,1]} = M_{\ell}$.

II. Factorization homology

II.3. Factorization algebras (Examples)

A associative algebra (e.g. A = End(V)). $(\Phi_t)_t$ a 1-parameter group of automorphisms of A(e.g. $\Phi_t = e^{-\frac{it}{\hbar}H}$). M_r right A-module (e.g. V^*) and $v_{init} \in M_r$. M_ℓ left A-module (e.g. V) and $v_{fin} \in M_\ell$.

A factorization algebra on [0,1] (bra-ket notation)

We set
$$E_{[0,s[} = M_r, E_{]t,u[} = A$$
 et $E_{]v,1]} = M_\ell$.
 $t_0 \quad t_1 \quad t_2 \quad t_3 \quad t_4 \quad t_5$
 $a \otimes b$
 $f_1 \qquad b$
 $\Phi_{t_1-t_0} a \Phi_{t_3-t_2} b \Phi_{t_5-t_4}$

II. Factorization homology

II.3. Factorization algebras (Examples)

A associative algebra (e.g. A = End(V)). $(\Phi_t)_t$ a 1-parameter group of automorphisms of A(e.g. $\Phi_t = e^{-\frac{it}{\hbar}H}$). M_r right A-module (e.g. V^*) and $v_{init} \in M_r$. M_ℓ left A-module (e.g. V) and $v_{fin} \in M_\ell$.

A factorization algebra on [0,1] (bra-ket notation)

We set $E_{[0,s[} = M_r, E_{]t}$	$E_{t,u[} = A ext{ et } E_{]v,1]} = M_\ell.$
t_0 t_1 t_2 t_3 t_4 t_5	0 stuv
a ⊗ b Ţ	$\langle v \otimes a$
$\Phi_{t_1-t_0} \boldsymbol{a} \Phi_{t_3-t_2} \boldsymbol{b} \Phi_{t_5-t_4}$	$\langle v \Phi_{t-s} a \Phi_{v-u} $

II. Factorization homology

II.3. Factorization algebras (Examples)

A associative algebra (e.g. A = End(V)). $(\Phi_t)_t$ a 1-parameter group of automorphisms of A(e.g. $\Phi_t = e^{-\frac{it}{\hbar}H}$). M_r right A-module (e.g. V^*) and $v_{init} \in M_r$. M_ℓ left A-module (e.g. V) and $v_{fin} \in M_\ell$.

II. Factorization homology

II.3. Factorization algebras (Examples)

A associative algebra (e.g. A = End(V)). $(\Phi_t)_t$ a 1-parameter group of automorphisms of A(e.g. $\Phi_t = e^{-\frac{it}{\hbar}H}$). M_r right A-module (e.g. V^*) and $v_{init} \in M_r$. M_ℓ left A-module (e.g. V) and $v_{fin} \in M_\ell$.

One can show that $E_{[0,1]} = M_d \underset{A}{\otimes} M_g$ (\mathbb{C} in the example).

◆□▶ ▲□▶ ▲目▶ ▲□▶ ▲□▶

II. Factorization homology

II.3. Factorization algebras (Examples)

A associative algebra (e.g. A = End(V)). $(\Phi_t)_t$ a 1-parameter group of automorphisms of A(e.g. $\Phi_t = e^{-\frac{it}{\hbar}H}$). M_r right A-module (e.g. V^*) and $v_{init} \in M_r$. M_ℓ left A-module (e.g. V) and $v_{fin} \in M_\ell$.

One can show that $E_{[0,1]} = M_d \mathop{\otimes}_A M_g$ ($\mathbb C$ in the example). We see

$$\begin{array}{c} 0 & s & t & 1 \\ \bullet & \bullet & \bullet & \langle v_{init} | \Phi_s a \Phi_{1-t} | v_{fin} \rangle \\ a & a & a & a & a \\ \end{array}$$
 as a probability amplitude.

II. Factorization homology

II.3. Factorization algebras (Examples)

An example coming from vertex models

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

V vector space of states.

II. Factorization homology

II.3. Factorization algebras (Examples)

An example coming from vertex models

V vector space of states.

 $R \in GL(V^{\otimes 2})$ interactions matrix: $R_{ik}^{jl} = \exp\left(-rac{1}{kT}\epsilon_{ik}^{jl}
ight)$

II. Factorization homology

II.3. Factorization algebras (Examples)

An example coming from vertex models

V vector space of states.

 $R \in GL(V^{\otimes 2})$ interactions matrix: $R_{ik}^{jl} = \exp\left(-rac{1}{kT}\epsilon_{ik}^{jl}
ight)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Computing a state sum = tensor calculus
II. Factorization homology

II.3. Factorization algebras (Examples)

An example coming from vertex models

V vector space of states.

$$R\in \mathit{GL}(V^{\otimes 2})$$
 interactions matrix: $\mathit{R}_{ik}^{jl}=\exp\left(-rac{1}{kT}\epsilon_{ik}^{jl}
ight)$

Computing a state sum = tensor calculus

Example

II. Factorization homology

II.3. Factorization algebras (Examples)

An example coming from vertex models

V vector space of states.

$${\it R}\in {\it GL}({\it V}^{\otimes 2})$$
 interactions matrix: ${\it R}_{ik}^{jl}=\exp\left(-rac{1}{kT}\epsilon_{ik}^{jl}
ight)$

Computing a state sum = tensor calculus

Example

II. Factorization homology

II.3. Factorization algebras (Examples)

An example coming from vertex models

V vector space of states.

$$R\in \mathit{GL}(V^{\otimes 2})$$
 interactions matrix: $\mathit{R}_{ik}^{jl}=\exp\left(-rac{1}{kT}\epsilon_{ik}^{jl}
ight)$

Computing a state sum = tensor calculus

Example

II. Factorization homology

II.3. Factorization algebras (Examples)

An example coming from vertex models

V vector space of states.

$${\it R}\in {\it GL}({\it V}^{\otimes 2})$$
 interactions matrix: ${\it R}_{ik}^{jl}=\exp\left(-rac{1}{kT}\epsilon_{ik}^{jl}
ight)$

Computing a state sum = tensor calculus

Example

II. Factorization homology

II.3. Factorization algebras (Examples)

An example coming from vertex models

V vector space of states.

$${\it R}\in {\it GL}(V^{\otimes 2})$$
 interactions matrix: ${\it R}_{ik}^{jl}=\exp\left(-rac{1}{kT}\epsilon_{ik}^{jl}
ight)$

Computing a state sum = tensor calculus

A factorization algebra on \mathbb{R}^2

II. Factorization homology

II.3. Factorization algebras (Examples)

An example coming from vertex models

V vector space of states.

$${\it R}\in {\it GL}(V^{\otimes 2})$$
 interactions matrix: ${\it R}_{ik}^{jl}=\exp\left(-rac{1}{kT}\epsilon_{ik}^{jl}
ight)$

Computing a state sum = tensor calculus

A factorization algebra on \mathbb{R}^2

