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sur la renormalisation des models de réseaux.
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Avertissement

Ce mémoire n’est pas un article de recherche.

La Partie II présente un condensé de la part de mes travaux qui tourne autours d’une analogie entre
la théorie de Lie et la géométrie algébrique. C’est une sorte de fil rouge que j’ai commencé à suivre avec
Michel Van den Bergh, puis Carlo Rossi, et enfin plus récemment avec Andrei Căldăraru et Junwu Tu.
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de cohomologie de Hochschild) il n’en reste pas moins que les deux parties sont écrites dans des styles
très différents. Le tout a de surcrôıt été rédigé assez (peut-être trop) vite. J’espère que la lecture ne s’en
trouvera pas trop malaisée, en tout cas au moins pour ceux qui savent déjà de quoi ça parle.

Ce mémoire comporte évidemment un biais dans la mesure où il met en avant les travaux de son
auteur. C’est bien sûr le but de l’exercice, dont l’intérêt ne m’a de prime abord pas sauté aux yeux.
Au fil de la rédaction j’ai quand même réalisé qu’outre le dépassement de soi4, une HDR c’est aussi
l’occasion d’organiser un peu ses idées (sans toutefois risquer un décollement de la rétine).

La suite se passe en anglais. Puisse L.L. me pardonner.

4Je pense en particulier à la privation de sommeil... alors que ma fille commence justement à faire ses nuits!
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1. Mathematical introduction

The story that is told in this text started with deformation quantization. During my PhD thesis I had
been interested about quantization problems compatible with additional structures (symmetries, complex
structures, or integrability through the existence of an r-matix). Not very originally, all the results I
obtained went through some variant of Kontsevich formality theorem [24].

After that we started some discussion with Michel Van den Bergh, based on the idea that the formality
for Lie algebroids I proved in [5] was the appropriate setup for a uniform treatment of the globalization
procedure (“uniform” meaning that it works equaly for differentiable, complex analytic and smooth
algebraic varieties, as well as for some variants with corners or with singularities).

At some point we realized that the methods we were developping were leading to a proof of a statement
Kontsevich made in [24] about the ring strutcure of the Hochschild cohomology of a complex manifold
or a smooth algebraic variety [CVdB1]. As already guessed by other people the proof looked a bit like
“Koszul dual” to Kontsevich’s alternative proof of the Duflo isomorphism for Lie algebras. Based on
this idea we wrote with Carlo Rossi yet another “Koszul dual” proof of the Duflo isomorphism using
which makes more transparent the analogy between the Lie theoretic and the algebraic geometric results
[CR3].

This lead me to work in three related directions:

1. attacking, together with Carlo Rossi, the problem of the compatibility with cap-products in the
formality for Hochschild chains [CR1, CR2], with an eye towards a proof of the full Căldăraru’s
conjecture [7], which extends Kontsevich’s statement to the module structure on chains. This has
been achieved in a joint workwith Carlo Rossi and Michel Van den Bergh [CRVdB1].

2. understanding better this analogy between Lie theory and algebraic geometry. We have been work-
ing from quite some time on this project with Andrei Căldăraru and Junwu Tu. From its outcome
[CCT1, CCT2] and some other work [C2] it seems very likely that the appropriate framework for
this analogy is the one of higher groupoids and higher Lie algebroids in derived geometry.

3. understanding this Koszul phenomenon appearing in deformation quantization. Based on the great
insight of Shoikhet [37, 38] we have been able, together with Giovanni Felder, Andrea Ferrario and
Carlo Rossi, to give a clear description of the persistence of Koszul duality after quantization, based
on a “two branes” version of the formality.

This mémoire is an attempt to provide a summary of this work, under a new perspective. It contains
two parts: the first one focuses on formality theorems and includes some material from points 1 and 3,
while the second one is more oriented towards the analogy betwen Lie theory and algebraic geometry
and covers points 1 and 2.

Description of Part I

This part is a bit wird and should be considered as a report on a work-in-progress. It is based on two
related observations:

1. every formality theorem appearing in deofrmation quantization admits essentially two (or maybe
three) different proofs, and they always follow the same pattern.

2. Lie algebraic structures on Hochschild type complexes appearing in these formality theorems can
always be upgraded to the actions of the chains of some topological operad.
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In the past months I have spent some effort in trying to clarify the “big picture” and Part I presents the
state of my thoughts about this. I use the formalism of factorization algebras developped by Lurie [29]
and Costello-Gwilliam [10] and try to explain how they allow one to understand the action of generalized
swiss-cheese operads1 on many of the complexes appearing in these formality theorems.

I have to warn the reader that many statements are not in final form. I apologize for the possible
mistakes and inaccuracies; I am quite confident there are some, but I am also confident that this project
is interesting enough to be reported here.

Description of Part II

The second part is more standard. Chapter 4 contains some material about the Duflo-Kontsevich isomor-
phism forQ-manifolds [CR2, CR3], its application to the (co)homological Duflo isomorphism [CR1, CR2],
and the globalization methods that allows one to prove the conjecture of Căldăraru [CVdB1, CRVdB1].
Chapter 5 is about the Lie theory of closed embedding and constists mainly of a hopefully consistent
copy-and-paste from [C2] (where I prove some PBW theorem for an inclusion of Lie algebroids) and
[CCT2] (where we study the Lie algebroid associated to a closed embedding).

Some statement are given without proof while for others I provided a sketchy one. I have tried to give
enough details in order not rely to much on the faith of the reader, but not too much in order to keep
the size of this mémoire within reasonable bounds. We anyway refer to the actual papers for detailed
(and hopefully correct) proofs.

Appendices

There are also two appendices. The first one is made to be helpful and summarizes some basic stuff about
Lie algebroids. The second one is an informal “dictionary” between Lie theory and algebraic geometry,
which people might find interesting.

1A tribute to the country were I leave.
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Part I.

Factorization algebras and formality
theorems
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(Abuses of) Notation for Part I

• Set is the category of sets (we ignore set-theoretical issues that can occur in category theory).

• sSet is the category of simplicial sets. More generally, for any category C we write sC for the
category of simplicial objects in C.

• Top is a convenient category of topological spaces.

• unless otherwise stated k is a field of characteristic zero and Vect, resp. Cpx, is the category of
k-vector spaces, resp. cochain complexes of k-vector spaces.

• An operad, without any other precision, means a coloured symmetric operad in Set.

• Given an operad O we denote by O⊗ its monoidal envelope.

• The category O-alg/C of O-algebras in a symmetric monoidal category C is the category Fun⊗(O⊗,C)

of symmetric monoidal functors from O⊗ to C.

• When C is clear from the context we allow ourselves to write O-alg instead of O-alg/C.

• In a coCartesian category S (e.g. Set, sSet, Top, Vect or Cpx) we have a symmetric monoidal
product ⊗ :=

∐
and the category S embbed into the category of cocommutative coalgebras in S.

Therefore, for any operad O in S and any S-enriched symmetric monoidal category C, the category
O-alg/C inherits a symmetric monoidal structure.

• Whenever the target category C carries a distinguished class of weak equivalences W (e.g. weak
homotopy equivalences in sSet and Top, or quasi-isomorphisms in Cpx), we only require sym-
metric monoidal functors F : D → C to be weak monoidal in the following sense: the natural
transformations F(X) ⊗ F(Y) → F(X ⊗ Y) belong to W. This affects the definition of the category
O-alg/C.

• Let C and D be categories enriched over a monoidal category S with a distinguished monoidal
subcategory W of weak equivalences. Then an S-enriched functor F : C→ D is a weak S-equivalence
if it indues an equivalence of the corresponding S[W−1]-enriched categories. We drop the S from
the notation whenever it is clear from the context.

• Let C be a simplicial category. Unless otherwise stated weak equivalences will be these morphisms
that become isomorphism in the homotopy category hC.

• We might sometimes treat a topological space as a simplicial set without explicitly saying that we
are taking singular chains.

• For a topological space X we denote by Open(X) its poset of open subsets.
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2. Deligne conjecture for factorization algebras

2.1. Factorization algebras

The main references on factorization algebras are [10] and [29]. The material presented in this Sec-
tion follows closely [10] and is partly extracted from (unfinished) lecture notes written after a seminar
organized by Greg Ginot, Fred Paugam and the author as well as a one semester course on this topic.

2.1.1. Prefactorization algebras

Let X be a topological space; PreFactX is the operad having colours the open subsets of X and

PreFactX(U1, . . . , Un;V) :=






{•} if Ui’s are pairwise disjoint and if
∐

i∈[n]

Ui ⊂ V ;

∅ otherwise .

A prefactorization algebra on X is a PrefactX-algebra.

Remark 2.1.1. If U ⊂ Open(X), then we can define an operad PreFactU in a similar way. Actually,
observe that whenever we have a locally small category C we can define an operad PreFactC with colours
being objects of C and

PreFactC(X1, . . . , Xn;Y) :=






HomC

( ∐
i∈[n]

Xi, Y
)
if
∐

i∈[n]

Xi exists and is a disjoint coproduct;

∅ otherwise .

Example 2.1.2 (The tautological prefactorization algebra of a space). Let C be as above. Observe
that PreFact⊗C is initial among symmetric monoidal categories D equipped with a functor F : C → D

sending disjoint coproducts to tensor products. Hence any such F factors through the composition of
C→ PreFact⊗C with a PreFactC-algebra FF : PreFact⊗C → D.

Let X be a topological space and U ⊂ Open(X). As an example we consider the obvious functor
F : U → Top, where the monoidal structure on Top is given by the coproduct. We therefore have a
prefactorization algebra on U in (Top,

∐
), which we call the tautological prefactorization algebra of U

and denote it by FU (or simply FX when U = Open(X)).

Observe that many examples of prefactorization algebras are obtained as variations on the follow-
ing construction: composing a symmetric monoidal functor (Top,

∐
) → (C,⊗) with the tautological

prefactorization algebra FX : PreFact⊗X → Top of a space X.

Example 2.1.3 (Compactly supported maps). If (M,m) is a pointed topological space then the functor
Cc(−,M) : (Top,

∐
)→ (Sets,×) of continuous maps that are constantly equal to m outside a compact

subset is a symmetric monoidal functor. Then for any topological space X we have a prefactorization
algebra X ⊃ U 7→ Cc(U,M).

Example 2.1.4 (Prefactorization algebras associated to En-algebras). Let En be the topological operad
of the little n-rectangles. Observe that E⊗n is a monoidal subcategory of (Top,

∐
). Namely, objects are

iterated coproducts of the n-cube n := (−1, 1)n ⊂ Rn and morphisms are those continuous maps which
are rectilinear (i.e. sitting in Rn ⋊ (R>0)

n) embeddings on each connected component. Let now Bn be
the basis of the topology on n given by images of rectilinear embeddings n →֒ n (i.e. rectangles).
Then the tautological prefactorization algebra PreFact⊗Bn

→ Top factors through the obvious operad
morphism PreFactBn

→ En. This induces a symmetric monoidal functor En-alg→ PreFactBn
-alg.
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The tautological factorization algebra of a space (see Example 2.1.2) is a particular case of a prefac-
torization algebra arising from precosheaves. Let D be a coCartesian category with ⊗ =

∐
.

Proposition 2.1.5. For any category C, the forgetful functor PreFactC-alg/D → Fun(C,D), that sends
a prefactoriation algebra F to its underlying precosheaf Fc is an isomorphism of categories.

Proof. One has to prove that for any precosheaf S on C with values inD there exists a unique factorization
algebra F such that Fc = S. Existence is fairly easy; the factorization product is built as follows: for any
morphism

∐
i∈[n]Ui → U in C we have a morphism

∐
i∈[n] S(Ui) → S(U) in D given by the structure

morphisms S(Ui)→ S(U) of the precosheaf. Unicity follows from the Eckmann-Hilton principle.

2.1.2. Factorization algebras and the (homotopy) gluing condition

Let X be a topological space. In what follows we express the homotopy gluing condition for prefactor-
ization algebras, by analogy with the one for pre(co)sheaves.

Definition 2.1.6. 1. A cover U = (Ui)i∈I of X is factorizing if for any {x1, . . . , xk} ⊂ X there exists a finite
subset {Ui1 , . . . , Uin } of pairwise disjoint open subsets in the cover U such that {x1, . . . , xk} ⊂

∐
αUiα .

2. A factorizing basis of X is a basis B of its topology such that for any U ∈ Open(X) the cover
BU := {V ∈ B|V ⊂ U} is factorizing.

Example 2.1.7. {X} is a factorizing cover of X. For a metric space X, the set of balls with radius strictly
less than a fixed λ ∈]0,+∞] is a factorizing cover of X. More generally, any basis of the topology of a
preregular space1 X is a factorizing cover of X.

For any factorizing cover U = (Ui)i∈I we denote by PI the set of finite subsets α ⊂ I such that
Ui ∩Ui = ∅ for any i 6= j in α. Let (C,W,⊗) be a symmetric monoidal category with weak equivalences
which have small coproducts and assume we are given an F ∈ PreFactX-alg/C. Then we construct a

simplicial object Č•(U,F) as follows:

Čn(U,F) :=
∐

α0,...,αn∈PI

( ⊗

ik∈αk

F

(
n⋂

k=0

Uik

))
,

with obvious faces and degeneracies.

Definition 2.1.8. 1. A PreFactX-algebra F with values in C satisfies the (homotopy) gluing condition
w.r.t. a factorizing cover U = (Ui)i∈I of U ∈ Open(X) if the canonical map Č•(U,F) −→ F(U) is a weak
equivalence (we could say that the map “exhibits F(U) as a homotopy colimit”).
2. A factorization algebra is a prefactorization algebra satisfying the gluing condition for all factorizing

covers of all open subsets.

As usual, a morphism between two factorization algebras is a morphism between their underlying
prefactorization algebras. Even though there is no operad FactX, we denote by FactX-alg/C the category
of factorization algebras over X with values in C. If C is tensored over simplicial sets then so are
PreFactX-alg/C and FactX-alg/C, and thus they automatically become simplicially enriched.
Let now B be a factorizing basis of X and C be a symmetric monoidal simplicial category tensored over

simplicial sets admitting small coproducts and homotopy colimits. Given a PreFactB-algebra, observe
that it makes perfect sense to speak about the gluing condition for factorizing covers of open subsets in
B by open subsets of B (factorizing B-covers for short), and thus to speak about factorization algebras
on B (FactB-algebras for short).

Theorem 2.1.9. The forgetful functor FactX-alg/C −→ FactB-alg/C, which sends a factorization algebra
F on X with values in C to its restriction F|B on B, is an equivalence of simplicial categories.

1A space is preregular if topologically distinguishable points (i.e. points that have different sets of neighbourhoods) can
be separated by neighbourhoods.
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Proof. Let us prove that for any factorization algebra G on B with values in C, there exists a unique
factorization algebra F on X such that F|B

∼= G. For any open subset U ⊂ X we define F(U) as the

homotopy colimit of Č•(BU,F). By definition we have that F|B
∼= G as PreFactB-algebras. It remains

to prove that F is a factorization algebra.
Let U = (Ui)i∈I be a factorizing cover of an open subset U ⊂ X, and consider the refinement

BU =
∐

i∈i BUi
of U. We then have the following commutative diagram, where vertical maps are

weak equivalences:

Č•(BU,F)

��xxrrr
rr
rr
rr
r

Č•(U,F)

&&▼▼
▼▼

▼▼
▼▼

▼▼
▼

��

Č•(BU,F)

��
(?) F(U)

The universal property of F(U) and (?) then impose that they are weakly equivalent.

Let X be a topological space and B ⊂ Open(X) be such that any B-cover is factorizing. The following
result concerns FactB-algebras within a symmetric monoidal coCartesian category C with ⊗ =

∐
.

Proposition 2.1.10. The isomorphism of categories PreFactB-alg/C → Fun(B,C) of Proposition 2.1.5
induces an isomorphism of categories between FactB-alg/C and the category of cosheaves on B with values
in C.

In particular, if B is a factorizing basis then it induces (after Theorem 2.1.9) an equivalence of simplicial
categories between FactX-alg/C and the category of cosheaves on X with values in C.

Sketch of proof. It suffices to prove that for any U ∈ B, a prefactorization algebra F satisfies the gluing
property w.r.t. the factorizing covers BU if and only if Fc satisfies the (precosheaf) gluing condition for
BU (here we have implicitly used a general refinement principle, and the fact that BU is the maximal
refinement of any B-cover of U and is factorizing). We refer to [10, Appendix B] for more details.

Remark 2.1.11. The above Proposition does not hold for PreFactX-algebras unless Open(X) is a factor-
izing basis. This last condition is equivalent to the requirement that a factorizing basis exists. Notice
that this is a priori a weaker condition than X being preregular (which can be rephrased as “any basis
of the topology is factorizing”), that we call weakly preregular.

Example 2.1.12 (The tautological factorization algebra of a space). Let X be a topological space and
B be a factorizing basis of X. The tautological prefactorization algebra FB on B (see § 2.1.2), taking
its values in (Top,

∐
), is actually a factorization algebra on B. This follows from the fact that Fc

B is a
cosheaf2 and Proposition 2.1.10.

Example 2.1.13 (Compactly supported maps). Let X be a weakly preregular topological space and V be
a vector space. Observe that Cc(−, V) defines a Vect-valued cosheaf, and thus determines a factorization
algebra on X with values in the symmetric monoidal category (Vect,⊕). In general, if M is a pointed
topological space, I don’t know if the prefactorization algebra Cc(−,M) defined on X and taking values
in (Sets,×) satisfies the gluing condition.

Example 2.1.14 (Factorization algebras associated to En-algebras). We borrow the notation from
Example 2.1.4. One can show that the functor En-alg → PreFactBn

-alg actually factors through
FactBn

-alg ⊂ PreFactBn
-alg and thus, after Theorem 2.1.9, any En-algebra determines a FactRn -algebra.

2Namely, for any open cover U = (Ui)i∈I of a space U the map U• → U is a weak equivalence of simplicial spaces, where

Un =
∐

(i0,...in)∈In+1

(

n
⋂

k=0

Uik

)

.
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2.1.3. Direct image and Hochschild homology

Let f : X → Y be a continuous map of topological spaces, and assume we have a factorization algebra
F over X with values in a monoidal category C admitting coproducts. Let us define a pre-factorization
algebra f∗F on Y, the direct image of F, in the following way: we set f∗F(U) := F

(
f−1(U)

)
, observe that

if Ui’s are pairwise disjoint then so are f−1(Ui)’s, and finally define the factorizing operations as

⊗

i

f∗F(Ui) :=
⊗

i

F
(
f−1(U)

)
→ F

(
f−1(V)

)
= f∗F(V)

whenever
∐

iUi ⊂ V. It remains to show that f∗F satisfies the gluing condition for any factorizing cover.
This follows from the fact that f∗F satisfies the gluing condition w.r.t a given factorizing cover (Ui)i∈I

of U if and only if so does F w.r.t. the factorizing cover
(
f−1(Ui)

)
i∈I

of f−1(U).

In the case when Y = pt then f∗ is simply the global section functor: f∗F = F(X)

Remark 2.1.15. It seems that for a reasonnable space X (say, preregular) there should be a model
structure on PreFactX-alg for which the cofibrant objects are factorization algebras, and lead to the
notion of derived direct image of prefactorization algebras. Accordingly, we will name derived global
sections the functor RΓ : PreFactX-alg/C → C defined by RΓ(F) := hocolim

(
Č•
(
Open(X),F

))
. It is also

known as factorization homology or topologiccal chiral homology.

Example 2.1.16 (Derived tensor product). Let A be an associative algebra together with a pointed
right module (Mr,mr) and a pointed left module (Ml,ml). To this data we can associate a factorization
algebra on the closed interval [0, 1], of which the global sections consist of the derived tensor product

Mr

L

⊗
A
Ml together with the distinguished element mr ⊗ml (see [3, Proposition 3.30]).

Example 2.1.17 (Hochschild homology). Any associative algebra defines a factorization algebra on S1

(defined on the factorizing basis consisting of intervals of length < 1/2) of which the global sections

consists of A
L

⊗
A⊗Aop

A (together with the distinguished element 1⊗ 1). This can be seen by factoring the

map S1 → pt through a projection S1 → [0, 1] and by using Example 2.1.16.

2.2. Dunn’s theorem, centralizers and Deligne’s conjecture

This Section is very much inspired by [29, §2.5] and [17, Section 7].

2.2.1. Dunn’s theorem for factorization algebras

Dunn’s theorem [14] roughly says that the n-fold tensor product of the associative operad is weakly
equivalent to the little n-rectangles operad En. In particular this implies that the homotopy category of
Ek-algebras in El-algebras is equivalent to the homotopy category of Ek+l-algebras.
We now prove an analogous result for factorization algebras, which appears to be somewhat easier.

Theorem 2.2.1. Let X and Y be weakly preregular topological spaces. Then we have a symmetric
monoidal equivalence between FactX-alg/FactY-alg/C

and FactX×Y-alg/C.

Sketch of proof. Let B be the factorizing basis of X × Y which consists of those opens that are of the
form U × V, with U ∈ Open(X) and V ∈ Open(Y). Notice that we have an obvious isomorphism of
symmetric monoidal simplicial categories PreFactB-alg/C −→ PreFactX-alg/PreFactY -alg/C

.

One can check that the gluing condition w.r.t. factorizing B-covers is satisfied if and only if the gluing
conditions w.r.t. factorizing covers of both X and Y are satisfied. This meas that the above restricts
to an isomorphism of symmetric monoidal simplicial categories FactB-alg/C −→ FactX-alg/FactY -alg/C

.

One then composes this isomorphism with the equivalence FactX×Y-alg/C −→ FactB-alg/C provided by
Theorem 2.1.9.
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2.2.2. Centralizers

Let us assume for simplicity that k is a field of characteristic zero, C = dg-k-mod, and X is a manifold.
Let f : A→ B be a morphism in FactX-alg/C. Following [29, §2.5] we call an object Z(f) ∈ FactX-alg/C
a centralizer for f if it is universal for the following property:

A⊗ C

##●
●

●
●

A

idA⊗1C

<<①①①①①①①①① f // B ,

where 1C : k→ C is the unit of C (all factorization algebras are unital, the unit being given by the initial
map from the empty set in Open(X)). Such an object Z(f) is obviously unique (up to a contractible
choice of weak equivalences) if it exists, and the main goal of this Subsection is to provide a construction
of it.
We define Z(f) to be RHomA-FactX-mod(A,B), where one has to recall that an A-FactX-module is an

object M together with a FactX-algebra structure on A⊕ ǫM, with ǫ2 = 0, that concides with the one
on A when ǫ = 0.

Remark 2.2.2. When X is connected an A-FactX-module is equivalent to the data of a FactX-algebra B
together with a weak equivalence A|X−{x}

∼= B|X−{x}, where x ∈ X is fixed.

Our first task is to make RHomA-FactX-mod(A,B) into an object of FactX-alg/C. More precisely:

Proposition 2.2.3. The category A-FactX-mod is enriched over FactX-alg/C.

Sketch of proof. Let us first restrict to the factorizing basis Conv(X) of X consisting of small convex open
subsets. For any open U ∈ Conv(X) we set

RHomA-FactX-mod(A,B)(U) := RHomA|U-FactU-mod(A|U, B|U)

We consider
∐

i∈IUi ⊂ V an inclusion of pairwise disjoint open subsets of Conv(X) into a bigger
one, and we let (gi)i∈I be such that gi ∈ RHomA-FactX-mod(A,B)(Ui). We have to define the image
g ∈ RHomA-FactX-mod(A,B)(V) of (gi)i∈I through the factorizing operation associated to

∐
i∈IUi ⊂ V.

To do so, we restrict to the factorizing basis of V consisting of small convex open subsets that intersect
at most one of the Ui’s. For any such W ⊂ V, we set

g(W) :=

{
f(W) if W does not intersect any of the Ui’s

gi(∅)⊗ f(W) if W does intersect Ui

The gluing condition can be proved to hold.

It remains to prove that RHomA-FactX-mod(A,B) does have the universal property. And this is almost
tautological. Let C having the above property (one says that C centralizes f) and denote by ϕ : A⊗C→ B

the morphism which is such that for any open subset U ⊂ X and any a ∈ A(U), we roughly have

ϕ(U)(a⊗ 1C) = f(U)(a) .

Actually, ϕ(U) is completely determined by a map C(U)→ HomA-FactX-mod(A,B)(U). Conversely, any
FactX-algebra morphism C → RHomA-FactX-mod(A,B) sends the unit 1C to the unit (i.e. the element
determined by the inclusion ∅ ⊂ U) of RHomA-FactX-mod(A,B), which is nothing but f.

14



2.2.3. Deligne’s conjecture for factorization algebras

Let f : A → B and g : B → C be morphisms of factorization algebras on a manifold X. Then observe
that Z(f)⊗ Z(g) centralizes g ◦ f:

A⊗ Z(f)⊗ Z(g)

''PP
PP

PP
PP

PP
PP

A⊗ Z(f)

77♥♥♥♥♥♥♥♥♥♥♥♥

((PP
PP

PP
PP

PP
PP

PP
B⊗ Z(g)

$$■
■■

■■
■■

■■

A

;;✈✈✈✈✈✈✈✈✈ f // B

66♥♥♥♥♥♥♥♥♥♥♥♥♥♥ g // C .

We therefore have a composition morphism Z(f) ⊗ Z(g) → Z(g ◦ f) in FactX-alg, which can be proven
to be associative. Then we have the following:

Theorem 2.2.4 (Deligne conjecture for factorization algebras). Z(A) := Z(idA) is an associative algebra
in FactX-alg, and thus a FactR×X-algebra. Moreover, Z(1A) = A becomes a right Z(A)-module and thus
the pair

(
Z(A), A

)
defines a FactR+×X-algebra.

We implicitely used that an associative algebra together with a right module produces a factorization
algebra on R+. We discuss this fact (and generalizations) in the next Chapter.

Example 2.2.5. Let A be an associative algebra and denote by FA the corresponding factorization
algebra on R. Then the pair

(
Z(FA),FA

)
consists of an algebra and a right module in FactR-alg. After

taking global sections over R we get an algebra with a right module, which are RHomA-bimod(A,A)

and A, respectively. The (known) fact that the Yoneda product on the former is commutative up to
homotopy comes from the FactR2 -algebra structure on Z(FA).

Example 2.2.6. Let A be an associative algebra and denote by FA the corresponding factorization
algebra on S1. Then the pair

(
Z(FA),FA

)
consists of an algebra and a right module in FactS1 -alg, and

gives rise to a FactS1×R+-algebra. By pushing forward through the map S1 × R+ → C that sends (θ, r)
to reiθ we get a factorization algebra on R2 that looks like Z(FA) away from the origin, together with

A
L

⊗
A⊗Aop

A being a kind of module sitting at the origin.

The above two Examples will be made a bit more precise in the next Chapter.
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3. Deligne conjecture and formality theorems

3.1. Generalized swiss-cheese operads

3.1.1. Locally constant factorization algebras on Rn × (R+)m

Definition 3.1.1 (Generalized from [10]). Let X be a stratified topological space. A (pre)factorization
algebra F on X is said locally constant (w.r.t. the given stratification S) if for any inclusion U ⊂ V

such that U is a stratified deformation retract of V the corresponding morphism F(U) → F(V) is a
weak equivalence. We denote by (FactX-alg)

S-l.c. the full subcategory of locally constant factorization
algebras. We might drop the stratification S from the notation when it is clear from the context.

Factorization algebras on Rn associated to En-algebras (see Examples 2.1.4 and 2.1.14) are locally
constant. Similarly, the factorization algebra on S1 associated to an E1-algebra (see Example 2.1.17) is
also locally constant. Finally, the factorization algebra of Example 2.1.16 is locally constant w.r.t to the
boundary stratification on [0, 1].

Remark 3.1.2. If f : X→ Y is a stratified continuous map such that the associated cosheaf U 7→ f−1(U)

is locally constant (meaning that if U is a stratified deformation retract of V then f−1(U) is a stratified
deformation retract of f−1(V)) then f∗ preserves locally constantness.

The operad En,m

Let n,m ≥ 0 be integers, k = m + n, Pm be the set of subsets of [m] = {1, . . . ,m}. For any P ∈ Pm we
define the partial unit ball1 of type P:

Bk
P := (−1, 1)[n+m]\P × [0, 1)P ⊂ R[n+m] .

Let I be a finite Pm-coloured set (i.e. a set equipped with a map p : I→ Pm). We define

Bk
I :=

∐

P∈Pm

(Bk
P × p−1(P)) ,

and consider the topological space Conf(Bk
I , B

k
Q) of I-configurations of pairwize disjoint partial disks

into Bk
Q, where Q ∈ Pm. It is the topological space of open embeddings f : Bk

I → Bk
Q such that the

restriction of f to each connected component is given by a rectilinear transformation of R[n+m] = Rk.

Remark 3.1.3. The poset of irreducible components of Bk
P is the subposet of (Pm,⊃) consisting of subsets

of P. For any P ′ ⊂ P the corresponding irreducible component is

Bk
P(P

′) :=
(
{0}P

′

× R[n+m]\P ′

)
∩ Bk

P .

One can easily see that the restriction of a map in Conf(Bk
I , B

k
Q) to a copy of Bk

P sends Bk
P(P

′) to Bk
Q(P ′).

In particular there are no rectilinear open embeddings of Bk
P into Bk

Q if P is not contained in Q.

We are now ready to define a far-reaching generalization of the little rectangles operads En.

Definition 3.1.4 (Generalized swiss-cheese operads). En,m is the Pm-coloured topological operad with
spaces of operations being

En,m(I,Q) := Conf(Bk
I , B

k
Q) , |I| ≥ 1 .

The composition is the obvious one, given by the composition of open embbedings.

1Recall that we decided, for convenience, to work with the norm || · ||∞. However, this does not matter for our construction
of topological operads since any other choice of norm would lead to weakly equivalent topological operads.
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Observe that En,0 = En is the standard little n-rectangles operad, and that E1,1 is the swiss-cheese
(2-coloured) operad defined by Voronov [42] (En,1 being its higher-dimensional generalizations).

Example 3.1.5 (E0,1-algebras vs associative algebras with a right module). Recall that there is a weak
equivalence of topological operads E1 → As, where As is the operad for associative algebras (recall that
it has one colour and its operations are given by finite linear orders). It sends an ordered configuration
of intervalles to the corresponding linear order. Similarly, there is a weak equivalence of topological
operads E0,1 → AsR, where AsR is the operad for associative algebras with a (pointed) right module
and can be defined as follows: it has two colours {•−,−} and operations are given by coloured linear
orders in which •− can only appear on the minimal elements and if the target colour is also •−. The
morphism E0,1 → AsR consists of associating the colour − to the open intervalle and the colour •− to
the half-closed one, and only remember about the ordering in configurations.

En,m-algebras vs locally constant factorization algebras

We have the following commutative diagram of symmetric monoidal functors

En,m-alg
a //

c
((PP

PP
PP

PP
PP

PP
P

(PreFactBn,m
-alg)

l.c (
FactRn×(R+)m-alg

)l.cboo

e
uu❥❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥❥

(FactBn,m
-alg)

l.c

d

OO

where Bn,m is the factorizing basis of (−1, 1)n × [0, 1)m consisting of the images of the Bn+m
P , P ∈ Pm,

via rectilinear open embeddings into (−1, 1)n × [0, 1)m. We now describe the functors:

• a comes from the operad morphism PreFactBn,m
→ En,m which sends the image of a Bn+m

P to the
colour P and a given inclusion to its associated configuration. It factors through (FactBn,m

) l .c.,
which embbeds in (PreFactBn,m

) l .c. as a full subcategory via d.
• e is given by restricting to the factorizing basis (after having pushed-forward through a homeo-

morphism Rn × (R+)m−̃→(−1, 1)n × [0, 1)m).

Theorem 3.1.6. All these functors are weak equivalences.

Sketch of proof. a is a weak equivalence thanks to [29, Theorem 3.2.7]. Then c and d are also weak
equivalences. e is a weak equivalence thanks to Theorem 2.1.9, and thus so is b (this is “2 out of 3”).

Combined with Dunn’s Theorem for locally constant factorization algebras this gives:

Theorem 3.1.7. The symmetric monoidal functor En+k,m+l-alg −→ En,m-alg/Ek,l-alg
(which consists

in restricting oneself to “product”configurations) is a weak equivalence.

Finally observe that centralizers preserve locally constantness. Thus if A is an En,m-algebra then
the pair

(
Z(A), A

)
becomes an E0,1-algebra in En,m-algebras and hence inherits an En,m+1-algebra

structure.

3.1.2. Formality of generalized swiss-cheese operads

In this Section we basically follow Kontsevich’s proof of the formality [25] of En over R (see also [28])
and very shortly sketch an extension of it to En,m.

An operad weakly equivalent to En,m

There exists another topological operad Cn,m which is weakly equivalent to En,m.

Construction 3.1.8. Let Confn,m(k) be the configuration space of k dinstinct points in Rn× (R+)m and
denote Cn,m(k) its quotient by the action of Rn⋊R>0. One can construct a compactification Cn,m(k) of
Cn,m(k) along the lines of [24, Section 5]. It consists of nested configurations of k points in Rn×(R+)m up
to translations and dilations, and has the structure of a manifold with corners. Moreover, the boundary
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of Cn,m(k) is a union of products of other configuration spaces Cn ′,m ′(k ′), with n ′ + m ′ = n + m,
m ′ ≤ m and k ′ ≤ k.

We then define the topological operad Cn,m. Its colours are elements of Pm. For a Pm-coloured set I
and a colour Q ∈ Pm, the space of morphism Cn,m(I,Q) is the boundary component of C[n+m]\Q,Q(I)

consisting of those configurations such that for any i ∈ p−1(P), we have P ⊂ Q and the point labelled
by i belongs to R[n+m]\P × {0}P. The composition is given by the inclusion of the various boundary
components.

We now explain why the topological operads Cn,m and En,m are weakly equivalent .

Construction 3.1.9. Take the Boardman-VogtW-constructionWEn,m of En,m: it is a topological operad
having the same colours as En,m, but operations are given by planar rooted trees having their external
vertices (leaves and root) labelled by colours, their internal vertices labelled by operations of En,m, and
edges labelled by [0, 1]. There is a weak equivalence WEn,m → En,m that consists in forgetting the
label on edges and “computing” the composed operation associated to the tree. Now observe that we
also have a map WEn,m → Cn,m which sends a tree to the associated configuration of the centers of
the partial balls, where every subconfiguration has been rescaled by 1 − t if t ∈ [0, 1] is the label of the
outgoing edge of the corresponding vertex. Notice that t = 1 gives the “infinitesimal” configurations,
i.e. the ones lying in the boundary.

Formality of Cn,m over R

The proof goes through the following zig-zag of quasi-isomorphisms of operads in Cpx:

C−•
(
Cn,m,R

)
←− Csa

−•
(
Cn,m,R

)
−→ Graphn,m ←− H−•

(
Cn,m,R

)

Below we very shortly describe the main ingredients involved (details will appear elswhere).

• all operads O involved have the same set of colours Pm, and are such that O(I,Q) = 0 unless the
set of colours of I lies in PQ ⊂ Pm.

• Csa
−•
(
Cn,m,R

)
is the suboperad of semi-algebraic chains.

• For a colour Q and a PQ-coloured set I we define the cochain complex Graphn,m(I,Q) as follows.
It is the linear span of finite graphs with set of vertices I

∐
J, where J is any PQ-coloured set,

such that any vertex is connected by a path to I, together with an orientation of every edge2. The
operad structure is given by “plugging in” graphs to vertices of another graph and reconnecting
the edges in all possible ways. The differential is a coloured variant of the usual graph cohomology
coboundary operator.

• To any graph Γ ∈ Graphn,m(I,Q) as above one can associate a differential form ωΓ on Cn,m(I,Q).
First observe that any edge e of Γ determines a map πe : Cn,m(I

∐
J,Q) → C[n+m]\Q,Q({1, 2}),

which consists in forgetting all points except the two vertices of e. Then one uses a form ωQ on
C[n+m]\Q,Q({1, 2}) extending the volume form of Sn+m−1 = Cn+m,0({1, 2}) satisfying a bunch of
specific properties that we won’t explain here. Finally,

ωΓ = (πI)∗


 ∧

e∈V(Γ)

π∗eωQ


 ,

where πI : Cn,m(I
∐
J,Q)→ Cn,m(I,Q) is the map that forgets the J-labelled points.

The operad morphism Csa
−•
(
Cn,m,R

)
−→ Graphn,m sends a given chain c on Cn,m(I,Q) to

∑

Γ∈Graphn,m(I,Q)

(∫

c

ωΓ

)
Γ .

2One should further mod out by some symmetries, but we are far from being at that level of detail.
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• the operad morphism Pn,m = H−•
(
Cn,m,R

)
−→ Graphn,m sends the generators (all having

operadic arity two) to the elementary graphs with #I = 2 and J = ∅.

Examples of these configurations spaces, graphs and forms associated to them previously appeared:

• (m = 0) in the proof by Kontsevich [25] of the formality of En,0.

• (m = n = 1) in the proof by Kontsevich [24] of the formality of the E1-Hochschild cochain complex
of A = k[x1, . . . , xd].

• (m = 0 and n = 2) in the context of the formality in the presence of two branes in [CFFR].

3.2. Applications to deformation quantization

In this Section we let our underlying monoidal category C be the category of topological k-vector spaces,
where k is a field containing the real numbers.

3.2.1. Higher Kontsevich formality

Let A be one of the following commutative algebras in C:

• A = C∞(Rd,k), with the Fréchet topology (k ∈ {R,C}).
• A = k[x1, . . . , xd], with the discrete topology.
• A = k[[x1, . . . , xd]], with the adic topology.

We now consider A as an En-algebra in Cpx(C), and take its center ZEn
(A), which is an En+1-algebra in

Cpx(C), which we see as an En+1-algebra in Cpx. One can show that H•(Z(A)
)
is isomorphic, as a Pn+1-

algebra in graded vector spaces, to SA
(
Der(A)[−n]

)
. Notice that the Pn+1-structure on SA

(
Der(A)[−n]

)

is provided by the commutative product and the degree −n Poisson bracket { , } induced from the Lie
bracket on Der(A).

Using the formality of C−•(En+1,k) we get that ZEn
(A) inherits the structure of a strict P

(∞)
n+1-algebra,

where P
(∞)
n+1 can be any cofibrant resolution of Pn+1 in Cpx. In our case we will take the P

(∞)
n+1 to be

the minimal model of Pn+1 (which is a quadratic Koszul algebra). We will call strong homotopy Pn+1-

algebras the strict P
(∞)
n+1-algebras.

By standard techniques of homotopy transfer (see e.g. [CVdB2, §A.2] and references therein) one can
prove that there exists a minimal strong homotopy Pn+1-algebra structure on SA

(
Der(A)[−n]

)
which is

P
(∞)
n+1-quasi-isomorphic to ZEn

(A), and provides in particular a deformation of the Pn+1-algebra structure

on SA
(
Der(A)[−n]

)
.

One can finally show, along the lines of [39, Section 3], that all such deformations are P
(∞)
n+1-isomorphic

to the trivial one (one proves that the space where the obstruction to construct such a P
(∞)
n+1-isomorphism

step by step lives is zero).

In particular, the above discussion would lead to a proof of the following

Conjecture 3.2.1 (Higher Kontsevich formality). SA
(
Der(A)[−n]

)
[n] and ZEn

(A)[n] are weakly equiv-
alent in Lie-alg/Cpx.

The above Conjecture is a Theorem [24] whenever n = 1, in which case it admits a nice refinement
known as cyclic formality for cochains and that we describe now.
The standard volume form on Rn allows one to get an S1-action on ZE1

(A). It induces an action
of H−•(S

1,k) on SA
(
Der(A)[−1]

)
, which can be described as follows: the above volume form allows

to transport the de Rham differential from SA
(
Ω1

A[1]
)
to a square zero degree −1 operator div on

SA
(
Der(A)[−1]

)
. It has been proved in [15] that the formality of E2 can be made S1-equivariant and

then upgraded to the formality of F2 := E2⋊S
1. In particular this we would lead to an alternative proof

of the following
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Theorem 3.2.2 (Formality of cyclic cochains, [WC]). SA
(
Der(A)[−1]

)
[1]S

1

and ZE1
(A)[1]S

1

are weakly
equivalent in Lie-alg/Cpx.

Notice that the formulation of [WC] (to which we refer for more details) is a bit different: it says that there

is an L∞-quasi-isomorphism between the following strict dg-Lie algebras:
(
SA
(
Der(A)[−1]

)
[u], u div, { , }

)
,

where u is a variable of degree 2, and the complex of cyclic Hochschild cochains equipped with the usual
Hochschild differential and the Gerstenhaber bracket.

3.2.2. Calculus formality

Let A be an associative algebra, which can viewed as a locally constant factorization algebra on S1. We
have seen that the pair

(
Z(A), A

)
becomes a locally constant factorization algebra on S1 × R+, where

locally constantness has to be understood relatively to the boundary stratification. Let π : S1×R+ → C
be defined by π(θ, r) := reiθ, where C is understood as the following stratified space: {(0, 0)} ⊂ R2. The
associated cocheaf U 7→ π−1(U) is locally constant and thus π∗A =

(
Z(A), A(S1)

)
is a locally constant

factorization algebra on C.

Recall that Z(A) ∼= RHomA⊗Aop(A,A) and that A(S1) ∼= A
L

⊗
A⊗Aop

A; this means that the pair

(Hochschild cochains, Hochschild chains) can be naturally endowed with the structure of a locally con-
stant factorization algebra C. Moreover, everything can be shown to be S1-equivariant from the very
beginning of the construction.
Observe that there is a description of S1-equivariant locally constant factorization algebras on S1 in

terms of algebras over a suitable topological operad. One defines, after [26], an operad having two colours
© and

⊙
and two types of operations:

• configurations of discs of the first type within the unit disc.
• configurations of discs of both types within the unit disc, satisfying the following requirements:
discs of the first type should not contain the origin while the origin of a disc of the second type
should match with the origin of the unit disc (this imposes that there can be at most one disc of
the second type in the configuration).

It carries an S1-action which rotates discs of the second type as well as configurations of the second type.
One then defines KS to be the operad obtained from PreKS by incorporating this S1-action in the space
of operations. One can then prove the following, along the lines of Theorem 3.1.6.

Theorem 3.2.3. The simplicial monoidal categories (FactC-alg)
l.c.

and PreKS-alg are S1-equivariantly

weakly equivalent, leading as well to a weak equivalence between
(
(FactC-alg)

l.c.
)S1

and KS-alg.

It is worth noticing that H−•(PreKS,Q), resp. H−•(KS,Q), is the precalculus operad PreCalc, resp. the
calculus operad Calc, introduced by Tamarkin and Tsygan [40].

The outcome of the above discussion is that there is a KS-algebra structure (in Cpx) on the pair(
Z(A), A(S1)

)
, which induces a Calc-algebra structure on the pair

(
HH•(A), HH−•(A)

)
within graded

vector spaces. When A is a smooth commutative algebras (meaning here that the A-module Der(A) is
projective), this Calc-algebra can be shown to be isomorphic to

(
SA(Der(A)[−1]), S(Ω1

A[1])
)
(on which

the Calc-algebra structure is given by: the wedge product and Lie bracket of polyvector fields, themselves
acting on forms by contraction and Lie derivative, together with the de Rham diferential for the circle
action).

As for the topological operads En,m, there is a configuration space version CKS of the operad KS,
together with a operadic graph complex GraphKS and the following quasi-isomorphisms (see e.g. [43]):

C−•
(
CKS,R

)
←− Csa

−•
(
CKS,R

)
−→ GraphKS ←− Calc⊗Q R

One could probably show the Calculus formality via the vanishing of some obstructions as in the
previous Section, but Willwacher gave a much nicer proof based on an explicit lift of the Calc-algebra
structure on

(
SA(Der(A)[−1]), S(Ω1

A[1])
)
, when A is one of the algebras considered in the previous Sec-

tion, to a GraphKS-algebra structure. Then he roughly proves there is a GraphKS-quasi-isomorphism
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between
(
SA(Der(A)[−1]), S(Ω1

A[1])
)
and

(
Z(A), A(S1)

)
. This makes use, again, of integrals over con-

figuration spaces of suitable forms associated to graphs. Dolgushev-Tamarkin-Tsygan also gave a proof
of the so-called “Calculus formality” using different methods [12].

Below we list a few consequences of Willwacher’s result. But before that we explain the appearence of
the so-called cup-product, resp. cap-product, on tangent cohomology, resp. homology. It is known that
any Lie algebra g in Cpx gives rise to a derived formal stack (see e.g. [19]) of which any point γ roughly
provides a deformation gγ of g (within the explicit model of L∞-algebras that most people use this is
the so-called twisting procedure by a Maurer-Cartan element). Moreover, if g is the Lie structure on
the shift of an En-algebra then so is gγ. Therefore one gets a commutative product on H•+n(gγ), often
called cup-product.
Similarly, if a pair (g,M) of a Lie algebra and a module over it actually come from the shift of an

En−1,1-algebra then so does (gγ,Mγ), and thus one gets that the commutative algebra H•+n(gγ) acts
on H•(Mγ) via the so-called cap-product.

Theorem 3.2.4 (Compatibility with cup-poducts, [24, 30]). There is a weak equivalence ϕ between
g = SA

(
Der(A)[−1]

)
[1] and h = ZE1

(A)[1] in Lie-alg/Cpx such that for any γ ∈ Def(g) and γ ′ ∈ Def(h)

corresponding to each other via ϕ, then the induced isomorphism H•+1(gγ)−̃→H•+1(hγ ′) is an algebra
morphism.

We now fix a weak equivalence between g and h in Lie-alg/Cpx.

Theorem 3.2.5 (Tsygan formality for chains, [36]). M = S(Ω1
A[1]) and N = A(S1) are weakly equivalent

in g-Lie-mod/Cpx.

Theorem 3.2.6 (Compatibility with cap-poducts, [CR1, CR2]). One can choose ϕ satisfying the re-
quirement of Theorem 3.2.4 and the weak equivalence in Theorem 3.2.5 in such a way that the induced
isomorphism H•(Mγ)−̃→H•(Nγ ′) is a morphism of H•+1(gγ)-modules (with γ and γ ′ as above).

3.2.3. Kontsevich formality in the presence of two branes

Let A and B be two associative algebras together with an A-B-bimodule M. To this data we associate
a locally constant factorization algebra F on the stratified space X = ({0} ⊂ R), depicted as follows:

A
•
M B

The center Z(F) of F is then a locally constant factorization algebra on X × R+ that we can depict in
the following way:

A
•
M B

Z(A) Z(B)

RHom(A,B)-bimod(M,M)

We now restrict to the case when A = k, with B augmented, and M = k with right B-module structre
given by the augmentation. In this case the above factorization algebra is only non-trivial in the first
quadrant. We again describe it in pictorial way (with B! := RHommod-B(k,k)):

•
k B

Z(B)B!
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The Keller-Koszul condition [23, CFFR], which requires that B is weakly equivalent to RHomB!-mod(k,k),
immediately implies that Z(B) and Z(B!) are weakly equivalent as E2-algebras. Namely, from the above
picture and by the univeral property of centers we have a morphism Z(B) → Z(B!). Then the Keller-
Koszul condition ensures that we have the very same picture but with Z(B!) instead of Z(B), leading in
particular to a morphism of E2-algebras Z(B

!)→ Z(B) which can be shown to be a weak inverse of the
preceeding one.

We now further restrict ourselves to the case when B = S(V) and B! = S(V∗[−1]), V ∈ Vect. As before
we expect that one can prove a formality type result for the quadruple

(
Z(B), B, B!,k

)
by using the

formality of E0,2 together with the vanishing of some obstruction space. Such a formality theorem would
have the following formal consequence: given a pair of Koszul dual first order deformations (i.e. P0-
structures) of B and B! as associative algebras, and if their corresponding quantizations lead to formal
deformations3of B and B!, then these are also Koszul dual.

Let us finally report on an avatar of the above formality result, which both implies the very same
formal consequence and has the strong advantage of having been proven.

Theorem 3.2.7 (Formality in the presence of two branes, [CFFR]). We have the following homotopy
commutative square of weak equivalences in Lie-alg/Cpx:

S
(
Der(B!)[−1]

)
[1] // Z(B!)[1]

S
(
Der(B)[−1]

)
[1] // Z(B)[1]

OO

Notice that the formulation of [CFFR] is quite different from this one and reflects better the strategy
we used in the proof. First of all we work with explicit models for the centers, which are strict dg-Lie
algebras, and construct another strict dg-Lie algebra g together with a strictly commuting diagram of
strong homotopy Lie algebra morphisms

Z(B!)[1]

S
(
Der(B)[−1]

)
[1]

77♦♦♦♦♦♦♦♦♦♦♦♦

''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

// g

||②②
②②
②②
②②
②②

bb❉❉❉❉❉❉❉❉❉❉

Z(B)[1]

As we have already seen this implies that Koszul duality is preserved by Kontsevich quantization, under
the assumption that the quantizations we get are not curved. Moreover, we could prove in [CFR] that if
one starts from a polynomial Poisson structure on S(V) the quantized algebra admits a presentation by
generators and relations which is provided by the formality of Z

(
S(V∗[−1])

)
.

Remark 3.2.8. The two branes we are refeering to are, in the example we discussed, the space-filling
brane V∗ and {0}. The general case of two branes U,U ′ ∈ V∗ is also discussed in [CFFR], and leads to
some kind of relative Koszul duality.

Remark 3.2.9. The very same formality result has been obtained by Shoikhet [38]. He is also the one
who raised the question of having an isomorphism between Kontsevich quantization of a polynomial
Poisson structure on S(V) and the corresponding quantization by generators and relations obtained via
the formality for Z

(
S(V∗[−1])

)
(see [37]).

3This is a crucial point. Notice that for an associative algebra A we have a fiber sequence A → TA → Z(A)[1] of Lie
algebras, where TA denotes the deformation complex of A. Hence not every Maurer-Cartan element in Z(A)[1] leads to
a deformation of A as an algebra. Recall that our algebras are pretty relaxed (meaning up to homotopy), so this is not
at all a question of strictness. When one works with the explicit model of A∞-algebras, those Maurer-Cartan elements
not arising as actual deformations are precisely the so-called curved A∞-structures.
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(Abuses of) Notation for Part II

Throughout this part we let C be a bicomplete abelian k-linear closed symmetric monoidal category.
Most of the time C will be k-mod or dg-k-mod, where k is a fixed commutative ring. Unless otherwise
specified the symbol ⊗ denotes the monoidal product in C.
All algebraic structures we consider are understood as being given on objects of C. E.g. a commutative

algebra is an object A (of C) together with a morphism m : A⊗A→ A (in C) such that

m ◦ (m⊗ idA) = m ◦ (idA ⊗m) and m ◦ σA,A = m, (3.1)

where σ : ⊗→ ⊗op is the symmetry isomorphism of C.

Notice that, from now, we will always make the following abuses of notation:

1. we deal with objects of C as if they were being k-modules, allowing ourselves to write formulæ el-
ementwise;

2. we forget σ from the notation.

In order to exemplify let us rewrite the second condition of (3.1) accordingly:

“for any a, b ∈ A, ab = ba”.

Dualizable objects in C will be sometimes called finite dimensional.

We now describe our conventions regarding tensor products. For a commutative algebra R, we write
⊗R for the tensor product of left R-modules. For a (possibly noncommutative) ring B, we denote by ⊗

B

the tensor product between right and left B-modules.

For a left R-module M we denote by SR(M), resp. TR(M), the symmetric, resp. tensor, algebra gener-
ated by M over R. Both are considered as graded R-algebras; however, we don’t require R to be central
in R-algebras. We write SkR(M), resp. TkR (M), for the k-the homogeneous component.

Unless otherwise stated all filtrations are ascending, indexed by non-negative integers.

Whenever we have a dg-object A in C we denote by A♯ the underlying graded object.
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4. Căldăraru-Duflo-Kontsevich isomorphisms

Throughout this Chapter k is assumed to be a field of zero characteristic.

4.1. Duflo-Kontsevich isomorphism for formal dg-manifolds

In this Section we state a general Duflo-type result for formal dg-manifolds, i.e. graded objects equipped
with a formal vector field of degree 1 which squares to 0. This result implies in particular the cohomo-
logical version of Duflo’s Theorem.
Throughout this Section V is a dualizable object in Cgr.

4.1.1. A review of compatibility with cup- and cap-products

We introduce

• OV := S(V∗), the commutative algebra of functions on V;
• XV := Der(OV ) = S(V

∗)⊗ V, the Lie algebra of vector fields on V;
• Tpoly(V) := S(V∗ ⊕ V[−1]) ∼= SOV

(XV [−1]), the XV -module algebra of polyvector fields on V.
• the XV -module algebra DV of differential operators on V, which is the subalgebra of End(OV )

generated by OV and XV ;
• the XV -module algebra Dpoly(V) of polydifferential operators on V, which consists of multilinear
maps OV ⊗ · · · ⊗ OV → OV being differential operators in each argument.

It is clear that Dpoly(V) is then a sub-dg-algebra of the Hochschild cochain complex1 of the algebra OV

(it is obviously preserved by the Hochschild differential dH). From now we write ∪ for both products on
Tpoly(V) and Dpoly(V).

It is well-known that the cohomology of
(
Dpoly(V), dH

)
is given by Tpoly(V):

Proposition 4.1.1. The natural inclusion HKR :
(
Tpoly(V), 0

)
→֒
(
Dpoly(V), dH

)
is a quasi-isomorphism

of complexes that induces an isomorphism of algebras in cohomology.

There are also:

• Ω1
V := Ω1

OV
= S(V∗)⊗V∗, the XV -module of Kähler differentials, where the action of X(V) is given

by the Lie derivative;
• Ω(V) := S(V∗ ⊕ V∗[1]) ∼= SOV

(Ω1
V [1]), the XV -algebra of differential forms with reversed grading,

which is also a Tpoly(V)-module via contraction.
• Cpoly(V), the XV -algebra of formal functions near the diagonal in V×· · ·×V (i.e. the adic-completion

of OV⊗· · ·⊗OV along the kernel of the multiplication map). We use the reverse grading convention.

Cpoly(V) is a completion of the usual Hochschild chain complex and the Hochschild differential bH
extends to it2 . It is acted on by Dpoly(V) via contraction. From now we write ∩ for both actions by
contraction on Ω(V) and Cpoly(V).
By duality, we get:

Proposition 4.1.2. The morphism HKR∗ :
((
Cpoly(V), bH

)
→
(
Ω(V), 0

)
that sends f0 ⊗ f1 ⊗ · · · ⊗ fn

to f0df1 . . . dfn is a quasi-isomorphism of complexes that induces an isomorphism H
(
Tpoly(V)

)
-modules

in cohomology.

1The inclusion actually being a quasi-isomorphism.
2And they are quasi-isomorphic.
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Let Q be a cohomological vector field on V: i.e. a differential on OV that turns it into a dg-algebra.
Since Q ∈ XV then it acts as a differential Q· commuting with all available structures on Tpoly(V),
Dpoly(V), Ω(V), and Cpoly(V). By a spectral sequence argument one can show that HKR and HKR∗ still
define quasi-isomorphisms, but they no longer preserve the algebra and module structures at the level
of cohomology.
We are going to modify a bit HKR and HKR∗ so that the induced isomorphisms on (co)homology

preserve these structures.

For later purposes we need to work in a bit more general framework. We let a be a dg-commutative
algebra splitting as a = m⊕ R, with m a (pro)nilpotent ideal and R a subalgebra concentrated in degree
0, and we assume that Q is a Maurer-Cartan element in the dg-Lie algebra XV ⊗m.

We then define and endomorphism valued one-form Ξ ∈ HomOV -mod(XV ,Ω
1
V⊗OV

XV [1])⊗m associated
with Q in the following way:

1. we observe that XV admits a canonial connection ∇V : XV → Ω1
V ⊗OV

XV .

2. we then define Ξ := [∇V , Q·] : XV → Ω1
V ⊗OV

XV ⊗m[1].

Observe that for any k ≥ 1 one can define trXV

(
Ξk) ∈ SkOV

(Ω1
V [1]) ⊗ mk. It is a degree 0 element in

Ω(V)⊗mk and thus the series

j(Ξ) := det

(
Ξ

1− e−Ξ

)
∈ Ω(V)⊗m .

makes perfect sense (and has cohomological degree 0).

Theorem 4.1.3 ([CR3]). There is a quasi-isomorphism

UQ := HKR ◦ ιj(Ξ)1/2 : (Tpoly(V)⊗ a, da +Q·) −→ (Dpoly(V)⊗ a, dH + da +Q·)

together with an explicit Aut(V)-equivariant homotopy between UQ ◦ ∪ and ∪ ◦ (UQ ⊗ UQ).

Theorem 4.1.4 ([CR2], Section 5 & Theorem 6.4). There is a quasi-isomorphism

SQ := (j(Ξ)
1/2

∧−) ◦HKR∗ : (Cpoly(V)⊗ a, bH + da +Q·) −→ (Ω(V)⊗ a, da +Q·)

together with an explicit Aut(V)-equivariant homotopy between ∩ ◦ (id⊗ SQ) and SQ ◦ ∩ ◦ (UQ ⊗ id).

One can actually replace j(Ξ) by j̃(Ξ) := det
(

Ξ
eΞ/2−e−Ξ/2

)
because tr(Ξ) acts as a derivation of the

whole structure.

4.1.2. Application: (co)homological Duflo isomorphism

We consider a Lie algebra g which is dualizable as an object of C and recall the definition of the (mod-
ified) Duflo element

d := det
(ead/2 − e−ad/2

ad

)
∈ Ŝ(g∗)g .

We also remind the reader that the completed algebra Ŝ(g∗) naturally acts on S(g):

ξk · xn :=
n!

(n− k)!
ξ(x)kxn−k (x ∈ g , ξ ∈ g∗ , k > 0 , n > 0) .

The following (proved in [24, 32]) is a cohomological extension of the original Duflo isomorphism [13].

Theorem 4.1.5 (Cohomological Duflo isomorphism). The morphism of g-modules

D := sym ◦ (d1/2·) : S(g) −→ U(g)

induces an algebra isomorphism
H•(g, S(g)) −̃→H•(g,U(g))

at the level of Chevalley-Eilenberg cohomology.
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We now observe that, if A is an algebra on which g acts by derivations, the Chevalley–Eilenberg Lie
algebra homology H−•(g, A) is equipped with an H•(g, A)-module structure in the following way: on the
level of the complexes, for any Chevalley-Eilenberg cochain α = ξ⊗a, resp. chain c = x⊗a ′, one defines

α(c) = ιξ(x)⊗ aa
′ ,

where ι denotes the usual contraction operation3. In what follows we will prove the following homological
version of the Duflo isomorphism.

Theorem 4.1.6 (Homological Duflo isomorphism). The morphism D induces an isomorphism of H•(g, S(g)
)
-

modules
H−•

(
g, S(g)

)
−̃→H−•

(
g,U(g)

)

at the level of Chevalley-Eilenberg homology.

Considering the degree zero (co)homology, one obtains

Corollary 4.1.7. D restricts to an isomorphism of algebras S(g)g −̃→U(g)g = Z
(
U(g)

)
on invariants,

and induces an isomorphism of S(g)g-modules S(g)g −̃→U(g)g = A
(
U(g)

)
on coinvariants.

Here Z(B) denotes the center of an algebra B, and A(B) = B/[B,B].

Proof of Theorem 4.1.5

In this Subsection, which is extracted from [CR2, §7.2.1], we follow closely [CR3, §5.2].

Let us consider V := g[1]. Then the graded algebra A of functions on V is A = ∧•(g∗), and hence the
Chevalley-Eilenberg differential dC defines a cohomological vector field Q on V.
On the one hand, T•poly(V) is naturally isomorphic to ∧•(g∗)⊗ S(g) and, under this identification, Q·

precisely gives the coboundary operator dC of the Chevalley-Eilenberg cochain complex of g with values
in S(g). On the other hand, (D•

poly(V), dH +Q·) identifies with the complex CC•(A, dC) of Hochschild
cochains of the dg-algebra (A, dC) with values in itself.

Now we observe that we have a quasi-isomorphism of dg-algebras

ℓ : (D•
poly(V), dH +Q·) −→ C•(g,U(g)

)
,

where C•(g,U(g)
)
denotes the Chevalley-Eilenberg cochain complex of g with values in U(g), given by

the following composition of maps

D•
poly(V) = ∧•(g∗)⊗ T

(
∧• (g)

)
։ ∧•(g∗)⊗ T(g) ։ ∧•(g∗)⊗U(g) = C•(g,U(g)

)
.

This is a manifestation of the fact that the quadratic dg-algebra
(
∧• (g∗), dC

)
and the quadratic-linear

algebra U(g) are related by a Koszul-type duality (see e.g. [33]). Moreover, the following diagram of
quasi-isomorphisms of complexes commutes :

(
T•poly(V), Q ·

)
HKR //

(
D•

poly(V), dH +Q ·
)

ℓ

��
C•(g, S(g))

sym // C•(g,U(g)) ,

Finally recall the following

Lemma 4.1.8 ([CR3], Lemma 5.6). The graded endomorphism-valued 1-form Ξ identifies with the (A-
linear extension of) the adjoint action of g on g[1].

3In fact, this defines an actual dg-module structure on the level of the complexes.
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If we write ad for the usual adjoint action (on g) then

j̃(Ξ) := det

√
Ξ

eΞ/2 − e−Ξ/2
= d1/2 ,

and we have the following commutative diagram of algebra isomorphisms

H•
(
T•poly(V), Q ·

) UQ // H•
(
D•

poly(V), dH +Q ·
)

ℓ

��
H•(g, S(g))

D // H•(g,U(g)) .

Hence Theorem 4.1.5 follows from Theorem 4.1.3.

Proof of Theorem 4.1.6

This Subsection is extracted from [CR2, §7.2.2].

First of all, we observe that Ω•(V) is naturally isomorphic to ∧•(g∗) ⊗ S(g∗) and that, under this
identification, Q· precisely gives the coboundary operator of the Chevalley-Eilenberg cochain complex of
g with values in S(g∗).

Then,
(
C

poly
• (V), bH+Q·

)
identifies with the complex CC−•(A, dC) of Hochschild chains (with reversed

grading) of the dg-algebra (A, dC) with values in itself.
We now want to apply Theorem 4.1.4 to the present situation. For SQ = j(Ξ) ∧ HKR to make sense

and be well-defined we need a slight modification: one has to consider completed versions Ω̂•(V) =

∧•(g∗)⊗ Ŝ(g∗) and Ĉpoly
−• (V) = ∧•(g∗)⊗ T̂

(
∧• (g∗)

)
of the spaces involved.

Now, we recall that we have a quasi-isomorphism of complexes

λ : C•(g,U(g)∗) −→
(
Ĉ

poly
−• (V), b+Q ·

)

given by the following composition of maps

C•(g,U(g)∗
)
= ∧•(g∗)⊗U(g)∗ →֒ ∧•(g∗)⊗ T(g)∗ = ∧•(g∗)⊗ T̂(g∗) →֒ ∧•(g∗)⊗ T̂

(
∧• (g∗)

)
,

which induces an isomorphism of H•(g,U(g)
)
-modules on cohomology.

Moreover, the following diagram of quasi-isomorphisms of complexes commutes :
(
Ω̂(V), Q·

) (
Ĉ

poly
−• (V), b+Q·

)
HKRoo

C•(g, Ŝ(g∗)) C•(g,U(g)∗) ,

λ

OO

sym∗

oo

We observe that, for any g-module M, the Chevalley-Eilenberg cochain complex C•(g,M∗) is naturally
isomorphic to the dual of the Chevalley-Eilenberg chain complex C−•(g,M) with reversed grading.
Moreover, a direct computation shows that

Lemma 4.1.9. For any ω ∈ Ω̂•(V) = C•(g, Ŝ(g∗)
)
and any c ∈ C−•(g, S(g)),

i) 〈j(Ξ)∧ω, c〉 = 〈ω, j(Ξ) · c〉;
ii) if α ∈ T•poly(V) = C

•(g, S(g)) then 〈ιαω, c〉 = 〈ω,α(c)〉.

Therefore the transpose of SQ induces an isomorphism of H•(g, S(g))-modules

H−•(g, S(g)) −→ H−•(g,U(g))

which is precisely D, whence the proof of Theorem 4.1.6.

Remark 4.1.10. As we already mentioned, there is a duality between the dg-algebra (A, dC) and the
quadratic-linear algebra U(g): in [CR1], we give a more direct proof of Corollary 4.1.7 in the same
spirit of Kontsevich’s approach to the original Duflo isomorphism [24], which does not make use of the
aforementioned duality.
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4.2. Căldăraru’s conjecture

In this Section we re-formulate Căldăraru’s conjecture [7] in the Lie algebroid setting. We refer to the
Appendix, from which we borrow the notation, for some recollection about Lie algebroids. Notice that
all constructions from the Appendix sheafify easily.

4.2.1. Hochschild (co)homology for Lie algebroids

Let X be a topological space and (R,L) a sheaf of Lie algebroid on X such that L is locally free of finite
rank d as an R-module. The counit JL → R endows R with the structure of a JL-module, and following
[CRVdB2] we define the Hochschild (co)homology of L as follows:

HH•
L := Ext•JL(R,R) and HHL

−• := Extd+•
JL

(
∧d

R (L),R
)
∼= TorJL−•(R,R)

Example 4.2.1. Let X be a smooth algebraic variety of dimension d, R = OX and L = TX. One can
show (see [CRVdB2, Proposition 6.1]) that

(
HH•

L,HH
L
−•

)
and

(
HH•

X,HH
X
−•

)

are isomorphic as pairs (algebra,module)4.

We now define explicit complexes computing the Hochschild (co)homology of a Lie algebroid. It goes
back to [5] and was proven to compute HH•

L in [CRVdB2].
Recall that U(L) is an R-coalgebra. We then define D•

poly,L as T•
R

(
U(L)

)
equipped with the usual

Cartier-Hochschild differential: on degree n cochains it is defined as

dH = 1⊗ id+

n∑

k=1

(−)kid⊗(k−1) ⊗ ∆⊗ id⊗n−k .

One has an obvious algebra structure given by concatenation (there is actually a natural B∞-structure
on D•

poly,L, see e.g. [CVdB2, Section 8]).

The definition of the Hochschild chains Cpoly,L
−• is a bit more involved. Roughly speaking it is defined

as the subcomplex in the relative Hochschild chain complex of JL w.r.t. R consisting of cochains that are
invariant under the Grothendieck connection (we refer to [6, CRVdB1] for the details). It is naturally
a module over the Hochschild cochain complex (it actually even carries two B∞-module structures, see
[CRVdB1, Appendix B] and [CR2, Section 2] for more details).

Example 4.2.2. If X = pt, R = OV and L = XV (borrowing the notation from Section 4.1) then
(Dpoly,L, C

poly,L) is isomorphic to
(
Dpoly(V), C

poly(V)
)
, with all algebraic structures preserved.

Theorem 4.2.3 ([CRVdB2], Theorem 13.1). There is a natural isomorphism between

(
HH•

L,HH
L
−•

)
and

(
H•(X,Dpoly,L

)
,H•(X,Cpoly,L

))

as pairs (algebra,module), where H•(X,−) = R•Γ(X,−) denotes the hypercohomology functor.

Remark 4.2.4. Notice that this is actually an isomorphism of calculi. On the right side the above
mentionned B∞-structures induce a calculus structure on cohomology, while on the left side the calculus
structure appears in a way very similar to what we have in Part I. Namely, the pair

(
HH•

L,R
)
inherits

the structure of an H−•(E1,1,k)-algebra because HH•
L appears as the endomorphisms of the unit R in

the monoidal category JL-mod. The calculus structure comes after passing from R to HHL
−•.

4They are actually isomorphic as calculi (see Remark 4.2.4).
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4.2.2. Atiyah classes and the Todd genus

Recall that JL carries two commuting L-module structures (see Appendix) which we will distinguish
following [CVdB1] by the subscript i = 1, 2. In particular JL and all its quotients JnL by (n + 1)-th
powers of the augmentation ideal carry an R-bimodule structure. We have an exact sequence of R-
bimodules

0→ L∗ → J1L → R→ 0 ,

where the R-bimodule structures on L∗ and L are symmetric. Applying − ⊗
R
E for a given R-module E

one gets an exact sequence
0→ L∗ ⊗R E→ J1L(E)→ E→ 0 ,

the class of which we denote atL(E) ∈ Ext1R(E,L
∗ ⊗R E). We call it the Atiyah class of E and derive

from it the so-called scalar Atiyah classes: tr
(
∧i
(
atL(E)

))
∈ Hi

(
X,∧i

R(L
∗)
)
.

We finally define the Todd genus of L as

tdL := det

(
atL(L)

1− e−atL(L)

)
∈
⊕

i≥0

Hi
(
X,∧i

R(L
∗)
)
.

As usual we have Hochschild-Kostant-Rosenberg quasi-isomorphisms

HKR : T•poly,L := ∧•
R(L) −→ D•

poly,L and HKR∗ : C
poly,L
−• −→ ∧−•

R (L∗) =: ΩL
−• ,

which do not induce morphisms of algebras and their modules on hypercohomology.

Theorem 4.2.5 (Căldăraru’s conjecture for Lie algebroids). We have an isomorphism of algebras

HKR ◦ ι√tdL
: H
(
X, Tpoly,L

)
−̃→HHL

together with an isomorphism of H
(
X, Tpoly,L

)
-modules

(
√
tdL ∧−) ◦HKR∗ : HHL−̃→H(X,ΩL) .

The proof of this statement, which was conjectured by Căldăraru [7] in the case of smooth algebraic
varieties, can be found in [CRVdB1]. We roughly describe it in the next Section, but before that we give
a “reason” for this result to hold.

4.2.3. Căldăraru’s conjecture as an instance of the Duflo isomorphism

For simplicity, we only discuss the cohomological part of the statement.
Recall that in order to compute ExtJL(R,R) one can first consider a resolution R̃ of R by locally free

JL-modules and then get ExtJL(R,R) = H
(
X,Homdg

JL
(R̃, R̃)

)
. This is actually how the proof of Theorem

4.2.3 goes, elaborating on the so-called Bar resolution.
It happens that we can futher require the resolution R̃ to be, as a graded algebra, a free commutative

JL-algebra. In the specific case we are dealing with, one has the Koszul resolution at hands: we define

R̃ :=
(
SR(L

∗[1])⊗
R
JL, dK

)
,

where dK(ξ⊗ 1) = (1⊗ ξ) for any ξ ∈ L∗ ⊂ JL. The pair
(
R̃,DerdgJL (R̃)

)
is naturally a dg-Lie algebroid

in JL-mod, with universal envelopping algebra being Homdg
JL

(R̃, R̃).

Moreover, on the level of the derived category D(JL-mod), DerdgJL (R̃) is isomorphic to L[−1], its Lie

bracket becomes R̃-linear, and it coincides with the Atiyah class5 atL(L). The PBW isomorphism for
the R-Lie algebra g := L[−1] in D(JL-mod) then turns out to give the HKR one:

Tpoly,L ∼= SR
(
L[−1]

)
−̃→U

(
L[−1]

)
∼= ExtJL(R,R) .

5More preciely, atL(L) corresponds to the adjoint action of L[−1] on L. Let us further recall that it is Kapranov [21] who
first noticed that the Atiyah class really defines a Lie structure.
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Let us now see how the Duflo isomomorphism translates in this context, even tough (and this is a
crucial point) we don’t have a proof of it that works for Lie algebras in triangulated categories. First of
all we have to take invariants: these are morphisms from the trivial representation, which in this case is
R. If moreover the g-action on a complex of R-modules E comes from the own Atiyah class of E, then
morphisms from R to E in D(JL-mod) are automatically g-equivariant and Eg = H(X,E). Therefore
S(g)g = H(X, Tpoly,L) and U(g)g = ExtJL(R,R).

The conjecture of Căldăraru then follows formally from the Duflo isomorphism for g = L[−1]. The
reason why it is the inverse series that appears in Căldăraru’s conjecture finds its explanation in the fact
that conjugating with the suspension sends the determinant to its inverse6.

4.3. A proof of Călăraru’s conjecture via globalization

In this Section we sketch a proof of Căldăraru’s conjecture [7, Conjecture 5.2] on the isomorphism
between the Hochschild and harmonic structures of a smooth algebraic variety. It is mainly extracted
from [CVdB1, CRVdB1] and is based on globalization techniques that we shortly summarize.

The philosophy of formal geometry

The aim of this Section, which is extracted from [CRVdB1, §4] (see also [CVdB1]), is to discuss Fedosov
resolutions [11]. These are needed to globalize some local results. To help the reader understand our
algebraic setup we give some motivation for the definitions in the subsequent sections. For the sake of
exposition we assume in this introduction that X is some kind of d-dimensional smooth space.
One of the applications of formal geometry is the globalization of local coordinate dependent construc-

tions. For example using the Darboux Lemma it is trivial to quantize a symplectic manifold locally but
such local quantizations are coordinate dependent and they do not globalize easily. The same is true
for most of the formality morphisms of Part I, as well as for the Duflo-Kontsevich morphisms appearing
previously in this Chapter.
The idea is then to replace X by a much larger infinite dimensional space Xcoord → X that parametrizes

formal local coordinate systems on X. For example if X is an algebraic variety then the fiber at x ∈ X in
Xcoord is given by the k-algebra isomorphisms ÔX,x → k[[t1, . . . , td]]. An equivalent way of saying this is

that Xcoord universally trivializes the jet bundle (ÔX,x)x∈X over X.
Local constructions can be tautologically globalized to Xcoord and this should be followed by some type

of descent for Xcoord/X. A general procedure to do this is to resolve OX by a De Rham-type complex
over OXcoord but this does not really work as the fibers of Xcoord → X are not contractible.

However in the aforementioned examples the local constructions are all compatible with linear coor-
dinate changes. So if we define Xaff = Xcoord/Gld then the constructions descend to Xaff and as the

fibers of Xaff → X are contractible we can descend further to X. Actually, any X̃→ X satisfying the same
properties as Xaff would work as well (Xaff being universal among these).

Setup

We work over a general locally free Lie algebroid L rather than the tangent sheaf. This allows to
uniformally treat the differentiable, holomorphic and algebraic cases, as well as other contexts (like e.g.
manifolds with boundary).
As a general principle we work on the presheaf level, performing sheafification only as the very last

step of the constructions. This means that we may throughout replace all spaces by rings and locally
free sheaves may be treated as free modules.
We fix once and for all a Lie algebroid (R, L) such that L ∼= R ⊗ V as an R-module, for a dualizable

object V.

6See previous footnote.
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4.3.1. Fedosov resolutions

Recall that JL carries two commuting L-module structures (see Appendix) which we will distinguish
following [CVdB1] by the subscript i = 1, 2. In particular the second action provides us with a mor-
phism of Lie algebroids (R2, L2) →

(
JL,DerR1

(JL)
)
, which happens to extend to an isomorphism of Lie

algebroids
(
JL, JL ⊗R2

L2
)
→
(
JL,DerR1

(JL)
)
7. This implies in particular that these two Lie algebroids

have isomorphic Hochschild and harmonic structures.

Assume now that we have a dg-R-algebra R̃ such that ΩR → Ω
R̃
is a quasi-isomorphism. Then we

define A := Ω
R̃
⊗̂ΩR

C•(L) and consider the dg-C̃-algebra

B := Ω
R̃
⊗̂ΩR

C•(L1, JL) .

It is isomorphic, as a graded algebra, to A⊗̂RJL, but its differential is a deformation of dA ⊗ 1.

Lemma 4.3.1. The algebra morphism R2 → C•(L1, JL) is a quasi-isomorphism. Hence so is R2 → B.

Moreover DerA(B) = ΩR̃
⊗̂ΩR

C•(L1,DerR1
(JL)

)
and one similarly has:

Lemma 4.3.2. The Lie algebroid morphism L2 → DerA(B) is a quasi-isomorphism.

The main consequence of this is that we have the following results from [CVdB1, §4.3] and [CRVdB1,

§4.4-4.6] (which are stated for R̃ = Raff,L being the affine coordinate ring of L):

Theorem 4.3.3 ([CRVdB1], Theorem 4.5). There is a quasi-isomorphism of calculi as in the following
commutative diagram8:

Tpoly,L = Tpoly,L2

� � //

��
�O
�O
�O

Tpoly,DerA(B)

�� �O
�O
�O

C−•(L) = C−•(L2)
� � // C−•(DerA(B)

)
= Ω−•

B/A
,

the vertical arrows denoting the contraction and Lie derivative.

Theorem 4.3.4 ([CRVdB1], Theorem 4.7). There is a quasi-isomorphism of calculi up to homotopy as
in the following commutative diagram:

Dpoly,L = Dpoly,L2

� � //

��
�O
�O

Dpoly,DerA(B)

��
�O
�O

Cpoly,L = Cpoly,L2
� � // Cpoly,DerA(B)

the vertical arrows denoting the contraction and Lie derivative.

Remark 4.3.5. These results are only stated for the precalculus structures in [CRVdB1], but the additional
compatibility is immediate from the way we presented things.

4.3.2. The Maurer-Cartan form

Observe that Xaff → X does not only have contractible fibers, but also provides a parameter space for

the deformation to the normal cône of the diagonal: Xaff ×
X
X̂× X ∼= Xaff ×

X
T̂X.

This motivates the following additional assumption we make on R̃ from now: there is an isomorphism
of R̃-algebras t : R̃⊗R JL−̃→R̃⊗R ŜR(L

∗). There is a universal solution Raff,L to this problem that has been

7Notice that the morphism JL → JL involved is NOT the identity.
8ΩA, for a topological k-algebra A, denotes the continuous De Rham complex. A similar convention holds for an extension

of topological algebras B/A.
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constructed in [CVdB1] (see also [41] for the case L = Der(R)). It automatically satisfies the requirement
that ΩR → ΩRaff,L is a quasi-isomorphism.
The isomorphism t extends to an isomorphism B−̃→A⊗̂RŜR(L

∗) and hence provides us with a derivation

ω := t ◦ dB ◦ t−1 − dA ⊗ 1

which satisfies the Maurer-Cartan equation [dA ⊗ 1,ω] + 1
2
[ω,ω] = 0. Any R-linear isomorphism

s : L→̃R⊗ V induces an A-linear isomorphism A⊗̂RŜR(L
∗) ∼= A⊗̂Ŝ(V∗) which allows one to view ω as a

Maurer-Cartan elementωs in A⊗̂Der
(
Ŝ(V∗)

)
. As usual, the differenceωs−ωs ′ lies in A⊗̂Derlin

(
Ŝ(V∗)

)
,

where Derlin
(
Ŝ(V∗)

)
= V∗ ⊗ V is the Lie subalgebra of linear vector fields.

This allows to lift any universal construction/calculation9 done in local coordinates on V and which
is invariant by linear change of these to L.

The Maurer-Cartan form represents the Atiyah class

From what we have done in Subsection 4.3.1, we get that the following two exact sequences represent
the same element in Ext1R(L, L

∗ ⊗R L):

0→ L∗ ⊗R L→ J1L(L)→ L→ 0 and

0→ Ω1
B/A ⊗B DerA(B)→ J1DerA(B)

(
DerA(B)

)
→ DerA(B)→ 0 . (4.1)

Notice that, using an isomorphism s : B−̃→A⊗̂Ŝ(V∗), (4.1) can be obtained by applying A⊗̂− to

0→ Ω1
V ⊗OV

XV → J1XV
(XV )→ XV → 0 ,

and then adding ωs to the differential. This very last sequence splits thanks to the canonical connection
∇V : XV → Ω1

V ⊗OV
XV on the affine space V. Therefore the class of (4.1) is represented by [∇V ,ωs·].

To conclude, observe that Theorem 4.2.5 follows from the above discussion combined with Theorems
4.1.3 and 4.1.4 applied to a = A, together with Theorems 4.3.3 and 4.3.4.

Sheafification

All our constructions are functorial w.r.t. Lie algebroid morphisms (R, L) → (R ′, L ′) that are such that
the induced map R ′ ⊗R L→ L ′ is an isomorphism of R ′-modules. See [CRVdB1][§5.6].

The sheaf L being locally free we can replace X with the subsite of Open(X) consting of these open
subsets U over which L|U is a free R|U-module. This does not change the category of sheaves. For such
U ⊂ U ′ one gets that the natural map R(U ′)⊗R(U) L(U)→ L(U ′) is an isomorphism. We are done.

9By “universal” we mean that it only makes use of the natural structures on Hochschild (co)chains, polyvectors and
differential forms.
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5. Lie theory of closed embeddings

In [2] Arinkin and Căldăraru gave a necessary and sufficient condition for the Ext-algebra of a closed sub-
variety X of an algebraic variety Y to be isomorphic, as an object of the derived category of X, to S(N[−1]),
where N is the normal bundle of X into Y ; the condition is that N can be lifted to the first infinitesimal
neighbourhood X(1). This is equivalent to the vanishing of a certain class in Ext2

OX
(N⊗2, N). This result has

been translated into Lie theory in [CCT1]: for an inclusion of Lie algebras h ⊂ g, we gave a necessary and
sufficient condition for U(g)/U(g)h to be isomorphic, as an h-module, to S(g/h) ; the condition is that the
quotient module n = g/h extends to a Lie algebra h(1) “sitting in between” h and g. Similarly, this condition
is equivalent to the vanishing of a certain class in Ext1h(n

⊗2, n).
It is Kapranov who observed in [21] that the shifted tangent sheaf TX[−1] of an algebraic variety X is a Lie

algebra object in the derived category of X, with Lie bracket being given by the Atiyah class of TX[−1]. More-
over, any object of the derived category becomes a representation of this Lie algebra via its own Atiyah class.
In the case of a closed embedding i : X →֒ Y we then get an inclusion of Lie algebras objects TX[−1] ⊂ i∗TY [−1],
so that the main result of [2] can be deduced, in principle, from a version of the main result of [CCT1] that
would hold in a triangulated category. We refer to the introduction of [CCT1] and to [C1] for more details
on this striking analogy.

This chapter describes a tiny part of a more general project which aims at building a dictionnary between
Lie theory and algebraic geometry. The first Section presents a generalization to Lie algebroids of the main
results in [CCT1], while in the second Section we study a Lie algebroid associated to a closed embedding.

5.1. PBW for inclusions of Lie algebroids

The material presented in this Section is mainly extracted from [C2], to which we refer for all proofs and
technicalities.

We let X be a topological space equipped with a sheaf of algebras R, and A ⊂ L be an inclusion of
sheaves of Lie algebroids over R (we refer to Section A.1 for standard Definitions). The R-module L/A

turns out to be naturally equipped with an action of A (see §5.1.1), also-known-as a flat A-connection.
In [8] Chen, Stiénon and Xu introduce a very interesting class αE ∈ Ext1A

(
(L/A) ⊗R E,E

)
, for any

A-module E, which is the obstruction to the existence of a lift of the flat A-connection on E to a possibly
non-flat L-connection. They define this class in geometric terms, while we provide below a purely
algebraic description of αE (see §5.1.1) which makes sense in a wider context.

We also introduce a new Lie algebroid A(1), called the first infinitesimal neighbourhood Lie algebroid,
which fits in between A and L in the sense that we have a sequence of Lie algebroid morphisms A −→
A(1) −→ L.

Theorem 5.1.1. Assume that the R-linear epimorphism SR(L) → gr
(
U(L)

)
is an isomorphism and

that the epimorphism TR(L/A)→ SR(L/A) splits within A-modules. Then the following statements are
equivalent:
(1) The class αL/A vanishes.

(2) The A-module structure on L/A lifts to an A(1)-module structure.
(3) U(L)/U(L)A is isomorphic, as a filtered A-module, to SR(L/A).

We can also prove a more general version of the above result for A-modules other than 1A:

Theorem 5.1.2. Let E be an A-module which is faithful1. Then, under the very same assumptions as
in the previous Theorem, the following statements are equivalent:
(1) The classes αL/A and αE vanish.

(2) The A-module structures on L/A and E lift to A(1)-module structures.
(3) U(L) ⊗

U(A)
E is isomorphic, as a filtered A-module, to SR(L/A)⊗R E.

1Here we mean that E is faithful as an R-module, which ensures that − ⊗R E : A-mod → A-mod is faithful (because the
forgetful functor A-mod → R-mod is) and thus reflects exact sequences.

34



5.1.1. Structures associated to inclusions of Lie algebroids

Let R be a commutative algebra and i : A →֒ L an inclusion of Lie algebroids over R. All constructions
and results below sheafify without problem.

The A-module L/A

It is well-known that A does not necessarily act on itself (meaning that A is not an A-module in any
natural way). In this paragraph we consider the quotient R-module L/A and define an A-action on it in
the following way: for any a ∈ A and any l ∈ L, we define a · (l + A) := [a, l] + A (when there is no
ambiguity we omit the inclusion symbol i from the notation).

From now and in the rest of the Section we make the following assumption:

The map L −→ U(L) is a monomorphism. (Ø)

The extension class α (inspired by Chen-Stiénon-Xu)

Let E be an A-module. We define a class αE ∈ Ext1A
(
(L/A)⊗RE, E

)
, which generalizes the one introduced

in [CCT1] for Lie algebras, via the following short exact sequence of A-modules:

0 −→ E −→
(
U(L) ⊗

U(A)
E

)≤1

−→ L/A⊗R E −→ 0 . (5.1)

We have to explain why the middle term in (5.1) is an A-module, which is a priori not guaranteed.
Namely, even though U(L) is an A-module (via left multiplication) its filtered pieces U(L)≤k are not
(because AU(L)≤k ⊂ U(L)≤k+1). Nevertheless, U(L) ⊗

U(A)
E turns out to be a filtered A-module.

We set α := αL/A.

Relation to Atiyah classes as they are defined by Chen-Stiénon-Xu in [8]

We consider the filtered subspace JL/A(E) of JL(E) consisting of those maps φ : U(L) → E which are
A-linear: for Q ∈ U(A) and P ∈ U(L),

φ(QP) = Q · φ(P) . (5.2)

According to Remark A.1.3 there is a residual L-module structure on JL/A(E): for Q ∈ U(L), we have

(Q ∗φ)(P) = φ(PQ). Even though the successive quotients JnL (E) := HomR

(
U(L)≤n, E

)
of JL(E) are not

U(L)-bimodules, it turns out that their subspaces JnL/A(E) inherits an A-action from the above residual
L-action. We then have the following exact sequence of A-modules:

0 −→ HomR(L/A, E) −→ J1L/A(E) −→ E −→ 0 . (5.3)

This determines a class α̃E ∈ Ext1A
(
E,HomR(A,E)

)
, which has been first defined in a differential geo-

metric context by Chen-Stiénon-Xu in [8, § 2.5.1].

Proposition 5.1.3. The images of the classes αE and α̃E coincide in

HomD(A)

(
(L/A)

L

⊗R E, E[1]
)
∼= HomD(A)

(
E,RHomR(L/A, E)[1]

)
,

where D(A) denotes the bounded derived category of A-modules.

The first infinitesimal neighbourhood Lie algebroid A(1)

Being a Lie algebroid over R, L is in particular an anchored R-module. We can therefore consider the
free Lie algebroid FR(L) over R generated by L. Let us then consider the filtered quotient A(1) of FR(L)
by the ideal generated by2

[a, l]FR(L) − [a, l]L, a ∈ A, l ∈ L .

2Observe that, contrary to what is suggested by the notation, A(1) does not only depend on A but also on L.
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Observe that it is a well-defined (Lie algebroid) ideal in FR(L) as the anchor map of FR(L) coincides by
definition with the one of L on generators. We call A(1) the first infinitesimal neighbourhood of A (see
[CCT1], where the geometric motivation behind such a denomination is given). We denote by j the Lie
algebroid inclusion of A into A(1). One can prove that, for an A-module E, the classes αE and α̃E both
give the obstruction to lift E to an A(1)-module:

Proposition 5.1.4. Let E be an A-module. Then the following statements are equivalent:
(1) There exists an A(1)-module E(1) such that j∗

(
E(1)

)
= E.

(2) αE = 0.
(3) α̃E = 0.

5.1.2. Sketch of the proof of Theorem 5.1.1

Our goal is to understand the filtered A-module

i∗i!(1A) := U(L) ⊗
U(A)

1A = U(L)/U(L)A .

We write Gk := (i∗i!(1A)
)≤k

, and notice that this filtration always splits at 0-th order.

PBW for the inclusion into the first infinitesimal neighbourhood

In this § we sketch a proof of a version of the main Theorem for the inclusion j : A →֒ A(1). It follows very
much and hopefully simplifies the one of Darij Grinberg [18] for Lie algebras, who was himself inspired
by [CCT1]. Our goal is to understand filtered the A-module

j∗j!(1A) := U
(
A(1)

)
⊗

U(A)
1A = U

(
A(1)

)
/U
(
A(1)

)
A ,

where the filtration comes from the one on A(1) (see Remark A.1.5). It is worth noticing that the A-
module structure on j∗j!(1A) is compatible with the induced filtration Fk := Fk

(
j∗j!(1A)

)
, which always

splits at 0-th order. We use the notation Fk(−) when we deal with filtrations induced by the one on the
free Lie algebroids, as opposed to (−)≤k which we keep for the ones induced by the “constant” filtration
(see Appendix). According to § A.1.4 the associated graded algebra of the filtered R-algebra U

(
FR(L)

)

is the tensor R-algebra TR(L). The filtered R-linear surjection ξ : U
(
FR(L)

)
→ j∗j!(1A) therefore induces

a graded R-linear map gr(ξ) : TR(L) → gr
(
j∗j!(1A)

)
. We shall also use the graded R-algebra surjection

π : TR(L)→ TR(L/A).

Theorem 5.1.5. The class α = αL/A vanishes if and only if there exists an isomorphism of filtered
A-modules ϕ : j∗j!(1A) −→ TR(L/A) such that gr(ϕ ◦ ξ) = π. Moreover, when this happens one can
choose ϕ so that it is A(1)-linear.

Very sketchy proof. For the “if” part one just has to meditate for a few seconds on the following com-
mutative diagram of A-modules, in which all rows are exact:

0 // L/A // F2/F0 // F2/F1 // 0

0 // L/A // F1
(

U
(

A(1)
)

⊗
U(A)

(L/A)
)

//

��

OO

(L/A)⊗R (L/A) //

OO

0

0 // L/A //
(

U(L) ⊗
U(A)

(L/A)
)≤1 // (L/A)⊗R (L/A) // 0

(5.4)

and conclude that the filtration on j∗j!(1A) splits at 1-st order if and only if α = 0.
For the “only if” part we now assume that α = 0, which means that the A-action on L/A can be lifted

to an A(1)-action. We therefore obtain a graded A(1)-module structure on TR(L/A). We use the notation
· for this action. For any l ∈ L and any P ∈ TR(L/A) we now define l • P := l · P+ l̄⊗ P, l̄ being the class
of l in L/A.
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Lemma 5.1.6. The operation • defines a filtered FR(L)-module structure on TR(L/A) such that:
(i) It actually descends to an A(1)-module structure.
(ii) Its restriction to A is the original A-module structure on TR(L/A).

We therefore obtain a filtered morphism of A(1)-modules

ϕ : U
(
A(1)

)
/U
(
A(1)

)
A −→ TR(L/A) , P 7−→ P • 1 ,

which can be proven to be an isomorphism.

End of the proof

Let us start with the following:

Proposition 5.1.7. The filtration on i∗i!(1A) splits at 1-st order if and only if α = 0.

Proof. The Proposition again follows from some diagramatic meditation (and again, rows are exact):

0 // L/A //
(
U(L) ⊗

U(A)
(L/A)

)≤1
//

Ψ

��

(L/A)⊗R (L/A) //

��

0

0 // G1/G0 // G2/G0 // G2/G1 // 0

Here ψ : U(L) ⊗
U(A)

(L/A) −→ U+(L)/U+(L)A is an A-module morphism which increases the filtration

degree by one, where U+(L) = ker(ǫ) ∼= U(L)/R is equipped with the induced filtration.

It remains to prove that, under the assumptions of Theorem 5.1.1, if the filtration on i∗i!(1A) splits
at 1-st order then it splits, which can be done (and has been done in [C2]) by using the splitting
SR(L/A)→ TR(L/A) together with Theorem 5.1.5.

Remark 5.1.8. The assumption (Ø) is a priori weaker than asking that SR(L)→ gr
(
U(L)

)
is an isomor-

phism. But I would be tempted to conjecture that they are actually equivalent.

5.1.3. Sketch of proof of Theorem 5.1.2

Let now E be an A-module, and consider the following two A-modules:

j∗j!(E) := U
(
A(1)

)
⊗

U(A)
E and i∗i!(E) := U(L) ⊗

U(A)
E .

We denote by FnE and Gn
E the filtration pieces on those two filtered A-modules3. One sees that

F0E = G0
E = E , F1E = G1

E =
(
U(L) ⊗

U(A)
E
)≤1

, and F1E/F
0
E = G1

E/G
0
E = (L/A)⊗R E .

Therefore, if the filtration on either j∗j!(E) or i∗i!(E) splits then αE = 0. We start with the following
generalization of Theorem 5.1.5:

Theorem 5.1.9. Assume that E is faithful. Then both classes α and αE vanish if and only if there exists
an isomorphism filtered A-modules ϕE : j∗j!(E) −→ TR(L/A)⊗R E such that gr

(
ϕE ◦ ξE)

)
= πE.

Here ξE : U
(
FR(L)

)
⊗
R
E

ξ⊗idE−→ U
(
A(1)

)
⊗

U(A)
E and πE : TR(L)⊗R E

π⊗idE−→ TR(L/A)⊗R E.

3Even though the filtered pieces of U
(

A(1)
)

and U(L) are not A-modules, FnE and Gn
E are. Namely, for any a ∈ A and any

P ⊗ e in FnE (resp. Gn
E), a(P ⊗ e) = aP ⊗ e = ([a, P] − Pa)⊗ e = [a, P]⊗ e − P ⊗ ae ∈ FnE (resp. Gn

E).
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Sketch of Proof. From the above we can assume that αE = 0, which means that the A-module E lifts to
an A(1)-module E(1). This allows one to construct a surjective filtered morphism of A(1)-modules

ηE : j!(E) −→ j!(1A)⊗R E
(1) ; P ⊗ e 7−→ P · (1⊗ e) ,

(
P ∈ U

(
A(1)

)
and e ∈ E

)
.

It is well-defined: for any a ∈ A, (Pa) · (1⊗ e) = P · (a⊗ e+ 1⊗ ae) = P · (1⊗ ae).
We have the following commutative diagram of A-modules in which lines are exact:

0 // (L/A)⊗R E // F2E/F
0
E

//

����

F2E/F
1
E

//

����

0

0 // (L/A)⊗R E // (F2/F0)⊗R E // (F2/F1)⊗R E // 0

(5.5)

If the filtration (FnE)n≥0 splits (in A-mod) then so does the top line in the above diagram, and thus the
bottom line splits too (this is because the rightmost vertical arrow in (5.5) is surjective). Faithfulness of
E ensures that 0→ F1/F0 → F2/F0 → F2/F1 → 0 splits, which implies that α = 0.
Conversely, if we assume that α = 0 then by Theorem 5.1.5 we get a surjective morphism of filtered A-

modules ϕE := (ϕ⊗idE)◦j
∗ηE : j∗j!(E) −→ TR(L/A)⊗RE, which can be proven to be an isomorphism.

We refer to [C2] for the end of the proof of Theorem 5.1.2, which is quite similar to the one of Theorem
5.1.1.

5.2. The Lie algebroid of a closed embedding

In this Section, which is extracted from [CCT2], we assume that k is a field of characteristic zero.

5.2.1. A short review of the relative tangent complex

We collect some definitions and facts about dg-schemes after [9], to which we refer for more details. A
dg-k-scheme is a pair X = (X0,OX), where X0 is an ordinary k-scheme and OX is a sheaf of dg-algebras
on X0 which is non-positively graded and such that

1. O0
X = OX0

;
2. H−i(OX) is a quasi-coherent OX0

-modules for any i ≥ 0.

A dg-k-scheme X is said quasi-projective if it is of finite type and if X0 is quasi-projective.
A morphism f : X → Y of dg-k-schemes (the definition of which is obvious) is smooth if f0 is smooth

and O
♯
X is locally isomorphic to SOX0

(E)⊗OX0
f−1
0 O

♯
Y , where E is a finite dimensional negatively graded

vector bundle on X0. A dg-k-scheme is said smooth if so is the morphism X→ pt = Spec(k).
It is known (see [9, (2.7.6)]) that any morphism f : X → Y factors through a quasi-isomorphic closed

embedding j : X→ X̃ followed by a smooth morphism f̃ : X̃→ Y.

The relative tangent complex TX/Y of a morphism of quasi-projective dg-schemes f : X→ Y is defined as

j∗T
X̃/Y

, where j and X̃ are given by the above factorization. The restriction morphism T
X̃/Y
→ j∗j

∗T
X̃/Y

=

j∗TX/Y is a quasi-isomorphism.

For any sequence X
f

−→ Y
g

−→ Z one has a triangle

TX/Y −→ TX/Z −→ Lf∗TY/Z
+1
−→ (5.6)

Observe that the pair (O
X̃
, T

X̃/Y
) is naturally a dg-Lie algebroid in the category of dg-OY-modules. Our

main goal in this Section is to get a geometric interpretation of the natural objects associated with this
Lie algebroid: its Chevalley-Eilenberg complex, its universal envelopping algebra, and its jet algebra. In
particular we will argue that the jet algebra is the function algebra on the formal neighbourhood of the

identity section of the derived groupoid scheme X
R

×
Y
X. We will nevertheless focus on the case of a closed

embedding of ordinary smooth algebraic varieties.
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The case of a closed embedding of smooth algebraic varieties

Let i : X →֒ Y be a closed embedding of closed algebraic varieties, which we assume to be quasi-projective
to ensure existence of resolutions by locally free sheaves on Y. In this case X̃0 can be taken to be Y.
Comparing Comparing (5.6) in the case Z = ∗ with the normal bundle exact sequence

0 −→ TX −→ i∗TY −→ N −→ 0

one gets that TX/Y
∼= N[−1] in Db

coh(X). In particular, this shows that the pair (i∗OX, i∗N[−1]) is a Lie

algebroid object in Db
coh(Y) (which happends to be set-theoretically supported on X).

From now we will remain within this restrictive framework for simplicity (even though sone of the
results sill hold in general).

5.2.2. A Lie theoretic description of ExtOY
(i∗OX, i∗OX)

By the universal property of U(T
X̃/Y

) we get a morphism U(T
X̃/Y

) −→ HomOY
(O

X̃
,O

X̃
) of dg-algebras

in O
X̃
-bimodules over OY .

Remark 5.2.1. To be precise one should in principle consider π∗OX̃
, but in this case π∗ is a fairly innocent

functor, and π∗OX̃
is just O

X̃
itself with its OY-module structure.

Proposition 5.2.2. The above morphism U(T
X̃/Y

) −→ HomOY
(O

X̃
,O

X̃
) is a quasi-isomorphism. In

particular we have an isomorphism of algebras U(i∗N[−1])→ ExtOY
(i∗OX, i∗OX) in Db

coh(Y).

Main idea of the proof. In fact the map U(T
X̃/Y

) −→ HomOY
(O

X̃
,O

X̃
) exists for any morphism of dg-

schemes and actually gives an isomorphism from U(T
X̃/Y

) to the dg-algebra of relative differential oper-

ators DiffOY
(O

X̃
) ⊂ HomOY

(O
X̃
,O

X̃
). The only thing that is specific to closed embeddings is that this

inclusion is a quasi-isomorphism4.

Observe that U(i∗N[−1]) can be seen as an object of Db
coh(X×X), set-theoretically supported on the

diagonal. The above Proposition tells us that it is the kernel representing the functor i∗i! : D
b
coh(X)→

Db
coh(X). The monad structure on i∗i! coming form the product on U(i∗N[−1]) easily identifies with

the one coming from the projection formula i∗i!i
∗i! ⇒ i∗i!.

Geometric interpretation of the jet algebra and Hopf monads

We have a similar (and somehow dual) picture for the jet algebra.
Since T

X̃/Y
is a Lie algebroid of relative derivations, then its jet algebra JT

X̃/Y
is isomorphic to the

adic-completed tensor product O
X̃
⊗̂
OY

O
X̃
, where the adic completion is taken w.r.t. the kernel of the

multiplication map O
X̃

⊗
OY

O
X̃
→ O

X̃
. Notice that this is an isomorphism of cogroupoid objects. All this

is actually true for any morphism of dg-schemes X→ Y. What is specific to closed embeddings comes in
the following:

Proposition 5.2.3. The morphism O
X̃

⊗
OY

O
X̃
−→ O

X̃
⊗̂
OY

O
X̃
is a quasi-isomorphism.

This means that Ji∗N[−1], viewed as an object of Db
coh(X× X), is the kernel representing the functor

i∗i∗ : Db
coh(X) → Db

coh(X). Moreover, the cogroupoid structure on the jet algebra induces a Hopf
comonad structure on i∗i∗. It coincides with the one coming from the fact that i∗ is strong monoidal
and left adjoint to i∗.

We know from A.2 that the functor associated to the kernel U(i∗N[−1]) is left adjoint to the functor
associated to the kernel Ji∗N[−1], and thus inherits a Hopf monad structure.
We also know that i∗i! is also left adjoint to i∗i∗ and as such also inherits the structure of a Hopf

monad (determined by the fact that i∗ is strong monoidal and right adjoitn to i!).
All in all, this tells us that the bialgebroid U(i∗N[−1]) is the kernel representing the Hopf monad i∗i!.

4This follows from the following two facts: Exti
OY

(OX,OX) vanishes for i >> 0 and the filtration coincides with the

(cohomological) degree in cohomology.
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5.2.3. A Lie theoretic description of the formal neighbourhood

The Chevalley-Eilenbeg complex C(T
X̃/Y

) naturally identifies with the completed relative de Rahm com-

plex Ω̂
X̃/Y

.

Theorem 5.2.4. There is a quasi-isomorphisms of sheaves of complete dg-algebras on Y

φ : C(T
X̃/Y

) −→ ÔY ,

where ÔY is the adic-completion of OY along the ideal sheaf I = ker(OY → i∗OX) of X.

Short explanation for why this is true. First, the (non-central) dg-O
X̃
-algebra U(T

X̃/Y
) is Koszul dual to

the complete dg-O
X̃
-algebra C(T

X̃/Y
). Then, we have seen that in the case of a closed embedding the

morphism of non-central dg-O
X̃
-algebras U(T

X̃/Y
) −→ ExtOY

(O
X̃
,O

X̃
) is a quasi-isomorphism. Finally,

one can also show that the natural morphism Ext
ÔY

(O
X̃
,O

X̃
) −→ ExtOY

(O
X̃
,O

X̃
) is a quasi-isomorphism.

Explicit construction of φ. We now sketch an explicit construction of the quasi-isomorphism φ, following
[CCT2]. One first definse an O

♯

X̃
-linear map φ : Ω1

X̃♯/Y
[−1] −→ OY by the composition

Ω1

X̃♯/Y
[−1]

−ιQ
−→ O

♯

X̃
= SOY

(E)
ǫ
։ OY ,

where the last map is just the canonical OY-augmentation. One can then easily prove the following:

Lemma 5.2.5. φ has its image inside the ideal sheaf I.

By the universal property of symmetric algebras, the map φ induces a morphism of O♯

X̃
-algebras

Ω∗
X̃♯/Y

= S
O

♯

X̃

(
Ω1

X̃♯/Y
[−1]

)
−→ OY .

We shall still denote this map by φ. An explicit computation shows that:

Lemma 5.2.6. φ is a morphism of O
X̃
-algebras. In other words, it is a cochain map.

By Lemma 5.2.5 the map φ sends the augmentation ideal (which is generated by Ω1

X̃/Y
[−1]) into the

ideal I. Hence, C(T
X̃/Y

) being completem φ factors through C(T
X̃/Y

) −→ ÔY . We shall again still denote

this map by φ.
It remains to be shown that it is a quasi-isomorphism. This can done by proving inductively that φ

is a quasi-isomorphism on the successive quotients of the descending filtrations.

Below we sketch very briefly two applications of the above result.

Application 1: obstruction to splittings

One can show that the dg-Lie algebroid structure on (O
X̃
, T

X̃/Y
) induces a kind of minimal L∞-algebroid

structure on (i∗OX, i∗N[−1]). It is actually a bit more subtile than that because homotopy transfert does
not work perfectly well with sheaves, and we refer to [CCT2] for the details. For example the higher
anchor ρk and higher brackets lk are not cocycles and thus don’t define maps in Db

coh(Y).

Nevertheless, one has the following:

Proposition 5.2.7. Assume that there is a splitting sk : X
(k)
Y → X of the inclusion X →֒ X

(k)
Y of X

inside its k-th infinitesimal neighbourhood X
(k)
Y in Y. Then the above L∞-algebroid structure can cho-

sen so that ρi = 0 for 0 ≤ i ≤ k. Moreover in this case ρk+1 is a coycle and thus defines a class
rk+1 ∈ Ext1OX

(
Sk+1
OX

(N), TX
)
, and additionally the following are equivalent:

(i) there exists a splitting sk+1 : X
(k+1)
Y → X of X →֒ X

(k+1)
Y lifting sk;

(ii) rk+1 = 0.

The class rk+1 is the same as the one appearing in [1, Proposition 2.2], where the same result is proven
in the complex analytic setting.
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Application 2: obstruction to linearization

Let us assume that there is an isomorphism tk−1 : X
(k−1)
N

∼= X
(k−1)
Y . We would like to understand when

tk−1 lifts to an isomorphism between X
(k)
N and X

(k)
Y .

First note that the isomorphism tk−1 induces a splitting sk−1 : X
(k−1)
Y → X. Hence we can use

Proposition 5.2.7 to analyze the lifting of sk−1 to a splitting sk, which should necessarily exist if tk−1

lifts. Thus in the following we assume that there is a splitting sk : X
(k)
Y → X compatible with tk−1 in

the sense that the induced splitting from tk−1 agrees with that of sk.

Proposition 5.2.8. Under the above assumption on tk−1 and sk we can chose the L∞-algebroid struc-
ture so that ρi = 0 for all 0 ≤ i ≤ k and li = 0 for all 0 ≤ i ≤ k − 1. Moreover lk is a cocycle and thus
defines a class ℓk ∈ Ext1OX

(
SkOX

(N), N
)
, and additionally the following are equivalent:

(i) the isomorphism tk−1 lifts to an isomorphism tk : X
(k)
N

∼= X
(k)
Y ;

(ii) ℓk = 0..

The class ℓk is the same as the one appearing in [1, Corollary 3.4 & Corollary 3.6], where the same
result is proven in the complex analytic setting.

The existence of these classes rk and ℓk can be formulated using the language of gerbes and stacks,
see for example [20, Section 4], but its relationship with an L∞-algebroid structure seems to be new.
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A. Recollection on Lie algebroids

A.1. Lie algebroids and associated structures

What we discuss in this Section, which is extracted from [C2, Section 2], is relatively standard and can
be found e.g. in [35, 44, 22] and references therein (perhaps phrased in a different way).

Let R be a commutative algebra and L a Lie algebroid over R, which means that the pair (R, L) is a
Lie-Rinehart algebra (see [35]) in C. Namely, L is a Lie algebra equipped with an R-module structure and
an R-linear Lie algebra map ρ : L→ Der(R) such that [l, rl ′] = r[l, l ′] + ρ(l)(r)l ′ for l, l ′ ∈ L and r ∈ R.
The map ρ is called the anchor map and we usually omit its symbol from the notation: for l ∈ L and
r ∈ R, we write l(r) := ρ(l)(r). In particular R ⊕ L inherits the structure of a Lie algebra with bracket
given by [(r, l), (r ′, l ′)] = (l(r ′) − l ′(r), [l, l ′]), for r, r ′ ∈ R and l, l ′ ∈ L.

A.1.1. The universal enveloping algebra of a Lie algebroid

We define the enveloping algebra U(R, L) of the pair (R, L) to be the quotient of positive part of the
universal enveloping algebra1 of the Lie algebra R ⊕ L by the following relations: r ⊗ l = rl (r ∈ R,
l ∈ R ⊕ L). As there is no risk of confusion we simply write U(L) for U(R, L), which is obviously an
R-algebra via the natural map R −→ U(L). It therefore inherits an R-bimodule structure.
It turns out that U(L) is also a cocommutative coring in left R-modules2. Namely, the coproduct

∆ : U(L) −→ U(L) ⊗R U(L) is the multiplicative map defined on generators by ∆(r) = r ⊗ 1 = 1 ⊗ r
(r ∈ R) and ∆(l) = l ⊗ 1 + 1 ⊗ l (l ∈ L). The anchor map can be extended to an R-algebra morphism
U(L) −→ End(R) (actually taking values in the ring Diff(R) of differential operators) sending r ∈ R to
the multiplication by r and l ∈ L to ρ(l). The counit ǫ : U(L) −→ R is defined by ǫ(P) := P(1).

Remark A.1.1. The above definition of ∆ needs some explanation. Being the quotient of U(L) ⊗ U(L)
by the right ideal generated by r ⊗ 1 − 1 ⊗ r (r ∈ R), U(L) ⊗R U(L) is not an algebra. Nevertheless,
one easily sees that r ⊗ 1 (r ∈ R) and l ⊗ 1 + 1 ⊗ l (l ∈ L) sit in the normalizer of that ideal, so that
multiplying them together makes perfect sense.

In what follows, left U(L)-modules are called L-modules. We say that a given (left) R-module E is
acted on by L if it is equipped with an L-module structure of which the restriction to R gives back the
original R-action we started with. The abelian category L-mod of L-modules is monoidal, with product
being ⊗R (and U(L) acting on a tensor product via the coproduct) and unit 1L being R equipped with
the action given by the anchor ρ.

Any morphism f : L −→ L ′ of Lie algebroids over R automatically induces a morphism of algebras
U(L) −→ U(L ′) which preserves all the above algebraic structures. We denote the restriction (or pull-
back) functor L ′-mod −→ L-mod by f∗, and by f! := U(L ′) ⊗

U(L)
− its left adjoint. Notice that f∗ is

monoidal, while f! is not (f! is only colax-monoidal).

There is a canonical filtration on U(L) obtained by assigning degree 0, resp. 1, to elements of R, resp. L.
All structures we have defined so far on U(L) respect this filtration. If, additionally, L is itself equipped
with a filtration, then this filtration extends to U(L). The canonical filtration on U(L) can be seen as
coming from the obvious “constant” filtration on L (the only degree 0 element is 0 and all elements in L
are of degree ≤ 1).

Remark A.1.2. One can alternatively describe the functor U as a left adjoint. Namely, we consider the
category of anchored algebras: they are defined as R-algebras B equipped with an R-algebra morphism

1By this we mean the subalgebra generated by R⊕ L (i.e. the kernel of the natural augmentation).
2We would like to warn the reader that the multiplication is defined on U(L)⊗

R
U(L) while the comultiplication takes values

in U(L)⊗R U(L), where only the left R-module structure is used.
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ρ : B −→ End(R), where the R-algebra structure on End(R) is the given by r 7−→ (lr : b 7→ rb). There
is a functor Prim from anchored algebras to Lie algebroids that sends an anchored algebra B to the
sub-R-module consisting of those elements b ∈ B such that ρ(b) ∈ Der(R). We then have an adjuntion

U : {Lie algebroids}−→←− {anchored algebras} : Prim .

A.1.2. The de Rham complex of a Lie algebroid

To any L-module E we associate the complex of graded R-modules C•(L, E), consisting of HomR(∧
•
RL, E)

equipped with the differential d defined as follows: for ω ∈ Cn(L, E) and l0, . . . , ln ∈ L,

d(ω)(l0, . . . , ln) :=

n∑

i=0

(−1)iliω
(
l0, . . . , l̂i, . . . , ln

)
+
∑

i<j

(−1)i+jω
(
[li, lj], l0, . . . , l̂i, . . . , l̂j, . . . , ln

)
.

The map that associates to l ∈ L the element ∇l ∈ End(E) defined by ∇l(e) := d(e)(l) is sometimes
called a flat connection. It completely determines both the differential d and the L-action on E.

We have the following functoriality property: for f : L→ L ′ a morphism of Lie algebroids over R and
ϕ : E → F a morphism of L ′-modules, we have an obvious R-linear map f∗ϕ : C•(L ′, E) −→ C•(L, f∗F)

defined by (f∗ϕ)(ω) := ϕ ◦ω ◦ f. We also have that for any two L-modules E and F, there is a product
C•(L, E) ⊗ C•(L, F) −→ C•(L, E ⊗R F). In particular, this turns C•(L) := C•(L, 1L) into a differential
graded commutative R-algebra.

A.1.3. Lie algebroid jets

For any L-module E we define the L-module JL(E) of L-jets, or simply jets, as the internal Hom
HomR

(
U(L), E

)
from the universal enveloping algebra U(L) to E.

This requires some explanation. First of all observe that the monoidal category L-mod is closed. The
internal Hom of two L-modules E and F is given by the R-module HomR(E, F) equipped with the following
L-action: for l ∈ L, ψ : E → F and e ∈ E, (l · ψ)(e) := l ·

(
ψ(e)

)
− ψ(l · e). Then U(L) is naturally an

L-module (being a left U(L)-module over itself).

But U(L) is actually an U(L)-bimodule. Therefore, JL(E) inherits a second left U(L)-module structure,
denoted ∗, which commutes with the above one and is defined in the following way: for φ ∈ JL(E) and
P,Q ∈ U(L), (P ∗ φ)(Q) = φ(QP). When E = 1L the two commuting L-module structures one gets on
JL := JL(E) are precisely the ones described in [CVdB1, §4.2.5].

Remark A.1.3. This is actually true for any U(L)-U(L ′)-bimodule M: the space HomR(M,E) has an
L-module and an L ′-module structures that commute3. In particular, the space HomL-mod(M,E) itself
is naturally an L ′-module.

Theorem A.1.4. The jet algebra JL is a cogroupoid object in the category of complete adic-rings.

Proof. This was originally stated in [22, (A.5.10)]. A proof can be found in [27, §3.4.1] (see also [CRVdB2,
Appendix A]).

A.1.4. Free Lie algebroids (after M. Kapranov)

Let us first recall from [22] that an R-module M is anchored if it is equipped with an R-linear map
ρ :M −→ Der(R), called the anchor map. Like for Lie algebroids we usually omit the symbol ρ from our
notation: for m ∈M and r ∈ R, we write m(r) := ρ(m)(r). There is an obvious forgetful functor which
goes from the category of Lie algebroids to that of anchored modules, that forgets everything except the
underlying R-module structure of the Lie algebroid and the anchor map. This functor has a left adjoint,
denoted FR.
For any anchored R-module M we call FR(M) the free Lie algebroid generated by M. It can be

described in the following way, as a filtered quotient of the free Lie algebra FL(M) generated by M.

3Notice that even the two underlying R-module structures are different.
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First of all, by adjunction ρ naturally extends to a Lie algebra morphism FL(M) −→ Der(R). Then
we define FR(M) as the quotient of FL(M) by the following relations: for r ∈ R, m ∈ FL(M), and
m ′ ∈ FL(M), [m, rm ′] − [rm,m ′] = m(r)m ′ +m ′(r)m. These relations being satisfied in Der(R) then
ρ factors through FR(M). Finally, we define an R-module structure on FR(M) in the following way:
r[m,m ′] := [m, rm ′] −m(r)m ′ = [rm,m ′] +m ′(r)m.

According to Remark A.1.2 we then have a sequence of adjunctions

{anchored modules}
FR
−→←− {Lie algebroids}

U
−→←−
Prim

{anchored algebras} .

Remark A.1.5. The above sequence of adjunctions extends to filtered versions. Unless otherwise specified,
the canonical filtration we put on an anchored moduleM is the “constant” one we already mentioned in
§A.1.1. Then the associated graded of the induced filtration on FR(M) is the free Lie R-algebra FLR(M)

generated by M, and the associated graded of the induced filtration on U
(
FR(M)

)
is U

(
FLR(M)

)
=

TR(M).

A.2. Monoidal (co)monads associated to Lie algebroids

This Section is extracted from [CCT2].

The Hopf monad associated with the universal enveloping algebra

Let (R, L) be a Lie algebroid. We have seen that U(L) is a bialgebroid. It actually has a very
specific feature: source and target maps R → U(L) are the same. Therefore, the forgetful functor
U : U(L)-mod −→ R-mod is strong monoidal (recall that U(L) being a bialgebroid its category of left
modules is monoidal, see e.g. [4] and references therein)4.

Observe that U has a left adjoint: F : U(L) ⊗
R
− : R-mod −→ U(L)-mod. Moreover, U being strong

monoidal, then its left adjoint F is colax monoidal and hence the monad T := UF is a Hopf monad in
the sense of [31]: it is a monad in the 2-category OpMon having monoidal categories as objects, colax
monoidal functors as 1-morphisms and natural transformations of those as 2-morphisms.

The dual Hopf comonad associated with the jet algebra

Notice that the strong monoidal functor U also has a right adjoint G := HomR-mod

(
U(L),−), which is

lax monoidal. Going along the same lines as above one sees that S := UG (which is right adjoint to T )
is a Hopf comonad, meaning that it is a comonad in the 2-category Mon having monoidal categories as
objects, lax monoidal functors as 1-morphisms and natural transformations of those as 2-morphisms.
Finally recall that HomR-mod

(
U(L),−) ∼= JL⊗̂

R
−, where the R-bimodule structure on JL is the one

described in §A.1.3. Notice that, on the one hand, the lax monoidal structure on S is given by the
coproduct on U(L), and thus by the product on JL:

(
JL⊗̂

R
−
)
⊗R

(
JL⊗̂

R
−
)
∼=
(
JL ⊗R JL

)
⊗̂

R⊗R
(−⊗−) =⇒ JL⊗̂

R
(−⊗R −) .

On the other hand, the comonad structure on S is given by the product on U(L), and hence by the
coproduct on JL:

JL⊗̂
R
− =⇒

(
JL⊗̂

R
JL

)
⊗̂
R
− ∼= JL⊗̂

R

(
JL⊗̂

R
−
)
.

4The forgetful functor usually goes to R-bimodules, but here its essential image is the monoidal subcategory consisting
of those bimodules which have the same underlying left and right module structure. I t is isomorphic to the monoidal
category of R-modules.
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B. Analogies

I can’t refrain from giving a long list of analogies between Lie theory and algebraic geometry. It seems
that the first two subsets are now quite well-understood, while the last one remains a complete mystery
(at least to me).

LIE THEORY ALGEBRAIC GEOMETRY

Lie algebra object g in g-mod Lie algebra object TX[−1] in D(X)

adjoint action (i.e. Lie bracket) Atiyah class of TX[−1]
characters of g line bundles on X
trivial representation 1g trivial line bundle OX

universal envelopping algebra U(g) Hochschild cohomology sheaf HH•
X

symmetrization map (PBW isomorphism) Hochschild-Kostant-Rosenberg (HKR) isomorphism
g-invariants of a representation (derived) global sections of an OX-module

Duflo element d ∈ Ŝ(g∗)g Todd class td ∈ ⊕kH
k
(
X,Ωk

X

)

Duflo isomorphism Kontsevich isomorphism

inclusion of Lie algebras h ⊂ g closed embedding of algebraic varieties i : X →֒ Y

Lie algebra objects h and g in h-mod Lie algebra objects TX[−1] and i
∗TY [−1] in D(X)

h-module g/h shifted normal bundle N[−1] in D(X)

exact sequence 0→ h→ g→ g/h→ 0 in h-mod normal bundle exact sequence 0→ TX → i∗TY → N→ 0

αV : g/h⊗ V −→ h[1]⊗ V −→ V[1] for V ∈ h-mod αE : N⊗ E −→ TX[1]⊗ E
atE−→ E[2], for E ∈ D(X)

Lie algebra h(1) of §5.1.1 X(1), the first infinitesimal neighborhood of X into Y
αV = 0 ⇔ V extends to h(1) αE = 0 ⇔ E extends to X(1)

Res : g-mod→ h-mod i∗ : D(Y)→ D(X)

Ind : h-mod→ g-mod i! : D(X)→ D(Y)

U(g)/U(g)h = Res(Ind(1h)) in h-mod i∗i!(OX) in D(X)

Calaque-Căldăraru-Tu Theorem [CCT1] (PBW type) Arinkin-Căldăraru Theorem [2] (HKR type)

solvable Lie algebra Calabi-Yau manifold
nilpotent Lie algebra pure Calabi-Yau variety
abelian Lie algebra complex torus
simple Lie algebra irreducible holomorphic symplectic manifold
rank one simple Lie algebra (sl2) K3 surface
Lévi decomposition theorem Bogomolov decomposition theorem

Notice that by Calabi-Yau I mean compact Kähler with holonomy in SU(n) for n ≥ 3, while a pure Calabi-
Yau variety will be a complex projective X with dim(X) ≥ 3, trivial canonical bundle and h2,0(X) = 0.
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