# Lie Theory and Algebraic Geometry 

D. Calaque

ETH Zürich

November 28, 2011

## Symmetries (Lie Theory)

## What is... a group?

- group: mathematical object behind the concept of symmetry


## What is... a group?

- group: mathematical object behind the concept of symmetry
- informally: a group is a set of transformations


## What is... a group?

- group: mathematical object behind the concept of symmetry
- informally: a group is a set of transformations
- that are invertible


## What is... a group?

- group: mathematical object behind the concept of symmetry
- informally: a group is a set of transformations
- that are invertible
- that one can compose


## What is... a group?

- group: mathematical object behind the concept of symmetry
- informally: a group is a set of transformations
- that are invertible
- that one can compose
- that preserves something


## What is... a group?

- group: mathematical object behind the concept of symmetry
- informally: a group is a set of transformations
- that are invertible
- that one can compose
- that preserves something


## What is... a group?

- group: mathematical object behind the concept of symmetry
- informally: a group is a set of transformations
- that are invertible
- that one can compose
- that preserves something



## What is... a group?

- group: mathematical object behind the concept of symmetry
- informally: a group is a set of transformations
- that are invertible
- that one can compose
- that preserves something



## What is... a group?

- group: mathematical object behind the concept of symmetry
- informally: a group is a set of transformations
- that are invertible
- that one can compose
- that preserves something



## What is... a group?

- group: mathematical object behind the concept of symmetry
- informally: a group is a set of transformations
- that are invertible
- that one can compose
- that preserves something



## What is... a group?

- group: mathematical object behind the concept of symmetry
- informally: a group is a set of transformations
- that are invertible
- that one can compose
- that preserves something



## Digression... symmetry group of the Rubik's cube



## Digression... symmetry group of the Rubik's cube



- invented by Ernõ Rubik in 1974
world record: 5,66 sec (Feliks Zemdegs)


## Digression... symmetry group of the Rubik's cube



- invented by Ernõ Rubik in 1974
world record: 5,66 sec (Feliks Zemdegs)
- 43 '252'003'274' 489 ' 856 '000 elements
- God's number: 20

Rokicki-Kociemba-Davidson-Dethridge (2010)

Generators $=$ elementary moves
God's number $=$ diameter of the group in terms generators

## What is... a Galois group?

- Can one solve a polynomial equation $P(x)=0$ by radicals?


## What is... a Galois group?

- Can one solve a polynomial equation $P(x)=0$ by radicals?
- in degree $2, a x^{2}+b x+c=0$, yes $-x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$


## What is... a Galois group?

- Can one solve a polynomial equation $P(x)=0$ by radicals?
- in degree $2, a x^{2}+b x+c=0$, yes $-x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
- in degrees 3 and 4 , yes


## What is... a Galois group?

- Can one solve a polynomial equation $P(x)=0$ by radicals?
- in degree $2, a x^{2}+b x+c=0$, yes $-x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
- in degrees 3 and 4 , yes
- in degree $>4$, no - counter-example: $x^{5}-x+1=0$


## What is... a Galois group?

- Can one solve a polynomial equation $P(x)=0$ by radicals?
- in degree $2, a x^{2}+b x+c=0$, yes $-x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
- in degrees 3 and 4 , yes
- in degree $>4$, no - counter-example: $x^{5}-x+1=0$
- Given $P(x)$, is there a criterium for the answer to be yes?


## What is... a Galois group?

- Can one solve a polynomial equation $P(x)=0$ by radicals?
- in degree $2, a x^{2}+b x+c=0$, yes $-x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
- in degrees 3 and 4 , yes
- in degree $>4$, no - counter-example: $x^{5}-x+1=0$
- Given $P(x)$, is there a criterium for the answer to be yes?
- solutions: $S=\left\{x_{1}, \ldots, x_{k}\right\}$
- Galois group: permutations of $S$ such that any alg. eq. satisfied by $x_{1}, \ldots, x_{k}$ is still satisfied after they have been permuted.
- solvability by radicals
$\Leftrightarrow$
Galois group is "solvable"


Evariste Galois (1811-1832)

## What is... a Lie group?

Sophus Lie (1842-1899): algebraic $\rightarrow$ differential equations


## What is... a Lie group?

Sophus Lie (1842-1899): algebraic $\rightarrow$ differential equations


- $y^{\prime}(x)=g(x)$ ( $y$ unknown)


## What is... a Lie group?

Sophus Lie (1842-1899): algebraic $\rightarrow$ differential equations


- $y^{\prime}(x)=g(x)(y$ unknown $)$
- sol $^{\circ}: y(x)=\int^{x} g(t) d t$


## What is... a Lie group?

Sophus Lie (1842-1899): algebraic $\rightarrow$ differential equations


- $y^{\prime}(x)=g(x)$ ( $y$ unknown)
- sol': $y(x)=\int^{x} g(t) d t+c$


## What is... a Lie group?

Sophus Lie (1842-1899): algebraic $\rightarrow$ differential equations


- $y^{\prime}(x)=g(x)$ ( $y$ unknown)
- sol': $y(x)=\int^{x} g(t) d t+c$
- symmetries $=$ translations


## What is... a Lie group?

Sophus Lie (1842-1899): algebraic $\rightarrow$ differential equations


- $y^{\prime}(x)=g(x)$ ( $y$ unknown)
- sol': $y(x)=\int^{x} g(t) d t+c$
- symmetries $=$ translations
- not discrete!


## What is... a Lie group?

Sophus Lie (1842-1899): algebraic $\rightarrow$ differential equations


- $y^{\prime}(x)=g(x)(y$ unknown $)$
- solo: $y(x)=\int^{x} g(t) d t+c$
- symmetries $=$ translations
- not discrete!
- $\Rightarrow$ Lie group


## What is... a Lie group?

Sophus Lie (1842-1899): algebraic $\rightarrow$ differential equations


- $y^{\prime}(x)=g(x)$ ( $y$ unknown)
- solo: $y(x)=\int^{x} g(t) d t+c$
- symmetries $=$ translations
- not discrete!
- $\Rightarrow$ Lie group
$\rightsquigarrow$ Picard-Vessiot theory (a-k-a differential Galois theory)
solvability by quadrature $\Leftrightarrow$
Lie group connected and solvable


## What is... a Lie algebra?

Definition: Lie algebra $\xlongequal{\text { def }}$ infinitesimal Lie group

## What is... a Lie algebra?

Definition: Lie algebra $\xlongequal{\text { def }}$ infinitesimal Lie group

- (infinitesimal) translations: $f(y+b)=e^{b \frac{d}{d y}} f(y)$


## What is... a Lie algebra?

Definition: Lie algebra $\xlongequal{\text { def }}$ infinitesimal Lie group

- (infinitesimal) translations: $f(y+b)=e^{b \frac{d}{d y}} f(y)$


## What is... a Lie algebra?

Definition: Lie algebra $\xlongequal{\text { def }}$ infinitesimal Lie group

- (infinitesimal) translations: $f(y+b)=e^{b \frac{d}{d y}} f(y)$
- affine transformations: $y \mapsto a y+b, a>0$


## What is... a Lie algebra?

Definition: Lie algebra $\xlongequal{\text { def }}$ infinitesimal Lie group

- (infinitesimal) translations: $f(y+b)=e^{b \frac{d}{d y}} f(y)$
- affine transformations: $y \mapsto a y+b, a>0$

- symmetry group of $y^{\prime \prime}-y^{\prime}=0$
- first example of a Borel subgroup

Armand Borel (1923-2003) studied at ETH

## What is... a Lie algebra?

Definition: Lie algebra $\xlongequal{\text { def }}$ infinitesimal Lie group

- (infinitesimal) translations: $f(y+b)=e^{b \frac{d}{d y}} f(y)$
- affine transformations: $y \mapsto a y+b, a>0$

- symmetry group of $y^{\prime \prime}-y^{\prime}=0$
- first example of a Borel subgroup
- added (infinitesimal) dilations

$$
f(a y)=e^{\log (a) y \frac{d}{d y}} f(y)
$$

Armand Borel (1923-2003)
studied at ETH

## What is... a Lie algebra?

Definition: Lie algebra $\xlongequal{\text { def }}$ infinitesimal Lie group

- (infinitesimal) translations: $f(y+b)=e^{b \frac{d}{d y}} f(y)$
- affine transformations: $y \mapsto a y+b, a>0$


Armand Borel (1923-2003) studied at ETH

- symmetry group of $y^{\prime \prime}-y^{\prime}=0$
- first example of a Borel subgroup
- added (infinitesimal) dilations

$$
f(a y)=e^{\log (a) y \frac{d}{d y}} f(y)
$$

- becomes non-abelian: $2(y+1) \neq 2 y+1$


## What is... a Lie algebra?

Definition: Lie algebra $\xlongequal{\text { def }}$ infinitesimal Lie group

- (infinitesimal) translations: $f(y+b)=e^{b \frac{d}{d y}} f(y)$
- affine transformations: $y \mapsto a y+b, a>0$


Armand Borel (1923-2003)
studied at ETH

- symmetry group of $y^{\prime \prime}-y^{\prime}=0$
- first example of a Borel subgroup
- added (infinitesimal) dilations

$$
f(a y)=e^{\log (a) y \frac{d}{d y}} f(y)
$$

- becomes non-abelian: $2(y+1) \neq 2 y+1$
- infinitesimally: $\left[\frac{d}{d y}, y \frac{d}{d y}\right]=\frac{d}{d y}$


## What is... a Lie algebra?

Definition: Lie algebra $\stackrel{\text { def }}{=}$ infinitesimal Lie group

- (infinitesimal) translations: $f(y+b)=e^{b \frac{d}{d y}} f(y)$
- affine transformations: $y \mapsto a y+b, a>0$


Armand Borel (1923-2003)
studied at ETH

- symmetry group of $y^{\prime \prime}-y^{\prime}=0$
- first example of a Borel subgroup
- added (infinitesimal) dilations

$$
f(a y)=e^{\log (a) y \frac{d}{d y}} f(y)
$$

- becomes non-abelian: $2(y+1) \neq 2 y+1$
- infinitesimally: $\left[\frac{d}{d y}, y \frac{d}{d y}\right]=\frac{d}{d y}$
- Lie bracket $[u, v]$ is the infinitesimal default of commutativity:

$$
\exp (u) \exp (v)(\exp (v) \exp (u))^{-1}=\exp ([u, v])
$$

## What is... a Klein geometry?

A non-solvable example: group $S O(n)$ of rotational symmetries.

## What is... a Klein geometry?

A non-solvable example: group $S O(n)$ of rotational symmetries. Matrices $A$ such that $A A^{t}=A^{t} A=\mathrm{id}$ and $\operatorname{det}(A)=1$.

## What is... a Klein geometry?

A non-solvable example: group $S O(n)$ of rotational symmetries. Matrices $A$ such that $A A^{t}=A^{t} A=\mathrm{id}$ and $\operatorname{det}(A)=1$. Infinitesimal rotations are then skew-symmetric matrices:

$$
A=\exp (a) \Rightarrow a+a^{t}=0
$$

## What is... a Klein geometry?

A non-solvable example: group $S O(n)$ of rotational symmetries. Matrices $A$ such that $A A^{t}=A^{t} A=\mathrm{id}$ and $\operatorname{det}(A)=1$. Infinitesimal rotations are then skew-symmetric matrices:

$$
A=\exp (a) \Rightarrow a+a^{t}=0
$$

Lie groups as symmetries of spaces.

## What is... a Klein geometry?

A non-solvable example: group $S O(n)$ of rotational symmetries.
Matrices $A$ such that $A A^{t}=A^{t} A=\mathrm{id}$ and $\operatorname{det}(A)=1$.
Infinitesimal rotations are then skew-symmetric matrices:

$$
A=\exp (a) \Rightarrow a+a^{t}=0
$$

Lie groups as symmetries of spaces. Example:

$$
S O(3) \longrightarrow S^{2}
$$

$\rightsquigarrow$ homogeneous spaces (spaces with a transitive action of a Lie group)


## What is... a Klein geometry?

A non-solvable example: group $S O(n)$ of rotational symmetries.
Matrices $A$ such that $A A^{t}=A^{t} A=\mathrm{id}$ and $\operatorname{det}(A)=1$.
Infinitesimal rotations are then skew-symmetric matrices:

$$
A=\exp (a) \Rightarrow a+a^{t}=0
$$

Lie groups as symmetries of spaces. Example:

$$
S O(2) \longrightarrow S O(3) \longrightarrow S^{2}
$$

$\rightsquigarrow$ homogeneous spaces (spaces with a transitive action of a Lie group): $G / H$


## What is... a Klein geometry?

A non-solvable example: group $S O(n)$ of rotational symmetries.
Matrices $A$ such that $A A^{t}=A^{t} A=\mathrm{id}$ and $\operatorname{det}(A)=1$.
Infinitesimal rotations are then skew-symmetric matrices:

$$
A=\exp (a) \Rightarrow a+a^{t}=0
$$

Lie groups as symmetries of spaces. Example:

$$
S O(2) \longrightarrow S O(3) \longrightarrow S^{2}
$$

$\rightsquigarrow$ homogeneous spaces (spaces with a transitive action of a Lie group): $G / H$ homogeneous space $=$ Klein geometry


Felix Klein
(1849-1925)

## What is... a Klein geometry?

A non-solvable example: group $S O(n)$ of rotational symmetries.
Matrices $A$ such that $A A^{t}=A^{t} A=\mathrm{id}$ and $\operatorname{det}(A)=1$.
Infinitesimal rotations are then skew-symmetric matrices:

$$
A=\exp (a) \Rightarrow a+a^{t}=0
$$

Lie groups as symmetries of spaces. Example:

$$
S O(2) \longrightarrow S O(3) \longrightarrow S^{2}
$$

$\rightsquigarrow$ homogeneous spaces (spaces with a transitive action of a Lie group): $G / H$ homogeneous space $=$ Klein geometry
non axiomatic approach to


## Classifying infinitesimal symmetries

## Classifying infinitesimal symmetries

## Levi-Mal'tsev decomposition

Any finite dimensional Lie algebra $\mathfrak{g}$ decomposes as

$$
\mathfrak{g}=\mathfrak{r} \rtimes \mathfrak{l}
$$

with $\mathfrak{r}$ solvable and $\mathfrak{l}$ semi-simple.


Eugenio Levi
(1883-1917)


Anatoly Malcev (1909-1967)

## Classifying infinitesimal symmetries

## Levi-Mal'tsev decomposition

Any finite dimensional Lie algebra $\mathfrak{g}$ decomposes as

$$
\mathfrak{g}=\mathfrak{r} \rtimes\left(\mathfrak{l}_{1} \oplus \cdots \oplus \mathfrak{l}_{k}\right)
$$

with $\mathfrak{r}$ solvable and $\mathfrak{l}_{i} \quad$ simple.


Eugenio Levi
(1883-1917)


Anatoly Malcev (1909-1967)

## Classifying infinitesimal symmetries

## Levi-Mal'tsev decomposition

Any finite dimensional Lie algebra $\mathfrak{g}$ decomposes as

$$
\mathfrak{g}=\mathfrak{r} \rtimes\left(\mathfrak{l}_{1} \oplus \cdots \oplus \mathfrak{l}_{k}\right)
$$

with $\mathfrak{r}$ solvable and $\mathfrak{l}_{i} \quad$ simple.


Eugenio Levi
(1883-1917)

Under reasonable assumption

$$
\mathfrak{r}=\mathfrak{n} \rtimes \mathfrak{a}
$$

$\mathfrak{n}$ nilpotent and $\mathfrak{a}$ abelian.

Anatoly Malcev
(1909-1967)

## Classifying infinitesimal symmetries

## Levi-Mal'tsev decomposition

Any finite dimensional Lie algebra $\mathfrak{g}$ decomposes as

$$
\mathfrak{g}=\mathfrak{r} \rtimes\left(\mathfrak{l}_{1} \oplus \cdots \oplus \mathfrak{l}_{k}\right)
$$

with $\mathfrak{r}$ solvable and $\mathfrak{l}_{i} \quad$ simple.


Eugenio Levi
(1883-1917)

Under reasonable assumption

$$
\mathfrak{r}=\mathfrak{n} \rtimes \mathfrak{a}
$$

$\mathfrak{n}$ nilpotent and $\mathfrak{a}$ abelian.

Need to classify nilpotent and simple Lie algebras.

## Classifying infinitesimal symmetries

## Levi-Mal'tsev decomposition

Any finite dimensional Lie algebra $\mathfrak{g}$ decomposes as

$$
\mathfrak{g}=\mathfrak{r} \rtimes\left(\mathfrak{l}_{1} \oplus \cdots \oplus \mathfrak{l}_{k}\right)
$$

with $\mathfrak{r}$ solvable and $\mathfrak{l}_{i} \quad$ simple.


Eugenio Levi
(1883-1917)

Under reasonable assumption

$$
\mathfrak{r}=\mathfrak{n} \rtimes \mathfrak{a}
$$

$\mathfrak{n}$ nilpotent and $\mathfrak{a}$ abelian.

Need to classify nilpotent and simple Lie algebras. Nilpotent ones are known only in dimension $\leq 6$.

## Classifying infinitesimal symmetries - continued

Simple Lie algebras over $\mathbb{C}$

# Classifying infinitesimal symmetries - continued 

Simple Lie algebras over $\mathbb{C}$
Wilhelm Killing (1847-1923)
conjectured a classification

Classifying infinitesimal symmetries - continued

Simple Lie algebras over $\mathbb{C}$
d Wilhelm Killing (1847-1923)
conjectured a classification
A Élie Cartan (1869-1951)
completed and proved it

Classifying infinitesimal symmetries - continued

Simple Lie algebras over $\mathbb{C}$
d Wilhelm Killing (1847-1923) conjectured a classification
ÉLIE CARTAN (1869-1951)
completed and proved it
iif
Eugene Dynkin
modern approach $\rightsquigarrow$ Dynkin diagrams


Complete list of Dynkin diagrams

Classifying infinitesimal symmetries - continued

Simple Lie algebras over $\mathbb{C}$
Hil Wilhelm Killing (1847-1923) conjectured a classification
Élie Cartan (1869-1951)
completed and proved it
iif
Eugene Dynkin
modern approach $\rightsquigarrow$ Dynkin diagrams

Simple Lie algebras over $\mathbb{R}$
classified by Cartan (Riem. sym. spaces)


Complete list of Dynkin diagrams

Classifying infinitesimal symmetries - continued

Simple Lie algebras over $\mathbb{C}$
Wilhelm Killing (1847-1923) conjectured a classification
ÉLIE CARTAN (1869-1951)
completed and proved it
P. Eugene Dynkin modern approach $\rightsquigarrow$ Dynkin diagrams

Simple Lie algebras over $\mathbb{R}$
classified by Cartan (Riem. sym. spaces)
Idhiro Satake
Dynkin diagrams $\longrightarrow$ Satake diagrams


0

A few Satake diagrams

## Loci (Algebraic Geometry)

## What is... an affine algebraic variety?

## What is... an affine algebraic variety?

locus in $\mathbb{C}^{n}$ of solutions of polynomial equations in $n$ variables

## What is... an affine algebraic variety?

locus in $\mathbb{C}^{n}$ of solutions of polynomial equations in $n$ variables

- (plane) algebraic curve: $\left\{(x, y) \in \mathbb{C}^{2} \mid P(x, y)=0\right\}$


## What is... an affine algebraic variety?

locus in $\mathbb{C}^{n}$ of solutions of polynomial equations in $n$ variables

- (plane) algebraic curve: $\left\{(x, y) \in \mathbb{C}^{2} \mid P(x, y)=0\right\}$


$x^{2}+x y+y^{2}=1$
$x^{3}=y^{2}$

What is... an affine algebraic variety?
locus in $\mathbb{C}^{n}$ of solutions of polynomial equations in $n$ variables

- (plane) algebraic curve: $\left\{(x, y) \in \mathbb{C}^{2} \mid P(x, y)=0\right\}$


$x^{2}+x y+y^{2}=1$

$$
x^{3}=y^{2}
$$

- examples of algebraic surfaces:


Kummer surface


Togliatti surface

## What is... Bézout's theorem?

## Bézout's theorem

Given two plane curves $C_{1}$ and $C_{2}$ of degree $m_{1}$ and $m_{2}$, then $\#\left(C_{1} \cap C_{2}\right)=m_{1} m_{2}$.

## What is... Bézout's theorem?

Bézout's theorem
Given two plane curves $C_{1}$ and $C_{2}$ of degree $m_{1}$ and $m_{2}$, then $\#\left(C_{1} \cap C_{2}\right)=m_{1} m_{2}$.


Étienne BÉzout
(1730-1783)

## What is... Bézout's theorem?

## Bézout's theorem

Given two plane curves $C_{1}$ and $C_{2}$ of degree $m_{1}$ and $m_{2}$, then $\#\left(C_{1} \cap C_{2}\right)=m_{1} m_{2}$.


Three problems with this statement:
(1730-1783)

## What is... Bézout's theorem?

## Bézout's theorem

Given two plane curves $C_{1}$ and $C_{2}$ of degree $m_{1}$ and $m_{2}$, then $\#\left(C_{1} \cap C_{2}\right)=m_{1} m_{2}$.


Étienne Bézout
(1730-1783)

Three problems with this statement:

- parallel lines


## What is... Bézout's theorem?

## Bézout's theorem

Given two plane curves $C_{1}$ and $C_{2}$ of degree $m_{1}$ and $m_{2}$, then $\#\left(C_{1} \cap C_{2}\right)=m_{1} m_{2}$.


Three problems with this statement:

- parallel lines
$\qquad$

Étienne BÉzout
(1730-1783)

## What is... Bézout's theorem?

## Bézout's theorem

Given two plane curves $C_{1}$ and $C_{2}$ of degree $m_{1}$ and $m_{2}$, then $\#\left(C_{1} \cap C_{2}\right)=m_{1} m_{2}$.


Three problems with this statement:

- parallel lines

- tangential points


Étienne BÉzout
(1730-1783)

## What is... Bézout's theorem?

## Bézout's theorem

Given two plane curves $C_{1}$ and $C_{2}$ of degree $m_{1}$ and $m_{2}$, then $\#\left(C_{1} \cap C_{2}\right)=m_{1} m_{2}$.


Three problems with this statement:

- parallel lines

- tangential points
 not enough points
(1730-1783)


## What is... Bézout's theorem?

## Bézout's theorem

Given two plane curves $C_{1}$ and $C_{2}$ of degree $m_{1}$ and $m_{2}$, then $\#\left(C_{1} \cap C_{2}\right)=m_{1} m_{2}$.


Étienne BÉzout (1730-1783)

Three problems with this statement:

- parallel lines

- tangential points
not enough points
- self-intersections
$\qquad$



## What is... Bézout's theorem?

## Bézout's theorem

Given two plane curves $C_{1}$ and $C_{2}$ of degree $m_{1}$ and $m_{2}$, then $\#\left(C_{1} \cap C_{2}\right)=m_{1} m_{2}$.


Étienne BÉzout (1730-1783)

Three problems with this statement:

- parallel lines

- tangential points

not enough points
- self-intersections
too many points

What is... a projective curve?

- $n$-dim projective space: space of lines in $(n+1)$ dimensions
- $n$-dim projective space: space of lines in $(n+1)$ dimensions

$$
\mathbb{K} \mathbb{P}^{n} \stackrel{\text { def }}{=}\left(\mathbb{K}^{n+1}-\{0\}\right) / \mathbb{K}^{*}
$$

- $n$-dim projective space: space of lines in $(n+1)$ dimensions

$$
\mathbb{K} \mathbb{P}^{n} \stackrel{\text { def }}{=}\left(\mathbb{K}^{n+1}-\{0\}\right) / \mathbb{K}^{*}=\mathbb{K}^{n} \cup \mathbb{K}^{n-1}
$$

- $n$-dim projective space: space of lines in $(n+1)$ dimensions

$$
\mathbb{K} \mathbb{P}^{n} \stackrel{\text { def }}{=}\left(\mathbb{K}^{n+1}-\{0\}\right) / \mathbb{K}^{*}=\mathbb{K}^{n} \cup \mathbb{K} \mathbb{P}^{n-1}
$$

- $n=1$ : projective line $=\{$ slopes $\}=$ affine line $\cup\{\infty\}$ $\mathbb{R P}^{1}$ : $\mathbb{C P}^{1}$ :
- $n=2$ : projective plane (background picture)
- $n$-dim projective space: space of lines in $(n+1)$ dimensions

$$
\mathbb{K} \mathbb{P}^{n} \stackrel{\text { def }}{=}\left(\mathbb{K}^{n+1}-\{0\}\right) / \mathbb{K}^{*}=\mathbb{K}^{n} \cup \mathbb{K} \mathbb{P}^{n-1}
$$

- $n=1$ : projective line $=\{$ slopes $\}=$ affine line $\cup\{\infty\}$ $\mathbb{R P}^{1}$ : $\mathbb{C P}^{1}$ :
- $n=2$ : projective plane (background picture)
- eq $^{\circ}$ in $n$ variables $\longrightarrow$ homogeneous eq ${ }^{\circ}$ in $n+1$ variables
- $n$-dim projective space: space of lines in $(n+1)$ dimensions

$$
\mathbb{K} \mathbb{P}^{n} \stackrel{\text { def }}{=}\left(\mathbb{K}^{n+1}-\{0\}\right) / \mathbb{K}^{*}=\mathbb{K}^{n} \cup \mathbb{K} \mathbb{P}^{n-1}
$$

- $n=1$ : projective line $=\{$ slopes $\}=$ affine line $\cup\{\infty\}$ $\mathbb{R P}^{1}$ : $\mathbb{C P}^{1}$ :
- $n=2$ : projective plane (background picture)
- eq $^{\circ}$ in $n$ variables $\longrightarrow$ homogeneous eq ${ }^{\circ}$ in $n+1$ variables - $x^{2}-y^{3}=1$ becomes $x^{2} z-y^{3}=z^{3}$
- $n$-dim projective space: space of lines in $(n+1)$ dimensions

$$
\mathbb{K} \mathbb{P}^{n} \stackrel{\text { def }}{=}\left(\mathbb{K}^{n+1}-\{0\}\right) / \mathbb{K}^{*}=\mathbb{K}^{n} \cup \mathbb{K} \mathbb{P}^{n-1}
$$

- $n=1$ : projective line $=\{$ slopes $\}=$ affine line $\cup\{\infty\}$ $\mathbb{R P}^{1}$ : $\mathbb{C P}^{1}$ :
- $n=2$ : projective plane (background picture)
- eq $^{\circ}$ in $n$ variables $\longrightarrow$ homogeneous eq ${ }^{\circ}$ in $n+1$ variables
- $x^{2}-y^{3}=1$ becomes $x^{2} z-y^{3}=z^{3}$
- $\{x-y=1\}$ is parallel to $\{x-y=2\}$
- $n$-dim projective space: space of lines in $(n+1)$ dimensions

$$
\mathbb{K} \mathbb{P}^{n} \stackrel{\text { def }}{=}\left(\mathbb{K}^{n+1}-\{0\}\right) / \mathbb{K}^{*}=\mathbb{K}^{n} \cup \mathbb{K} \mathbb{P}^{n-1}
$$

- $n=1$ : projective line $=\{$ slopes $\}=$ affine line $\cup\{\infty\}$ $\mathbb{R P}^{1}$ : $\mathbb{C P}^{1}$ :
- $n=2$ : projective plane (background picture)
- eq $^{\circ}$ in $n$ variables $\longrightarrow$ homogeneous eq ${ }^{\circ}$ in $n+1$ variables
- $x^{2}-y^{3}=1$ becomes $x^{2} z-y^{3}=z^{3}$
- $\{x-y=1\}$ is parallel to $\{x-y=2\}$ $\{x-y=z\}$ and $\{x-y=2 z\}$ intersect at $(1,1,0)$.
- $n$-dim projective space: space of lines in $(n+1)$ dimensions

$$
\mathbb{K} \mathbb{P}^{n} \stackrel{\text { def }}{=}\left(\mathbb{K}^{n+1}-\{0\}\right) / \mathbb{K}^{*}=\mathbb{K}^{n} \cup \mathbb{K} \mathbb{P}^{n-1}
$$

- $n=1$ : projective line $=\{$ slopes $\}=$ affine line $\cup\{\infty\}$

- $n=2$ : projective plane (background picture)
- eq $^{\circ}$ in $n$ variables $\longrightarrow$ homogeneous eq ${ }^{\circ}$ in $n+1$ variables
- $x^{2}-y^{3}=1$ becomes $x^{2} z-y^{3}=z^{3}$
- $\{x-y=1\}$ is parallel to $\{x-y=2\}$ $\{x-y=z\}$ and $\{x-y=2 z\}$ intersect at $(1,1,0)$.
- plane curves $\longrightarrow$ projective curves (solve problem of parallel lines)


## What is... an intersection number?

Consider the intersection of $C_{1}=\{y=0\}$ with $C_{2}=\left\{y=x^{2}\right\}$ :


## What is... an intersection number?

Consider the intersection of $C_{1}=\{y=0\}$ with $C_{2}=\left\{y=x^{2}\right\}$ :


- Modern algebraic geometry: varieties are determined by their function rings (physics: states $\leftrightarrow$ observables)


## What is... an intersection number?

Consider the intersection of $C_{1}=\{y=0\}$ with $C_{2}=\left\{y=x^{2}\right\}$ :


- Modern algebraic geometry: varieties are determined by their function rings (physics: states $\leftrightarrow$ observables)

$$
C_{1} \cap C_{2}=\left\{y=0=x^{2}\right\}
$$

## What is... an intersection number?

Consider the intersection of $C_{1}=\{y=0\}$ with $C_{2}=\left\{y=x^{2}\right\}$ :


- Modern algebraic geometry: varieties are determined by their function rings (physics: states $\leftrightarrow$ observables)

$$
C_{1} \cap C_{2}=\left\{y=0=x^{2}\right\} \neq\{y=0=x\}
$$

What is... an intersection number?
Consider the intersection of $C_{1}=\{y=0\}$ with $C_{2}=\left\{y=x^{2}\right\}$ :


- Modern algebraic geometry: varieties are determined by their function rings (physics: states $\leftrightarrow$ observables)

$$
C_{1} \cap C_{2}=\left\{y=0=x^{2}\right\} \neq\{y=0=x\}
$$

- funtions on $C_{1} \cap C_{2}$ :

$$
\mathbb{C}[x, y] /\left(y=x^{2}=0\right)=\mathbb{C}[x] /\left(x^{2}=0\right)
$$

What is... an intersection number?
Consider the intersection of $C_{1}=\{y=0\}$ with $C_{2}=\left\{y=x^{2}\right\}$ :


- Modern algebraic geometry: varieties are determined by their function rings (physics: states $\leftrightarrow$ observables)

$$
C_{1} \cap C_{2}=\left\{y=0=x^{2}\right\} \neq\{y=0=x\}
$$

- funtions on $C_{1} \cap C_{2}$ :

$$
\mathbb{C}[x, y] /\left(y=x^{2}=0\right)=\mathbb{C}[x] /\left(x^{2}=0\right)
$$

this is of dimension 2 over $\mathbb{C}$

What is... an intersection number?
Consider the intersection of $C_{1}=\{y=0\}$ with $C_{2}=\left\{y=x^{2}\right\}$ :

- Modern algebraic geometry: varieties are determined by their function rings (physics: states $\leftrightarrow$ observables)

$$
C_{1} \cap C_{2}=\left\{y=0=x^{2}\right\} \neq\{y=0=x\}
$$

- funtions on $C_{1} \cap C_{2}$ :

$$
\mathbb{C}[x, y] /\left(y=x^{2}=0\right)=\mathbb{C}[x] /\left(x^{2}=0\right)
$$

this is of dimension 2 over $\mathbb{C}$


- varieties $\longrightarrow$ schemes
- invented by Alexander Grothendieck
- solve problem of tangential points

Solving the third problem... derived algebraic geometry

Recent ( $\geq 2000$ ) extension of algebraic geometry

- Bertrand Toën \& Grabriele Vezzosi
- Jacob Lurie

Solving the third problem... derived algebraic geometry

Recent ( $\geq 2000$ ) extension of algebraic geometry

- Bertrand Toën \& Grabriele Vezzosi
- Jacob Lurie

Main feature: all fiber products (e.g. intersections) are smooth

Solving the third problem... derived algebraic geometry

Recent ( $\geq 2000$ ) extension of algebraic geometry

- Bertrand Toën \& Grabriele Vezzosi
- Jacob Lurie

Main feature: all fiber products (e.g. intersections) are smooth
Example: (derived) self-intersection of the diagonal $X \subset X \times X$.

$$
X=\operatorname{Maps}(\bullet, X) \quad \text { and } \quad X \times X=\operatorname{Maps}(\bullet \bullet, X)
$$

Solving the third problem... derived algebraic geometry

Recent ( $\geq 2000$ ) extension of algebraic geometry

- Bertrand Toën \& Grabriele Vezzosi
- Jacob Lurie

Main feature: all fiber products (e.g. intersections) are smooth
Example: (derived) self-intersection of the diagonal $X \subset X \times X$.

$$
\begin{gathered}
X=\operatorname{Maps}(\bullet, X) \quad \text { and } \quad X \times X=\operatorname{Maps}(\bullet \bullet, X) \\
\text { self-intersection }=\operatorname{Maps}\left(\bullet \coprod_{\bullet \bullet} \bullet X\right)
\end{gathered}
$$

Solving the third problem... derived algebraic geometry
Recent ( $\geq 2000$ ) extension of algebraic geometry

- Bertrand Toën \& Grabriele Vezzosi
- Jacob Lurie

Main feature: all fiber products (e.g. intersections) are smooth
Example: (derived) self-intersection of the diagonal $X \subset X \times X$.

$$
\begin{array}{r}
X=\operatorname{Maps}(\bullet, X) \quad \text { and } \quad X \times X=\operatorname{Maps}(\bullet \bullet, X) \\
\text { self-intersection }=\operatorname{Maps}\left(\emptyset \coprod_{\bullet \bullet} \bullet, X\right)
\end{array}
$$

Solving the third problem... derived algebraic geometry

Recent ( $\geq 2000$ ) extension of algebraic geometry

- Bertrand Toën \& Grabriele Vezzosi
- Jacob Lurie

Main feature: all fiber products (e.g. intersections) are smooth
Example: (derived) self-intersection of the diagonal $X \subset X \times X$.

$$
\begin{gathered}
X=\operatorname{Maps}(\bullet, X) \quad \text { and } \quad X \times X=\operatorname{Maps}(\bullet \bullet, X) \\
\text { self-intersection }=\operatorname{Maps}(\bigcirc, X)
\end{gathered}
$$

Solving the third problem... derived algebraic geometry

Recent ( $\geq 2000$ ) extension of algebraic geometry

- Bertrand Toën \& Grabriele Vezzosi
- Jacob Lurie

Main feature: all fiber products (e.g. intersections) are smooth
Example: (derived) self-intersection of the diagonal $X \subset X \times X$.

$$
\begin{gathered}
X=\operatorname{Maps}(\bullet, X) \quad \text { and } \quad X \times X=\operatorname{Maps}(\bullet \bullet, X) \\
\text { self-intersection }=\operatorname{Maps}(\bigcirc, X)
\end{gathered}
$$

We then have a (derived) Lie group associated to any variety.

Solving the third problem... derived algebraic geometry

Recent ( $\geq 2000$ ) extension of algebraic geometry

- Bertrand Toën \& Grabriele Vezzosi
- Jacob Lurie

Main feature: all fiber products (e.g. intersections) are smooth
Example: (derived) self-intersection of the diagonal $X \subset X \times X$.

$$
\begin{gathered}
X=\operatorname{Maps}(\bullet, X) \quad \text { and } \quad X \times X=\operatorname{Maps}(\bullet \bullet, X) \\
\text { self-intersection }=\operatorname{Maps}(\bigcirc, X)
\end{gathered}
$$

We then have a (derived) Lie group associated to any variety.
Calaque-Caldararu-Tu: analogy between closed embeddings $X \hookrightarrow Y$ of algebraic varieties and inclusions of Lie algebras $\mathfrak{h} \subset \mathfrak{g}$.

## Towards a dictionary

## Bogomolov decomposition

Every compact Kahler manifold $\mathcal{X}$ with $c_{1}=0$ admits an étale cover by

$$
\mathcal{N} \times \mathcal{T} \times\left(\mathcal{L}_{1} \times \cdots \times \mathcal{L}_{k}\right)
$$

with $\mathcal{N}$ Calabi-Yau (CY), $\mathcal{T}$ a torus and $\mathcal{L}_{i}$ irreducible holomorphic symplectic (IHS).

## Towards a dictionary

## Bogomolov decomposition

Every compact Kahler manifold $\mathcal{X}$ with $c_{1}=0$ admits an étale cover by

$$
\mathcal{N} \times \mathcal{T} \times\left(\mathcal{L}_{1} \times \cdots \times \mathcal{L}_{k}\right)
$$

with $\mathcal{N}$ Calabi-Yau (CY), $\mathcal{T}$ a torus and $\mathcal{L}_{i}$ irreducible holomorphic symplectic (IHS).

This is analogous to Lévi-Mal'tsev decomposition theorem
CY are difficult to list while we know a very few examples of IHS (2 families, and 2 isolated examples due to Kieran O'grady)

## Towards a dictionary

## Bogomolov decomposition

Every compact Kahler manifold $\mathcal{X}$ with $c_{1}=0$ admits an étale cover by

$$
\mathcal{N} \times \mathcal{T} \times\left(\mathcal{L}_{1} \times \cdots \times \mathcal{L}_{k}\right)
$$

with $\mathcal{N}$ Calabi-Yau (CY), $\mathcal{T}$ a torus and $\mathcal{L}_{i}$ irreducible holomorphic symplectic (IHS).

This is analogous to Lévi-Mal'tsev decomposition theorem
CY are difficult to list while we know a very few examples of IHS (2 families, and 2 isolated examples due to Kieran O'grady)

> We would like to understand this analogy in more rigourous terms

## THANK YOU

