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What is... a group?

group: mathematical object behind the concept of symmetry

informally: a group is a set of transformations

that are invertible
that one can compose
that preserves something
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Digression... symmetry group of the Rubik’s cube

invented by Ernõ Rubik in 1974

world record: 5,66 sec (Feliks Zemdegs)

43’252’003’274’489’856’000 elements

God’s number: 20
Rokicki-Kociemba-Davidson-Dethridge (2010)

Generators = elementary moves

God’s number = diameter of the group in terms generators
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What is... a Galois group?

Can one solve a polynomial equation P(x) = 0 by radicals?

in degree 2, ax2 + bx + c = 0, yes - x = −b±
√
b2−4ac
2a

in degrees 3 and 4, yes

in degree > 4, no - counter-example: x5 − x + 1 = 0

Given P(x), is there a criterium for the answer to be yes?

solutions: S = {x1, . . . , xk}
Galois group: permutations
of S such that any alg. eq.
satisfied by x1, . . . , xk is
still satisfied after they
have been permuted.

solvability by radicals

⇔

Galois group is “solvable”
Evariste Galois

(1811 - 1832)
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What is... a Lie group?

Sophus Lie (1842 - 1899): algebraic → differential equations

y ′(x) = g(x) (y unknown)

solo: y(x) =
∫ x

g(t)dt +c

symmetries = translations

not discrete!

⇒ Lie group

 Picard-Vessiot theory (a-k-a differential Galois theory) − :

solvability by quadrature
⇔

Lie group connected and solvable



Lie Theory and Algebraic Geometry

Symmetries

What is... a Lie group?

Sophus Lie (1842 - 1899): algebraic → differential equations

y ′(x) = g(x) (y unknown)

solo: y(x) =
∫ x

g(t)dt +c

symmetries = translations

not discrete!

⇒ Lie group

 Picard-Vessiot theory (a-k-a differential Galois theory) − :

solvability by quadrature
⇔

Lie group connected and solvable



Lie Theory and Algebraic Geometry

Symmetries

What is... a Lie group?

Sophus Lie (1842 - 1899): algebraic → differential equations

y ′(x) = g(x) (y unknown)

solo: y(x) =
∫ x

g(t)dt

+c

symmetries = translations

not discrete!

⇒ Lie group

 Picard-Vessiot theory (a-k-a differential Galois theory) − :

solvability by quadrature
⇔

Lie group connected and solvable



Lie Theory and Algebraic Geometry

Symmetries

What is... a Lie group?

Sophus Lie (1842 - 1899): algebraic → differential equations

y ′(x) = g(x) (y unknown)

solo: y(x) =
∫ x

g(t)dt +c

symmetries = translations

not discrete!

⇒ Lie group

 Picard-Vessiot theory (a-k-a differential Galois theory) − :

solvability by quadrature
⇔

Lie group connected and solvable



Lie Theory and Algebraic Geometry

Symmetries

What is... a Lie group?

Sophus Lie (1842 - 1899): algebraic → differential equations

y ′(x) = g(x) (y unknown)

solo: y(x) =
∫ x

g(t)dt +c

symmetries = translations

not discrete!

⇒ Lie group

 Picard-Vessiot theory (a-k-a differential Galois theory) − :

solvability by quadrature
⇔

Lie group connected and solvable



Lie Theory and Algebraic Geometry

Symmetries

What is... a Lie group?

Sophus Lie (1842 - 1899): algebraic → differential equations

y ′(x) = g(x) (y unknown)

solo: y(x) =
∫ x

g(t)dt +c

symmetries = translations

not discrete!

⇒ Lie group

 Picard-Vessiot theory (a-k-a differential Galois theory) − :

solvability by quadrature
⇔

Lie group connected and solvable



Lie Theory and Algebraic Geometry

Symmetries

What is... a Lie group?

Sophus Lie (1842 - 1899): algebraic → differential equations

y ′(x) = g(x) (y unknown)

solo: y(x) =
∫ x

g(t)dt +c

symmetries = translations

not discrete!

⇒ Lie group

 Picard-Vessiot theory (a-k-a differential Galois theory) − :

solvability by quadrature
⇔

Lie group connected and solvable



Lie Theory and Algebraic Geometry

Symmetries

What is... a Lie group?

Sophus Lie (1842 - 1899): algebraic → differential equations

y ′(x) = g(x) (y unknown)

solo: y(x) =
∫ x

g(t)dt +c

symmetries = translations

not discrete!

⇒ Lie group

 Picard-Vessiot theory (a-k-a differential Galois theory) − :

solvability by quadrature
⇔

Lie group connected and solvable



Lie Theory and Algebraic Geometry

Symmetries

What is... a Lie algebra?

Definition: Lie algebra
def
= infinitesimal Lie group

(infinitesimal) translations: f (y + b) = eb
d

dy f (y)

affine transformations: y 7→ ay + b, a > 0

Armand Borel
(1923 - 2003)
studied at ETH

symmetry group of y ′′ − y ′ = 0

first example of a Borel subgroup

added (infinitesimal) dilations

f (ay) = e log(a)y
d
dy f (y)

becomes non-abelian: 2(y + 1) 6= 2y + 1

infinitesimally: [ d
dy , y

d
dy ] = d

dy

Lie bracket [u, v ] is the infinitesimal default of commutativity:

exp (u) exp (v)
(

exp (v) exp (u)
)−1

= exp
(
[u, v ]

)
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What is... a Klein geometry?

A non-solvable example: group SO(n) of rotational symmetries.

Matrices A such that AAt = AtA = id and det(A) = 1.
Infinitesimal rotations are then skew-symmetric matrices:

A = exp (a) ⇒ a + at = 0

Lie groups as symmetries of spaces. Exam-
ple:

SO(2) −→

SO(3) −→ S2

 homogeneous spaces (spaces with a transi-
tive action of a Lie group)

: G/H
homogeneous space = Klein geometry

non axiomatic approach to

non-euclidan geometries
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Classifying infinitesimal symmetries

Levi–Mal’tsev decomposition

Any finite dimensional Lie algebra g decomposes as

g = ro

(

l

1 ⊕ · · · ⊕ lk)

with r solvable and l

i

semi-simple.

Eugenio Levi

(1883 - 1917)

Under reasonable assumption
r = no a

n nilpotent and a abelian.

Anatoly Malcev

(1909 - 1967)

Need to classify nilpotent and simple Lie algebras.
Nilpotent ones are known only in dimension ≤ 6.
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Simple Lie algebras over C

Wilhelm Killing (1847-1923)
conjectured a classification

Élie Cartan (1869-1951)
completed and proved it

Eugene Dynkin
modern approach  Dynkin diagrams

Simple Lie algebras over R
classified by Cartan (Riem. sym. spaces)

Ichiro Satake
Dynkin diagrams −→ Satake diagrams

Complete list of Dynkin diagrams
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What is... an affine algebraic variety?

locus in Cn of solutions of polynomial equations in n variables

(plane) algebraic curve: {(x , y) ∈ C2|P(x , y) = 0}

x2 + xy + y2 = 1 x3 = y2

examples of algebraic surfaces:

Kummer surface Togliatti surface
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What is... Bézout’s theorem?

Bézout’s theorem

Given two plane curves C1 and C2 of degree m1 and m2, then
#(C1 ∩ C2) = m1m2.

Étienne Bézout
(1730 - 1783)

Three problems with this statement:

parallel lines

missing point

tangential points

not enough points

self-intersections

too many points
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What is... Bézout’s theorem?
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What is... a projective curve?

n-dim projective space: space of lines in (n + 1) dimensions

KPn def
= (Kn+1 − {0})/K∗ = Kn ∪KPn−1

n = 1 : projective line = {slopes} = affine line ∪ {∞}

RP1 : CP1 :
n = 2 : projective plane (background picture)

eqo in n variables −→ homogeneous eqo in n + 1 variables

x2 − y3 = 1 becomes x2z − y3 = z3

{x − y = 1} is parallel to {x − y = 2}
{x − y = z} and {x − y = 2z} intersect at (1, 1, 0) .

plane curves −→ projective curves
(solve problem of parallel lines)
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What is... an intersection number?

Consider the intersection of C1 = {y = 0} with C2 = {y = x2}:

Modern algebraic geometry: varieties are determined by their
function rings (physics: states ↔ observables)

C1 ∩ C2 = {y = 0 = x2} 6= {y = 0 = x}
funtions on C1 ∩ C2:

C[x , y ]/(y = x2 = 0) = C[x ]/(x2 = 0)

this is of dimension 2 over C
• varieties −→ schemes

• invented by Alexander Grothendieck

• solve problem of tangential points
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Solving the third problem... derived algebraic geometry

Recent (≥ 2000) extension of algebraic geometry

Bertrand Toën & Grabriele Vezzosi

Jacob Lurie

Main feature: all fiber products (e.g. intersections) are smooth

Example: (derived) self-intersection of the diagonal X ⊂ X × X .

X = Maps(•,X ) and X × X = Maps(••,X )

self-intersection = Maps(•
∐
••
•,X )

We then have a (derived) Lie group associated to any variety.
Calaque-Caldararu-Tu: analogy between closed embeddings X ↪→ Y of

algebraic varieties and inclusions of Lie algebras h ⊂ g.
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Towards a dictionary

Bogomolov decomposition

Every compact Kahler manifold X with c1 = 0 admits an étale
cover by

N × T × (L1 × · · · × Lk)

with N Calabi-Yau (CY), T a torus and Li irreducible holomorphic
symplectic (IHS).

This is analogous to Lévi-Mal’tsev decomposition theorem
CY are difficult to list while we know a very few examples of IHS
(2 families, and 2 isolated examples due to Kieran O’grady)

We would like to understand this analogy
in more rigourous terms
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