D. Calaque

ETH Zürich

November 28, 2011

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

Symmetries

Symmetries (Lie Theory)

What is... a group?

• group: mathematical object behind the concept of symmetry

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

What is... a group?

• group: mathematical object behind the concept of symmetry

• informally: a group is a set of transformations

What is... a group?

• group: mathematical object behind the concept of symmetry

- informally: a group is a set of transformations
 - that are invertible

What is... a group?

• group: mathematical object behind the concept of symmetry

- informally: a group is a set of transformations
 - that are invertible
 - that one can compose

What is... a group?

• group: mathematical object behind the concept of symmetry

(日) (日) (日) (日) (日) (日) (日) (日) (日)

- informally: a group is a set of transformations
 - that are invertible
 - that one can compose
 - that preserves something

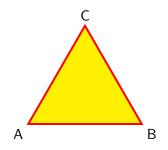
What is... a group?

• group: mathematical object behind the concept of symmetry

- informally: a group is a set of transformations
 - that are invertible
 - that one can compose
 - that preserves something

What is... a group?

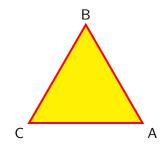
- group: mathematical object behind the concept of symmetry
- informally: a group is a set of transformations
 - that are invertible
 - that one can compose
 - that preserves something



(日) (日) (日) (日) (日) (日) (日) (日) (日)

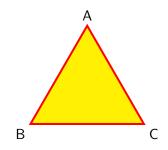
What is... a group?

- group: mathematical object behind the concept of symmetry
- informally: a group is a set of transformations
 - that are invertible
 - that one can compose
 - that preserves something



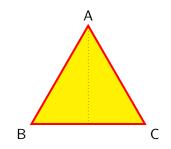
What is... a group?

- group: mathematical object behind the concept of symmetry
- informally: a group is a set of transformations
 - that are invertible
 - that one can compose
 - that preserves something



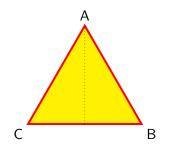
What is... a group?

- group: mathematical object behind the concept of symmetry
- informally: a group is a set of transformations
 - that are invertible
 - that one can compose
 - that preserves something



What is... a group?

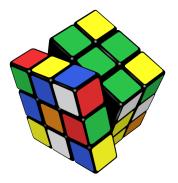
- group: mathematical object behind the concept of symmetry
- informally: a group is a set of transformations
 - that are invertible
 - that one can compose
 - that preserves something



Symmetries

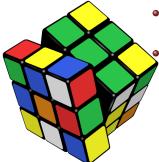
Digression... symmetry group of the Rubik's cube

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで



Symmetries

Digression... symmetry group of the Rubik's cube



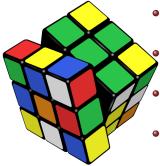
• invented by Ernő Rubik in 1974

world record: 5,66 sec (Feliks Zemdegs)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Symmetries

Digression... symmetry group of the Rubik's cube



• invented by Ernő Rubik in 1974

world record: 5,66 sec (Feliks Zemdegs)

- 43'252'003'274'489'856'000 elements
- $\bullet~{\rm God's}~{\rm number:}~20$

Rokicki-Kociemba-Davidson-Dethridge (2010)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Generators = elementary moves

God's number = diameter of the group in terms generators

What is... a Galois group?

• Can one solve a polynomial equation P(x) = 0 by radicals?

What is... a Galois group?

• Can one solve a polynomial equation P(x) = 0 by radicals?

• in degree 2,
$$ax^2 + bx + c = 0$$
, yes - $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - わへで

What is... a Galois group?

• Can one solve a polynomial equation P(x) = 0 by radicals?

• in degree 2, $ax^2 + bx + c = 0$, yes - $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

• in degrees 3 and 4, yes

What is... a Galois group?

• Can one solve a polynomial equation P(x) = 0 by radicals?

- in degree 2, $ax^2 + bx + c = 0$, yes $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- in degrees 3 and 4, yes
- in degree > 4, no counter-example: $x^5 x + 1 = 0$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

What is... a Galois group?

• Can one solve a polynomial equation P(x) = 0 by radicals?

- in degree 2, $ax^2 + bx + c = 0$, yes $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- in degrees 3 and 4, yes
- in degree > 4, no counter-example: $x^5 x + 1 = 0$

• Given P(x), is there a criterium for the answer to be yes?

(日) (日) (日) (日) (日) (日) (日) (日) (日)

What is... a Galois group?

• Can one solve a polynomial equation P(x) = 0 by radicals?

- in degree 2, $ax^2 + bx + c = 0$, yes $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- in degrees 3 and 4, yes
- in degree > 4, no counter-example: $x^5 x + 1 = 0$

• Given P(x), is there a criterium for the answer to be yes?

- solutions: $S = \{x_1, \ldots, x_k\}$
- Galois group: permutations of S such that any alg. eq. satisfied by x_1, \ldots, x_k is still satisfied after they have been permuted.
- solvability by radicals

\Leftrightarrow

Galois group is "solvable"

EVARISTE GALOIS (1811 - 1832)

900

What is... a Lie group?

SOPHUS LIE (1842 - 1899): algebraic \rightarrow differential equations

What is... a Lie group?

SOPHUS LIE (1842 - 1899): algebraic \rightarrow differential equations

• y'(x) = g(x) (y unknown)

What is... a Lie group?

SOPHUS LIE (1842 - 1899): algebraic \rightarrow differential equations

• y'(x) = g(x) (y unknown)

• sol^o: $y(x) = \int^x g(t) dt$

What is... a Lie group?

SOPHUS LIE (1842 - 1899): algebraic \rightarrow differential equations

- y'(x) = g(x) (y unknown)
- sol^o: $y(x) = \int^x g(t) dt + c$

What is... a Lie group?

SOPHUS LIE (1842 - 1899): algebraic \rightarrow differential equations

- y'(x) = g(x) (y unknown)
- sol^o: $y(x) = \int^x g(t) dt + c$
- symmetries = translations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What is... a Lie group?

SOPHUS LIE (1842 - 1899): algebraic \rightarrow differential equations

- y'(x) = g(x) (y unknown)
- sol^o: $y(x) = \int^x g(t) dt + c$
- symmetries = translations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

not discrete!

What is... a Lie group?

SOPHUS LIE (1842 - 1899): algebraic \rightarrow differential equations

- y'(x) = g(x) (y unknown)
- sol^o: $y(x) = \int^x g(t)dt + c$
- symmetries = translations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

not discrete!

What is... a Lie group?

SOPHUS LIE (1842 - 1899): algebraic \rightarrow differential equations

- y'(x) = g(x) (y unknown)
- sol^o: $y(x) = \int^x g(t)dt + c$
- symmetries = translations

- not discrete!
- \Rightarrow Lie group

 \sim Picard-Vessiot theory (a-k-a differential Galois theory) \square - \square :

solvability by quadrature

$\Leftrightarrow \\ \text{Lie group connected and solvable}$

What is... a Lie algebra?

Definition: Lie algebra $\stackrel{\text{def}}{=}$ infinitesimal Lie group

What is... a Lie algebra?

Definition: Lie algebra $\stackrel{\text{def}}{=}$ infinitesimal Lie group

• (infinitesimal) translations: $f(y+b) = e^{b\frac{d}{dy}}f(y)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

What is... a Lie algebra?

Definition: Lie algebra $\stackrel{\text{def}}{=}$ infinitesimal Lie group

• (infinitesimal) translations: $f(y+b) = e^{b\frac{d}{dy}}f(y)$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

What is... a Lie algebra?

Definition: Lie algebra $\stackrel{\text{def}}{=}$ infinitesimal Lie group

• (infinitesimal) translations: $f(y+b) = e^{b\frac{d}{dy}}f(y)$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

• affine transformations: $y \mapsto ay + b$, a > 0

What is... a Lie algebra?

Definition: Lie algebra $\stackrel{\text{def}}{=}$ infinitesimal Lie group

- (infinitesimal) translations: $f(y+b) = e^{b\frac{d}{dy}}f(y)$
- affine transformations: $y \mapsto ay + b$, a > 0

ARMAND BOREL (1923 - 2003) studied at ETH

- symmetry group of y'' y' = 0
- first example of a Borel subgroup

(日) (日) (日) (日) (日) (日) (日) (日) (日)

What is... a Lie algebra?

Definition: Lie algebra $\stackrel{\text{def}}{=}$ infinitesimal Lie group

- (infinitesimal) translations: $f(y+b) = e^{b\frac{d}{dy}}f(y)$
- affine transformations: $y \mapsto ay + b$, a > 0

ARMAND BOREL (1923 - 2003) studied at ETH

- symmetry group of y'' y' = 0
- first example of a Borel subgroup

(日) (日) (日) (日) (日) (日) (日) (日) (日)

• added (infinitesimal) dilations $f(ay) = e^{\log(a)y} \frac{d}{dy} f(y)$

What is... a Lie algebra?

Definition: Lie algebra $\stackrel{\text{def}}{=}$ infinitesimal Lie group

- (infinitesimal) translations: $f(y+b) = e^{b\frac{d}{dy}}f(y)$
- affine transformations: $y \mapsto ay + b$, a > 0

ARMAND BOREL (1923 - 2003) studied at ETH

- symmetry group of y'' y' = 0
- first example of a Borel subgroup
- added (infinitesimal) dilations $f(ay) = e^{\log(a)y} \frac{d}{dy} f(y)$
- becomes non-abelian: $2(y+1) \neq 2y+1$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

What is... a Lie algebra?

Definition: Lie algebra $\stackrel{\text{def}}{=}$ infinitesimal Lie group

- (infinitesimal) translations: $f(y+b) = e^{b\frac{d}{dy}}f(y)$
- affine transformations: $y \mapsto ay + b$, a > 0

ARMAND BOREL (1923 - 2003) studied at ETH

- symmetry group of y'' y' = 0
- first example of a Borel subgroup
- added (infinitesimal) dilations $f(ay) = e^{\log(a)y} \frac{d}{dy} f(y)$
- becomes non-abelian: $2(y+1) \neq 2y+1$

• infinitesimally: $\left[\frac{d}{dy}, y\frac{d}{dy}\right] = \frac{d}{dy}$

What is... a Lie algebra?

Definition: Lie algebra $\stackrel{\text{def}}{=}$ infinitesimal Lie group

- (infinitesimal) translations: $f(y+b) = e^{b\frac{d}{dy}}f(y)$
- affine transformations: $y \mapsto ay + b$, a > 0

ARMAND BOREL (1923 - 2003) studied at ETH

- symmetry group of y'' y' = 0
- first example of a Borel subgroup
- added (infinitesimal) dilations $f(ay) = e^{\log(a)y} \frac{d}{dy} f(y)$
- becomes non-abelian: $2(y+1) \neq 2y+1$
- infinitesimally: $\left[\frac{d}{dy}, y\frac{d}{dy}\right] = \frac{d}{dy}$

• Lie bracket [u, v] is the infinitesimal default of commutativity: $\exp(u) \exp(v) (\exp(v) \exp(u))^{-1} = \exp([u, v])$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ◆ □ > ◆ □ >

What is... a Klein geometry?

A non-solvable example: group SO(n) of rotational symmetries.

What is... a Klein geometry?

A non-solvable example: group SO(n) of rotational symmetries. Matrices A such that $AA^t = A^tA = id$ and det(A) = 1.

What is... a Klein geometry?

A non-solvable example: group SO(n) of rotational symmetries. Matrices A such that $AA^t = A^tA = id$ and det(A) = 1. Infinitesimal rotations are then skew-symmetric matrices:

$$A = \exp\left(a\right) \Rightarrow \frac{a + a^{t} = 0}{a + a^{t}}$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

What is... a Klein geometry?

A non-solvable example: group SO(n) of rotational symmetries. Matrices A such that $AA^t = A^tA = id$ and det(A) = 1. Infinitesimal rotations are then skew-symmetric matrices:

$$A = \exp\left(a\right) \Rightarrow \frac{a + a^{t} = 0}{a + a^{t}}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Lie groups as symmetries of spaces.

What is... a Klein geometry?

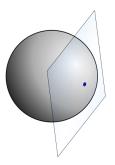
A non-solvable example: group SO(n) of rotational symmetries. Matrices A such that $AA^t = A^tA = id$ and det(A) = 1. Infinitesimal rotations are then skew-symmetric matrices:

$$A = \exp(a) \Rightarrow \frac{a + a^t = 0}{a + a^t}$$

Lie groups as symmetries of spaces. *Example:*

$$SO(3) \longrightarrow S^2$$

 \rightsquigarrow homogeneous spaces (spaces with a transitive action of a Lie group)



イロト イ押ト イヨト イヨト

What is... a Klein geometry?

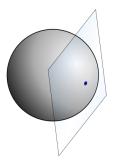
A non-solvable example: group SO(n) of rotational symmetries. Matrices A such that $AA^t = A^tA = id$ and det(A) = 1. Infinitesimal rotations are then skew-symmetric matrices:

$$A = \exp{(a)} \Rightarrow a + a^t = 0$$

Lie groups as symmetries of spaces. *Example:*

$$SO(2) \longrightarrow SO(3) \longrightarrow S^2$$

 \rightarrow homogeneous spaces (spaces with a transitive action of a Lie group): G/H



What is... a Klein geometry?

A non-solvable example: group SO(n) of rotational symmetries. Matrices A such that $AA^t = A^tA = id$ and det(A) = 1. Infinitesimal rotations are then skew-symmetric matrices:

$$A = \exp{(a)} \Rightarrow a + a^t = 0$$

Lie groups as symmetries of spaces. *Example:*

$$SO(2) \longrightarrow SO(3) \longrightarrow S^2$$

 \rightarrow homogeneous spaces (spaces with a transitive action of a Lie group): *G*/*H* homogeneous space = Klein geometry

Felix Klein (1849 - 1925)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

What is... a Klein geometry?

A non-solvable example: group SO(n) of rotational symmetries. Matrices A such that $AA^t = A^tA = id$ and det(A) = 1. Infinitesimal rotations are then skew-symmetric matrices:

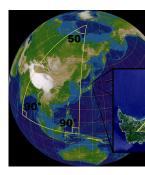
$$A = \exp{(a)} \Rightarrow a + a^t = 0$$

Lie groups as symmetries of spaces. *Example:*

$$SO(2) \longrightarrow SO(3) \longrightarrow S^2$$

 \rightarrow homogeneous spaces (spaces with a transitive action of a Lie group): *G*/*H* homogeneous space = Klein geometry

non axiomatic approach to non-euclidan geometries



ヘロト ヘアト ヘリト ヘ

Classifying infinitesimal symmetries

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Classifying infinitesimal symmetries

Levi-Mal'tsev decomposition

Any finite dimensional Lie algebra ${\mathfrak g}$ decomposes as

$$\mathfrak{g} = \mathfrak{r} \rtimes \mathfrak{l}$$

with \mathfrak{r} solvable and \mathfrak{l} semi-simple.

Eugenio Levi (1883 - 1917)

Anatoly Malcev (1909 - 1967)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Classifying infinitesimal symmetries

Levi-Mal'tsev decomposition

Any finite dimensional Lie algebra ${\mathfrak g}$ decomposes as

$$\mathfrak{g}=\mathfrak{r}
times (\mathfrak{l}_{1}\oplus\cdots\oplus\mathfrak{l}_{k})$$

with \mathfrak{r} solvable and \mathfrak{l}_i sir

Eugenio Levi (1883 - 1917)

Anatoly Malcev (1909 - 1967)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Classifying infinitesimal symmetries

Levi-Mal'tsev decomposition

Any finite dimensional Lie algebra \mathfrak{g} decomposes as

$$\mathfrak{g}=\mathfrak{r}
times\left(\mathfrak{l}_{1}\oplus\cdots\oplus\mathfrak{l}_{k}
ight)$$

with \mathfrak{r} solvable and \mathfrak{l}_i sim

simple.

Eugenio Levi (1883 - 1917)

Under reasonable assumption $\mathfrak{r} = \mathfrak{n} \rtimes \mathfrak{a}$ $\mathfrak{n} \text{ nilpotent and } \mathfrak{a} \text{ abelian.}$

Anatoly Malcev (1909 - 1967)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Classifying infinitesimal symmetries

Levi-Mal'tsev decomposition

Any finite dimensional Lie algebra \mathfrak{g} decomposes as

$$\mathfrak{g}=\mathfrak{r}
times\left(\mathfrak{l}_{1}\oplus\cdots\oplus\mathfrak{l}_{k}
ight)$$

with \mathfrak{r} solvable and \mathfrak{l}_i simplified simplified simplified simplified simplified states and \mathfrak{l}_i states a

simple.

(1883 - 1917)

Under reasonable assumption $\mathfrak{r} = \mathfrak{n} \rtimes \mathfrak{a}$ $\mathfrak{n} \text{ nilpotent and } \mathfrak{a} \text{ abelian.}$

Anatoly Malcev (1909 - 1967)

Need to classify nilpotent and simple Lie algebras.

Classifying infinitesimal symmetries

Levi-Mal'tsev decomposition

Any finite dimensional Lie algebra \mathfrak{g} decomposes as

$$\mathfrak{g}=\mathfrak{r}
times\left(\mathfrak{l}_{1}\oplus\cdots\oplus\mathfrak{l}_{k}
ight)$$

with \mathfrak{r} solvable and \mathfrak{l}_i simple.

Under reasonable assumption $\mathfrak{r} = \mathfrak{n} \rtimes \mathfrak{a}$

 $\mathfrak n$ nilpotent and $\mathfrak a$ abelian.

Eugenio Levi

(1883 - 1917)

Anatoly Malcev (1909 - 1967)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Need to classify nilpotent and simple Lie algebras. Nilpotent ones are known only in dimension ≤ 6 .

Classifying infinitesimal symmetries - continued

Simple Lie algebras over $\ensuremath{\mathbb{C}}$

Classifying infinitesimal symmetries - continued

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Simple Lie algebras over \mathbb{C} WILHELM KILLING (1847-1923) conjectured a classification

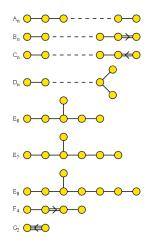
Classifying infinitesimal symmetries - continued

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Simple Lie algebras over C
№ WILHELM KILLING (1847-1923)
conjectured a classification
ÉLIE CARTAN (1869-1951)
completed and proved it

Classifying infinitesimal symmetries - continued

Simple Lie algebras over C
WILHELM KILLING (1847-1923) conjectured a classification
ÉLIE CARTAN (1869-1951) completed and proved it
EUGENE DYNKIN modern approach → Dynkin diagrams



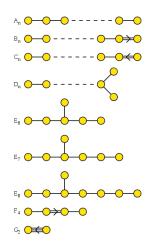
Complete list of Dynkin diagrams

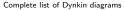
▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Classifying infinitesimal symmetries - continued

Simple Lie algebras over C
WILHELM KILLING (1847-1923) conjectured a classification
ÉLIE CARTAN (1869-1951) completed and proved it
EUGENE DYNKIN modern approach → Dynkin diagrams

Simple Lie algebras over \mathbb{R} classified by Cartan (Riem. sym. spaces)



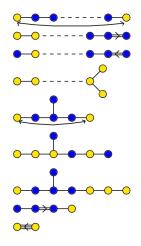


▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Classifying infinitesimal symmetries - continued

Simple Lie algebras over ℝ classified by Cartan (Riem. sym. spaces) ICHIRO SATAKE

Dynkin diagrams \longrightarrow Satake diagrams



A few Satake diagrams

Loci (Algebraic Geometry)

*ロ * * ◎ * * ● * * ● * ● * * ● * * ● * * ● * * ● * * ● ● * ● * ● * ● * ● * ● * ● * ● * ● ● * ● ● * ● * ● * ● * ● * ● * ● * ● * ● * ● * ● * ● * ● * ● * ● * ● * ● * ● ● * ● ● * ● ● * ● ● * ● ● ● * ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

What is... an affine algebraic variety?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

What is... an affine algebraic variety?

locus in \mathbb{C}^n of solutions of polynomial equations in n variables

What is... an affine algebraic variety?

locus in \mathbb{C}^n of solutions of polynomial equations in n variables

(日) (日) (日) (日) (日) (日) (日) (日) (日)

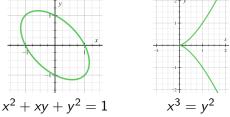
• (plane) algebraic curve: $\{(x, y) \in \mathbb{C}^2 | P(x, y) = 0\}$

What is... an affine algebraic variety?

locus in \mathbb{C}^n of solutions of polynomial equations in n variables

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

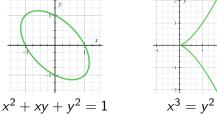
• (plane) algebraic curve: $\{(x, y) \in \mathbb{C}^2 | P(x, y) = 0\}$



What is... an affine algebraic variety?

locus in \mathbb{C}^n of solutions of polynomial equations in n variables

• (plane) algebraic curve: $\{(x, y) \in \mathbb{C}^2 | P(x, y) = 0\}$



• examples of algebraic surfaces:

Kummer surface

What is... Bézout's theorem?

Bézout's theorem

Given two plane curves C_1 and C_2 of degree m_1 and m_2 , then $\#(C_1 \cap C_2) = m_1 m_2$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

What is... Bézout's theorem?

Bézout's theorem

Given two plane curves C_1 and C_2 of degree m_1 and m_2 , then $\#(C_1 \cap C_2) = m_1 m_2$.

Étienne Bézout (1730 - 1783)

What is... Bézout's theorem?

Bézout's theorem

Given two plane curves C_1 and C_2 of degree m_1 and m_2 , then $\#(C_1 \cap C_2) = m_1 m_2$.

Étienne Bézout (1730 - 1783) Three problems with this statement:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

What is... Bézout's theorem?

Bézout's theorem

Given two plane curves C_1 and C_2 of degree m_1 and m_2 , then $\#(C_1 \cap C_2) = m_1 m_2$.

Étienne Bézout (1730 - 1783) Three problems with this statement:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

parallel lines

What is... Bézout's theorem?

Bézout's theorem

Given two plane curves C_1 and C_2 of degree m_1 and m_2 , then $\#(C_1 \cap C_2) = m_1 m_2$.

Étienne Bézout (1730 - 1783) Three problems with this statement:

• parallel lines

missing point

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

What is... Bézout's theorem?

Bézout's theorem

Given two plane curves C_1 and C_2 of degree m_1 and m_2 , then $\#(C_1 \cap C_2) = m_1 m_2$.

Étienne Bézout (1730 - 1783) Three problems with this statement:

parallel lines

missing point

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• tangential points

What is... Bézout's theorem?

Bézout's theorem

Given two plane curves C_1 and C_2 of degree m_1 and m_2 , then $\#(C_1 \cap C_2) = m_1 m_2$.

Étienne Bézout (1730 - 1783) Three problems with this statement:

parallel lines

missing point

• tangential points

not enough points

◆ロト ◆昼 → ◆ 臣 ト ◆ 臣 - ○ ○ ○ ○

What is... Bézout's theorem?

Bézout's theorem

Given two plane curves C_1 and C_2 of degree m_1 and m_2 , then $\#(C_1 \cap C_2) = m_1 m_2$.

Étienne Bézout (1730 - 1783) Three problems with this statement:

parallel lines

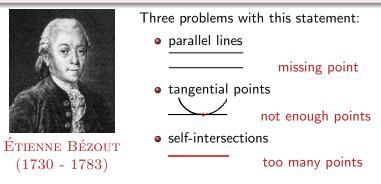
missing point

- tangential points ______ not enough points
- self-intersections

What is... Bézout's theorem?

Bézout's theorem

Given two plane curves C_1 and C_2 of degree m_1 and m_2 , then $\#(C_1 \cap C_2) = m_1 m_2$.

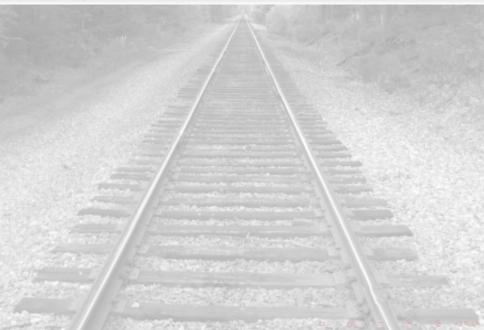


◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Lie Theory and Algebraic Geometry

Loci

What is... a projective curve?



What is... a projective curve?

• *n*-dim projective space: space of lines in (n + 1) dimensions

What is... a projective curve?

• *n*-dim projective space: space of lines in (n + 1) dimensions $\mathbb{KP}^n \stackrel{\text{def}}{=} (\mathbb{K}^{n+1} - \{0\}) / \mathbb{K}^*$

What is... a projective curve?

What is... a projective curve?

• *n*-dim projective space: space of lines in (n + 1) dimensions $\mathbb{KP}^n \stackrel{\text{def}}{=} (\mathbb{K}^{n+1} - \{0\}) / \mathbb{K}^* = \mathbb{K}^n \cup \mathbb{KP}^{n-1}$

• n = 1: projective line = {slopes} = affine line $\cup \{\infty\}$

 $\mathbb{RP}^{1}: \square \mathbb{CP}^{1}: \square \mathbb{CP}^{1}: \square$ • n = 2: projective plane (background picture)

What is... a projective curve?

Rp1.

• *n*-dim projective space: space of lines in (n + 1) dimensions $\mathbb{KP}^{n} \stackrel{\text{def}}{=} (\mathbb{K}^{n+1} - \{0\}) / \mathbb{K}^{*} = \mathbb{K}^{n} \cup \mathbb{KP}^{n-1}$

• n = 1: projective line = {slopes} = affine line $\cup \{\infty\}$

• n = 2: projective plane (background picture)

• eq^o in *n* variables \rightarrow homogeneous eq^o in *n*+1 variables

What is... a projective curve?

RP1.

• *n*-dim projective space: space of lines in (n + 1) dimensions $\mathbb{KP}^{n} \stackrel{\text{def}}{=} (\mathbb{K}^{n+1} - \{0\}) / \mathbb{K}^{*} = \mathbb{K}^{n} \cup \mathbb{KP}^{n-1}$

• n = 1: projective line = {slopes} = affine line $\cup \{\infty\}$

• n = 2: projective plane (background picture)

• eq^o in *n* variables \rightarrow homogeneous eq^o in *n*+1 variables • $x^2 - y^3 = 1$ becomes $x^2z - y^3 = z^3$

What is... a projective curve?

• *n*-dim projective space: space of lines in (n + 1) dimensions $\mathbb{KP}^{n} \stackrel{\text{def}}{=} (\mathbb{K}^{n+1} - \{0\}) / \mathbb{K}^{*} = \mathbb{K}^{n} \cup \mathbb{KP}^{n-1}$

• n = 1: projective line = {slopes} = affine line $\cup \{\infty\}$

• n = 2: projective plane (background picture)

• eq^o in *n* variables \longrightarrow homogeneous eq^o in *n*+1 variables

•
$$x^2 - y^3 = 1$$
 becomes $x^2z - y^3 = z^3$

Rp1. ()

• $\{x - y = 1\}$ is parallel to $\{x - y = 2\}$

What is... a projective curve?

• *n*-dim projective space: space of lines in (n + 1) dimensions $\mathbb{KP}^{n} \stackrel{\text{def}}{=} (\mathbb{K}^{n+1} - \{0\}) / \mathbb{K}^{*} = \mathbb{K}^{n} \cup \mathbb{KP}^{n-1}$

• n = 1: projective line = {slopes} = affine line $\cup \{\infty\}$

• n = 2: projective plane (background picture)

• eq^o in *n* variables \longrightarrow homogeneous eq^o in *n*+1 variables

•
$$x^2 - y^3 = 1$$
 becomes $x^2z - y^3 = z^3$

• $\{x - y = 1\}$ is parallel to $\{x - y = 2\}$

Rp1. ()

 $\{x - y = z\}$ and $\{x - y = 2z\}$ intersect at (1, 1, 0).

What is... a projective curve?

• *n*-dim projective space: space of lines in (n + 1) dimensions $\mathbb{KP}^{n} \stackrel{\text{def}}{=} (\mathbb{K}^{n+1} - \{0\}) / \mathbb{K}^{*} = \mathbb{K}^{n} \cup \mathbb{KP}^{n-1}$

• n = 1: projective line = {slopes} = affine line $\cup \{\infty\}$

• n = 2: projective plane (background picture)

• eq^o in *n* variables \longrightarrow homogeneous eq^o in *n*+1 variables

•
$$x^2 - y^3 = 1$$
 becomes $x^2z - y^3 = z^3$

rp1 . 💭 🖉

- $\{x y = 1\}$ is parallel to $\{x y = 2\}$
 - $\{x y = z\}$ and $\{x y = 2z\}$ intersect at (1, 1, 0).
- plane curves → projective curves (solve problem of parallel lines)

What is... an intersection number?

Consider the intersection of $C_1 = \{y = 0\}$ with $C_2 = \{y = x^2\}$:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

What is... an intersection number?

Consider the intersection of $C_1 = \{y = 0\}$ with $C_2 = \{y = x^2\}$:

 Modern algebraic geometry: varieties are determined by their function rings (physics: states ↔ observables)

What is... an intersection number?

Consider the intersection of $C_1 = \{y = 0\}$ with $C_2 = \{y = x^2\}$:

 Modern algebraic geometry: varieties are determined by their function rings (physics: states ↔ observables)

$$C_1 \cap C_2 = \{y = 0 = x^2\}$$

What is... an intersection number?

Consider the intersection of $C_1 = \{y = 0\}$ with $C_2 = \{y = x^2\}$:

 Modern algebraic geometry: varieties are determined by their function rings (physics: states ↔ observables)

$$C_1 \cap C_2 = \{y = 0 = x^2\} \neq \{y = 0 = x\}$$

What is... an intersection number?

Consider the intersection of $C_1 = \{y = 0\}$ with $C_2 = \{y = x^2\}$:

 Modern algebraic geometry: varieties are determined by their function rings (physics: states ↔ observables)

$$C_1 \cap C_2 = \{y = 0 = x^2\} \neq \{y = 0 = x\}$$

• funtions on $C_1 \cap C_2$:

$$\mathbb{C}[x, y]/(y = x^2 = 0) = \mathbb{C}[x]/(x^2 = 0)$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

What is... an intersection number?

Consider the intersection of $C_1 = \{y = 0\}$ with $C_2 = \{y = x^2\}$:

 Modern algebraic geometry: varieties are determined by their function rings (physics: states ↔ observables)

$$C_1 \cap C_2 = \{y = 0 = x^2\} \neq \{y = 0 = x\}$$

• funtions on $C_1 \cap C_2$:

$$\mathbb{C}[x, y]/(y = x^2 = 0) = \mathbb{C}[x]/(x^2 = 0)$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

this is of dimension $\begin{array}{c} 2 \end{array}$ over $\mathbb C$

What is... an intersection number?

Consider the intersection of $C_1 = \{y = 0\}$ with $C_2 = \{y = x^2\}$:

 Modern algebraic geometry: varieties are determined by their function rings (physics: states ↔ observables)

$$C_1 \cap C_2 = \{y = 0 = x^2\} \neq \{y = 0 = x\}$$

• funtions on $C_1 \cap C_2$:

$$\mathbb{C}[x, y]/(y = x^2 = 0) = \mathbb{C}[x]/(x^2 = 0)$$

this is of dimension $\ensuremath{ 2}$ over $\ensuremath{\mathbb{C}}$

- ullet varieties \longrightarrow schemes
- \bullet invented by Alexander Grothendieck
- solve problem of tangential points

Solving the third problem... derived algebraic geometry

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Recent (\geq 2000) extension of algebraic geometry

- Bertrand Toën & Grabriele Vezzosi
- JACOB LURIE

Solving the third problem... derived algebraic geometry

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Recent (\geq 2000) extension of algebraic geometry

- Bertrand Toën & Grabriele Vezzosi
- Jacob Lurie

Main feature: all fiber products (e.g. intersections) are smooth

Solving the third problem... derived algebraic geometry

Recent (\geq 2000) extension of algebraic geometry

- Bertrand Toën & Grabriele Vezzosi
- Jacob Lurie

Main feature: all fiber products (e.g. intersections) are smooth

Example: (derived) self-intersection of the diagonal $X \subset X \times X$. $X = Maps(\bullet, X)$ and $X \times X = Maps(\bullet\bullet, X)$

Solving the third problem... derived algebraic geometry

Recent (\geq 2000) extension of algebraic geometry

- Bertrand Toën & Grabriele Vezzosi
- Jacob Lurie

Main feature: all fiber products (e.g. intersections) are smooth

Example: (derived) self-intersection of the diagonal
$$X \subset X \times X$$
.
 $X = Maps(\bullet, X)$ and $X \times X = Maps(\bullet\bullet, X)$
self-intersection = $Maps(\bullet \coprod \bullet, X)$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Solving the third problem... derived algebraic geometry

Recent (\geq 2000) extension of algebraic geometry

- Bertrand Toën & Grabriele Vezzosi
- Jacob Lurie

Main feature: all fiber products (e.g. intersections) are smooth

Example: (derived) self-intersection of the diagonal $X \subset X \times X$. $X = Maps(\bullet, X)$ and $X \times X = Maps(\bullet \bullet, X)$ self-intersection = $Maps(\bullet, X)$

Solving the third problem... derived algebraic geometry

Recent (\geq 2000) extension of algebraic geometry

- Bertrand Toën & Grabriele Vezzosi
- JACOB LURIE

Main feature: all fiber products (e.g. intersections) are smooth

Example: (derived) self-intersection of the diagonal $X \subset X \times X$. $X = Maps(\bullet, X)$ and $X \times X = Maps(\bullet \bullet, X)$ self-intersection = $Maps(\bigcirc, X)$

Solving the third problem... derived algebraic geometry

Recent (\geq 2000) extension of algebraic geometry

- Bertrand Toën & Grabriele Vezzosi
- JACOB LURIE

Main feature: all fiber products (e.g. intersections) are smooth

Example: (derived) self-intersection of the diagonal $X \subset X \times X$. $X = Maps(\bullet, X)$ and $X \times X = Maps(\bullet \bullet, X)$ self-intersection = $Maps(\bigcirc, X)$

We then have a (derived) Lie group associated to any variety.

Loci

Solving the third problem... derived algebraic geometry

Recent (\geq 2000) extension of algebraic geometry

- Bertrand Toën & Grabriele Vezzosi
- JACOB LURIE

Main feature: all fiber products (e.g. intersections) are smooth

Example: (derived) self-intersection of the diagonal $X \subset X \times X$. $X = Maps(\bullet, X)$ and $X \times X = Maps(\bullet \bullet, X)$ self-intersection = $Maps(\bigcirc, X)$

We then have a (derived) Lie group associated to any variety. CALAQUE-CALDARARU-TU: analogy between closed embeddings $X \hookrightarrow Y$ of algebraic varieties and inclusions of Lie algebras $\mathfrak{h} \subset \mathfrak{g}$.

Towards a dictionary

Bogomolov decomposition

Every compact Kahler manifold \mathcal{X} with $c_1 = 0$ admits an étale cover by

$$\mathcal{N} imes \mathcal{T} imes (\mathcal{L}_1 imes \cdots imes \mathcal{L}_k)$$

with \mathcal{N} Calabi-Yau (CY), \mathcal{T} a torus and \mathcal{L}_i irreducible holomorphic symplectic (IHS).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Towards a dictionary

Bogomolov decomposition

Every compact Kahler manifold \mathcal{X} with $c_1 = 0$ admits an étale cover by

$$\mathcal{N} imes \mathcal{T} imes (\mathcal{L}_1 imes \cdots imes \mathcal{L}_k)$$

with \mathcal{N} Calabi-Yau (CY), \mathcal{T} a torus and \mathcal{L}_i irreducible holomorphic symplectic (IHS).

This is analogous to Lévi-Mal'tsev decomposition theorem CY are difficult to list while we know a very few examples of IHS (2 families, and 2 isolated examples due to KIERAN O'GRADY)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Towards a dictionary

Bogomolov decomposition

Every compact Kahler manifold \mathcal{X} with $c_1 = 0$ admits an étale cover by

$$\mathcal{N} imes \mathcal{T} imes (\mathcal{L}_1 imes \cdots imes \mathcal{L}_k)$$

with \mathcal{N} Calabi-Yau (CY), \mathcal{T} a torus and \mathcal{L}_i irreducible holomorphic symplectic (IHS).

This is analogous to Lévi-Mal'tsev decomposition theorem CY are difficult to list while we know a very few examples of IHS (2 families, and 2 isolated examples due to KIERAN O'GRADY)

We would like to understand this analogy in more rigourous terms

THANK YOU