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Two examples of fully extended TFTs

I. Fully extended TFTs

I.1. Ordinary TFTs

Definition

An n-dimensional topological field theory is a symmetric monoidal
functor Z : Cobn → Vect, where Cobn is the symmetric monoidal
category with:

objects are compact (n − 1)-dimensional manifolds.

morphisms are diffeomorphism classes of n-cobordisms.

monoidal product is the disjoint union t.

In concrete terms, it associates:

a vector space Z(Σ) to any (n − 1)-manifold Σ.
a linear map Z(M) : Z(Σ0)→ Z(Σ1) to any cobordism

MΣ0 Σ1

a tensor product to a disjoint union:
Z(M t N) = Z(M)⊗Z(N).
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Two examples of fully extended TFTs

I. Fully extended TFTs

I.1. Ordinary TFTs (continued)

Several variants: e.g. oriented, unoriented, framed, etc. . .

Example

1-dimensional (un)oriented TFTs are in bijection with (selfdual)
finite dimensional vector spaces.
Explanation

is sent to the evaluation map V ⊗ V ∗ → k .

is sent to the co-evaluation map k → V ∗ ⊗ V .

the circle is sent to the dimension dim(V ) ∈ k = Hom(k , k).

Can replace Vect with any symmetric monoidal category (C,⊗).
Finite dimensional becomes dualizable.

Theorem

2-dimensional oriented TFTs are in bijection with commutative
Frobenius algebras.

No classification in higher dimension.
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Two examples of fully extended TFTs

I. Fully extended TFTs

I.2. TFTs extended up

Introduce Cob∞n : ∞-categorical version of Cobn.

Between two
objects Σ0 and Σ1 one now has a space of morphisms: the space
of all cobordisms from Σ0 to Σ1. Roughly:

1-morphisms are n-cobordisms.
2-morphisms are diffeomorphisms of these.
3-morphisms are isotopies between diffeomorphisms.
etc. . .

We still call an n-dimensional TFT a symmetric monoidal functor
Cob∞n → C, where C is a symmetric monoidal (∞, 1)-category.
This is consistent as the homotopy category of Cob∞n is Cobn.

Example (Factorization Homology)

Let C be the symmetric monoidal ∞-category having En-algebras
as objects and bimodules as morphisms. Let A be an En-algebra.
The assignment X 7→

∫
X A := A⊗En Conf (X ) defines an

n-dimensional framed TFT (this follows from ⊗-excision) with
values in C. If n = 1 then we in particular have that∫

S1 A ∼= HH−∗(A) gets an action of S1 ∼= Diff fr (S1).



Two examples of fully extended TFTs

I. Fully extended TFTs

I.2. TFTs extended up

Introduce Cob∞n : ∞-categorical version of Cobn. Between two
objects Σ0 and Σ1 one now has a space of morphisms: the space
of all cobordisms from Σ0 to Σ1. Roughly:

1-morphisms are n-cobordisms.
2-morphisms are diffeomorphisms of these.
3-morphisms are isotopies between diffeomorphisms.
etc. . .

We still call an n-dimensional TFT a symmetric monoidal functor
Cob∞n → C, where C is a symmetric monoidal (∞, 1)-category.
This is consistent as the homotopy category of Cob∞n is Cobn.

Example (Factorization Homology)

Let C be the symmetric monoidal ∞-category having En-algebras
as objects and bimodules as morphisms. Let A be an En-algebra.
The assignment X 7→

∫
X A := A⊗En Conf (X ) defines an

n-dimensional framed TFT (this follows from ⊗-excision) with
values in C. If n = 1 then we in particular have that∫

S1 A ∼= HH−∗(A) gets an action of S1 ∼= Diff fr (S1).



Two examples of fully extended TFTs

I. Fully extended TFTs

I.2. TFTs extended up

Introduce Cob∞n : ∞-categorical version of Cobn. Between two
objects Σ0 and Σ1 one now has a space of morphisms: the space
of all cobordisms from Σ0 to Σ1. Roughly:

1-morphisms are n-cobordisms.

2-morphisms are diffeomorphisms of these.
3-morphisms are isotopies between diffeomorphisms.
etc. . .

We still call an n-dimensional TFT a symmetric monoidal functor
Cob∞n → C, where C is a symmetric monoidal (∞, 1)-category.
This is consistent as the homotopy category of Cob∞n is Cobn.

Example (Factorization Homology)

Let C be the symmetric monoidal ∞-category having En-algebras
as objects and bimodules as morphisms. Let A be an En-algebra.
The assignment X 7→

∫
X A := A⊗En Conf (X ) defines an

n-dimensional framed TFT (this follows from ⊗-excision) with
values in C. If n = 1 then we in particular have that∫

S1 A ∼= HH−∗(A) gets an action of S1 ∼= Diff fr (S1).



Two examples of fully extended TFTs

I. Fully extended TFTs

I.2. TFTs extended up

Introduce Cob∞n : ∞-categorical version of Cobn. Between two
objects Σ0 and Σ1 one now has a space of morphisms: the space
of all cobordisms from Σ0 to Σ1. Roughly:

1-morphisms are n-cobordisms.
2-morphisms are diffeomorphisms of these.

3-morphisms are isotopies between diffeomorphisms.
etc. . .

We still call an n-dimensional TFT a symmetric monoidal functor
Cob∞n → C, where C is a symmetric monoidal (∞, 1)-category.
This is consistent as the homotopy category of Cob∞n is Cobn.

Example (Factorization Homology)

Let C be the symmetric monoidal ∞-category having En-algebras
as objects and bimodules as morphisms. Let A be an En-algebra.
The assignment X 7→

∫
X A := A⊗En Conf (X ) defines an

n-dimensional framed TFT (this follows from ⊗-excision) with
values in C. If n = 1 then we in particular have that∫

S1 A ∼= HH−∗(A) gets an action of S1 ∼= Diff fr (S1).



Two examples of fully extended TFTs

I. Fully extended TFTs

I.2. TFTs extended up

Introduce Cob∞n : ∞-categorical version of Cobn. Between two
objects Σ0 and Σ1 one now has a space of morphisms: the space
of all cobordisms from Σ0 to Σ1. Roughly:

1-morphisms are n-cobordisms.
2-morphisms are diffeomorphisms of these.
3-morphisms are isotopies between diffeomorphisms.
etc. . .

We still call an n-dimensional TFT a symmetric monoidal functor
Cob∞n → C, where C is a symmetric monoidal (∞, 1)-category.
This is consistent as the homotopy category of Cob∞n is Cobn.

Example (Factorization Homology)

Let C be the symmetric monoidal ∞-category having En-algebras
as objects and bimodules as morphisms. Let A be an En-algebra.
The assignment X 7→

∫
X A := A⊗En Conf (X ) defines an

n-dimensional framed TFT (this follows from ⊗-excision) with
values in C. If n = 1 then we in particular have that∫

S1 A ∼= HH−∗(A) gets an action of S1 ∼= Diff fr (S1).



Two examples of fully extended TFTs

I. Fully extended TFTs

I.2. TFTs extended up

Introduce Cob∞n : ∞-categorical version of Cobn. Between two
objects Σ0 and Σ1 one now has a space of morphisms: the space
of all cobordisms from Σ0 to Σ1. Roughly:

1-morphisms are n-cobordisms.
2-morphisms are diffeomorphisms of these.
3-morphisms are isotopies between diffeomorphisms.
etc. . .

We still call an n-dimensional TFT a symmetric monoidal functor
Cob∞n → C, where C is a symmetric monoidal (∞, 1)-category.

This is consistent as the homotopy category of Cob∞n is Cobn.

Example (Factorization Homology)

Let C be the symmetric monoidal ∞-category having En-algebras
as objects and bimodules as morphisms. Let A be an En-algebra.
The assignment X 7→

∫
X A := A⊗En Conf (X ) defines an

n-dimensional framed TFT (this follows from ⊗-excision) with
values in C. If n = 1 then we in particular have that∫

S1 A ∼= HH−∗(A) gets an action of S1 ∼= Diff fr (S1).



Two examples of fully extended TFTs

I. Fully extended TFTs

I.2. TFTs extended up

Introduce Cob∞n : ∞-categorical version of Cobn. Between two
objects Σ0 and Σ1 one now has a space of morphisms: the space
of all cobordisms from Σ0 to Σ1. Roughly:

1-morphisms are n-cobordisms.
2-morphisms are diffeomorphisms of these.
3-morphisms are isotopies between diffeomorphisms.
etc. . .

We still call an n-dimensional TFT a symmetric monoidal functor
Cob∞n → C, where C is a symmetric monoidal (∞, 1)-category.
This is consistent as the homotopy category of Cob∞n is Cobn.

Example (Factorization Homology)

Let C be the symmetric monoidal ∞-category having En-algebras
as objects and bimodules as morphisms. Let A be an En-algebra.
The assignment X 7→

∫
X A := A⊗En Conf (X ) defines an

n-dimensional framed TFT (this follows from ⊗-excision) with
values in C. If n = 1 then we in particular have that∫

S1 A ∼= HH−∗(A) gets an action of S1 ∼= Diff fr (S1).



Two examples of fully extended TFTs

I. Fully extended TFTs

I.2. TFTs extended up

Introduce Cob∞n : ∞-categorical version of Cobn. Between two
objects Σ0 and Σ1 one now has a space of morphisms: the space
of all cobordisms from Σ0 to Σ1. Roughly:

1-morphisms are n-cobordisms.
2-morphisms are diffeomorphisms of these.
3-morphisms are isotopies between diffeomorphisms.
etc. . .

We still call an n-dimensional TFT a symmetric monoidal functor
Cob∞n → C, where C is a symmetric monoidal (∞, 1)-category.
This is consistent as the homotopy category of Cob∞n is Cobn.

Example (Factorization Homology)

Let C be the symmetric monoidal ∞-category having En-algebras
as objects and bimodules as morphisms. Let A be an En-algebra.

The assignment X 7→
∫

X A := A⊗En Conf (X ) defines an
n-dimensional framed TFT (this follows from ⊗-excision) with
values in C. If n = 1 then we in particular have that∫

S1 A ∼= HH−∗(A) gets an action of S1 ∼= Diff fr (S1).



Two examples of fully extended TFTs

I. Fully extended TFTs

I.2. TFTs extended up

Introduce Cob∞n : ∞-categorical version of Cobn. Between two
objects Σ0 and Σ1 one now has a space of morphisms: the space
of all cobordisms from Σ0 to Σ1. Roughly:

1-morphisms are n-cobordisms.
2-morphisms are diffeomorphisms of these.
3-morphisms are isotopies between diffeomorphisms.
etc. . .

We still call an n-dimensional TFT a symmetric monoidal functor
Cob∞n → C, where C is a symmetric monoidal (∞, 1)-category.
This is consistent as the homotopy category of Cob∞n is Cobn.

Example (Factorization Homology)

Let C be the symmetric monoidal ∞-category having En-algebras
as objects and bimodules as morphisms. Let A be an En-algebra.
The assignment X 7→

∫
X A := A⊗En Conf (X ) defines an

n-dimensional framed TFT (this follows from ⊗-excision) with
values in C.

If n = 1 then we in particular have that∫
S1 A ∼= HH−∗(A) gets an action of S1 ∼= Diff fr (S1).



Two examples of fully extended TFTs

I. Fully extended TFTs

I.2. TFTs extended up

Introduce Cob∞n : ∞-categorical version of Cobn. Between two
objects Σ0 and Σ1 one now has a space of morphisms: the space
of all cobordisms from Σ0 to Σ1. Roughly:

1-morphisms are n-cobordisms.
2-morphisms are diffeomorphisms of these.
3-morphisms are isotopies between diffeomorphisms.
etc. . .

We still call an n-dimensional TFT a symmetric monoidal functor
Cob∞n → C, where C is a symmetric monoidal (∞, 1)-category.
This is consistent as the homotopy category of Cob∞n is Cobn.

Example (Factorization Homology)

Let C be the symmetric monoidal ∞-category having En-algebras
as objects and bimodules as morphisms. Let A be an En-algebra.
The assignment X 7→

∫
X A := A⊗En Conf (X ) defines an

n-dimensional framed TFT (this follows from ⊗-excision) with
values in C. If n = 1 then we in particular have that∫

S1 A ∼= HH−∗(A) gets an action of S1 ∼= Diff fr (S1).



Two examples of fully extended TFTs

I. Fully extended TFTs

I.3. TFTs extended down to the point

Rough definition

We write Bordn for the symmetric monoidal (∞, n)-category with:

compact 0-dimensional manifolds as objects.

1-dimensional cobordisms as 1-morphisms.

2-dimensional cobordisms 2-morphisms.
etc. . .

diffeomorphisms of n-dimensional cobordisms as
(n + 1)-morphisms.
etc. . .

An example of a 2-morphism
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Two examples of fully extended TFTs

I. Fully extended TFTs

I.3. TFTs extended down to the point (continued)

Definition

A fully extended n-dimensional TFT is a symmetric monoidal
functor Z : Bordn → C, where C is a symmetric monoidal
(∞, n)-category.

Theorem (Lurie, Ayala–Francis)

Fully extended n-dimensional framed TFTs are in one-to-one
correspondence with n-dualizable objects in C.

n-dualizable
def
= dualizable + (co)evaluation morphism admit

adjoints + (co)unit admit adjoints + etc. . . up to n − 1. In other
words, Bord fr

n is the free symmetric monoidal (∞, n)-category
generated by an n-dualizable object.
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I.3. TFTs extended down to the point (continued)

An example of an adjunction in terms of cobordisms

=



Two examples of fully extended TFTs

II. Factorization homology

II.2. The (∞, n)-category of En-algebras

The (∞, 1)-category of E1-algebras and bimodules

objects are E1-algebras

; i.e. loc. const. fact. alg. on

morphisms are loc. const. fact. alg. on • ; i.e. bimodules

composition of morphisms is given by pushing-forward locally
constant factorization algebras along the projection

• •
•

The (∞, 1)-category of En-algebras and En−1-bimodules (n = 2)

objects are En-algebras; i.e. loc. const. fact. alg. on

morphisms are loc. const. fact. alg. on

composition is given by pushing-forward along the obvious
projection.
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Theorem (C–Scheimbauer)
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X A defines a fully
extended TFT wih values in Algn.

We will explain how to prove it, essentially by drawing
pictures (in the case n = 2 for simplicity).

It is sufficient to explain how that works for n-morphisms.
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satisfying the following properties:

associativity :

U11 U12 U21

U1 U2

V

gluing property (one can reconstruct EU from the data of a
nice enough cover U and EU ).
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II. Factorization homology

II.3. Factorization algebras (Examples)

Examples

The various “Disk algebras” from Hiro’s talk produce
factorization algebras on Rn. They are exactly the ones that
are locally constant (w.r.t. a given stratification).

if X is a (framed) manifolds, then the assignment
X ⊃ U 7→

∫
U A defines a (locally constant) factorization

algebras on X .
Abusing notation we will still denote

∫
X A this factorization

algebra.

if f : X → Y is a continuous map and E a factorization
algebra on X then f∗E : U 7→ Ef −1(U) is a factorization
algebra on Y .
Bf∗ does not preserve locally constantness (but it does if f is
fiber bundle).
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II. Factorization homology

II.3. Factorization algebras (Examples)

A associative algebra (e.g. A = End(V )).

(Φt)t a 1-parameter group of automorphisms of A

(e.g. Φt = e−
it
~ H).

Mr right A-module (e.g. V ∗) and vinit ∈ Mr .
M` left A-module (e.g. V ) and vfin ∈ M`.

A factorization algebra on [0, 1] (bra-ket notation)

We set E[0,s[ = Mr , E]t,u[ = A et E]v ,1] = M`.

t0 t1 t2 t3 t4 t5

a ⊗ b

Φt1−t0aΦt3−t2bΦt5−t4

•0
s t u v

〈v | ⊗ a

〈v |Φt−saΦv−u|

•
s t u 1

a

|Φt−saΦ1−u|vfin〉

One can show that E[0,1] = Md ⊗
A

Mg (C in the example). We see

• •
a

0 s t 1
〈vinit |ΦsaΦ1−t |vfin〉 as a probability amplitude.
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An example coming from vertex models
V vector space of states.

R ∈ GL(V⊗2) interactions matrix: R jl
ik = exp

(
− 1

kT ε
jl
ik

)
Computing a state sum = tensor calculus

Example

• •

•
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ek ′ el ′
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