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Introduction

The initial motivation of this thesis is the study of the classical BV (Batalin–
Vilkovisky) formalism from the point of view of derived geometry. This construc-
tion, originally studied in [BV81] and [BV83], was initially developed for the study
of quantization of gauge theories. It is a tool to construct algebras of observables
that would behave well with respect to quantization. It also plays an important
role in modern quantum field theory and has been subject to much recent devel-
opments in this context (see for Example [CG21, Rej11, FR12, FR13]). In this
thesis, we will only study the classical BV formalism.
In order to make sense of the geometric tools required to study the classical BV
formalism, we will study (infinitesimal) equivariant derived symplectic geometry
and define the notion of (shifted) moment map and (shifted) symplectic reduction
in the setting of Lie algebroids and groupoids.

There are di�erent variations of what a classical BV algebra associated to a func-
tional should be, but all the existing constructions produce algebraic objects, even
though as we will explain presently, these constructions seem to be designed to
represent some geometric operations. We will focus on two types of constructions.
For the first one, following the ideas in [FK14], the construction goes as follows
(see Construction 5.1.1 for a more precise description of that construction):

Construction 0.0.1.
(1) We first consider the critical locus of an action functional (that is the space

of solutions to the Euler–Lagrange equations). This is done by taking a
cohomological resolution, called the Koszul–Tate resolution, of the critical
locus of the functional. This resolution is obtained by successively adding
anti-fields and anti-ghosts fields in negative degree.

(2) Then we construct a (−1)-shifted symplectic graded algebra (obtained as
a shifted cotangent using the Koszul–Tate resolution from before). Essen-
tially it adds ghost �elds in positive degrees to the Koszul–Tate resolution
that are “dual” to the anti-ghosts fields via the symplectic structure.

(3) We then build a Hamiltonian di�erential on this graded algebra by finding
a solution to the classical master equation called the BV charge:

{Q,Q}
From a geometric point of view, this construction amounts to first take a resolution
of the critical locus of the action functional (by adding anti-fields and anti-ghost
fields) and then take its quotient by “maximal symmetries” (by adding the ghost
fields) such that the quotient is symplectic.

The other approach to the BV construction we are going to consider is similar
to the one described in [CG21, Part 1 Section 4]. The idea is to take the derived
critical locus of the induced “quotient maps”.
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Construction 0.0.2.

(1) First, we chose a formal neighborhood of a point in the space of solutions
of the Euler–Lagrange equation given by a L∞-algebra. This amounts to
take the ghost fields and corresponds to looking at an infinitesimal quotient
by infinitesimal symmetries of the chosen point. Later on, we will instead
consider the formal neighborhood of all the “solutions” and consider a Lie
algebroid of symmetries.

(2) Then the BV algebra produced is constructed by as some kind of derived
critical locus together with its canonical (−1)-shifted symplectic structure.
This second step amounts to creating the anti-fields and anti-ghosts fields,
dual to the ghosts fields.

In both of these constructions, we gave a description based on geometric oper-
ations like “taking a quotient” and taking a “zero locus”. However in practice
these operations are only handled algebraically, and the dictionary between the
algebraic constructions and their geometric counterparts is not very precise, a
problem which this thesis is trying to address.

As both the BV constructions we described involve cohomological technics, we
will naturally need to turn to derived geometry in order to make sense of those geo-
metric objects that are defined only “up to homotopy”, since only the cohomology
of the commutative di�erential graded algebra of observables has a physical mean-
ing. It is all the more compelling to use derived geometry for this problem since
derived geometry is well suited to handle intersections and quotients, which are
the building blocks of the BV construction.

Derived geometry is in a nutshell the merging of homotopy theory and geometry. It
was developed, to mention only a few references, in [TV05, TV08, Lur04, Lur09a],
and has provided powerful tools to handle problems ranging from deformation
theory, intersection theory, equivariant geometry and others. Our goal will be to
explain how to think about the algebraic constructions of BV algebras in geometric
terms.
We are setting ourselves in the context of derived algebraic geometry, where most
of the geometric tools we need, such as derived symplectic geometry and formal
geometry, have already been well developed. Moreover for the BV construction,
we will restrict ourselves to the situation where we take a functional of the forms
f : X → A1

k with X a smooth a�ne algebraic variety. When it comes to concrete
examples used in physics, these are very restrictive assumptions since the typical
spacesX arising from physics would be infinite dimensional di�erential manifolds.
Our restrictions allow us to bypass the di�culties coming from geometry and
analysis in infinite dimensions, and provides a blueprint for a more geometrical
approach to the BV construction.
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We hope that these ideas would adapt to the context of derived di�erential geom-
etry and later on to the infinite dimensional setting.

Our starting point in order to try to understand the classical BV construction is
the following:

Remark 0.0.3. The derived critical locus is a classical BV algebra. It is the simplest
classical BV algebra as there are no ghost fields or anti-ghost fields. In other words,
it is not a quotient by symmetries. It is a well known fact, going back to [PTVV13],
that the derived critical locus is canonically (−1)-shifted symplectic.

In fact, following the idea of Construction 0.0.2, classical BV algebras are derived
critical loci of “equivariant maps associated to f”. But f itself is equivariant for
the trivial action and its associated BV construction is the derived critical locus as
mentioned in Remark 0.0.3. We will come back to this idea, but for now, it turns
out that we need a more general framework to encompass Construction 0.0.1.
Indeed, that construction will not be a derived critical locus in general1.
Following and generalizing the construction of [FK14], we can start our construc-
tion by taking the derived critical locus Crit(f) and then “add anti-ghost fields”.
Adding enough anti-ghost fields leads to the Koszul–Tate resolution used in [FK14]
in order to make Construction 0.0.1. But then Construction 0.0.2 does not fit in
this framework. Therefore we take the freedom to take as many (or few) anti-ghost
fields as we like, essentially choosing which (higher) symmetries of the system we
want to consider or not. This leads to the notion of “almost derived critical loci”
(Definition 1.2.24) which are objects sitting “in between” the strict critical locus
given by the Koszul–Tate construction (which gives in some sens a “maximal” BV
construction) and the derived critical locus (the “trivial” BV construction).

Remark 0.0.4. The classical BV construction (in the algebraic setting) is given by
the Chevalley–Eilenberg algebra associated to a Lie algebroid of “symmetries” on
an almost derived critical locus.

The reason the BV construction is build from this Chevalley–Eilenberg algebra is
that it represents an algebra of “derived infinitesimal invariants” with respect to
an in�nitesimal action of the Lie algebroid. In other word, it represents a notion
of derived in�nitesimal quotient. However, this heuristic is di�cult to justify from
a geometric point of view. The dictionary between the geometric and algebraic
concepts is really unclear and we will come back to these notions in a moment.
Until then, we need to point out that not all Lie algebroid of “symmetries” would
do the trick. Indeed, one of the most important feature of the classical BV alge-
bra is that it is (−1)-shifted symplectic. Therefore, in order to get a symplectic
structure on the (infinitesimal) quotient, we need to quotient by “maximal sym-
metries”, which amounts to require a non-degenerate duality between the ghost

1Essentially because taking a resolution of the critical locus will produce a di�erential too com-
plicated to be coming from a derived critical locus.
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and anti ghosts fields. We will geometrically interpret this procedure of taking the
“quotient by maximal symmetries” as a taking the derived symplectic reduction.

We can summarize the concepts involved in the following incorrect dictionary:

Concept Geometric side Algebraic side
Solutions to the
E.L equation

(Almost) derived
critical locus

Koszul–Tate resolution
anti-ghost fields

Reduction by
maximal symmetries

Lie algebroids
Infinitesimal actions/quotients

CE algebras
ghost fields

Algebra of
observables

(−1)-shifted sympletic
geometry and reduction P0-algebras

In this thesis, we aims at giving a sens to the geometric column and to the classical
BV construction using only the geometric operations. We will then try to compare
them to what we get on the algebraic side. This geometric construction will also
turn out to naturally generalize to groupoid actions leading to new constructions
of classical BV geometric object.

In order to make sense of the geometric objects we need, we will study in details
the notions of (infinitesimal) actions and quotients as well as how they behave with
respect to derived symplectic geometry.

Derived symplectic geometry was developed, to mention only a few, in [PTVV13,
CPT+17, Cal15, Cal19, Cal21, AC21]. It turns out that derived symplectic geom-
etry is in fact much better behaved than non-derived geometry when it comes to
constructing new (shifted) symplectic structures. In fact Section 2.2 is devoted
to the study of such constructions and in particular, it explains why the derived
critical locus (who is defined as a derived intersection) is canonically (−1)-shifted
symplectic. This is a key fact from the BV construction of [CG21]. We also develop
some a new construction of Lagrangian fibrations (see [Gra22] and also [Saf20]),
which turns out to be relevant for quantizing shifted symplectic structures (see
[Saf20]). We can also produce new Lagrangian correspondences from some kind
of Lagrangian intersections (see Section 2.2.3 and in particular Theorem 2.2.23).

To relate derived symplectic geometry to the BV construction, let us summarize
what we want for a BV construction:

– Take an almost derived critical locus S. It is endowed with the pullback
pre-symplectic structure along the natural map S → Crit(f).

– Take a “quotient” by a Lie algebroid L such that the quotient is (−1)-
shifted symplectic.
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We can make a parallel between that construction and the notion of symplectic
reduction which in classical terms is constructed out of a moment map µ : X → g∗

associated to an action of a Lie group G on X as follows:

– Take the kernel of a moment map Z(µ) := ker(µ : X → g∗). It is endowed
with the pre-symplectic structure pulled-back from X .

– Take a quotient X�G by a Lie group G integrating g such that the quotient
is symplectic.

This motivates us to study the notion of derived symplectic reduction. It is a known
fact that although classical symplectic reduction only makes sense under some
conditions on X and the action so that the quotient exists. Derived geometry has
no such restriction as long as we are willing to work with quotient stacks. In fact,
the symplectic reduction is the derived setting is obtained by the derived pullback:

[
Z(µ)�G

]
BG :=

[
?�G

]
[
X�G

] [
g∗�G

]
[µ]

We will see that this pullback is naturally symplectic as a derived intersection
of Lagrangian morphisms in a 1-shifted symplectic derived stack given by the
quotient stack by the coadjoint action.
The study of moment maps from the derived point of view is done in [AC21] which
we extensively recall in Section 4.3.1. The main intakes from that section are the
following:

– A moment can be defined as a G-equivariant map µ : X → g∗ such that
we have an equivalence of derived symplectic stacks (Definition 4.3.2):

X '
[
X�G

]
×[g

∗
�G] g

∗

– The reduced space of X (its symplectic reduction) is defined as the pull-
back (Definition 4.3.2):

Xred BG :=
[
?�G

]
[
X�G

] [
g∗�G

]
[µ]
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– There is a Lagrangian correspondence (Proposition 4.3.6):

Z(µ)

Xred X

It also turns out that moment maps have the nice property to be stable under
“Lagrangian intersection” for an appropriate notion of Lagrangian having a “La-
grangian reduction” (Theorem 4.3.10). In particular, we get a (−1)-shifted mo-
ment map:

µ−1 : Crit(f)→ g∗[−1]

whose symplectic reduction gives the equivariant derived critical locus of the map:

[f ] :
[
X�G

]
→ A1

k

The symplectic reduction of this moment map is a version of the BV construction
based on a group of symmetries. It was studied in [BSS21] and is further discussed
in Section 5.3.2. We will see in that section that this construction fits both the
heuristics of Constructions 0.0.1 and 0.0.2.
However, in both heuristics, the usual classical BV construction does not involve
a group action but rather an “infinitesimal action”. In the group case, it would
correspond to the action of the associated Lie algebra of the group, but in general
we need to come up with a good notion of infinitesimal quotient and action.

We will explain in a moment that we can make sense of such notions. Then
we can adapt the previous story with groups to the setting of Lie algebroid with
“infinitesimal actions and quotients”. It is however a more complicated story and
requires a slightly di�erent notion of moment map. Essentially, we consider a map
of nice enough derived stacks, µ : Y → L∗ with L a Lie algebroid over a derived
stack X, and Y a symplectic derived stack. Then the structure of moment map is
given by (see Definition 4.3.12):

– An action of the Lie algebroid L on Z(µ) := ker(µ).

– A n-shifted symplectic structure on the infinitesimal quotient1,
[
Z(µ)�L

]
,

together with a Lagrangian correspondence:

Z(µ)

[
Z(µ)�L

]
Y

1The notion of infinitesimal quotient is a bit complicated if Y is not nice enough. In full
generality, we will need a notion of “weak infinitesimal quotient”.
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Then Yred :=
[
Z(µ)�L

]
is called the in�nitesimal symplectic reduction of Y along µ.

The typical example of such moment maps is the dual of the anchor T ∗X → L∗.
Moreover, this notion of moment map is again well behaved with respect to derived
intersections (see Theorem 4.3.20). In particular, there is a (−1)-shifted moment
map:

Crit(f)→ L∗[−1]

for L a Lie algebroid of “symmetry” of f over X (when X satisfies some technical
assumptions). Moreover the symplectic reduction of this moment map is exactly
Crit([f ]) (Example 4.3.21).

Then the analogy with the BV formalism of Construction 0.0.2 is that given L , a
Lie algebroid of symmetries, Crit([f ]) is by definition the BV construction we are
interested in, and it is also the symplectic reduction of the (−1)-shifted moment
map µ−1 : Crit(f) → L ∗[−1]. It can therefore also be seen as a quotient of the
almost derived critical locus given by Z(µ−1), and therefore fitting is a generalized
version of Construction 0.0.1.

We have now seen that Construction 0.0.2 seems to be the symplectic reduction
of a (−1)-shifted moment map on Crit(f). The problem is that Construction
0.0.1 does not exactly fit in this context as there is in general no moment maps
whose kernel will recover the full Koszul–Tate resolution. Therefore we propose a
generalization of the previous ideas and define a BV construction as some kind of
“generalized symplectic reduction” of S → Crit(f) (Definitions 5.1.3 and 5.1.4),
with S an “almost derived critical locus” of f . A derived stack Y will be called an
(infinitesimal) BV construction of f with respect to a given almost derived critical
locus S if (see Definitions 5.1.7 and 5.1.8):

– Y is an “(infinitesimal) quotient” of S.
– Y is (−1)-shifted symplectic and is part of a Lagrangian correspondence:

S

Y Crit(f)

This is a rather wide generalization of both BV constructions as the symplectic
structure could have complicated homotopy theory (see Theorem 5.2.8) and needs
not have a BV charge.
Nevertheless, we will discuss why such objects should still “look like” classical BV-
algebras as a generalization of Construction 0.0.1 (see Section 5.2.1).

Finally, all this story generalizes very nicely when replacing infinitesimal actions,
quotients, moment maps etc... by the similar notions for Segal groupoids. In fact,



14

the groupoid picture works in even greater generality and is much better behaved
than its infinitesimal counterpart1. The groupoid picture simultaneously general-
izes the analogous stories for groups and Lie algebroids we previously discussed.
This leads to a new notion of BV construction that recalls the global action of
symmetries instead of only the associated infinitesimal action.

The main issue of our definition of BV is that for a given an almost derived critical
locus S (which amounts to fixing the symmetries we want to consider), we have
little control on the existence and uniqueness of a BV structure on S → Crit(f).
Indeed, there might be a full (and possibly empty) topological space of such struc-
tures. In Section 5.3, we show that we have in fact a rather large class of examples
of BV constructions, including some recovering Constructions 0.0.1 and 0.0.2.

Finally, much of what we discussed so far relies on a good theory of (infinitesimal)
equivariant geometry, in other words, the study of the geometry of (infinitesimal)
quotients. In Section 4.1, we discuss the main results on G -equivariant geometry
that we need to do symplectic geometry and symplectic reduction. This behaves
very well, and we want to mimic this for infinitesimal equivariant geometry, that
is, geometry equivariant with respect to the action of Lie algebroids.

One of the main problem is to come up with a good notion of infinitesimal quotient
of Lie algebroids. In Section 3, we define such a notion and study its main prop-
erties. Unfortunately, this is only valid in a very restricted setting (namely when
the base satisfies Assumptions 3.2.2). In particular, many examples of interest do
not fit in this framework.

Yet, this approach is the “correct” notion of infinitesimal quotient from a geo-
metric point of view, in a sens made precise in Section 4.2.1. In that section,
we explain the heurestic saying that Lie algebroids are the infinitesimal versions
of groupoids. We describe a derivation and integration procedure showing that
under some mild conditions, the infinitesimal quotient of a derived stack by a
Lie algebroid is the formal completion of the quotient of this derived stack by a
groupoid “integrating” it, thus explaining the terminology “infinitesimal quotient”.

In order to palliate to the issue of only having a notion of infinitesimal quotients in
a very restricted setting, and motivated by some results of Section 4.1, we come up
with a notion of “weak infinitesimal quotients” in order to encompass the missing
examples that Assumptions 3.2.2 did not permit. The only draw back is that it
loses sight of an actual action (in the sens given in Section 3.3), and the infini-
tesimal quotients become part of the data. As such they need neither to exist or
to be unique. However, most of our examples of interests are weak infinitesimal

1There is in particular no need for a notion of “weak” quotient in this setting.



15

quotients and the desired properties analogous to the groupoid case hold.

Equipped with these tools, we can talk about L -equivariant geometry in an almost
identical way as for groupoids (although in a more restricted setting). Through
all of our discussion, we will make a point to show that all the infinitesimal con-
struction (BV, symplectic reduction, actions and quotient...) are exactly formal
completions of their global counterpart for groupoids (again under some mild
conditions).

Notations and Convention.
– All along k will denote a field of characteristic 0.
– We use cohomological conventions, that is, the di�erential have degree +1.
We denote by Modk the category of cochain complexes over k together with
its projective model structure.

– Everything will be di�erential graded unless stated otherwise. For exam-
ple when we say “modules” and “algebras” we mean “di�erential graded
modules” and “di�erential graded commutative algebras”. The degree of
an object a, an homogeneous element of a di�erential graded object, will
be denoted by |a|.

– All algebras andmonoids will be unital commutative algebras andmonoids.
In fact an algebras are defined as a commutative monoid in a given sym-
metric monoidal category (by default Modk). The category of commutative
di�erential graded algebras (in Modk) will be denoted by cdga and is en-
dowed with its projective model structure induced by the one on Modk.
Variations and properties of these model structures when replacing Modk
by a “good” model category are discussed in Appendix A.1.

– We will make no di�erence between the notations for a model category
and its associated ∞-category. Everything can be assumed to come from
model categorical constructions unless we specify otherwise. For example,
by default, all functor are Quillen unless they are called “∞-functors”.

– All the∞-categories we consider will be (∞, 1)-categories.
– Everything will be “up to homotopy” unless stated otherwise (usually by
using the adjective “strict”, “classical” or “underived”). In particular, all
diagrams commute only up to homotopy1 and all functors are by default
derived including for example:
• Limits and colimits, including pullbacks and pushouts.
• The (enriched) Hom functors and mappings spaces.

– All along, our geometric objects (derived schemes, stacks etc...) will be
augmented over the point ? := Spec(k) making them derived k-schemes,
derived k-stacks and so on... Keeping this in mind, k be omitted from the

1In other words, all diagrams come together with the data of the homotopies making the diagram
commute.
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notations. In a dual way, all algebras will be k-algebras and we will also
omit k from the notations.

– If A is an algebra, then ModA is the category of module over A. We will
sometimes consider algebras and modules in a more general good model
categories. We refer to Appendix A.1 for more about these categories and
modules.

– S is the ∞-category of topological spaces which is equivalent to the ∞-
category of∞-groupoids, denoted by Gpd∞. This equivalence is given by
the geometric realization functor:

|−|∆ : Gpd∞ → S

– The Hom-set of a category C is denoted by:

Hom
C

or HomC

– Given an∞-category C , then we denote by:

MapC (−,−) ∈ S

the mapping space of C .
– In general for a V -enriched category C we denote by:

HomV
C (−,−)

the V -enriched Hom functor. If V = Modk, we will write:

Hom(−,−) := HomModk(−,−)

– To simplify some notations, we will also write:

HomB(−,−) := HomModB(−,−)

and similarly for mapping spaces, or enriched Hom functors.
– The zero section of a linear stack (see Section 1.2.3) is denoted by s0.
– If V and W are cochain complexes, and f : V → W a morphism between
them, then we denote by:

V [1]⊕f W

the cochain complex whose underlying module is V [1]⊕W with di�erential
the sum of the di�erential on V , the di�erential on W and f viewed as a
map of degree 1. This is a model for the homotopy fiber of f :

fiber
(
M

f→ N
)

– Let f : F → E be a linear morphism of linear stack over X (see Section
1.2.3). Then we denote:

Z(f) := fibers0

(
M

f→ N
)
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The fiber of f at the zero section of G. We will see in Section 1.2.3 that
this is the linear stack associated to F [1] ⊕f E where F and E are the
quasi-coherent sheaves on X associated to F and E.

– We denote by C/A the slice category over A and CA/ the slice category
under A.

– Given a morphism f : A → B, we denote by CA//B the whose objects are
elements C ∈ C fitting is a commutative diagram:

C

A B
f

Morphisms in that category are morphisms in C , C → C ′ commuting with
all maps from A and to B.
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Cette thèse a pour objectif l’étude du formalisme BV du point de vue de la
géométrie dérivé. Nous développons le formalisme nécessaire pour parler de quo-
tient in�nitésimaux et de réduction symplectique in�nitésimal qui apparaissent comme
version géométrique de la construction BV.

Section 1 Cette première section est une introduction aux outils de géométrie dérivé
dont nous aurons besoin pour la suite.

Section 1.1 – Cette section vise à introduire les notions et notations pour les champs
supérieurs dérivés.

Section 1.1.1 – Les schémas classiques n’ont généralement pas de quotient bien
définit pour une action générale. Pour y remédier, on regarde
leur foncteurs de points et remplace les ensembles de points
par des ensemble simpliciaux. Cela définit la notion de champ
supérieur.

Section 1.1.3 – Les schémas classique n’ont également pas toujours une “bonne
théorie d’intersection”. Une des motivation initiale la géométrie
dérivé est de résoudre le problème des intersections non trans-
verses. Nous définissons donc ici les schémas dérivés.

Section 1.1.3 – En mélangeants les deux sections précédentes, nous obtenons
la notions de champ dérivé, avec lesquels nous pouvons à la fois
prendre des intersections et des quotients sans problèmes.

Section 1.1.4 – Nous finissons par parler de champs dérivé a�ne et relative-
ment a�ne, nous décrivons les algèbres di�érentielles gradués
décrivant les algèbres de fonctions de nos champs dérivés.

Section 1.2 – Nous discutons ici la notion de champ linéaire sur une base, par analo-
gie avec la notion d’espace vectoriel.

Section 1.2.1 – Nous rappelons les notions de faisceaux quasi-cohérent et par-
fait au dessus d’une base X . Ils vont jouer le rôle de “module
de sections” d’un fibré vectoriel.

Section 1.2.2 – Nous définissons la notion complexe cotangent et tangent comme
les faisceaux de module représentant respectivement les formes
di�érentielles (formes di�érentielles de Kähler mais au sens dérivé)
et les dérivations.

Section 1.2.3 – Nous définissons la notion de champs linéaire au dessus d’une
base associé à un faisceau quasi-cohérent sur cette base. Ceci
nous permet de définir les champs tangents et cotangents. En-
suite nous montrons quelques propriétés de tiré en arrière ana-
logue avec ce à quoi on s’attend avec des fibrés vectoriels.
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Section 1.2.4 – Nous montrons que le complexe tangent relatif d’un champ
linéaire, TAX(F )/X , est naturellement équivalent à π∗F . C’est
l’espace vertical associé à un champ linéaire.

Section 1.2.5 – Nous introduisons la notion de connection sur un champ linéaire
(encore une fois par analogie avec une connection sur un fibré
vectoriel) lorsque la base est a�ne. Ceci nous permet de cal-
culer le tangent d’un champ linéaire.

Section 1.3 – Nous introduisons des notions de géométrie formel, complétions formel
et champ formel.

Section 1.3.1 – Dans cette section, nous définissons les notions de champs formel,
champs de de Rham et complétion formel. Ceci nous donne le
langage pour parler de voisinage infinitésimal que nous utilis-
erons à profusion dans notre étude de la géométrie infinitési-
male équivariant.

Section 1.3.2 – Nous exposons un résultat clé qui identifie (avec de bonne hy-
pothèse) les épaississement formels d’une baseX avec les problèmes
de modules formels en dessous de X . Nous parlons ensuite du
spectre formel, et du calcul du tangent relative de ces objets.

Section 1.4 – Cette section introduit les objets permettant le calcul di�érentiel dans
le cadre dérivé .

Section 1.4.1 – Nous introduisons le complexe de de Rham dans le cadre dérivé
avec sa structure de complexe mixe gradué. Il est définit par
une propriété universelle (comme adjoint à gauche) et nous ex-
pliquons qu’il est en fait naturellement équivalent à l’algèbre
symétrique:

SymA LA[−1]

Section 1.4.2 – Nous définissons la notion de formes di�érentielles décalées qui
seront très importantes pour parler de géométrie symplectique
décalée.

Section 2 – Nous rappelons les définitions de base de géométrie symplectique dérivé et
étudions en détail les constructions de telles structures via des procédures
“d’intersections Lagrangiennes”.

Section 2.1 – Nous donnons une introduction à la géométrie symplectique dérivée.
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Section 2.1.1– Nous rappelons la définition de structure symplectique n-décalées.
Nous décrivons également la structure symplectique canonique
sur le cotangent décalé.

Section 2.1.2 – Nous définissons la notion de structure Lagrangienne sur un
morphism L→ X . Nous décrivons quelque exemples classique
et introduisons la notion de correspondance Lagrangienne qui
va s’avérer crucial dans le reste de cette thèse.

Section 2.1.3 – De façon similaire à la section précédente, nous introduisons la
notion de fibration Lagrangienne et donnons quelques exemples
utiles de ces structures.

Section 2.2 – Nous montrons dans cette section di�érentes constructions par “inter-
section Lagrangienne”.

Section 2.2.1 – Nous commençons par rappeler le résultat disant qu’une in-
tersection Lagrangienne dans un champ symplectique n-décalé
donne un champ symplectic (n − 1)-décalé. En particulier, le
lieu critique dérivé est toujours symplectique (−1)-décalé.

Section 2.2.2 – Nous étendons ce résultat pour des intersections Lagrangien-
nes au dessus de fibrations Lagrangiennes. En particulier, le
morphism naturel:

Crit(f)→ X

est une fibration Lagrangienne.
Section 2.2.3 – Ces procédures d’intersections Lagrangiennes se généralises et

induise une structure de catégorie (et même catégorie supérieure)
sur l’espace des Lagrangiens. En particulier, ce formalisme nous
permet de démontrer une nouvelles construction de correspon-
dance Lagrangienne par intersection Lagrangienne.

Section 2.3 – Nous discutons quelques exemples des constructions précédentes.

Section 2.3.1 – Nous rappelons en détail la géométrie symplectique des lieux
critiques dérivés.

Section 2.3.2 – Nous donnons une description précise de la structure de fibra-
tion Lagrangienne sur un lieu critique dérivé dans le cas ou la
fonctionnelle a un lieu critique “non-dégénéré”.

Section 2.3.3 – De façons similaire au lieu critique dérivé, nous décrivons la
géométrie symplectique obtenue par intersection Lagrangienne
sur les cotangents tordus.
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Section 3 – Nous étudions la géométrie des algébroïdes de Lie et leur quotient in-
finitésimaux.

Section 3.1 – Nous introduisons la notions d’algébroïde de Lie.

Section 3.1.1 – Nous donnons les définitions et exemples de base d’algebroid
de Lie.

Section 3.1.2 – Nous rappelons les éléments de bases de théorie de l’homotopie
pour les algébroïdes de Lie.

Section 3.2 – Nous introduisons et étudions la notions de quotient infinitésimal d’un
algébroïde de Lie.

Section 3.2.1 – Nous définissons un champ dérivé associé à un algébroïde de
Lie que nous appelons “quotient infinitésimal”. Nous montrons
quelques propriété de cette construction et calculons son tan-
gent relative.

Section 3.2.2 – Cette section veut définir les notions de tiré en arrière et change-
ments de bases d’algébroïdes de Lie, et montre que ces construc-
tions ont un analogue sur leurs algèbres de Chevalley–Eilenberg
non-dérivés.

Section 3.3 – Action d’un algébroïde de Lie.

Section 3.3.1 – Nous définissons la notion de représentation à homotopie près
et montrons que les complexes tangent et cotangent deCEε−gr(L )
définissent des représentations à homotopie près que nous pou-
vons voir comme des représentations adjointes et coadjointes.

Section 3.3.2 – Nous définissons la notion général d’action d’un algébroïdes et
montrons que les représentations à homotopie près définissent
de telles actions.

Section 3.4 – Nous donnons une preuve du théorème de transfert homotopique dans
le cadre algébrique.

Section 4 – Nous introduisons les notions de géométries équivariante, dans le cadre
infinitésimal et global, puis nous étudions leur géométrie symplectique.

Section 4.1 – Nous commençons par l’étude de la géométrie équivariante pour l’action
d’un groupoïde.
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Section 4.1.1 – Nous définissons les notions de groupoïdes et application équiv-
ariantes. Nous montrons également quelques propriétés impor-
tantes de tirés en arrière des quotients par des groupoïdes, et
par l’action de groupoïdes.

Section 4.1.2 – Nous décrivons les tangents et cotangents des champs quotients.
Section 4.1.3 – Nous rappelons la géométrie symplectique sur les champs quo-

tients (et leurs cotangents).

Section 4.2 – Nous passons à la version infinitésimal de la géométrie équivariante.

Section 4.2.1 – Nous montrons que les algébroïdes de Lie sont les versions in-
finitésimales des groupoïdes. En particulier nous montrons com-
ment intégrer les algébroïdes de Lie et dériver les groupoïdes
ainsi que leur actions.

Section 4.2.2 – Nous imitons les définitions et propriétés décrites en Section
4.1.1 sur la géométrie équivariante pour les groupoïdes.

Section 4.2.3 – De même, nous décrivons autant que possible les tangents et
cotangent des quotients infinitésimaux.

Section 4.3 – Nous étudions les notions d’applications moment et de réduction sym-
plectique dans le cadre dérivé.

Section 4.3.1 – Nous commençons par rappeler la notion d’application moment
pour une action de groupe. Nous suivons principalement les ré-
sultats de [AC21] dans le but de motiver les généralisations qui
suivrons. Crucialement, nous expliquons que la propriété essen-
tielle d’une application moment est lié à une correspondance
Lagrangienne.

Section 4.3.2 – Motivé par le case des groupe, nous pouvons donner une général-
isation des notions d’applications moment et réduction symplec-
tique pour des actions infinitésimales. De plus nous avons égale-
ment un théorème d’intersection Lagrangienne d’application
moment permettant d’obtenir de nouvelles applications moment
décalées intéressantes.

Section 4.3.3 – Les notions de la section précédentes se généralises verbatim au
cas des groupoïdes.

Section 5 – Nous discutons les applications de nos résultats sur la géométrie équivari-
ante au formalisme BV.

Section 5.1 – Nous motivons une approche géométrique au formalisme BV.
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Section 5.1.1 – Nous partons des constructions algébriques pour les expliquer
et généraliser via une interprétation géométrique commune. Nous
expliquons que la construction BV est moralement une version
généralisé de la réduction symplectique.

Section 5.1.2 – Nous définissons une construction BV comme une réduction
symplectique généralisé.

Section 5.1.3 – De nombreux exemples de construction BV sont obtenus via
des symétries “o�-shell”. Nous décrivons de tels symétries dans
le cas global comme infinitésimal.

Section 5.2 – Le but de cette section est de comparer notre définition géométrique
avec les constructions algébrique usuelles.

Section 5.2.1 – En se mettant dans le contexte de [PS20], nous montrons que
notre notion géométrique ressemble a la construction BV usuelle,
mais reste plus générale, avec l’apparition de termes “homo-
topique” non triviaux.

Section 5.2.2 – Nous montrons que en se restreignant à un cadre non dérivé,
nous pouvons trouver une charge BV.

Section 5.2.3 – C’est une section technique ou l’on montre que l’algèbre de de
Rham d’un complexe de Chevalley–Eilenberg a un rétracte par
déformation avec l’algèbre de de Rham de la base.

Section 5.3 – Nous donnons des exemples importants de construction BV.

Section 5.3.1 – Nous montrons que la construction BV de [FK14] est une con-
struction BV au sens géométrique.

Section 5.3.2 – Nous montrons que l’action d’un groupe de symétries o�-shell
induit une construction BV retrouvant la discussion dans [BSS21].

Section 5.3.3 – De la même manière, chaque action infinitésimal o�-shell induit
une construction BV donné par le lieu critique dérivé équivari-
ant.

Section 5.3.4 – De la même manière, chaque action d’un groupoïde o�-shell
induit une construction BV donnée par le lieu critique dérivé
équivariant.
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1. Derived Algebraic Geometry

In this first section, we focus on setting up the geometric context in which we are
going to work, including derived stacks, tangent complexes, linear stack, connec-
tions, formal geometry, de Rham algebra and shifted (closed) di�erential forms.

We start in Section 1.1 by motivating and introducing derived schemes and de-
rived stack, their tangent and cotangent complexes, and introduce the main basic
notations and constructions we will use.
Then Section 1.2 discusses linear (and semi-linearly represented) stacks over a
base X . We describe morphisms and pullbacks of such objects and explain how to
compute their cotangent and relative cotangent complexes by using connections.
We then turn, in Section 1.3, to the study of derived formal geometry. In partic-
ular, we will be interested in the derived formal stacks arising from formal moduli
problems, as they will be the main object of interest in the study of Lie algebroids
and their infinitesimal quotients in Section 3.
We finish in Section 1.4 by recalling the construction of the de Rham algebra
and the notion of n-shifted (closed) p-form over a derived stack, providing the
prerequisites to speak about derived symplectic geometry in Section 2.

1.1. Introduction to Derived Algebraic Geometry.

The idea behind derived geometry is to mix homotopy theory and geometry to
get “better behaved” geometric objects. There are many reasons we can be inter-
ested in such objects. We are going to be mainly interested in the following two
operations that are inherently well behaved in derived geometry:

– We can define homotopy quotients (which from now on we will simply call
quotients). In higher geometry, there are well defined colimits1 which we
can use to define quotients and study G-equivariant geometry.

– We have good intersection theory2 and even all limits. We will see in partic-
ular in Section 2.2 how well behaved derived intersections are with respect
to derived symplectic geometry.

Further the tools of derived geometry are also well suited to study formal geometry
and infinitesimal neighborhoods, which we will also extensively use when working
with in�nitesimal quotients (see Section 3).
To mention a few foundational work on derived geometry, we refer to [TV05] and
[TV08] in the model categorical setting and to [Lur04], [Lur07] and [Lur09a] in
the ∞-categorical setting.

1Recall that by colimit (respectively limit) we always means homotopy colimit (respectively ho-
motopy limit).

2By “good intersection theory” we mean that (homotopy) intersections exist and have good
behavior with respect to the intersection number and recover Serre’s formula (see the introduction
of [Lur04]).
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1.1.1. Quotients and higher stacks.

In order to encode quotients “up to homotopy” of a geometric space X, we add
to it a space of 1-simplices such that there exists a simplex from x to y if and only
if x and y are equivalent under the relation along which we want to quotient. This
idea can be encoded in the notion of groupoid:

G X
s

t

where we view γ ∈ G as an equivalence from x := s(γ) to y := t(γ), and the
strict quotient by this equivalence relation corresponds to the strict equalizer of
this groupoid.

Now such strict colimit may not always exist in the category of “classical” geomet-
ric object we are working with (for example if X and G are smooth manifolds or
even schemes). To fix that issue, we need to consider a larger category of “higher”1

geometric objects.

First we consider sheaves on the site of a�ne schemes, Affop → Set, motivated
by the notion of functor of points of a scheme (see Example 1.1.12). In this cat-
egory of sheaves, colimits do exist but are still pathological2, and therefore we
will consider such sheaves valued not in the category Set but in the∞-category of
∞-groupoids, Gpd∞ (see [Lur09b, Section 1.2.5]).

The idea behind this comes from the fact that the set of points of a singular
quotient can be represented, up to homotopy, by a “simplicial set of points” whose
π0 recovers the set of points of the quotient, and such that each set of simplices is
“nice”. Doing this remember not only the quotient, but also the way in which two
points are equivalent, the way in which two such equivalences are equivalent, and
so on... This turns out to have many technical advantages, at the price of having to
work up to homotopy. Since we want to work up to homotopy, the natural objects
we are interested in are “∞-sheaves”, a.k.a. higher stacks:

De�nition 1.1.1. A higher stack over the site of classical a�ne spaces, denoted by
Aff := (CAlg)op (the opposite of the category of commutative algebras concen-
trated in degree zero), is a functor:

X : Affop → Gpd∞

satisfying a descent condition (see [TV05, Definition 3.4.9]) making it an∞-sheaf
valued in the∞-category of∞-groupoids, Gpd∞.

1Higher geometry should not be confused with derived geometry, which is an other kind of
generalization as we will see.

2In the sens that the “sets of points” are not sets of points of a geometric object.
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Note that this requires a choice of Grothendieck topology1 on Aff. By default, we
will always consider the étale topology (see [Mil80]).

Example 1.1.2.
– Functor of points: The functor of points of a scheme induces a fully-faithful
functor Sch→ St that sends a scheme X to the higher stack:

X : Affop Set ⊂ Gpd∞

A Hom
Sch

(Spec(A), X)

where the set of points is viewed as a simplicial set via the fully-faithful
functor Set ↪→ Gpd∞ sending a set X to the constant simplicial set with
X in each simplices2.

– Quotient stacks: If G is a group object in higher stacks that acts on a higher
stack X via an action ρ, we can define the higher quotient stack as the
colimit: [

X�G
]

:= colim

(
N

(
X ×G X

prX

ρ

))
Where N is the nerve of the groupoid determined by the action. This
example will be detailed and expended upon in Example 1.1.14.

1.1.2. Intersection and derived schemes.

For the problem of intersections, the problem lies in the algebra of functions that
does not have enough homotopy theory. For a more detail explanation of the
relationship between intersection theory and derived geometry, we refer to the in-
troduction in [Lur04] and to [Cal14, Lecture 1.1]. In short, we have to replace the
a�ne space of commutative algebras by the category of simplicial algebras, which
comes equipped with a non trivial homotopy theory we can use to do intersections
up to homotopy.

As we are always going to work with k-algebras, with k a field of characteristic 0,
we can use the Dold–Kan correspondence to work with connective commutative
di�erential graded k-algebras, dAff :=

(
cdga≤0

)op
instead of simplicial algebras.

1The notion of Grothendieck topology is the notion that generalizes the idea of open cover on
smooth manifolds. We refer to [MLM94] and [AGV72] for the classical (underived) notion of site
and Grothendieck topology.

2This fully-faithful functor is the right adjoint to the connected component functor:

π0 : Gpd∞ → Set
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De�nition 1.1.3. A derived scheme is a derived locally ringed space1 (X,OX) such
that:

– OX is an∞-sheaf of connective cdgas overX, that isHn(OX) = 0 for n ≥ 0.
– The underlying locally ringed space, (X,H0(OX)), is a scheme.
– For all n ≥ 0 the sheaf H−n(OX) is a quasi-coherent H0(OX)-modules.

We will denote the ∞-category of derived schemes by dSch. Of course any ordi-
nary scheme is also a derived scheme, and this defines a fully-faithful ∞-functor,
ι : Sch→ dSch, that has a left adjoint:

t0 : dSch Sch : ι

defined by the underlying scheme, t0(X,OX) = (X,H0(OX)).

As for ordinary scheme, there is a spectrum functor, Spec, which is the right
adjoint to the global algebra of functions functor:

Γ : dSch
(
cdga≤0

)op
=: dAff : Spec

Remark 1.1.4. In [Toe14], it is shown that dAff is equivalent to the category of
derived schemes whose truncation t0(X) are a�ne. For a derived scheme (X,OX),
its underlying scheme, t0(X), is locally a�ne. Therefore, this shows that (X,OX)
is locally equivalent to derived a�ne scheme.

De�nition 1.1.5. A derived scheme X is called locally almost �nitely presented if
X is locally equivalent to the spectrum of almost finitely presented cdgas2. In
particular, t0(X) is a finitely generated scheme. In this situation, H−n(OX) are
coherent H0(OX)-modules.

Example 1.1.6. The pullback of a�ne derived schemes,

Spec(A)×Spec(C) Spec(B) Spec(B)

Spec(A) Spec(C)

can be computed by the spectrum of their derived tensor product:

Spec(A)×Spec(C) Spec(B) ' Spec(A⊗LC B)

The main gain from using this derived setting is that the tensor product is now
derived. As explained in [Lur04], this enables to recover Serre’s formula to compute
the correct intersection number.

1Derived locally ringed spaces are topological spaces X with an∞-sheaf of connective commu-
tative di�erential graded algebras, see [Toe14, Section 2.2] for more details.

2A is an almost finitely presented cdga if H0(A) is a finitely generated algebra and each Hi(A)
is a finitely presented H0(A)-module.
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From now on, we will omit the notation ⊗L and denote the derived tensor product
by⊗. Recall that by convention all our functors are derived, and our constructions
and commutative diagrams are “up to homotopy” unless specified otherwise.

Example 1.1.7. The derived critical locus of a functional f : X → A1, with X a
smooth scheme, is defined as the following pullback:

Crit(f) X

X T ∗X

df

s0

As a derived scheme, Crit(f) can be described as the locally ringed space:

(S, (i−1(SymOX
TX [1]), ιdf ))

where i : S → X is the inclusion of the topological strict critical locus1, TX is the
tangent complex2 (see Section 1.2.2) and the sheaf of cdgas is the restriction3 to
S of the sheaf of connective4 cdgas, SymOX

TX [1], together with the di�erential
given by the contraction ιdf .

Remark 1.1.8. The derived critical locus has many good properties. In many
regard, it behaves almost like the shifted cotangent T ∗[−1]X (Definition 1.2.11)
and is in fact equivalent to the (−1)-shifted cotangent if df = 0. In particular, we
will see in Section 2.2 that much of the symplectic geometry of T ∗[−1]X can be
extended to Crit(f).
We will study in more details the (shifted) symplectic geometry of derived inter-
sections in Section 2.3.1.

1.1.3. Derived higher stacks.

Derived higher stacks appear when we want to take both homotopy quotients and
derived intersections. The successive generalizations of the notion of geometric
space in order to arrive to derived higher stacks can be summarize by the following
diagram:

1The strict critical locus is the scheme given by the strict pullback instead.
2Since we assumed X smooth, TX is in fact concentrated in degree 0 and has no di�erential.
3Given by the restriction functor i−1 : cdga≤0

QC(X) → cdga≤0
QC(Y ).

4This symmetric algebra is connective as soon as TX [1] is concentrated in non-positive degree
which is the case when X is smooth.
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Affop Set

dAffop Gpd∞

functor of points

higher stacksderived
intersections

higher
quotients

derived higher stacks

One way to view this is that derived higher stacks are to derived schemes what
higher stacks are to schemes. In particular, the functor of points of a derived
scheme (valued in Gpd∞) is a derived stack, and induces a fully-faithful∞-functor
dSch→ dSt. In particular, similarly to higher stacks, they are better behaved than
derived schemes when it comes to handling homotopy quotients and colimits.

De�nition 1.1.9. A derived higher stack over an ∞-site (see [TV05, Section 3.1])
dAff of derived a�ne objects, is a functor:

F : dAffop → Gpd∞

satisfying a descent condition (see [TV05, Definition 3.4.9]) making it an∞-sheaf
valued in ∞-groupoids. All the stacks we will consider will be viewed as derived
higher stacks, therefore we will omit from now on the terms “higher” and “derived”
and call them either derived stacks or just stacks.
We will work with connective cdgas1 as a�ne dAff :=

(
cdga≤0

)op
together with

the étale topology. This gives us the notion of D−-stack in the terminology of
[TV08]. With these choices, we denote the ∞-category of all derived stacks by
dSt. Given an other choice of site and Grothendieck topology τ , we will denote
derived stacks for that topology by dStτ .

Notation 1.1.10. Functors F : dAffop → Gpd∞ that do not satisfy descent
are called pre-stacks and the category of such functor is denoted by dpSt. We will
also use variations of the other notations for stacks by writing for example dfpSt
instead of dfSt to denote the associated category of formal derived pre-stacks
(which we will define in Section 1.3.1).

We will also need to restrict ourselves to almost finitely presented stacks.

1In fact, the natural generalization from Aff would be to consider simplicial algebras. However,
this we are working over a fields, of characteristic zero, we can use the Dold–Kan correspondence
to work with connective cdgas instead.
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De�nition 1.1.11. An almost �nitely presented derived stack is a derived stack over
the ∞-site of almost finitely presented algebras, dAffafp, together with the étale
topology. In other words, they are functors:

F :
(
dAffafp

)op → Gpd∞

satisfying a descent condition (see [TV05, Definition 3.4.9]) making it an∞-sheaf
valued in ∞-groupoids. We denote the category of almost finitely presented de-
rived stacks by dStafp.

Example 1.1.12. Since the category dSch is an∞-category, it has a mapping space
and we can define the functor of point of a given derived scheme X by:

X : dAffop Gpd∞

Spec(A) Map
dSch

(Spec(A), X)

This defines a fully-faithful functor dSch → dSt. If Spec(A) ∈ dAff , then its
associated stack, which we also denote by Spec(A), is the stack given by:

Spec(A) : cdga≤0 Gpd∞

B Map
cdga≤0

(A,B)

This is called the derived stack corepresented by A.

Remark 1.1.13. The objects of dSt can be very wild and do not always behave as
nicely as we would like for geometric purposes. In order to have a better control
on derived stacks, we will often restrict ourselves to certain sub-classes of derived
stacks.

One type of restriction is to consider derived stacks which can be obtained induc-
tively, starting with a�ne derived stacks, and by gluing our stacks together suc-
cessively along a certain type of morphisms. This is the idea behind the definition
of a geometric stack (see [TV08, Chapter 1.3] and in particular [TV08, Proposition
1.3.4.2]).
Di�erent choices of the “type of morphism” along which we are gluing give dif-
ferent notions of geometric stacks. We will only consider the class of smooth
morphisms. The category of geometric stacks for smooth morphisms is called the
category of Artin stacks (see [TV08, Definition 2.1.1.3]).

Unfortunately, these type of stacks will not be general quite enough for us. When
we will study infinitesimal quotients of Lie algebroids in Section 3, we will not
obtain Artin stacks, but rather derived formal stacks (see Section 1.3).
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Example 1.1.14.
– We will denote by A1 the a�ne line as the derived stack corepresented by
k[x], A1 := Spec(k[x]).

– Any pullback or pushout of derived stacks is also a derived stack.
– In Section 1.2.3 we will define a class of stacks called linear stacks corre-
sponding to a generalization of the notion of vector bundle over X . In the
situation where X admits a cotangent complex (see Section 1.2.2), we will
be able to define the n-shifted tangent and cotangent stacks, T [n]X and
T ∗[n]X (Definition 1.2.11).

– In Section 1.3 we will see a construction of “formal derived stacks” (Defi-
nition 1.3.1) obtained from a formal moduli problem (Definition D.1.6 and
Proposition 1.3.22). This will enable us to define the derived in�nitesimal
quotient stack of a Lie algebroid as the formal stack associated with the
formal moduli problem induced by the given Lie algebroid (see Section
3.2.1).

– Classifying stack: Given a group object in derived stacks, G, we define its
classifying stack as the colimit of the following simplicial stack1:

BG := colim
(
? G G2 · · ·

)
– Quotient Stack: Similarly to the previous example, consider G a group ob-
ject in derived stacks acting on a derived stack X . Then we can define the
quotient stack of X by G as the following colimit:[

X�G
]

:= colim
(
X X ×G X ×G2 · · ·

)
– More generally if G is a groupoid over X (Definition 4.1.1):

G X
s

t

then we can define its quotient stack as the colimit of its nerve2:[
X�G

]
:= colim

(
X G G ×X G · · ·

t

s
)

In particular if G := G × X, s := prX : G × X → X and t := ρ is an
action of G, then we recover the quotient stack from the previous example.
Moreover, if X and G are Artin stacks and the source and target maps

are “smooth”, then the quotient is also Artin (in fact Artin stacks are
such successive quotients of smooth Segal groupoids, see [TV08, Definition

1Each of the simplices are stacks given by G×n. The maps G×n → G×n−1 are given by the
projection on the (n − 1)-first (and n − 1-last) component and for each i = 1 · · ·n − 1 sends
(g1, · · · , gn) to (g1, · · · gi−1, gigi+1, gi+2, · · · , gn).

2The three maps of the nerve G×X → G are given by the natural projections and the groupoid
multiplication, and similarly for higher simplices.
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1.3.4.1.] and [TV08, Proposition 1.3.4.2.]). We will discuss the notion of
Segal groupoids in Section 4.1.1.

Proposition 1.1.15 ([TV05, Theorem 4.2.9]). The category of derived stack forms a
model topos (see [TV05]). In particular it satis�es Giraud’s theorem for model topoi:

(1) We have disjoint homotopy coproducts1.
(2) Colimits are preserved under base change:

colim (Ai ×B C) ' colim (Ai ×B C)

(3) Segal equivalence relations are homotopy e�ective. We refer to [TV05, Defini-
tion 4.9.1] for the precise meaning of that condition. In particular the natural
projection:

X →
[
X�G

]
is an e�ective epimorphism in the sens that there is an equivalence:

colim

(
N

(
X ×[X�G ] X X

))
∼→
[
X�G

]
and moreover the natural morphisms:

G ×X · · · ×X G︸ ︷︷ ︸
n−times

→ X ×[X�G ] · · · ×[X�G ] X︸ ︷︷ ︸
(n+1)−times

are equivalences for all n ≥ 0.

1.1.4. Relative spectrum functor and algebra of functions.

In this section we set up notations for the spectrum functor and its relative version,
and describe the sheaf of functions of a derived stacks. In the context of derived
schemes, we have a functor dAff → dSch which is part of the adjunction:

Γ : dSch dAff : Spec

where Γ is the global algebra of functions functor, Γ (X) := OX(X). The goal is
to give a similar adjunction for derived stacks and give a relative version of it. To
do that, we need to discuss the notion of sheaf of functions OX of a stack X .

First, recall that through the fully-faithful functor dSch → dSt, an a�ne derived
scheme Spec(B) is sent to the functor of points “corepresented” by B which leads
to the following definition:

1A coproduct A
∐
B is a disjoint coproduct if it is equivalent to the colimit A

∐
∅
B where ∅ is

the initial object.
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De�nition 1.1.16. A derived stack called a�ne or corepresented by B ∈ cdga≤0 if
it is of the form1:

Spec(B) : dAffop Gpd∞

A Map
cdga≤0

(B,A)

The functor Spec defines a fully-faithful functor dAff → dSt.

This definition can be easily be extended to unbounded algebras.

De�nition 1.1.17. For B ∈ cdga, a possibly unbounded algebra. We define the
pro-a�ne derived stack pro-corepresented by B to be:

Spec(B) : dAffop Gpd∞

A Map
cdga

(B,A)

Warning 1.1.18. Even though wemake an abuse of notation by denoting Spec(B)
the pro-corepresentable derived stack associated to a possibly unbounded cdga,
B, this derived stack is not a�ne in general, and is not even necessarily a derived
scheme. We will keep this convenient notation but the reader should be aware
that we say that X is an a�ne derived stack only if X = Spec(B) for B a connective
cdga.

We also want to consider schemes that are “a�ne relative to another scheme”. For
example vector bundles, or as we will see in Section 1.2, linear stacks, are a�ne
(or just pro-a�ne) relative to their base. We want to be able to take the “relative
spectrum” of such objects.

De�nition 1.1.19. There is a functor2:

dSch/X →
(

cdga≤0
QC(X)

)op

that sends p : Y → X to p∗OY .
This functor has a right adjoint called the relative spectrum:

SpecX :
(

cdga≤0
QC(X)

)op

→ dSch/X

In particular, for any A ∈ cdga≤0
QC(X) and p : Y → X, we have:

Hom
cdga≤0

QC(X)

(A , p∗OY ) ' Hom
dSch/X

(Y,SpecX(A ))

1Recall that the derived stack Spec(B) is the functor of points associated to the derived scheme
also denoted Spec(B).

2The category cdga≤0
QC(X) is the category of non-positively graded commutative algebras in

QC(X), the category of quasi-coherent sheaves on X (Definition 1.2.1).
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Note that for X = ?, this is the usual adjunction Γ a Spec since for p : Y → ?,
we have p∗OX ' OX(X).

The idea is that the objects of cdga≤0
QC(X) are the “a�ne relative to X” and the

relative spectrum produces a scheme (over X) out of it.
In order to do the same thing for derived stacks, we need to make sense of the
sheaf of functions of a derived stack.

De�nition 1.1.20. Given a derived stacks X, the sheaf of algebras of functions of
X is defined as the following stack (valued in cdga) on the site1 dAff/X by:

OX(Spec(A)→ X) = A

This can be left Kan extended to a functor from dSt/X , the category of all derived
stack over X . In particular for id : Y = X → X we get a definition of the global
functions functor:

OX(X) = lim
Spec(A)→X

A

Moreover, if f : X → Z is a map of stacks, then there is a morphism of∞-sheaves
on dSt/Z , OZ → f∗OX , extending the functor on dAff/Z defined by:

f∗OX(Spec(A)→ Z) := OX (Spec(A)×Z X → X)

This map:
OZ(Spec(A)→ Z) := A 7→ lim

Spec(B)→Spec(A)×ZX
B

is defined by the natural morphism obtain from the composition of the maps
Spec(B) → Spec(A) ×Z X → Spec(A), inducing maps A → B. Therefore we
get a unique morphism from A to the limit.

Lemma 1.1.21. Given a derived stack X , the following descriptions of the global
algebra of functions are equivalent:

(1)
OX(X) = lim

Spec(A)→X
A

(2) As the mapping “commutative monoid in spectra2” into A1:

OX(X) = Map
Com(Sp)
dSt

(
X,A1

)
This commutative monoid in spectra can be identify with a possibly unbounded

cdga using the stable Dold–Kan correspondence3.
1The over category dAff/X admits a natural étale topology coming from the étale topology on

dAff .
2The mapping spectra is obtain by considering the spectrum object given by taking the free

stabilization of the mapping space. This is also a commutative monoid in spectra because of the
commutative monoid structure on A1 (not all mapping spectra of derived stacks can be naturally
viewed as commutative monoids).

3An equivalence between k-algebra in spectra (k of characteristic zero) and unbounded cdga,
Com(Sp) ' cdga extending the usual Dold–Kan correspondence.
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Proof. We have that:
X = colim

Spec(A)→X
Spec(A)

therefore, when using the structure of A1 to enrich this mapping stack into simpli-
cial abelian groups, we get:

Map
Com(Sp)
dSt

(
X,A1

)
' Map

Com(Sp)
dSt

(
colim

Spec(A)→X
Spec(A),A1

)
' lim

Spec(A)→X
Map

Com(Sp)
dSt

(
Spec(A),A1

)
' lim

Spec(A)→X
Hom
cdga

(k[x], A)

' lim
Spec(A)→X

A

�

Proposition 1.1.22. We have again an adjunction:

Γ : dSt dAff : Spec

Proof.

Map
(cdga≤0)

op
(Γ(X), B) ' Map

cdga≤0

(
B, lim

Spec(A)→X
A

)
' lim

Spec(A)→X
Map(B,A)

' Map
dSt

(
colim

Spec(A)→X
Spec(A),Spec(B)

)
' Map

dSt
(X,Spec(B))

�

Remark 1.1.23. Let B ∈ cdga and consider Spec(B) the derived stack pro-
corepresented by B (Definition 1.1.17). Then we have:

Map
cdga

(k[x], B) ' Bcon

where Bcon is the connective truncation of B. In particular, the mapping space,
Map(X,A1), forgets the coconnective part of B.

We will now describe a relative version of the spectrum functor for stacks. By
analogy with the derived scheme situation (Definition 1.1.19) we can give the
following definition:
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De�nition 1.1.24. Give X a derived stack, a derived stack is called corepresentable
over X by B ∈ cdga≤0

QC(X) if it is of the form:

SpecX(B) : (dAff/X)op Gpd∞

(Spec(A)→ X) Map
cdga≤0

QC(X)

(
B, f∗OSpec(A)

)
SpecX defines a fully-faithful functor

(
cdga≤0

QC(X)

)op

→ dStdAff/X (where the
right hand side denotes stacks on dAff/X with respect to the étale topology).
We can also define pro-corepresentable stacks over X by taking B in cdgaQC(X)

instead.

Remark 1.1.25. The relative spectrum gives us a stack on dAff/X , but what we
would like is a stack over X . The way to obtain such a stack is to take the left Kan
extension along the forgetful functor i : dAff/X → dAff . The restriction gives
a functor dSt → dStdAff/X whose left adjoint is the left Kan extension functor
dStdAff/X → dSt. We can show that this functor factors through stacks over X :

dStdAff/X → dSt/X → dSt

Note that dStdAff/X has a terminal object ? sending everything to the point ?.
Therefore any object in the essential image of the left Kan extension has a canon-
ical morphism to Lani(?). We only have to show that Lani(?) ' X :

Lani(?) '
∫ Spec(A)→X

Map
dAffop

/X

(Spec(A),−)× ?(Spec(A)→ X)

'
∫ Spec(A)→X

Map
dAffop

/X

(Spec(A),−)

'
∫ Spec(A)→X

Spec(A)

' colim
Spec(A)→X

Spec(A) ' X

The functor dStdAff/X → dSt/X is an equivalence with inverse:

dSt/X dStdAff/X

(Y → X)

(
(Spec(A)→ X) 7→ Map

dSt/X

(Spec(A), Y )

)
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Remark 1.1.26. If X = Spec(A) is a�ne, then the derived stack given by the
relative spectrum of a semi-free algebra SpecX(SymA F∨) (where F ∈ ModA) is
pro-corepresented by SymA F∨. Indeed, we have for all B ∈ dAff :

Hom
dSt/X

(Spec(B),Spec(SymA F∨)) ' Hom
cdgaA/

(SymA F∨, B)

Where the equivalence comes from the fact that Spec is a fully-faithful functor.
Moreover, since X is a�ne, taking global sections between a�ne stacks is also
fully-faithful and we get:

SpecX(SymOX
F∨)(Spec(B)→ X) ' Hom

ShX(cdga)OX/

(SymOX
F∨, f∗OSpec(B))

'Hom
cdgaA/

(SymA F∨, B)

1.2. Linear and Semi-Linear Stacks.

The goal of this section is to introduce the analogue of vector bundles in derived
algebraic geometry and compute their (relative) tangent complexes. We will use
the result due to the Serre-Swan theorem, saying that vector bundles are equiva-
lent to projective finitely generated sheaves of (non di�erential graded) modules,
to motivate the construction of derived stacks out of quasi-coherent sheaves of mod-
ules. These will define the notion of “linear stacks” out of sheaves of modules
over a given base X . When working in the context of derived geometry, we can
drop the condition of being projective as we can always take a projective resolution,
and the condition of being locally finitely generated will be replaced by the notion
of perfect sheaf of module when we need to use dualization properties of quasi-
coherent sheaves.

We discuss, in Section 1.2.1, the notions of quasi-coherent and perfect sheaves of
modules. The reason we look at quasi-coherent sheaves is that they behave like
the gluing of “local modules” over the baseX . This is a notion required when work-
ing in algebraic geometry ensuring that a sheaf of modules on an a�ne scheme
X = Spec(A) is the same as an A-module. Perfect sheaves of modules are quasi-
coherent sheaves of modules that are dualizable.
Then as a notable and important example of such sheaves, we will discuss the
tangent and cotangent complexes. The construction of the cotangent complex in
a general context is discussed in Appendix A.2. This is a construction only on
a�ne stacks and in Section 1.2.2 we discuss how to extend this definition to de-
rived schemes and stacks.

Then Section 1.2.4 computes the relative tangent complex of a linear stack, and
1.2.5 the full tangent complex of a linear stack (over an a�ne base) by making
use of connections.
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1.2.1. Some sheaves of modules.

For any type of geometric space X obtained from gluing a�ne objects, we are
interested by the sheaves of modules over X that are obtained as some kind of
gluing of modules over those a�ne objects. These are precisely the quasi-coherent
sheaves on X .

De�nition 1.2.1. All along A denotes an algebra, X is a derived stack.
– We denote by QC(X) the category of quasi-coherent sheaves. The objects
of this category can be defined as the data of a A-module for each map
f : Spec(A)→ X, called MA and for all commutative diagram:

Spec(A) Spec(B)

X

f

there is a weak equivalence αf : MB ⊗B A → MA together with some
coherence conditions (see [TV08, Section 1.3.7]).

– We can also describe the category of quasi-coherent sheaves on a stack X
as the following limit:

QC(X) = lim
Spec(A)→X

ModA

This formula is what we obtain by left Kan extending the functor QC along
dAff → dSt.

De�nition 1.2.2. Take M a closed symmetric monoidal model category with unit
denoted by 1. We can define the dual of an object V ∈M as1:

V ∨ := HomM
M (V, 1)

– An object V ∈M is called re�exive if the natural morphism2:

V → (V ∨)∨

is an equivalence.
– There is a stack Perf of perfect modules (see [TV08, Corollary 1.3.7.4]) such
that Perf(A) is the category of perfect A-modules (see [TV08, Definition
1.2.3.6]) where V is in Perf(A) if the natural morphism:

V ⊗ V ∨ → HomM
M (V, V )

is an equivalence.
1Recall that HomM

M denotes the M enriched Hom functor in M .
2obtained as the image of the identity under the composition:

HomM
M (1, 1)→ HomM

M (V ⊗ V ∨, 1)→ HomM
M (V,HomM

M (V ∨, 1)) ' HomM
M (V, (V ∨)∨)
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For now we will go back to the situation where M := ModA with 1 = A.

Proposition 1.2.3. For F ∈ Perf(A) and M,N ∈ ModA, we have:

– Perfect module are the strongly dualizable objects in ModA and we have ([TV08,
Proposition 1.2.3.7]):

HomA(M,F ⊗A N) ' HomA(M ⊗F∨, N)

HomA(F ,M) ' F∨ ⊗M
– An A-moduleF is perfect if an only if it is quasi-isomorphic to a �nitely presented
projective A-module ([TV08, Lemma 2.2.2.2]).

– A perfect A-module F is re�exive since we have the natural equivalences:

F → HomA(A,F ) ' HomA(F∨, A) := (F∨)∨

Proposition 1.2.4. Any map of algebras f : B → A induces Quillen adjunctions1:

f ∗ : ModB ModA : f∗

where f ∗M := M ⊗B A is the extension of scalars and f∗ is the restriction of scalars.
This result extends to quasi-coherent sheaves; given a morphism f : X → Y , there is an
adjunction:

f−1 : ModOY Modf−1OY : f∗

where f∗ is the direct image functor between sheaves and f−1 is the sheaf restriction func-
tor2. Moreover, there is an adjunction between OX and f−1OY -modules given by the scalar
extension-restriction. This together with the previous adjunction, induces an other adjunc-
tion between quasi-coherent sheaves:

f ∗ : QC(Y ) QC(X) : f∗

with f ∗F = f−1F ⊗f−1OY OX ∈ QC(X).

1.2.2. Relative (co)tangent complex on stacks.

Recall from Appendix A.2 that the cotangent complex of an A-algebra B is by
definition the B-module representing A-linear derivation in the sens that for all
B-module N , there is a natural equivalence (see Definition A.2.4):

HomB(LB/A, N) ' DerA(B,N)

In the Appendix A.2 the construction was made in an arbitrary good model category
(Definition A.1.1). For now we only need to restrict to M = Modk. Before we
move to the general complex, let us recall the classical (underived) construction
of the Kähler di�erential:

1We consider ModA with the standard projective model structure. This is an instance of good
model structure as defined in Appendix A.1.

2This comes from the adjunction between ShX(cdga≤0) and ShY (cdga≤0) given by f−1 a f∗.
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De�nition 1.2.5. Given a morphism of algebras A→ B, the B-module, Ω1
B/A, of

A-linear Kähler di�erentials is defined as the module representing the (underived)
A-linear derivations:

HomB

(
Ω1
B/A,M

) ∼= DerA(B,M) ∼= Hom
cdgaA//B

(B,B �M)

Note that in this adjunction, the Hom functor is not derived and by definition Ω is
not a derived functor.

Construction 1.2.6. In concrete terms, Ω1
B/A is the B-module freely generated

by terms denoted by db for b ∈ B subject to the relations:
– For all b, b′ ∈ B:

d(b.b′) = b.db′ + (−1)|b|db.b′

d(b+ b′) = db+ db′

– A-linearity, for all a ∈ A:
da = 0

We can show that this satisfies the condition of Definition 1.2.5 and this explains
why this construction gives the module of “di�erential forms”. Moreover, the
cotangent complex only di�ers from the module of Kähler di�erentials by the
fact that the adjunction and functors in the definition are derived. As such, up
to picking a “good replacement”, we can obtain a similar presentation for the
cotangent complex.

In Appendix A.2, we give a general construction of the cotangent complex in an
arbitrary “good” model category M (in the sens of Definition A.1.1). The def-
inition is again essentially the same as Definition 1.2.5 where the adjunction is
derived.

Using Appendix A.2, we have a definition of the cotangent and tangent complexes
for a�ne objects. It is however unclear whether the cotangent complex of a�nes
glues to a quasi-coherent sheaf on a derived stack X . The answer in full generality
is that it does not glue well and we will need to have restriction on the stacks we
will work with.

Remark 1.2.7. By definition every a�ne derived stack has a global cotangent com-
plex given by LSpec(A) := LA (see [TV08, Corollary 2.2.3.3] and Remark 1.1.13).
Moreover [Lur17, Theorem 7.4.3.18] tells us that if H0(A) is finitely generated,
then LA is perfect if and only if A is finitely presented.
More generally, any derived Artin stack admits a (relative) cotangent complex1

and in particular derived schemes always admit a cotangent complex since they are
in particular derived Artin stacks. Moreover, a locally finitely presented derived
Artin stack has a perfect cotangent complex.

1We call this a cotangent complex although it is a quasi-coherent sheaf of complexes over X .
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Remark 1.2.8. If we restrict to stacks of local almost finite presentation (Definition
1.1.11), then all stacks having a global cotangent complex have a coherent and
eventually coconnective cotangent complex (see [CPT+17, Introduction of Section
2]).

1.2.3. De�nition and examples of linear and semi-linear stacks.

In this section, we will take a quasi-coherent sheaf F ∈ QC(X) over a derived
stack X and define the linear stack over X associated to F . We show that these
stacks are in fact pro-corepresentable (see Proposition 1.2.13). Then we extend
this to the notion of semi-linear representation of stacks, which are essentially stacks
over X pro-corepresented (under OX) by a sheaf of semi-free algebras OX →
SymOX

F∨ with F ∈ QC(X). Semi-linear representation of stacks are going to
be important for us with the examples of the derived critical locus and variations
of it called almost derived critical loci (Definition 1.2.24).

De�nition 1.2.9. Given F ∈ QC(X) a quasi-coherent sheaf over a derived stack,
we can construct a linear stack, denoted A(F ), the stack on dAff/X , defined (as
a stack on dAff/X)1, by:

AX(F ) (f : Spec(A)→ X) := MapA (A, f ∗F )

Any linear stack comes equipped with a natural projection π : AX(F )→ X . This
defines a functor:

AX : QC(X)→ dSt/X

If F is perfect, then AX(F ) is called a perfect linear stack.

Notation 1.2.10. The quasi-coherent sheaves will be denoted by curved calli-
graphic letter such as F , E , L and their associated linear stacks will often be
denoted by the corresponding straight capital letter F , E, L to simplify the nota-
tions.

Earlier we defined the notions of tangent and cotangent complexes, which are the
quasi-coherent sheaves of derivation and di�erential forms respectively. Naturally,
their associated linear stacks define the notion of tangent and cotangent stacks
respectively.

De�nition 1.2.11. Assume that X admits a global cotangent complex. Then we
define the n-shifted cotangent stack as the linear stack:

T ∗[n]X := AX(LX [n])

Similarly, we define the n-shift tangent stack over X as the linear stack:

T [n]X := AX(TX [n])

1We have seen in Remark 1.1.25 that stacks on dAff/X naturally extend to stacks over X . We
will not make a distinction between stacks on dAff/X and their extensions to stacks over X since
both notions are equivalent.



42

Proposition 1.2.12. IfF ∈ Perf(X) is connective, then AX(F ) is a�ne relatively to
X , meaning that is it is given by a relative spectrum of a sheaf of connective OX -algebras,
and we have:

AX(F ) ' SpecX(SymOX
F∨)

For a general F , the linear stack will not be an a�ne stack for reasons as discussed
in Warning 1.1.18. However, they are still “pro-corepresented” by a possibly non-
connective free cdga (under OX). Therefore Proposition 1.2.12 is a consequence
of the following:

Proposition 1.2.13. Any perfect linear stack AX(F ) can be pro-corepresented relatively
to X by SymOX

F∨. In other words, for all Spec(A)→ X we have:

AX(F ) ' SpecX
(
SymOX

F∨)
Lemma 1.2.14. Let f : Y → X be a map of derived stacks. Then we have the following:

OY ' f ∗OX

SymOY
f ∗F∨ ' f−1

(
SymOX

F∨)⊗f−1OX OY

SymOY
f ∗F∨ ' f ∗

(
SymOX

F∨)
Proof of Proposition 1.2.13. First because F is perfect we have the equivalences (us-
ing Lemma 1.2.14):

AX(F )(f : Spec(A)→ X) ' MapA (A, f ∗F )

' MapA (f ∗F∨, A)

' Map
cdgaA/

(SymA f
∗F∨, A)

' Map
cdgaOSpec(A)/

(
SymOSpec(A)

f ∗F∨,OSpec(A)

)
' Map

cdgaOX/

(SymOX
F∨, f∗OSpec(A))

�

Proposition 1.2.15. A map f : Y → AX(F ) into a perfect linear stack is determined
by:

– A map

g = π ◦ f : Y → X

– A section:

s ∈ Map
QC(Y )

(OY , g
∗F )
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More precisely we have a pullback diagram:

MapdSt (Y,AX(F ))
(
QC(Y )OY /

)'
Map(Y,X) QC(Y )'

(−)∗F

Proof. The map Y → X is given by the composition π ◦f . Then f becomes a map
in dSt/X and we have:

Map
dSt/X

(
Y,SpecX

(
SymOX

F∨)) ' Map
cdgaOX/

(
SymOX

F∨, g∗OY

)
' Map

cdgaOY /

(
g∗
(
SymOX

F∨) ,OY

)
' Map

cdgaQC(Y )

(
SymOY

g∗F∨,OY

)
'Map

QC(Y )

(g∗F∨,OY )

'Map
QC(Y )

(OY , g
∗F )

Where the first and third equivalences follow from Definition 1.1.24 and Lemma
1.2.14 respectively. �

Corollary 1.2.16. The space of sections of π : AX(F )→ X is equivalent to the mapping
space MapQC(X) (OX ,F ) in QC(X). In particular, there is a zero section determined
by the zero element in this mapping space:

s0 : X → AX(F )

Proposition 1.2.17. Let F ∈ QC(X) and G ∈ QC(Y ) be quasi-coherent sheaves
on the derived stacks X and Y .

– The de�nition of linear stack is natural in F . Any map f : F → G in QC(X)
naturally induces a map1 of derived stacks:

f : AX(F )→ AX(G )

we will called such maps linear maps of linear stack.
– Considering the following pullback:

f ∗AY (F ) AY (F )

X Y
f

we have a natural equivalence AY (f ∗F ) ' f ∗AX(F ).

1As an abuse of notation, we will not distinguish the notation between the map between quasi-
coherent sheaves and the induced map between the associated linear stacks.



44

– A map φ : AX(F )→ AY (G ) �tting in the commutative diagram:

AX(F ) AY (G )

X Y
f

is equivalent to the data of a map φf : AX(F )→ AX(f ∗G ) over X .
Moreover φ is called linear if φf comes from a map of quasi-coherent sheaves

φf : F → f ∗G , which is exactly the data of a map F → G of quasi-coherent
sheaves over f .

Proof.

– Since both stacks are over the same base, the map between the linear stacks
is given for each A-point g : Spec(A)→ X by a map:

MapA(A, g∗F )→ MapA(A, g∗G )

This map is given by g∗f : g∗F → g∗G .
– Take Z a cone over the pullback diagram. The cone is determined by:

Z X Y
g h

s ∈ Map
QC(Z)

(OZ , g
∗h∗F )

From this we can get a unique map Z → AX(h∗F ) making the cone
diagram commute and therefore exhibiting AX(h∗F ) as the pullback. This
map is given by:

– g : Z → X
– the image of s under the map1:

Map
QC(Z)

(OZ , g
∗h∗F ) ' Map

QC(X)

(g∗g
∗OX , h

∗F )→ Map
QC(X)

(OX , h
∗F )

– The third point is a direct consequence of the first two.

�

Lemma 1.2.18. Given F ,G ,H ∈ QC(X), then the pullback of linear maps between
the linear stacks (overX) is given by the linear stack associated to the pullback of modules:

AX(H ×G F ) AX(F )

AX(H ) AX(G )

1Using the unit id→ g∗g
∗ of the extension-restriction of scalars adjunction.
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Proof. Let Y be a cone over this pullback and f : Y → X the natural map. Then
the map from Y into the pullback is completly characterized by a morphism in
Hom(OY , f

∗F ) (and similarly for H and G ). These morphisms are compatible
with the maps between F , G and H . In other words, the map to the pullback
from the cone induces a unique element in:

Hom(OY , f
∗H )×Hom(OY ,f∗G ) Hom(OY , f

∗F ) ' Hom(OY , f
∗(H ⊕G F ))

This is exactly the data of a map f : Y → AX(H ×G F ), proving that AX(H ×G

F ) is indeed the pullback. �

From Proposition 1.2.13, every perfect linear stack is pro-corepresented by a sheaf
of free algebras on OX . In what follows we will generalize this to semi-free algebras
to encodes stacks that behave almost like linear stacks even though they are not
linear.

De�nition 1.2.19. A semi-linear presentation of a derived stack over a derived stack
X an equivalence:

Y ' SpecX
((

SymOX
F∨, δ

))
with

((
SymOX

F∨, δ
))

a semi-free algebra over OX in cdgaQC(X). Notice that if F
is not coconnective, then Y is not a�ne but only pro-represented by a semi-free
algebra. If F is perfect, we called it a perfect presentation.

De�nition 1.2.20. Let X be a derived stack with a cotangent complex, and
f : X → A1. Then the derived critical locus of f is defined as the following
pullback1:

Crit(f) X

X T ∗X

df

s0

Proposition 1.2.21. The derived critical locusCrit(f) is has a semi-linear presentation
given by the semi-free algebra SymOX

TX [1] with di�erential ιdf plus the di�erentials on
TX [1] and OX .

Proof. We need to take a cofibrant resolution of the zero map SymOX
TX → OX .

We take the inclusion SymOX
TX → SymOX

(TX ⊕TX [1]) with di�erential induced
by the identity TX [1]→ TX and the di�erentials on OX and TX on the right hand
side. Then, using that, Crit(f) is the semi-linear stack pro-corepresented by:

OX ⊗SymOX
TX SymOX

(TX ⊕ TX [1]) ' SymOX
(0⊕TX (TX ⊕ TX [1]))

' SymOX
(TX [1])

1This pullback can be taken either in the category of derived stacks, derived stack over X or
derived stacks on dAff/X since the functor dStdAff/X → dSt/X is an equivalence and the functor
dSt/X → dSt preserves and reflects connected limits (including pullbacks).
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where the di�erential (obtained on the tensor product of the semi-free algebras) is
exactly given by the di�erentials on TX [1], OX and ιdf viewed as a map degree 1:

TX [1]→ OX

�

In Section 5.1, we will be interested in a mild generalization of the derived critical
locus given by some particular type of semi-linear stacks. We will describe these
objects here as they are typical examples of semi-linear stacks. We start by giv-
ing the construction of one of the most important semi-linear stack, namely the
Koszul–Tate resolution of a global function f : X → A1.

Construction 1.2.22. If X := Spec(B) is a smooth a�ne scheme, then the strict
pullback of df : X → T ∗X by the zero section is called the strict critical locus and
is denoted by Crit(f).
If we view Crit(f) as a derived scheme, the map i : Crit(f) → X corresponds to
the projection (of sheaves over the critical locus), B → B/I, with I the ideal of B
generated by the elements df.X for X ∈ TB.
The Koszul–Tate resolution of f , denoted KT(f), is a derived scheme obtained
from a specific cofibrant resolution of this map, and is constructed as follows:

(1) Consider SymB TB[1] together with the di�erential given by ιdf . This is
the algebra of functions of the derived critical locus thanks to Proposition
1.2.21, but it is not in general a resolution of the quotient. However, its
cohomology in degree 0 is isomorphic to B/I .

(2) We add free generators in negative degree (in degree ≤ −2) to “kill” the
cohomology in negative degrees of the derived critical locus. This can be
done inductively (on the cohomological degree) and we refer to [Tat57] for
the detailed description of this procedure. We get a semi-free algebra over
B of the form:

KT(f) := SymB (TB[1]⊕LKT[2])

where LKT ∈ ModB is a connective projective B-module (LKT can even
be chosen to be free). The di�erential restricted to TB[1] is still ιdf and the
complex is acyclic in negative degree.

Then we define KT(f) := Spec(KT(f)). Since this is a resolution of the strict
critical locus, there is a natural weak equivalence of derived schemes:

Crit(f)
∼→ KT(f)

Remark 1.2.23. This example of semi-linear stack in an instance of the procedure
of adding “anti-fields” and “anti-ghosts fields”. Essentially, in our model, genera-
tors of TX [1] are called anti-�elds and the generators of LKT[2] are called anti-ghost
�elds. This idea will be discussed further in Section 5.1.1.
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We will be interested, in Section 5, by objects where we add anti-ghost fields to the
derived critical locus without necessarily getting a resolution of the strict critical
locus. This is a generalization of the Koszul–Tate construction that does not kill
all the cohomology of the derived critical locus.

De�nition 1.2.24. An a�ne derived scheme S is said to be an almost derived
critical locus of f if it is equivalent to a derived scheme of the following form:

S ' Spec(SymB (TB[1]⊕L [2]))

where SymB (TB[1]⊕L [2]) is a semi-free B-algebra such that B is a finitely gen-
erated smooth algebra, the di�erential restricted to TB[1] is given by ιdf and L is
a connective B-module.

Remark 1.2.25. Definition 1.2.24 is very closed to the definition of a Koszul–Tate
resolution of B except for the fact that this might not be a resolution of B/I .
However, it is equipped with a map to the quotient inducing a map:

Crit(f)→ S

Moreover, up to adding further elements to kill the cohomology, there is a Koszul–
Tate construction that naturally projects to the semi-free algebra defining our al-
most derived critical locus. This induces a sequence of maps:

Crit(f)
∼→ KT(f)→ S → Crit(f)→ X

Dual to the maps:

B → SymB TB[1]→ SymB (TB[1]⊕L [2])→ SymB (TB[1]⊕LKT[2])
∼→ B�I

As such, S is an almost derived critical locus of f in the sens that this is an object
sitting “in between” the strict and derived critical loci.

Notation 1.2.26. Through this text, all “natural projection” will be denoted by π
(or variations of it such as πS or πF ), for example:

π : Crit(f)→ X πX : TX → X πF : AX(F )→ X

The natural map from an almost derived critical locus to the derived critical locus
will be denoted by:

i : S → Crit(f)

Remark 1.2.27. We consider morphisms of almost derived critical loci as mor-
phisms of derived schemes over Crit(f). Then if S and S ′ are almost derived
critical loci, then S ×Crit(f) S

′ is also an almost derived critical locus.



48

1.2.4. Relative cotangent complex of a (semi-)linear stack.

This section is devoted to the study of relative cotangent complex of the projection
π : AX(F )→ X from a linear stack. Given F ∈ Perf(X) with X a derived stack
that admits a tangent complex, the goal of this section is to show that there is an
equivalence:

LAX(F )/X ' π∗F∨

and study the functoriality of this equivalence in F and X .

Proposition 1.2.28. Let X be a derived stack admitting a tangent complex and F ∈
Perf(X) a perfect quasi-coherent sheaf onX . We denote by π : AX(F )→ X the natural
projection. Then we have:

LπX ' LAX(F )/X ' π∗XF∨

Proof. We will show the result for any B-point y : Spec(B) → AX(F ) and we
write x = π ◦ y : Spec(B)→ X . We can show that for all M ∈ ModB connective,
we have:

HomB

(
y∗LAX(F )/X ,M

)
' HomB (x∗F∨,M)

First we observe that HomB

(
y∗LAX(F )/X ,M

)
is equivalent, using the universal

property of the cotangent complex, to the following homotopy fiber at y:

hofibery

(
Hom
dSt�X

(Spec(B �M),AX(F ))→ Hom
dSt�X

(Spec(B),AX(F ))

)
with Spec(B �M)→ X being the composition:

Spec(B �M) Spec(B) X
p x

Thus a map in HomB

(
y∗LAX(F )/X ,M

)
is completely determined by a map

Φ : Spec(B �M)→ AX(F )

making the following diagram commute:

Spec(B)

Spec(B �M) AX(F )

Spec(B) X

i
y

Φ

p πX

x

Thus, we obtain that HomB

(
y∗LAX(F )/X ,M

)
is equivalent to

hofibersy (MapB�M (B �M, p∗x∗F )→ MapB (B, x∗F ))
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where sy ∈ MapB (B, x∗F ) is the section associated to y : Spec(B) → AX(F )
from Proposition 1.2.15. The map is then given by pre-composition with i∗. We
can now observe that p∗x∗F = x∗F ⊕ x∗F ⊗B M and that:

MapB�M (B �M, p∗x∗F ) ' MapB (B, x∗F ⊕ x∗F ⊗B M)

.
We obtain:

HomB

(
y∗LAX(F )/X ,M

)
'hofiber (MapB (B, x∗F ⊕ x∗F ⊗B M)

→ Map
B

(B, x∗F )

)
'MapB (B, x∗F ⊗B M)

'MapB (x∗F∨,M)

Now the result follows from the fact that the functor

ModB Fun
(
Mod≤0

B , sSet
)

N MapB (N, •)

is fully-faithful and the fact that everything we did is natural in B. �

Lemma 1.2.29. Let f : X → Y be a morphism of derived Artin stacks. We consider
F ∈ Perf(Y ). Then there is a commutative square:

Φ∗LAX(F )/X LAX(f∗F )/Y

Φ∗π∗Y F∨ π∗Xf
∗F∨

' '

'

with Φ the natural morphism in the following pullback:

AX(f ∗F ) AX(F )

X Y

Φ

πX πY

f

and the lower horizontal equivalence Φ∗π∗Y F∨ → π∗Xf
∗F∨ being the equivalence coming

from the fact that πY ◦ Φ ' f ◦ πX .

Proof. The first thing we observe is that AX(f ∗F ) ' f ∗AX(F ). We consider as
before B-points:
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Spec(B) f ∗AX(F ) AX(F )

X Y

y

ỹ

x

x̃

Φ

πX πY

f

We want to show that the following diagram is commutative:

(1)

HomB

(
y∗LAX(f∗F )/X ,M

)
HomB

(
ỹ∗LAX(F )/Y ,M

)
HomB (y∗π∗Xf

∗F∨,M) HomB (ỹ∗π∗Y F∨,M)

' '

Using the universal property of the cotangent complex, the top horizontal arrow
is naturally equivalent to the map

hofibery

(
Hom
dSt�X

(Spec(B �M),AX(f ∗F ))→ Hom
dSt�X

(Spec(B),AX(f ∗F ))

)

hofiberỹ

(
Hom
dSt�Y

(Spec(B �M),AX(F ))→ Hom
dSt�Y

(Spec(B),AX(F ))

)

induced by Hom
dSt

(−,Φ). A map ψ : Spec(B �M)→ AX(f ∗F ) in this homotopy

fiber fits in the following commutative diagram:

Spec(B)

Spec(B �M) AX(f ∗F ) AX(F )

Spec(B) X Y

y

ỹ
i

p

ψ

πX

Φ

πY

x f

and the map between the homotopy fiber sends ψ to Φ ◦ ψ. Since the underlying
map of ψ is πX ◦ψ : Spec(B �M)→ X is x ◦ p and the underlying map of Φ ◦ψ
is πY ◦ Φ ◦ ψ : Spec(B �M) → Y is f ◦ x ◦ p = x̃ ◦ p, this map between the
homotopy fiber of derived stacks is therefore naturally equivalent to the map:
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hofibersy (HomB�M (B �M, p∗x∗f ∗F ))→ HomB (B, p∗x∗f ∗F ))

hofibersỹ (HomB�M (B �M, p∗x̃∗F ))→ HomB (B, p∗x̃∗F ))

where sy and sỹ are the sections associated to y and ỹ respectively. This map is
in fact induced by the natural identification p∗x̃∗F ' p∗x∗f ∗F (since x̃ = f ◦ x).
But following the steps of the proof of Proposition 1.2.28, this map is naturally
equivalent to the map

HomB (y∗π∗Xf
∗F∨,M)→ HomB (ỹ∗π∗Y F∨,M)

The natural equivalences we used are the natural equivalences used in the proof
of Proposition 1.2.28 which proves that the Diagram (1) is commutative. Now the
result follows once again from the fact that the functor

ModB Fun
(
Mod≤0

B , sSet
)

N MapB (N, •)

is fully-faithful and the fact that everything we did is natural in B. �

Lemma 1.2.30. Let X be a derived Artin stacks. We consider F ,G ∈ QC(X) dual-
isable and h : F → G . Then there is a commutative square:

ĥ∗LAX(G )/X LAX(F )/X

π∗XG ∨ π∗XF∨

' '
π∗Xh

∨

with ĥ : AX(G )→ AX(F ) the map induced by h.

Proof. Every step of the proof of Proposition 1.2.28 is functorial in F ∈ Perf(X).
�

Proposition 1.2.31. Let f : X → Y be a morphism of derived Artin stacks. We consider
F ∈ QC(X) and G ∈ QC(Y ) both dualizable and a morphism h : f ∗F → G . Then
there is a commutative square:

LAX(F )/X f̂ ∗LAX(G )/Y

π∗XF∨ π∗Xf
∗G ∨ = f̂ ∗π∗Y G ∨

' '

π∗Xh
∨
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Proof. It follows from Lemma 1.2.29 and Lemma 1.2.30 �

Remark 1.2.32. If two semi-free cofibrant algebras over X have the same under-
lying cofibrant graded free algebra (forgetting the di�erential), then their cotan-
gent complexes have (for the model provided by the given choice of cofibrant
semi-free algebra) the same underlying graded OX -module. In particular, if Y :=
SpecX(SymOX

F∨) is a semi-linear stack with di�erential δ. Up to taking a cofi-
brant replacement we can assume that F∨ is projective and we get:

LY/X ' (π∗F ], δlin)

where π∗F ] is endowed with a di�erential δlin induced by the di�erential δ on the
semi-free algebra. In particular, δlin contains the di�erential on F but also extra
terms. It is of the form:

δlin : F → F ⊗OX SymOX
F∨

therefore, this di�erential can be decomposed along the natural grading of the
symmetric algebra (see Notation B.2.6) on the right hand side with the weight
zero part F → F recovering the di�erential on F .

1.2.5. Connections and tangent complexes of (semi-)linear stacks.

The goal of this section is to have a way to compute the tangent complex of a linear
(or semi-linear) stack. To do so requires the use of a connection, enabling us to
split the tangent in the fiber and the base parts of the linear stack. Unfortunately,
connections may not always exist in algebraic geometry. We will see that they
exist if the base is a�ne and the module of sections is projective (see Proposition
1.2.40). In this section, X will be a derived stack admitting a cotangent complex.

De�nition 1.2.33. Let F ∈ QC(X) with X a derived stack. An Ehresmann
connection on the linear stack1 π : F → X is given by a splitting on the following
exact sequence of quasi-coherent sheaves on F :

V TF π∗TX
π∗

s

where V is the fiber of ker(π∗) and is called the vertical space. Note that by we have
V ' TF/X and using Proposition 1.2.28, such a connection is a splitting of the
fiber sequence:

π∗F TF π∗TX
π∗

s

De�nition 1.2.34. A covariant derivative of the linear stack F → X is a map of
quasi-coherent sheaves over X :

∇ : TX → Endk(F )

1Recall from Notation 1.2.10 that F denotes the linear stack AX(F ).
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such that for allX ∈ TX ,∇X is in Endk(F )) and satisfies the Leibniz rule making
it a degree |X| derivation:

∇X(fs) = X(f).s+ (−1)|X||̇f |f∇Xs

Notation 1.2.35. Let A and B be di�erential graded objects (such as dg-module,
cdga etc...). We denote by A] and B] their underlying graded objects where we
“forget” the di�erential.
We denote by f] : A→ B a map that does not necessarily respects the di�erential.

De�nition 1.2.36. A connection on a semi-linear stack Y over X = Spec(B) is
again given by a splitting:

V TY π∗TX
π∗

s]

where this time s] is not required to respect the di�erential (Notation 1.2.35). In
other word, a connection is the data of a section of the underlying graded modules.

Construction 1.2.37. We will briefly recall how covariant derivatives induce Er-
hesmann connections. Take a covariant derivative ∇. If we pullback the map
TX → Endk(F ) by π, we associate to each X in π∗TX an element ∇X , which can
be extended by the Leibniz rule to a derivation in TF via the following formula:

∇X(fv1 · · · vn) = X(f)v1 · · · vn +
n∑
i=1

±fv1 · · · (∇Xvi) · · · vn

It remains to see that this defines a section. Since π∗ annihilates F and ∇X sends
elements in F to elements in F , we get that π∗∇Xv = 0 for all v in F . Moreover,
π∗∇Xf = X(f) therefore π∗(∇X)|OX = X in π∗TX and therefore this defines a
section.

Using Construction 1.2.37 and the splitting induced by a connection, we can almost
identify the tangent complex of linear and semi-linear stacks with a direct sum of
F and TX .

Lemma 1.2.38. Given a perfect linear stack F , we have an isomorphism:

TF ∼= π∗(TX ⊕∇ F )

where the underlying graded, π∗(TX ⊕∇ F )], is given by the usual direct sum π∗(TX ⊕
F )]. This isomorphism sends:

– φ ∈ TF to (φ|X , φ− φ|X −∇X).
– (X, v) to the derivationX+∇X + ιv with∇X ∈ π∗F where∇X ∈ F ⊗F∨ is
viewed a Sym≥1

OX
F∨-valued derivation given by the contraction along the terms

in F .
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Moreover, the di�erential on π∗(TX ⊕∇ F ) is given by the di�erential on TX , F plus
a term of connection δ∇ sending TX to F ⊗F∨ ⊂ π∗F (in particular, δ∇ is valued in
F ⊗ Sym≥1

OX
F∨).

Lemma 1.2.39. For Y a perfect semi-linear stack, the splitting:

V TY π∗TX
π∗

s]

Induces an isomorphism:

TY π∗(F ⊕∇ TX)

where the underlying graded, π∗(TX⊕∇F )], is given by the usual direct sum π∗(TX⊕F )]

(where we forgot the di�erential). This isomorphism sends:

– φ ∈ TY to (φ|X , φ− φ|X −∇X).
– (X, v) to the derivation X +∇X + ιv with ∇X ∈ π∗F with ∇X ∈ F ⊗F∨ is
viewed a Sym≥1

OX
F∨-valued derivation given by the contraction along the terms

in F .

The di�erential on the right hand side is obtained from the di�erential on TY by transfer
along the isomorphism of the underlying graded complexes. We obtain a non-canonical
di�erential on (π∗(F ⊕ TX))] extending the natural one. It will in particular recover
the di�erential on TX , on F , the term of connection δ∇ and extra terms coming from the
“non-linear” parts of the semi-free di�erential.

Proposition 1.2.40. Take X = Spec(A) a�ne, then any projective A-module M
admits a connection.

Proof. This is a di�erential graded adaptation of [RM17b, Proposition 2.3 and
2.5]. Indeed, we can clearly define connections on free A-modules, and projective
modules are also direct summand of free ones (in particular of their free resolution)
in the di�erential graded case. �

In particular, any semi-linear stacks over an a�ne base X = Spec(A) can be
resolved as a semi-free algebra on A with projective module which therefore admits
a connection.

Example 1.2.41. Lemma 1.2.39 ensures that the tangent of the derived critical
locus is:

TCrit(f) ' π∗(TX ⊕∇ LX [−1])

and therefore this is given by π∗(TX ⊕ LX [−1])] together a di�erential depend-
ing on the chosen connection. We could try to use this Lemma to work out the
di�erential but there is a more conceptual approach to that question using the
easier description of the di�erential obtained from a connection on a linear stacks
(Lemma 1.2.38).
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The tangent complex of a pullback is the pullback of the tangent complexes (see
Proposition A.2.9). Therefore have the pullback:

TCrit(f) i∗TX

i∗TX i∗s∗0TT ∗X ' i∗df ∗TT ∗X

where i : Crit(f) → X and s0, df : X → T ∗X . Using a connection on the linear
stack T ∗X, we have an isomorphism

TT ∗X ∼= π∗(TX ⊕∇ LX)

and the di�erential is given by the di�erentials on TX , LX and a term coming from
the connection, that we will denote by δ∇, sending X ∈ TX to ∇X a Sym≥1

OX
TX -

valued 1-form on X, that is, an element in π∗LX .
Computing this pullback, along the maps:

i∗TX → i∗(TX ⊕ LX) ' i∗s∗π∗(TX ⊕ LX)

(with s = s0 or equivalently s = df) given by the inclusion on one hand and the
map X 7→ (X, ddR(df.X)) on the other hand. We get:

TCrit(f)
∼= π∗(TX ⊕∇ LX [−1])

and the di�erential is given by the di�erential on TX , on LX [−1], δ∇ and the extra
map TX → LX [−1] given by ddR ◦ ιdf .

1.3. Formal Derived Geometry.

We are interested in formal geometry as formal stacks appear naturally in the
study of “infinitesimal quotients by Lie algebroids” in Section 3.1.

We start in Section 1.3.1 by recalling the important definitions and properties of
formal stacks, formal completions and formal thickenings.
In Section 1.3.2, we will be interested in the type of formal stacks that arise from
formal moduli problems, as these will be the “infinitesimal quotient” stacks associ-
ated to a Lie algebroid. In particular, we will be interested in the formal stacks
associated to formal spectra (Definition D.1.7) as we will be interested in the case
of formal spectra (see Section 3.2.1).

In this section all derived stacks and algebras will be locally of almost finite pre-
sentation.



56

1.3.1. Formal derived stacks and formal completions.

De�nition 1.3.1 ([CPT+17, Definition 2.1.1]). A formal derived stack X is an al-
most finitely presented derived stack X ∈ dStafp satisfying the following condi-
tions:

– X is nilcomplete, that is for all B ∈ cdga≤0, we have a weak equivalence of
spaces:

F (B)→ lim
k
F (B≤k)

where B≤k is the k-th Postnikov1 truncation of B.
– X is in�nitesimally cohesive, that is for all Cartesian square of almost finitely
generated cdgas in non-positive degree,

B B1

B2 B0

such that H0(Bi) → H0(B0) are surjective with nilpotent kernel, the fol-
lowing induced diagram in spaces is Cartesian:

X(B) X(B1)

X(B2) X(B0)

Remark 1.3.2. This definition also makes sense for derived pre-stacks, in which
case, they are called formal derived pre-stacks. Moreover, in [CG18, Section], the
derived pre-stacks are assumed to admit a pro-cotangent complex. In most situa-
tion we are interested in, we are even going to assume that we have a cotangent
complex.

Remark 1.3.3. If Bi are also Artin algebras (in cdga≤0), then from [Lur11, Propo-
sition 1.1.11 and Lemma 1.1.20], saying that H0(Bi) → H0(B0) are surjective is
exactly the condition for a morphism to be small according to Definition D.1.3
(the nilpotent kernel condition being automatic for Artin algebras).

Remark 1.3.4. From [CPT+17, Remark 2.1.2] and [Lur12, Proposition 2.1.13], if
we assume that a derived (pre)-stackX has a cotangent complex, thenX is formal
if and only if it is nilcomplete and satisfies the infinitesmal cohesiveness, where only
one of the maps Bi → B0 is surjective in H0 with nilpotent kernel.

1A Postnikov tower for B ∈ cdga≤0 is a sequence:

B → · · · → B≤n → B≤n−1 → · · · → B0 := π0(B)

such that H−i(B≤n) = 0 for all i > n and the morphism B → B≤n induces isomorphism on H−i

for i ≤ n. B≤n is called the n-th Postnikov truncation of B.
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In particular, the restriction of X to Artin algebras satisfies the pullback condition
of a formal moduli problem (Definition D.1.6).

Example 1.3.5.

– Any Artin stack is formal (see [CPT+17, Section 2.1]).
– All small limits of formal derived stacks are formal.
– The de Rham stack, FDR (Definition 1.3.9) is formal.
– The formal completion of a map of derived stacks X → Y (Definition
1.3.8), with Y formal, is also formal (see Proposition 1.3.14).

– The quotient stack of X by a Lie algebroid is by definition formal (see
Section 3.2.1).

In formal geometry we care about infinitesimal neighborhoods, which we will call
formal thickenings. Many example of formal thickenings are obtained via the for-
mal completion of a map (Definition 1.3.8).

To manipulate these objects, we need the construction of the “de Rham” and “re-
duced” stacks. Essentially, the de Rham stack of X is the formal completion of
the map X → ? (thanks to Proposition 1.3.11) and the reduced functor is the left
adjoint to the de Rham functor.

The idea is that we want to make sense of “infinitesimally close” points, which
translates into saying that the “di�erence” of infinitesimally close points is nilpo-
tent.

De�nition 1.3.6. An algebra A ∈ cdga≤0 is called reduced if it is discrete1 and has
no non-zero nilpotent element. In other words, Nil(A) = 0 where Nil(A) denotes
the ideal of nilpotent elements in A. We denote by (cdga≤0)red the full sub-category
of cdga≤0 of reduced algebras.

Lemma 1.3.7. The inclusion i : (cdga≤0)red → cdga≤0 admits a left adjoint:

(−)red : cdga≤0 → (cdga≤0)red

de�ned by:

Ared := H0(A)�Nil(H0(A))

We drop the i from the notations so that the unit of the adjunction induces a map:

A→ Ared

One of the important notion in formal geometry is the formal neighborhood of a
map f : X → Y which essentially is the stack whose points are points of Y which
are infinitesimally close to points of X .

1A cdga is called discrete if it is concentrated in degree 0
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De�nition 1.3.8. The formal completion of a map f : X → Y , denoted by
ŶX ∈ dStafp, is defined by sending an almost finitely presented algebraA ∈ cdga≤0

to ŶX(A), defined as the space of all commutative diagrams:

Spec(Ared) X

Spec(A) Y

In other words, it is defined as the space:

ŶX(A) := Map (Spec(A), Y )×Map(Spec(Ared),Y ) Map
(
Spec(Ared), X

)
These are the points of Y that are “infinitesimally closed” to a point of X where
two points x, y ∈ Y (A) are infinitesimally close1 if they have the same image under
Y (A)→ Y (Ared).

Following the idea of the definition of the formal completion, we want Y (Ared)
to represent the equivalence classes of points for the equivalence relation “being
infinitesimally close”. Precomposing by the reduction functor, we get a new functor
(see [CPT+17, Section 2.1]):

i∗ : dStafp → (dStafp)red

where (dStafp)red denotes the ∞-category of derived stacks over the category of
connective reduced almost finitely presented algebras.

((cdga≤0,afp)red)op

We have that i∗ possesses both a right adjoint i∗ and a left adjoint i! satisfying:
– i∗ ' ((−)red)∗, so that i∗(Spec(A)) ' Spec(Ared).
– i∗ and i! are fully-faithful.
– i∗ ' ((−)red)!.

De�nition 1.3.9 ([CPT+17, Definition 2.1.3]). Let X ∈ dStafp be a derived stack.
– The de Rham stack of X denoted XDR is defined as:

(−)DR := i∗i
∗ : dStafp → dStafp

The unit of the adjunction induces natural maps X → XDR. Moreover
we have XDR(A) = X(Ared).

– The reduced stack of X denoted Xred is defined as:

(−)red := i!i
∗ : dStafp → dStafp

The counit of the adjunction induces natural mapsXred → X . Moreover
we have Spec(A)red = Spec(Ared).

1For example if A := k[ε], with ε2 = 0, then a k[ε]-point is a tangent vector of Y . Two such
points are then infinitesimally close if they have the same underlying k-point in Y .
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Proposition 1.3.10. We have that i∗ and i! are fully-faithful and therefore the unit
id → i∗i! and the counit i∗i∗ → id are object wise equivalences. This implies that i!i∗ is
left adjoint to i∗i∗ and in particular, this shows that (−)DR is right adjoint to (−)red.

Proposition 1.3.11. The formal completion of f : X → Y is part of the pullback
square:

ŶX XDR

Y YDR

Proof. By definition the space of A-points in ŶX is:

ŶX(A) 'Map (Spec(A), Y )×Map(Spec(Ared),Y ) Map
(
Spec(Ared), X

)
'Map (Spec(A), Y )×Map(Spec(A)red,Y ) Map (Spec(A)red, X)

'Map (Spec(A), Y )×Map(Spec(A),YDR) Map (Spec(A), XDR)

'Map (Spec(A), Y ×YDR
XDR)

' (Y ×YDR
XDR) (A)

�

Corollary 1.3.12. XDR is the formal completion of the terminal morphism X → ?:

XDR ' ?̂X

Corollary 1.3.13. Consider a cone X1 ×X X2 over a pullback Y1 ×Y ×Y2 induced by
compatible maps X1 → Y1, X → Y and X2 → Y2. Then we have an equivalence:

̂(Y1 ×Y Y2)X1×XX2
' (̂Y1)X1 ×ŶX (̂Y2)X2

Proof.

̂(Y1 ×Y Y2)X1×XX2
' (Y1 ×Y Y2)×(Y1×Y Y2)DR

(X1 ×X X2)DR

' (Y1 ×Y Y2)×(Y1)DR×YDR
(Y2)DR

((X1)DR ×XDR
(X2)DR)

'
(
Y1 ×(Y1)DR

(X1)DR

)
×Y×YDR

XDR

(
Y2 ×(Y2)DR

(X2)DR

)
'(̂Y1)X1 ×ŶX (̂Y2)X2

�

Proposition 1.3.14 ([CPT+17, Proposition 2.1.4]). We have the following:
(1) XDR is a formal derived stack.
(2) If Y is a formal derived stack, then for any map f : X → Y the formal completion

Ŷf is a formal derived stack.

Taking the de Rham stack forget about infinitesimally closed points and therefore,
forgets about the “tangent directions” of the stack.
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Lemma 1.3.15 ([CPT+17, Lemma 2.1.10]). The cotangent complex of a de Rham
stack exists and we have:

p∗LXDR
' 0

where p : X → XDR is the natural projection.

Therefore the tangent complex, and the de Rham stack are complementary infor-
mations. We will see in the rest of this section that among formal stacks, XDR and
TX characterize X in the sens that if X and Y are formal stacks such that X and Y
have the “same” de Rham stacks and tangent complexes, then they are equivalent
as stacks. In the rest of this section, we are going to assume that X and Y have a
tangent complex.

De�nition 1.3.16. A map f : X → Y of derived stacks is called a nil-equivalence
if it induces an equivalence fred : Xred → Yred (or equivalently an equivalence
fDR : XDR → YDR).

De�nition 1.3.17. A morphism f : X → Y is called formally étale if it induces an
equivalence:

TX
∼→ f ∗TY

De�nition 1.3.18. We define a formal thickening of a formal stack X as either:

– A formal pre-stack, Y ∈ dpStafp, together with a nil-equivalence f : X → Y .
The category of such thickenings will be denoted Thickpre(X).

– A formal stack, Y ∈ dStafp, together with a nil-equivalence f : X → Y .
The category of such thickenings will be denoted Thick(X).

The stackification dpStafp → dStafp might not preserve the property of being
formal. As such, we will often consider stacks given by the stackification of a
formal thickening in pre-stack.

Remark 1.3.19. If f : X → Y is a nil-equivalence, then there is an equivalence:

ŶX ' Y

This a direct consequence of Proposition 1.3.11 and the fact that the map XDR →
YDR is an equivalence.

Lemma 1.3.20. Given f : X → Y , the formal completion induces a factorization:

X → ŶX → Y

such that:

– X → ŶX is a nil-equivalence.
– ŶX → Y is formally étale.

Proof. The factorization is clear from the pullback in Proposition 1.3.11 (X is
clearly a cone over this pullback). Then we have that:
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– Since X is a cone over the pullback defining ŶX , applying (−)DR, we get
a retract1:

XDR →
(
ŶX

)
DR
→ XDR

such that the second morphism is an equivalence (as pullback of the iden-

tity of YDR). Therefore the map XDR →
(
ŶX

)
DR

is also an equivalence.

– The fact that ŶX → Y is formally étale follows from Lemma 1.3.15 and the
fact that, thanks the pullback of Proposition 1.3.11, we have an equivalence:

TŶX/Y
∼→ p∗TXDR/YDR

' 0

�

Lemma 1.3.21. Let f : X → Y a map of formal pre-stacks such that:
– f is a nil-equivalence.
– f is formally étale.

then f is a weak equivalence.

Proof. The idea of the proof is to show that for each Spec(A) → Y there is a
unique lift:

X

Spec(A) Y

f

First observe that from nil-completeness of our formal stacks, such a lift is in fact
equivalent to the data of lifts:

X

Spec(A≤k) Y

f
lk

such that the following diagrams commute:

Spec(A≤k) X

Spec(A≤k+1) Y

lk

lk+1

Assume for now that H0(A) := A≤0 admits a lift. Then we need to produce the
lift lk for k ≥ 1 compatible with the previous lift.
To do that, we observe that the Postnikov truncations are successive square zero
extensions of each other (see [PV13, Proposition 4.1]). The condition of being

1using the fact that (XDR)DR ' XDR.



62

formally étale implies that there is a lift to the following diagram for any A-module
M :

Spec(A) X

Spec(A�M) Y

f

Indeed, we can think of this diagram as a lift of Spec(A�M)→ Y is the category
of stacks under Spec(A). Using the cotangent complex adjunction this can be
rephrase by asking for a unique lift:

(LY )|Spec(A) M

(LX)|Spec(A)

which exactly the condition that the cotangent complexes (restricted to Spec(A))
are equivalent. In other words, the requirement that f is formally étale.

We have reduced the problem to finding a lift:

X

Spec(H0(A)) Y

f

What we know, from the fact that f is a nil-equivalence, is that there is a lift:

X

Spec(Ared) Y

f

Using again the lifting property against square zero extensions, we only have to
prove that Spec(Ared) → Spec(A) can be obtained as a finite composition of
square zero extensions.
First recall that Ared := H0(A)/M with M := Nil(H0(A)). Since A is of almost
finite presentation, H0(A) is of finite presentation and there exists N ∈ N such
that MN = 0. Then we observe that A is the square zero extension of A/MN−1 by
MN−1 and A/MN−1 is an algebra with nilpotent ideal M such that MN−1 = 0. By
induction, we can write H0(A) as finitely many sucessive square zero extensions
of Ared = A/M. *
This proves that there is a lift:
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Spec(Ared) X

Spec(H0(A)) Y

f

and concludes the proof. �

1.3.2. Formal stacks from formal moduli problems.

As we have seen in Remark 1.3.4, the infinitesimal cohesiveness of formal derived
stacks is very similar to the pullback condition for formal moduli problems. The
goal of this section is to study the relationship between formal moduli problems
and formal derived stacks. In particular, we will study in details the formal moduli
problems given by formal spectra and their associated formal stack.

We start by explaining the procedure that extends formal moduli problems F over
A, a connective cdga of almost finite presentation, to formal thickenings F under
X = Spec(A).

Theorem 1.3.22. For A an almost �nitely presented connective cdga, there is an equiv-
alence (see [CG18, Proposition 4.1] or [GR20, Chapter 5 Proposition 1.4.2]):

FMPA Thickpre(Spec(A))
(−)

pre

R

where FMPA denotes formal moduli problem over A (see De�nition D.1.6).
Moreover, composing with the stacki�cation functor (which is also a left adjoint), we get
an adjunction:

FMPA dStSpec(A)/

(−)

R

such that the completion functor (−) preserves colimits and �nite limits.

Sketch of proof. The first equivalence is due to [GR20, Chapter 5 Proposition 1.4.2]
(see also [CG18, Proposition 4.1]). Essentially the completion functor is the left
Kan extension along the inclusion Art/A → dAff which can be shown to be
valued in Thickpre(Spec(A)).
For the second statement, we compose this adjunction with the adjunction:

Stf : dpStafp dStafp : j

This adjunction is a topological localization according to [Lur09b, Lemma 6.2.2.7]
and such localizations are left exact thanks to [Lur09b, Corollary 6.2.1.6] and there-
fore preserve finite limits. �
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Remark 1.3.23. The stackification functor, Stf, does not behave quite as nicely as
we would like. In particular is does not preserve the cotangent complex. We will
find ourselves dealing with the following two types of situations:

– Either we start with formal moduli problems. Then we need to do every-
thing on the underlying pre-stacks and only then use the stackification.

– We start with a formal thickening in stack, in which case working in stacks
or pre-stacks is equivalent (because j is fully-faithful and preserves the
tangent complexes).

We give a few results on the behavior of the stackification with respect to formal
geometry.

Proposition 1.3.24. We have the following properties of the stacki�cation functor:
(1) The functor j is fully-faithful and for any map of stack h : X → Y , with

X = Spec(A), we have an equivalence of A-modules:

h∗TY ' h∗Tj(Y )

(2) j commutes with the de Rham functor1:

j ◦ (−)DR = (−)DR ◦ j

(3) Stf commutes with the reduced functor (−)red:

Stf ◦ (−)red = (−)red ◦ Stf

(4) Stf preserves nil-equivalences.

Proof.

(1) Since j is fully-faithful, we have the equivalences:

h∗TY 'MapdSt (Spec(A� A[n]), Y )

'MapdpSt (j (Spec(A� A[n])) , j(Y ))

'MapdpSt (Spec(A� A[n]), j(Y ))

'h∗Tj(Y )

(2) For all X ∈ dSt and A ∈ cdga≤0, we have:

j (XDR) (A) = j(X)(Ared) = X(Ared) = j(XDR)(A)

(3) The previous result shows the commutativity of the right adjoint functors.
This implies that their left adjoints also commute.

(4) Since Stf commutes with the reduced functor and preserves weak equiva-
lences, then is preserves nil-equivalences.

�

1All our discussion in Section 1.3.1 adapts well to pre-stacks.
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Now that we have a way to see a formal moduli problem as a formal derived stack,
we will be interested in the particular example of the formal moduli problems
given by formal spectra (Definition D.1.7).
Let us recall that the formal spectrum (relative to A) of B ∈ cdga/A is defined as
the formal moduli problem:

SpfA(B) : Art/A Gpd∞

C Map
cdga/A

(B,C)

Remark 1.3.25. It turns out that the restriction functor R does not only send
formal thickenings to formal moduli problems, but it also sends any formal stack
under X having a cotangent complex to a formal moduli problem. Indeed, from
Remark 1.3.4, the pullback condition of formal moduli problems is satisfied, and
because the terminal object in FMPA is SpfA(A) itself, we have:

Map
FMPA

(SpfA(A), F ) ' ?

Therefore R(F ) is a formal moduli problem.

Remark 1.3.26. We have, by definition of the formal spectrum, that for all B ∈
cdga/A:

R(Spec(B)) ' SpfA(B)

In Section D.2.1, we define the tangent complex of a formal moduli problem. It
turns out (see Section D.2.1) that this sends the formal spectrum of B ∈ cdga/A
to the B-module f ∗TB. We would like to compare it to the tangent complex to its
associated formal thickening.

Lemma 1.3.27. Take f : B → A with A connective of almost �nite presentation. Then
we have:

f ∗TB ' f ∗TSpfA(B)
pre

More generally, if F ∈ FMPA, then we have:

f ∗TF ' f ∗TFpre

where f denotes the map from Spec(A) on both side.

Proof. For all n ≥ 0 we have:∣∣∣f ∗TFpre
[n]
∣∣∣
∆
' Map

dStSpec(A)/

(
Spec(A[εn]), F pre

)
(A[εn]∈Art/A) 'F (A[εn])

(Section D.2.1) ' |f ∗TF [n]|∆
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where εn is seen in degree n and squares to zero1. The collection for all n ≥ 0
of these equivalences induces the equivalence between the complexes since they
become equivalent as Ω-spectra represented by the pullbacks of the cotangent
complexes. �

Corollary 1.3.28. For X := Spec(A) a�ne of almost �nite presentation, we have an
equivalence:

TX/SpfA(B)
pre
' TA/B

In fact, we will see in Corollary 3.2.11 that this is even an equivalence of Lie algebroids
for the Lie algebroid structure on the relative tangent described in Proposition 3.2.6.

Proof. Using Lemma 1.3.27, we have that the following two fiber sequences are
equivalent:

TX/SpfA(B)
pre
→ TA → f ∗TSpfA(B)

pre

TA/B → TA → f ∗TB
�

Remark 1.3.29. The extension functor (−) is closely related to the formal comple-
tion functor. Indeed, given p : X → Y such that Y is formal, under some technical
assumptions2, we have an equivalence:

ŶX ' R(Y )
pre

and the natural morphism ŶX → Y corresponds to the counit of the adjunction of
Theorem 1.3.22.

1.4. De Rham Algebra and (Closed) p-Forms.

This Section is mostly a recollection of [CPT+17]. In the first part, we focus on
setting up notations for the di�erent structures we can put on the de Rham algebra
and its relative version in derived algebraic geometry. In the second part, we use
this formalism to defined the notion of n-shifted (closed) p-form on a derived stack.

1.4.1. De Rham complex.

Classically we think of the de Rham algebra as the algebra of di�erential forms
together with the de Rham di�erential,

(∧
OX

Γ(T ∗X), ddR

)
. In derived geometry,

we want to replace T ∗X by LX , and we would like the de Rham algebra to be
something like the derived global sections of SymOX

LX [−1]. But this object has
much more structure than its classical counterpart. Namely we have that:

1This gives exactly the square zero extension A[εn] := A�A[−n].
2Assume thatX satisfies Assumptions 3.2.2. These are assumptions ensuring that formal moduli

problems (and therefore formal thickenings) of X are equivalent to Lie algebroids over X (see
Section 3.2.1).
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– This is a cdga for the grading induced by the grading on LX [−1], which
we will call internal grading with a vertical di�erential induced by the dif-
ferential on LX [−1].

– There is a weight grading given by Symp
OX
LX [−1], the symmetric powers

of arity p.
– There is a “mixed di�erential” also known as the de Rham di�erential,
which increases the weight and total degree by 1.

This all data gives the structure of graded mixed algebra. We quickly recall the def-
initions and main properties related to graded mixed objects in Appendix C. We
will first focus on the a�ne case, X := Spec(B).

It turns out that there is a universal construction of a “de Rham object” that will,
thanks to Proposition 1.4.4, recover the heuristic we just discussed. We will define
the de Rham graded mixed complex in the general setting of good model category
M (see Appendix A.1). In particular for M = Modk, we recover the classical de
Rham graded mixed complex of a cdga. Moreover, in this context, we can even
extend the functor DR to all derived stacks.

Lemma 1.4.1 ([CPT+17, Proposition 1.3.8 and Proposition 1.3.16]). There is an
adjunction:

DRM : cdgaM cdgaε−gr
M : (−)(0)

where the right adjoint is the functor that sends a graded mixed algebra to the algebra in
cdgaM given by the weight 0 part of the graded mixed algebra.
Moreover, this adjunction holds in the relative setting. If A ∈ cdgaM , then there is an
adjunction1:

DRM (−/A) : cdgaM , A/ cdgaε−gr
M , A/ : (−)(0)

De�nition 1.4.2. The de Rham algebra of A ∈ cdgaM is defined as the following
graded mixed algebra DRM (A). We are going to write DR(A) when M is clear.
For example we have:

– If M = Modk, then DR(B) := DRModk(B) is the de Rham graded mixed
algebra associated to the algebra B.

– If M = ModA for A ∈ cdga and A→ B a map of algebras (and therefore
B ∈ cdgaModA

), we define:

DR(B/A) := DRModA(B)

More generally, we have:

DR(−/A) := DRModA

1On the right hand side, A is viewed as a graded mixed algebra concentrated in weight 0.
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From [CPT+17, Lemma 1.3.18], we have that

DR(B/A) ' DR(B)⊗DR(A) A

where A is viewed as a graded mixed complex concentrated in degree
0. Note that DR(A) ' DR(A/k) and this definition coincides with the
relative de Rham construction via the adjunction of Lemma 1.4.1.

Notation 1.4.3. There are various structures on the de Rham algebra and we
set the following notations:

– DR is the de Rham functor valued in graded-mixed algebras.
– DRgr is the underlying graded algebra of DR (see Lemma C.1.6) where
we forget the mixed structure.

– As weak graded mixed complexes (Definition C.2.1) are equivalent to com-
plete filtered objects, we denote by DRcpl the induced complete filtered al-
gebra. It is described, thanks to Proposition C.2.8, by the following filtered
algebra:

F pDRcpl(A/B) '
∏
p′≥p

Symp′

A LA/B[−1]

Since DR(A/B) is non-negatively weighted, each F pDRcpl(A/B) is a
di�erential graded algebra with the di�erential being the total di�erential
summing the vertical and the mixed di�erentials.

– |DR| is the de total Rham algebra obtained by applying the realization
functor |−| given by Proposition C.1.9:

|DR(A/B)| '
∏
p≥0

DR(A/B)(p)

together with the total di�erential. Note that we have:

|DR| ' F 0DR ' colimF pDRcpl

Proposition 1.4.4. There is an equivalence of graded algebras:

Symgr
B LB[−1]

∼→ DRgr(B)

Similarly, in the relative case we have an equivalence:

Symgr
B LB/A[−1]

∼→ DRgr(B/A)

Corollary 1.4.5 ([CPT+17, Corollary 1.3.14 and Remark 1.3.15]). For any ob-
ject A ∈ cdgaM , the algebra Symgr

B LA/B[−1] possesses a canonical weak graded mixed
structure1 making it into a weak graded mixed algebra in M . The corresponding mixed
di�erential is called the de Rham di�erential and is denoted ddR.

1This structure is (weakly) transferred from DR(A/B). If B → A is nice enough (that is
cofibrant) then this can be taken as a strict (non-weak) graded mixed algebra (see [CPT+17,
Section 1.3.3]).
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Proposition 1.4.6. We have the following equivalences:

|DR| (B/A) ' colim DRcpl(B/A)

DRgr(B/A) ' Gr
(
DRcpl(B/A)

)
Proof. The first equivalence is a direct application of Lemma C.2.10 and the second
is an application of Lemma C.2.11. �

So far we only constructed to de Rham graded mixed algebra for a�ne objects.
It turns out that DR satisfies étale descent and is therefore a derived stack val-
ued in graded mixed complexes. Therefore we can extend it to a functor (see
[PTVV13, Definition 1.13]) on all derived stacks and it defines1 a graded mixed
algebra DR(X) for all derived stack X .

The natural way to define this global de Rham graded mixed algebra is by taking
the left Kan extension computed by following limit:

DR(X) := lim
Spec(A)→X

DR(A)

Moreover the underlying graded of this limit is computed weight-wise and there-
fore:

DRgr(X) ' lim
Spec(A)

f→X
DRgr(A)

We get that:
DRgr(X)(p) ' lim

Spec(A)
f→X

Symp
A LA[−1]

Corollary 1.4.7. If X admits a cotangent complex there is a natural morphism2:

Γ
(
Symgr

OX
LX [−1]

)
' lim

Spec(A)
f→X
|Symgr

A f
∗LX |∆ → |DRgr(X)|∆

Since the de Rham functor satis�es smooth descent, this natural morphism is in fact an
equivalence for X a Artin stack ([PTVV13, Proposition 1.14]).

Remark 1.4.8. In this corollary, we consider the space of sections by taking the
mapping space of sections. If we take instead the mapping spectra, we get a map to
DRgr(X) of graded algebras. In other words we get a map of graded algebras:

Hom
QC(X)

gr
(
OX , Symgr

OX
LX [−1]

)
→ DRgr(X)

1The de Rham complex extends to all derived stacks. However if X does not admit a cotangent
complex, there is no analogue to Proposition 1.4.4.

2Here Γ denotes the derived global section functor that sends F ∈ QC(X) to:

Map
dSt/X

(X,F ) ' Map
QC(X)

(OX ,F ) ' lim
Spec(A)

f→X
|f∗F |∆
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Moreover, the weight 0 component always recovers the algebra of functions of X
(even if X is not Artin).

Lemma 1.4.9. There is a natural augmentation to the algebra of global functions (viewed
as a graded mixed algebra concentrated in weight 0):

DR(X)→ OX(X)

Proof. For any graded mixed algebra, there is a natural map to its weight 0 part
(viewed as a graded mixed algebra concentrated in weight 0). In particular we get
a map:

DR(X)→ DR(X)(0)

Thank to Proposition 1.4.4, we get an equivalence:

DR(A)(0) ' A

Therefore, we can use Definition 1.1.20 and show that:

DR(X)(0) ' lim
Spec(A)→X

DR(A)(0) ' lim
Spec(A)→X

A ' OX(X)

�

De�nition 1.4.10 ([CPT+17, Definition 2.3.1]). Given a map f : Y → X of
derived stacks with X = Spec(A), we can define the relative de Rham graded
mixed algebra of f : Y → X as:

DR(Y/X) := lim
Spec(B)

f→Y
DR(A/B)

Lemma 1.4.11. Let X → Y → Z be morphisms of derived stacks such that X =
Spec(A) and Y = Spec(B) are a�ne. Then there is morphism of graded mixed com-
plexes:

DR(X/Z)⊗DR(X) DR(Y )→ DR(X/Y )

Moreover if Z is also a�ne, then this is an equivalence.

Proof. This is the natural morphism:

DR(X/Z)⊗DR(A) DR(B) '
(

lim
Spec(C)→Z

DR(C/A)

)
⊗DR(A) DR(B)

→ lim
Spec(C)→Z

(
DR(C/A)⊗DR(A) DR(B)

)
' lim

Spec(C)→Z
(DR(C/B))

'DR(X/Y )

This is an equivalence whenever the limit commutes with the tensor product. This
is the case if Z is a�ne. �
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1.4.2. Shifted (closed) p-forms.

Recall from [PTVV13] that there are classifying stacks A p(•, n) and A p,cl(•, n) of
respectively the space of n-shifted di�erential p-forms and the space of n-shifted
closed di�erential p-forms. In this section we will recall their definition and basic
properties.

De�nition 1.4.12. Let A ∈ cdga≤0. The space of p-forms of degree n and the space
of closed p-forms of degree n on A are defined respectively by:

A p(A, n) := Map
Modgr

k

(k[−n− p]((−p)),DRgr(A)) ' |(Symp LA[−1]) [n+ p]|∆

A p,cl(A, n) := Map
Modε−gr

k

(k[−n− p]((−p)),DR(A))

where k[−n − p]((−p)) is the graded (mixed) complex concentrated in weight p
and degree n+p. All along, we denote the vertical di�erential, i.e. the di�erential
on LA, by δ and the mixed di�erential, i.e. the de Rham di�erential, by ddR.

From [PTVV13, Proposition 1.11], we know that the functorsA p(−, n) andA p,cl(−, n)
are in fact stacks and therefore we can extend the definition of (closed) p-forms of
degree n to any derived stacks.

De�nition 1.4.13. The space of p-forms of degree n on a derived stack X is the
mapping space:

A p(X,n) := Map
dSt

(X,A p(•, n)) ' Map
Modgr

k

(k[−n− p]((−p)),DRgr(X))

The space of closed p-forms of degree n on X is:

A p,cl(X,n) := Map
dSt

(
X,A p,cl(•, n)

)
' Map

Modε−gr
k

(k[−n− p]((−p)),DR(X))

Now the following proposition says that in the case whenX is a derived Artin stack,
the spaces of shifted di�erential forms are spaces of sections of quasi-coherent
sheaves on X .

Proposition 1.4.14 (Proposition 1.14 in [PTVV13]). Let X be a derived Artin stack
(see Remark 1.1.13) and LX be its cotangent complex. Then there is an equivalence:

A p(X,n) ' Map
QC(X)

(
OX ,

(
Symp

OX
LX [−1]

)
[p+ n]

)
Remark 1.4.15. For a derived Artin stack, a n-shifted p-form is therefore equivalent
to the data of a section of

(
Symp

OX
LX [−1]

)
[p+n]. Even better, thanks to Corollary

1.2.16, the space of sections of T ∗X is equivalent to the space of n-shifted 1-form
on X :

MapdSt/X
(X,T ∗[n]X) ' A 1(X,n)
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Remark 1.4.16. More concretely, we have from [Cal21] and [CPT+17] an explicit
description of (closed) p-forms of degree n on a derived Artin stack X . A p-form
of degree n is given by a (derived) global section

ω ∈ DR(X)(p)[n+ p] ' Γ
((

Symp
OX
LX [−1]

)
[n+ p]

)
such that δω = 0.
A closed p-form of degree n is a semi-infinite sequence ω = ω0 + ω1 + · · · with

ωi ∈ DR(p+ i)[n+ p] = Γ
((

Symp+i
OX
LX [−1]

)
[n+ p]

)
such that δω0 = 0 and dωi = δωi+1. Equivalently, being closed means that ω is a
closed element in

F pDRcpl(X) ' Γ

(∏
i≥0

(
Symp+i

OX
LX [−1]

)
[n+ p]

)
whose total degree is given by n+ p+ i and with the total di�erential.

In fact in general (without assuming X Artin), we have that the following descrip-
tion of the spaces of (closed) shifted p-forms (see the comment following [PTVV13,
Definition 1.13]):

Proposition 1.4.17. For X a derived stack, we can also describe the spaces of (closed)
di�erential forms as:

A p(X,n) ' |DR(p)(X)[n+ p]|∆

A p,cl(X,n) '
∣∣F pDRcpl(X)[n+ p]

∣∣
∆
'

∣∣∣∣∣∏
i≥p

DR(p+ i)(X)[n+ p]

∣∣∣∣∣
∆

together with the total di�erential.

De�nition 1.4.18. The natural projection:

F pDRcpl(X)[n]→ DR(p)(X)[n+ p]

induces a map A p,cl(X,n)→ A p(X,n) that forgets the closed structure. It essen-
tially sends

ω := ω0 + ω1 + · · · 7→ ω0

and the image of ω by this map is called the underlying p-form of degree n of ω. We
will often denote it by ω0.

The collection of all the closures of a p-form of degree n forms a space:

De�nition 1.4.19. Let α ∈ A p(X,n) then the space of all closures of α is called
the space of keys of α denoted key(α). It is given by the homotopy pull-back:

key(α) A p,cl(X,n)

? A p(X,n)α
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Proposition 1.4.20. The mixed di�erential of DR(X) induces a map:

ddR : A p(X,n)→ A p+1,cl(X,n)

that squares to zero.

Proof. The mixed di�erential increases the weight by (at least) 1 therefore induces
a map ddR : F pDRcpl(X)→ F p+1DRcpl(X) of degree 1. This induces the desired
map since we have, from Definition C.1.12, that:

F pDRcpl(X) ' Homcdgaε−gr(k((−p))[−n− p],DR(X))

�

Remark 1.4.21. Given a map of derived Artin stack f : Y → X, we define
A p,(cl)(Y/X, n), the space of n-shifted (closed) p-forms on Y relative to X, to
be the homotopy cofiber of the natural map:

f ∗ : A p,(cl)(X,n)→ A p,(cl)(Y, n)

Using Definition 1.4.10, we can show1 that the relative forms can be directly obtain
by using the relative de Rham DR(Y/X). For instance n-shifted relative p-forms
are equivalent to the derived global sections of

(
Symp

OY
LY/X [−1]

)
[n+ p].

Remark 1.4.22. We say that a p-form, ω0, of degree n on a derived Artin stack
X can be lifted to a closed p-form of degree n if there exists a family of (p + i)-
forms ωi of degree n − i for all i > 0, such that ω = ω0 + ω1 + · · · is closed in
F pDRcpl(X)[n]. In that situation, we can see that ddRω0 is in general not equal
to 0 but is homotopic to 0 with ddRω0 = D

(
−
∑

i>0 ωi
)
. The choice of such a

homotopy is the same as the structure of a closure of the p-form of degree n.
Being closed is therefore no longer a property of the underlying p-form of degree
n but a structure given by a homotopy between ddRω0 and zero.

Warning 1.4.23. When we are working with formal stacks, they will usually not be
Artin and therefore n-shifted p-forms might not always come from derived global
sections of

(
Symp

OX
LX [−1]

)
[p+n]. This will be a problem in order to define sym-

plectic structure on formal stacks or more generally any kind of “non-degeneracy
condition”. To avoid this problem, recall from Corollary 1.4.7 that we have a map
of graded spaces:

Γ
(
OX , Symgr

OX
LX [−1]

)
→ |DRgr(X)|∆

Therefore, in order to still view p-forms as global sections of elements of the
p-th symmetric power of LX [−1] (which is what we will need to speak of non-
degeneracy conditions in Section 2) when X is a derived stack with a cotangent

1Because the pushout defining the relative de Rham graded mixed algebra is preserved by
geometric realization.
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complex, we de�ne the notion of good p-forms of degree n as the p-forms of degree
n that are in the image of the map:

Γ
(
OX ,

(
Symp

OX
LX [−1]

)
[n+ p]

)
→ |DR(p)(X)[n+ p]|∆ ' A p(X,n)

More generally, an element in DR(p)(X)[n + p] will be called good if it is in the
image of the map from Remark 1.4.8:

Hom
QC(X)

gr
(
OX ,

(
Symp

OX
LX [−1]

)
[n+ p]

)
→ DR(X)(p)[n+ p]

A closed element will be considered good if its underlying p-form is good. In other
words, the space of good closed p-forms of degree n is the pullback of the diagram:

A p,cl(X,n)

Γ
(
OX ,

(
Symp

OX
LX [−1]

)
[n+ p]

)
A p(X,n)

Similarly, good closed elements in DR(X)(p)[n + p] are closed elements in the
pullback of the diagram:

F pDRcpl(X)[n+ p]

Hom
QC(X)

gr
(
OX ,

(
Symp

OX
LX [−1]

)
[n+ p]

)
DR(X)(p)[n+ p]

Note that if X is Artin good and general objects coincide (because the horizontal
maps of the previous pullback diagrams are equivalences).

Notation 1.4.24. From now on, we will make an abuse of notation and denote
by A p(X,n) and A p,cl(X,n) the spaces of good (closed) p-forms of degree n.
Moreover we will simply call them (closed) p-forms of degree n (omitting the word
“good”). In particular, by de�nition we get the analogue of Proposition 1.4.14:

A p(X,n) ' Map
QC(X)

(
OX ,

(
Symp

OX
LX [−1]

)
[p+ n]

)
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2. New Constructions in Derived Symplectic Geometry

Following the philosophy of derived geometrie, derived symplectic geometry is an
extension of classical symplectic geometry where we consider shifted symplectic
structures and homotopies between them. Moreover, we again would like such
objects to be well behaved with respect to derived intersections and derived quo-
tients. The study of the derived symplectic geometry of derived quotients is the
object of Section 4. In this section, we will recall and expand upon the idea that
taking derived “Lagrangian intersections” is a way to produce new shifted sym-
plectic structures out of old ones.

In Section 2.1, we recall the main definitions and examples of symplectic, La-
grangian, Lagrangian correspondences and Lagrangian fibration structures.

Then Section 2.2 is devoted to constructing new structures via derived Lagrangian
intersections. In particular, we recall the construction of shifted symplectic struc-
tures on a derived intersections of Lagrangian morphisms (Proposition 2.2.1),
and extend this result to the construction of new Lagrangian fibrations (Theorem
2.2.7).
Then Section 2.2.3 describes the (higher) categories of Lagrangians (and La-
grangian correspondences) in order to give again a result producing new La-
grangian correspondences from derived Lagrangian intersections (Theorem 2.2.23).
This will enable us to take derived “equivariant Lagrangian intersections” of mo-
ment maps in Section 4.

Finally Section 2.3 gives concrete examples for the construction of these new La-
grangian fibration structures.

2.1. Derived Symplectic Geometry.

In this section we will recall the basic definitions and examples of symplectic,
Lagrangian and Lagrangian fibration structures for derived stacks.
All along we will assume that our derived stacks admit a cotangent complex.

Recall that Warning 1.4.23 tells us that the underlying p-form of a closed p-form
comes from derived global sections of the shifted symmetric power of the cotan-
gent complex. This will ensure that all the non-degeneracy conditions we are going
to define make sense. In other words, given a derived stack X, a 2-form of degree
n is given by a map:

ω0 ∈ Map
QC(X)

(
OX ,

(
Sym2

OX
LX [−1]

)
[n+ 2]

)
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2.1.1. Shifted symplectic structures.

De�nition 2.1.1. We say that a closed 2-form of degree n is non-degenerate if the
underlying 2-form ω0 (Definition 1.4.18) of degree n induces a quasi-isomorphism:

ω[0 : TX → LX [n]

We denote byA 2,nd(X,n) the subspace ofA 2(X,n) generated by the non-degenerate
n-shifted 2-forms.

De�nition 2.1.2. A n-shifted symplectic structure is a non-degenerate n-shifted closed
2-form on X . We can also define a space of n-shifted symplectic structures as the
pullback:

Symp(X,n) A 2,nd(X,n)

A 2,cl(X,n) A 2(X,n)

Example 2.1.3. Suppose that X in a derived stack. As in the classical case, we
can construct the canonical Liouville 1-form. To do so, consider the identity:

id : T ∗[n]X → T ∗[n]X

It is determined, thanks to Proposition 1.2.15, by the data of:
– the projection π : T ∗[n]X → X .
– a section λX ∈ Map

QC(T ∗[n]X)

(
OT ∗[n]X , π

∗LX [n]
)
.

Since we have a natural map π∗LX [n]→ LT ∗[n]X [n], λX induces a 1-form on T ∗[n]X
called the tautological 1-form. This 1-form induces a closed 2-form ddRλX which
happens to be non-degenerate whenever X is Artin of locally finite presentation
(see [Cal19, Section 2.2] for a proof of the non-degeneracy).

The tautological 1-form on the shifted cotangent is universal in the sense that it
satisfies the usual universal property:

Lemma 2.1.4. If X is stack, given a 1-form of degree n, α : X → T ∗[n]X , we have
that α∗λX = α.

Proof. In general, if we take f : X → Y , the pull-back of a n-shifted 1-form, β, is
described by the map f ∗β in the commutative diagram:

T ∗[n]X f ∗T ∗[n]Y T ∗[n]Y

X Y

(df)∗

f∗β f

β

Taking into account the fact that λ factors through π∗T ∗[n]X, we consider the
following diagram:
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T ∗[n]X α∗T ∗T ∗[n]X T ∗T ∗[n]X

T ∗[n]X = α∗π∗T ∗[n]X π∗T ∗[n]X

X T ∗[n]X

(dα)∗

Id
(dπ)∗ (dπ)∗

λ̃

α

λ

This proves that the pull-back along α of λX seen as a 1-form of degree n on T ∗[n]X
is the same as the pull-back along α of the section λX : T ∗[n]X → π∗T ∗[n]X .

We denote by α1 the associated section in Map
QC(X)

(OX ,LX [n]) of degree n. We use

the fact that Id ◦ α = α:
– On the one hand, α is completely described by α1 ∈ Map

QC(X)

(OX ,LX [n]).

– On the other hand, the map Id : T ∗[n]X → T ∗[n]X is described by:

π : T ∗[n]X → X

λX ∈ Map
QC(T ∗[n]X)

(
OT ∗[n]X , π

∗LX
)

Therefore the composition1 Id ◦ α is also a section of π and is described
by α∗λX ∈ Map

QC(X)

(OX ,LX [n]).

This proves that α∗λX = α1. Since these maps characterise the sections of π they
represent, we have α∗λX = α. �

Example 2.1.5. In Lemma 4.1.25, we will see that if G is an a�ne algebraic group
then: [

g∗[n]�G
]
' T ∗[n+ 1]BG

Together with Example 2.1.3, this shows that
[
g∗[n]�G

]
is canonically (n + 1)-

shifted symplectic.

2.1.2. Lagrangian structures.

We recall from [PTVV13] the definition and standard properties of Lagrangian
structures and Lagrangian correspondences. These notions will be the building
block of all the “Lagrangian intersections” theorems discussed later on.

1If we have a composition Y → AX(F )→ AX(G ) where Y → AX(F ) is given by f : Y → X
and sf ∈ Map(OY , f∗F ) and g : AX(F ) → AX(G ) is given by π : AX(F ) → X and sg is
induced by a map g : F → π∗G , then the composition g ◦ f is described by f : Y → X and
sg◦f ∈ Map(OY , f∗π∗G ) given by sg◦f := h ◦ π∗sf .
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Recall that classically, a Lagrangian is a sub-manifold f : L ↪→M of a symplectic
manifold M such that:

– It is isotropic, i.e. f ∗ω = 0.
– ω induces an isomorphism to the conormal of f :

TL→ N∗f

The first condition we will translate as the data of an isotropic structure on f .

De�nition 2.1.6. Let f : L → X be a map of derived Artin stacks. An isotropic
structure on f is a homotopy, in A 2,cl(L, n), between f ∗ω and 0 for some n-shifted
symplectic structure ω : ?→ Symp(X,n). Isotropic structures on f form a space
described by the homotopy pullback:

Iso(f, n) Symp(X,n)

? A 2,cl(L, n)

f∗

0

If we fix a given n-shifted symplectic structure ω : ?→ Symp(X,n), we can define
the space of isotropic structures on f at ω defined by by the pullback:

Iso(f, ω) ?

Iso(f, n) Symp(X,n)

ω

Remark 2.1.7. Take γ a homotopy between α and β in A p,cl(X,n). Then γ is
given by a homotopy between the images of α and β in

∣∣F pDRcpl(X)[n+ p]
∣∣
∆

such that the underlying weight 2 component:

γ0 : α0  β0

is equivalent to a homotopy in Γ
((

SymOX
LX [−1]

)
[n+ p]

)
.

Remark 2.1.8. More explicitly, if X is Artin, an isotropic structure is given by a
family of forms of total degree (p+ n− 1), (γi)i∈N with:

γi ∈ DR(L)(p+ i)[p+ n+ i− 1]

such that δγ0 = f ∗ω0 and δγi+dγi−1 = f ∗ωi. This can be rephrased as Dγ = f ∗ω,
in other words, f ∗ω in exact in F pDRcpl(X) and γ is indeed a homotopy between
f ∗ω and 0.

The second condition to be Lagrangian is a non-degeneracy condition of an
isotropic structure γ.
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De�nition 2.1.9. An isotropic structure γ on f : L → X is called a Lagrangian
structure on f if the leading term, γ0, viewed as an isotropic structure on the mor-
phism1 TL → f ∗TX , is non-degenerate. We say that γ0 is non-degenerate if the
following null-homotopic sequence2 (homotopic to 0 via γ0) is fibered:

(2) TL f ∗TX ' f ∗LX [n] LL[n]

(f∗ω0)[

The space of n-shifted Lagrangian structures on f is denoted Lag(f, n). There
are natural morphisms of spaces:

Lag(f, n)→ Iso(f, n)→ Symp(X,n)

Remark 2.1.10. To say that the sequence (2) is fibered can be reinterpreted as
a more classical condition involving the conormal. Since QC(X) is a stable ∞-
category, the homotopy fiber of f ∗LX [n]→ LL[n] is LL/X [n− 1] := Lf [n− 1] and
the non-degeneracy condition can be rephrased by saying that the natural map
Θf : TL → Lf [n− 1] is a quasi-isomorphism.

Remark 2.1.11. Unlike in the classical case, being Lagrangian for a morphism f
is a structure and not a property. To simplify the notations, we will abusively say
that a morphism f : X → Y is Lagrangian when we consider f together with a
fixed Lagrangian structure on f and a fixed symplectic structure ω.

Example 2.1.12. A 1-form of degree n on an Artin stack X is equivalent to a
section α : X → T ∗[n]X . This section is a Lagrangian morphism if and only if α
admits a closure, i.e. Key(α) is non-empty. This is [Cal19, Theorem 2.15].

Proposition 2.1.13. There is a canonical homotopy equivalence Iso(α) → Key(α)
between the space of isotropic structures on the 1-form α and the space of keys of α.

Proof.

(3)

key(α) A 1,cl(X,n) ?

? A 1(X,n) A 2,cl(X,n)

0

α ddR

The left most square is Cartesian by definition of key(α) in Definition 1.4.19. By
definition, the pullback of the outer square is Iso(α) because ddRα = α∗ω (by
universal property of the Liouville 1-form, Lemma 2.1.4). It turns out that the
rightmost square is also Cartesian. This is simply saying that the space of closed

1Given by the homotopy γ0 between f∗ω0 and 0.
2This sequence only makes sense because the underlying weight 2 component of the symplectic

structure and of the homotopy come from derived global sections as explained in Remark 2.1.7.
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1-forms of degree n is the same as the space of 1-forms of degree n whose de
Rham di�erential is homotopic to 0. We obtain that key(α) and Iso(α) are both
pullbacks of the outer square and therefore are canonically homotopy equivalent.

�

Remark 2.1.14. It turns out that [Cal19, Theorem 2.15] says that all the isotropic
structures on α (or equivalently the lifts of α to a closed form) are in fact non-
degenerate, which implies Example 2.1.12 and even the fact that the space of
Lagrangian structures on α is equivalent to the space of keys of α.

Example 2.1.15. Let G be an a�ne algebraic group. The map BG→
[
g∗[n]�G

]
,

induced by the G-equivariant inclusion 0 → g∗[n], is Lagrangian. In fact, under
the equivalence of Lemma 4.1.25, it is equivalent to the zero section:

BG→ T ∗[n+ 1]BG

Example 2.1.16. We will see in Sections 4.1.3 and 4.3.1 that if G is an a�ne
algebraic group, the following maps have the following Lagrangian structures:

– The natural projection (Proposition 4.1.27):

g∗ →
[
g∗�G

]
– If µ : X → g∗ is a moment map, then it induces a Lagrangian (Proposition
4.3.1):

[µ] :
[
X�G

]
→
[
g∗�G

]
– The map

BG→
[
g∗�G

]
corresponding to the zero section BG→ T ∗[n+ 1]BG via the equivalence
of Lemma 4.1.25.

Lemma 2.1.17 ([Cal21, Example 1.26]). Consider the map X → ?n where ?n is the
point endowed with the canonical n-shifted symplectic structure given by 0. Then a La-
grangian structure on this map is equivalent to an (n−1)-shifted symplectic structure onX .

Proof. Pick an isotropic structure γ on p. We know that γ is a homotopy between
0 and 0 which means that Dγ = 0. Therefore γ is a closed 2-form of degree n− 1.
We want to show that γ is non-degenerate as an isotropic structure if and only if it
is non-degenerate as a closed 2-form onX . The non-degeneracy of the Lagrangian
structure, as described in Remark 2.1.10, corresponds to the requirement that the
natural map TX → LX [n − 1] is a quasi-isomorphism. This map depends on γ0

and we want to show that this map is in fact γ[0. This map is the natural map that
fits in the following homotopy commutative diagram:
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TX LX [n− 1] 0

0 0 LX [n]0[

We can show that by strictifying the homotopy commutative diagram:

TX

0 LX [n]

p∗ω[=0

Note that this diagram is already commutative but we see it as homotopy commu-
tative using the homotopy γ0. We use the homotopy γ0 to strictify the previous
diagram and we obtain:

TX

LX [n− 1]⊕ LX [n] LX [n]
γ[0+0

p∗ω[=0

pr

The homotopy fiber and also strict fiber of the projection

pr : LX [n− 1]⊕ LX [n]→ LX [n]

is LX [n− 1], and therefore the natural map we obtain is γ[0 : TX → LX [n− 1].

Since the non-degeneracy condition of the isotropic structure γ is the same as
saying that the map γ[0 is a quasi-isomorphism, we have shown that an isotropic
structure γ is an (n − 1)-shifted symplectic structure on X if and only if it is
non-degenerate as an isotropic structure on X → ?n. �

A closely related notion to Lagrangian morphisms is that of Lagrangian correspon-
dences. We will see in Section 4 that they are at the heart of symplectic reduction
and in Section 5 we use Lagrangian correspondences as a defining feature of the
notion of “generalized symplectic reduction” and of the BV construction.

De�nition 2.1.18. Let X and Y be derived Artin stacks with n-shifted symplectic
structures. A Lagrangian correspondence from X to Y is given by a derived Artin
stack L with morphims:

L

X Y

and a Lagrangian structure on the map L→ X×Y where X×Y is endowed with
the n-shifted symplectic structure π∗XωX − π∗Y ωY .
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For example, a Lagrangian structure on L → X is equivalent to a Lagrangian
correspondence from X to ?.

L

X ?n

A more extensive study of Lagrangian correspondences and their properties is
done in Section 2.2.3.

Example 2.1.19 ([Cal21, Example 2.3]). Given a map f : X → Y , its graph X →
X × Y has a conormal N(f ∗) := T ∗Y ×X Y with a Lagrangian correspondence:

N(f ∗)

T ∗X T ∗Y

which is moreover natural in f .

2.1.3. Lagrangian �brations.

We recall in this section the definition and standard properties of Lagrangian
fibrations (see [Cal19]).

De�nition 2.1.20. Let f : Y → X be a map of derived stacks. A Lagrangian
�bration on f is given by:

– A homotopy, denoted γ, between ω/X and 0, where ω/X is the image of ω
under the natural map A 2,cl(Y, n) → A 2,cl(Y/X, n) (see Remark 1.4.21)
for some n-shifted symplectic structure ω : ?→ Symp(Y, n). This forms a
space of isotropic fibrations1 given by the pullback:

IsoFib(f, n) Symp(Y, n)

? A 2,cl(Y/X, n)0

– A non-degeneracy condition which says that the following sequence (ho-
motopic to 0 via γ0) is fibered2

TY/X → TY ' LY [n]→ LY/X [n]

1The notion of isotropic fibration makes sense even if ω is not non-generate by replacing
Symp(Y, n) by A 2,cl(Y, n).

2Where again this sequence only makes sense because of Remark 2.1.7.
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In particular, the non-degeneracy condition can be rephrased by saying that there
is a canonical equivalence αf : TY/X → f ∗LX [n] (similar to the criteria for La-
grangian morphism in Remark 2.1.10) that makes the following diagram commute:

(4)

TY/X f ∗LX [n] 0

TY LY [n] LY/X [n]

αf

ω[

The subspace of IsoFib(f, n) generated by the non-degenerate objects is the space
of Lagrangian fibration structures on f and is denoted by LagFib(f, n). There
are natural maps LagFib(f, n)→ IsoFib(f, n)→ Symp(Y, n).

Similarly to the case of isotrope and Lagrangian morphisms, we can fix a n-shifted
symplectic structure on Y and define Lagrangian and isotropic fibration of f at a
given ω as the pullbacks:

IsoFib(f, ω) ?

IsoFib(f, n) Symp(Y, n)

ω

LagFib(f, ω) ?

LagFib(f, n) Symp(Y, n)

ω

and

Remark 2.1.21. To simplify the notations, we will abusively say that a morphism
f : X → Y is a Lagrangian fibration when we consider f together with a fixed
shifted symplectic structure ω and a fixed structure of Lagrangian fibration on f
at ω.

Example 2.1.22. The natural projection πX : T ∗[n]X → X is a Lagrangian fi-
bration. The Liouville 1-form is a section of π∗XLX [n] which is part of the fiber
sequence:

π∗XLX [n]→ LT ∗[n]X [n]→ LT ∗[n]X/X [n]

Thus the 1-form induced by λX in LT ∗[n]X/X [n] is homotopic to 0. The non-
degeneracy condition is more di�cult and is proven in Section 2.2.2 of [Cal19].
It turns out that the morphism expressing the non-degeneracy condition, απX , is
given by a canonical equivalence described in Proposition 1.2.28.

Proposition 2.1.23. If X is a derived Artin stack, then the equivalence of Example
2.1.22 expressing the non-degeneracy of the canonical Lagrangian �bration on the shifted
cotangent stacks, απX : TT ∗[n]X/X → π∗XLX [n], is the canonical quasi-isomorphism from
Proposition 1.2.28.
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Proof. Consider the following diagram:

TT ∗X/X

π∗LX TT ∗X π∗TX

π∗LX LT ∗X π∗TX

β

α

φX ω[0

From [Cal19, Lemma 2.6], the map φX is natural in X and therefore is an equiv-
alence ([Cal19, Corollary 2.7]). Moreover, the naturality implies that φX is the
multiplication by a scalar. Looking at X = A1 in local coordinates, it is not hard
to see that this scalar is in fact 11 and therefore φX is the identity. �

Lemma 2.1.24. Let x : ?n → X be a point of X . Then, given a Lagrangian �bration
structure on x, the non-degeneracy condition is given by a quasi-isomorphism:

x∗TX → x∗LX [n+ 1]

Proof. The Lagrangian fibration structure on ?n → X is a homotopy between 0
and itself in A 2,cl(?n�X,n). As in the proof of Lemma 2.1.17, this is given by an
element γ ∈ A 2,cl(?n�X,n−1). Similarly to what was done in the proof of Lemma
2.1.17, we can show that γ is non-degenerate as a Lagrangian fibration if and only
if it is non-degenerate as a closed 2-form of degree n. Again it boils down to
the fact that the natural morphism in the non-degeneracy criteria for Lagrangian
fibrations is in fact γ[0 : T?n/X → L?n/X [n− 1].
Moreover, we have natural equivalences, T?n/X ' x∗TX [−1] and L?n/X [n − 1] '
x∗LX [n] because the sequence

T?n/X T?n ' 0 x∗TX [n]

is fibered. This concludes the proof. �

Example 2.1.25. The natural map
[
g∗�G

]
→ BG is equivalent to the projection

T ∗[n + 1]BG → BG through the equivalence of Lemma 4.1.25. Therefore this is
a Lagrangian fibration.

2.2. New Constructions from Old Ones.

In this section we will recall how to construct new shifted symplectic structures
by taking derived intersection of Lagrangian morphisms (Proposition 2.2.1) and
then extend this result to construct new Lagrangian fibrations (Theorem 2.2.7).
The gymnastic of constructing new Lagrangians and Lagrangian correspondences
is very well behaved, and in Section 2.2.3 we use this to described a category and

1This should be related to the fact that the canonical symplectic form is induced by id : T ∗X →
T ∗X and there is no dilatation along the fiber.
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a weak 2-category structure on the space of Lagrangians. This leads to another
construction that produces new Lagrangian correspondences out of derived inter-
sections (Theorem 2.2.23).

2.2.1. Derived intersection of Lagrangians morphisms.

Proposition 2.2.1 ([PTVV13, Section 2.2]). Let Z be a derived Artin stack with a
n-shifted symplectic structure ω. Let f : X → Z and g : Y → Z be morphisms with γ
and δ Lagrangian structures on f and g respectively. Then the homotopy pull-backX×ZY
possesses a canonical (n−1)-shited symplectic structure called the residue of ω and denoted
R(ω, γ, δ).

Remark 2.2.2. If we fix f and g as above, we can extend the previous theorem to
obtain a map of spaces (see Theorem 2.4 in [Cal15]):

Lag(f, n)×Symp(X,n) Lag(g, n)→ Symp(X ×Z Y, n− 1)

Example 2.2.3. The derived critical locus is by definition the derived pullback
of two closed 1-form s0, df : X → T ∗X which are therefore Lagrangian thanks to
Example 2.1.12. Therefore Crit(f) is (−1)-shifted symplectic.

Remark 2.2.4. When X is a derived stack and df = 0, we have that Crit(f) '
T ∗[−1]X and ωCrit(f) is the canonical (−1)-shifted symplectic structure on T ∗[−1]X .

Remark 2.2.5. Proposition 2.2.1 can also be seen as a consequence of the pro-
cedure of composition of Lagrangian correspondences (Theorem 2.2.13). To se
that, consider the following composition of Lagrangian correspondences:

X ×Z Y

X Y

? Z ?

The maps X → Z × ?̄ and Y → Y × ?̄ are Lagrangian correspondences because
X → Z and Y → Z are Lagrangian. Therefore, by composition, X ×Z Y → ?× ?̄
is also a Lagrangian correspondence, thus X ×Z Y → ? is Lagrangian. From
Lemma 2.1.17, since the point is n-shifted symplectic, then X ×Z Y is (n − 1)-
shifted symplectic.

2.2.2. Derived intersections and Lagrangian �brations.

The goal of this section is to prove a similar statement to Proposition 2.2.1 but
with the additional data of a Lagrangian fibration. This result is from [Gra22] and
has also been generalized in [Saf20].
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Before going to the main statement, we need the following proposition:

Proposition 2.2.6. Suppose we have a sequence L Y X
f g

of Artin stacks
and ω a n-shifted symplectic form on Y. Assume that f is a Lagrangian morphism and g
is a Lagrangian �bration. Then there is a canonical equivalence TL/X → LL/X [n− 1].

Proof. Consider the following commutative diagram:

TL f ∗TY (g ◦ f)∗TX

TL/X f ∗TY/X 0

LL/Y [n− 1] f ∗LY [n] f ∗LY/X [n]

LL/X [n− 1] (g ◦ f)∗LX [n] 0

' ' '
' '

'

In the upper face, every square is bi-Cartesian because both the outer square and
the right most square are bi-Cartesian. Every non-dashed vertical arrow is an
equivalence by assumption (because of the various non-degeneracy conditions).
Focusing on the right hand cube, it sends the upper homotopy bi-Cartesian square
to the bottom square which is also homotopy bi-Cartesian. The homotopy cofiber
of (g ◦ f)∗LX [n] → f ∗LY [n] is f ∗LY/X [n] and we obtain a quasi-isomorphism
(g ◦ f)∗TX → f ∗LY/X [n] depicted as a dashed arrow.
By the same reasoning, since the upper outer square is homotopy bi-Cartesian, it
maps to the lower outer square who is also homotopy bi-Cartesian. Moreover, the
homotopy fiber of the map LL/Y [n− 1]→ f ∗LY/X [n] is exactly LL/X [n− 1]. This
proves that there is a canonical quasi-isomorphism TL/X → LL/X [n− 1]. �

Theorem 2.2.7 ([Gra22, Theorem 3.5]). Let Y be a n-shifted symplectic derived Artin
stack. Let fi : Li → Y be Lagrangian morphisms (for i = 1 · · · 2) and π : Y → X a
Lagrangian �bration. Suppose that the maps π ◦ fi : Li → X are weak equivalences.
Then P : Z = L1 ×Y L2 → X is a Lagrangian �bration.

Proof. We summarize the notation in the following diagram:

Z L1

L2 Y

X

p1

Fp2 f1

f2

π
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We also denote P := π ◦ F : Z → X .

To show that we can obtain an isotropic structure, we will show that we have a
map of spaces (dropping at first the non-degeneracy condition of the Lagrangian
fibration):

Lag(f1, n)×Symp(Y,n) Lag(f2, n)×Symp(Y,n) IsoFib(π, n)→ IsoFib(P, n− 1)

If we forget the non-degeneracy of the Lagrangian structure, we obtain an element
in Iso(f1, n)×Symp(Y,n) Iso(f2, n)×Symp(Y,n) IsoFib(π, n) and we can show, with
formal manipulations of the pullbacks defining the spaces of isotropic structures
and isotropic fibrations, that:

Iso(f1, n)×Symp(Y,n) Iso(f2, n)×Symp(Y,n) IsoFib(π, n)

= ?×A 2,cl(L1,n) Symp(Y, n)×A 2,cl(L2,n) ?×A 2,cl(Y/X,n) ?

Using the pullback to A 2,cl(L1 ×Y L2, n) we obtain a morphism:

Iso(f1, n)×Symp(Y,n) Iso(f2, n)×Symp(Y,n) IsoFib(π, n)→

?×A 2,cl(L1×Y L2,n) A 2,cl(L1 ×Y L2, n)×A 2,cl(L1×Y L2,n) ?×A 2,cl(Y/X,n) ?

This last space naturally maps to:

A 2,cl(L1 ×Y L2, n− 1) = ?×A 2,cl(L1×Y L2,n) A 2,cl(L1 ×Y L2, n)×A 2,cl(L1×Y L2,n) ?

Moreover, if we restrict this map to non-degenerate isotropic structures, then it is
valued in Symp(L1 ×Y L2, n− 1) (thanks to Proposition 2.2.1).
We also have that:

A 2,cl(Y/X, n− 1) = ?×A 2,cl(Y/X,n) ?

We have the commutative diagram:

A 2,cl(L1 ×Y L2, n− 1)×A 2,cl(Y/X, n− 1) A 2,cl(Y/X, n− 1)

A 2,cl(L1 ×Y L2, n− 1) A 2,cl(L1 ×Y L2/X, n− 1)

P ∗

Since the map A 2,cl(Y/X, n − 1) → A 2,cl(L1 ×Y L2/X, n − 1) factors through
A 2,cl(Li/X, n− 1) ' ?, we get a morphism:

A 2,cl(L1×YL2, n−1)×A 2,cl(Y/X, n−1)→ A 2,cl(L1×YL2, n−1)×A 2,cl(L1×Y L2/X,n−1)?

Now if we restrict to Symp(L1 ×Y L2, n − 1) ⊂ A 2,cl(L1 ×Y L2, n − 1) (which
amounts to restricting to non-degenerate isotropic structures), we get a map:

Symp(L1 ×Y L2, n− 1)×A 2,cl(Y/X, n− 1)→ IsoFib(P, n− 1)

Therefore we get the desired map and we will consider the isotropic fibration on
P given by the image along the morphism we just described of the Lagrangian
structures and Lagrangian fibration structure given on f1, f2 and π respectively.
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We are left to prove the non-degeneracy condition. To do that, we first consider
the following diagram:

TZ/X p∗1TL1/X ⊕ p∗2TL2/X F ∗TY/X

TZ p∗1TL1 ⊕ p∗2TL2 F ∗TY

P ∗TX P ∗TX ⊕ P ∗TX P ∗TX

The vertical sequences and the last two horizontal sequences are fibered and there-
fore so is the first horizontal sequence. The last two horizontal sequences are
fibered because the following diagrams are Cartesian:

TZ p∗1TL1

p∗2TL2 F ∗TY

TX TX

TX TX

Using Proposition 2.2.6 and non-degeneracy, we get the following commutative
diagram:

TZ/X p∗1TL1/X ⊕ p∗2TL2/X F ∗TY/X

P ∗LX [n− 1]
(
p∗1TL1/X ⊕ p∗2TL2/X

)
[n− 1] P ∗LX [n]

where all vertical morphisms are quasi-isomorphisms. The fiber in the lower se-
quence is exactly LX [n − 1] because p∗1TL1/X ⊕ p∗2TL2/X ' 0 since Li → X are
equivalences. We will call α : TZ/X → P ∗LX [n − 1] the dashed equivalence ob-
tained.
We still need to show that α is the morphism used in the criteria for the non-
degeneracy of the Lagrangian fibration. Recall that this morphism is given by
means of the universal map filling Diagram (4):

TZ/X P ∗LX [n− 1] 0

TZ LZ [n− 1] LZ/X [n− 1]

αP

∼

To compare α and αP , we summarize the construction of α and all the equivalences
coming from non-degeneracy conditions in the following diagram:
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(5)
TZ p∗1TL1 ⊕ p∗2TL2 F ∗TY

TZ/X p∗1TL1/X ⊕ p∗2TL2/X F ∗TY/X

LZ [n− 1]
(
p∗1LL1/Y ⊕ p∗2LL2/Y

)
[n− 1] F ∗LY [n]

P ∗LX [n− 1]
(
p∗1LL1/X ⊕ p∗2LL2/X

)
[n− 1] P ∗LX [n]

' ' '

' ' '

where all the vertical maps are quasi-isomorphism obtained from the non-degeneracy
conditions. We want to prove that αP and α are homotopic. The relevant data
extracted from the Diagram (5) is:

TZ/X P ∗LX [n− 1] 0

TZ LZ [n− 1] p∗1LL1/Y [n− 1]⊕ p∗2LL2/Y [n− 1]

α

∼

The composition:

P ∗LX [n− 1]→ LZ [n− 1]→ p∗1LL1/Y [n− 1]⊕ p∗2LL2/Y [n− 1]

factorizes through 0 ' p∗1LL1/X [n− 1]⊕ p∗2LL2/X [n− 1]. This implies that the map
LZ [n− 1]→ p∗1LL1/Y [n− 1]⊕ p∗2LL2/Y [n− 1] factorizes through LZ/X [n− 1] and
therefore α satisfies the same universal property as αP , proving that α and αP are
homotopic. �

Remark 2.2.8. This result was generalized in [Saf20, Theorem 1.14].

Remark 2.2.9. Similarly to Proposition 2.2.1, this theorem can be extended to a
map of spaces:

Lag(f1, n)×Symp(Y,n) Lag(f2, n)×Symp(Y,n) LagFib(π, n)→ LagFib(P, n)

This is the simply the restriction the map described in the proof of Theorem 2.2.7
to the non-degenerate elements. Forgetting the extra Lagrangian fibration recovers
the map in Remark 2.2.2, that is the following diagram is commutative:
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Lag(f1, n)×Symp(Y,n) Lag(f2, n)×Symp(Y,n) LagFib(π, n) LagFib(P, n)

Lag(f1, n)×Symp(Y,n) Lag(f2, n) Symp(L1 ×Y L2, n− 1)

Example 2.2.10. Since the projection T ∗X → X is a Lagrangian fibration from
Example 2.1.22, and the derived intersection defining the derived critical locus
(Definition 1.2.20) clearly satisfies the condition of Theorem 2.2.7, we get that
Crit(f)→ X is a Lagrangian fibration. This Lagrangian fibration will be studied
in details in Section 2.3.2 in good situations.

Remark 2.2.11. When X is a derived stack and df = 0, we have that Crit(f) '
T ∗[−1]X,ωCrit(f) is the canonical (−1)-shifted symplectic structure on T ∗[−1]X
and the Lagrangian fibration obtain is the canonical Lagrangian fibration T ∗[−1]X →
X of Example 2.1.22.

2.2.3. The higher categories of Lagrangians.

The idea behind the categorical structure on Lagrangian structures is that given
X and Y , n-shifted symplectic derived stacks, a Lagrangian correspondence from
X to Y (Definition 2.1.18) can be though of as a kind of arrow from X to Y . But it
turns out that this idea is a specific instance of a categorical structure on the set of
Lagrangians structures over a fixed base given by a n-shifted symplectic derived
stacks X (see Definition 2.2.17).
In full generality, it is shown in [CHS21] that we can construct an (∞, n)-category
of Lagrangians as a n-fold Segal space. We are going to restrict ourselves to the
1- and 2-categorical structures.

The goal of this section is to present rather explicitly the (weak) 2-category of
Lagrangian as described in [ABB17] and give a new constructions of Lagrangian
correspondences. The main goal of this section is to give the framework to prove
Theorem 2.2.23 which is another “derived intersection theorem” that produces
new Lagrangian correspondences (see Theorem 2.2.23).

First recall, from Definition 2.1.18, that a Lagrangian correspondence from X to
Y is given by a Lagrangian L→ X × Y and is depicted by the diagram:

L

X Y
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where Y is the same derived stack as Y but endowed with the “opposite” symplec-
tic structure −ωY .

Observe that there is an equivalence:

Lag(X) Lag(X)∼

In particular, any Lagrangian correspondence L fromX to Y induces an opposite1

Lagrangian correspondence, L from Y to X and therefore we get a Lagrangian
correspondence:

L

Y X

Warning 2.2.12. From now on, we will make an abuse of notation and not write
the overline X in the diagrams describing the Lagrangian correspondence with
the convention that the stack on the right is the one with the opposite structure.
A Lagrangian from X to Y and its opposite will be respectively denoted by

L

Y X

and
L

X Y

The first step toward finding categorical structure on Lagrangian structures is the
following theorem giving a way to compose Lagrangian correspondences.

Theorem 2.2.13 ([Cal15, Theorem 4.4]). Given L1 and L2 Lagrangian correspon-
dences from X to Y and Y to XZ respectively, then there is a Lagrangian structure from
X to Z given by L1 ×Y L2. The construction gives a map:

Lag
(
X × Y

)
×Symp(Y,n) Lag

(
Y × Z

)
→ Lag

(
X × Z

)
This composition can be depicted by the following diagram:

1The “opposite” Lagrangian does not means that it is an inverse for the composition. However
we will see in Corollary 2.2.22 that there is a natural 2-morphism:

1X×X ⇒ L ◦ L
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L1 ×Y L2

L1 L2

X Y Z

This Theorem is itself a special case of Lemma 2.2.15 that will enable us to describe
a composition is some category whose objects will be Lagrangian morphisms.

Remark 2.2.14. From this we can define a category Sympn such that:
– the objects are n-shifted symplectic derived stacks.
– Sympn(X, Y ) is the equivalence classes of Lagrangian correspondences
from X to Y for the equivalence relation given by Lagrangeomorphism (see
Warning 2.2.16 for an explanation of what Lagrangeomorphisms are).

Now we can rephrase and generalize this category solely in terms of Lagrangian
structures thanks to the following observations:

– A n-shifted symplectic structure on X is given by a Lagrangian morphism
X → ?n+1 where ?n+1 is seen together with the n + 1-shifted symplectic
structure 0 (see Lemma 2.1.17).

– A Lagrangian structure on L → X is equivalent to a Lagrangian corre-
spondence:

L

X ?n

Therefore the objects of Sympn are Lagrangian morphisms X → ?n+1, and a mor-
phism from X to Y is a Lagrangian in the derived intersection1 L→ X×?n+1 Y '
X × Y (up to Lagrangeomorphism).

In order to generalize this, pick a base given by a n-shifted symplectic derived stack
X (here X plays the role of ?n+1). Given two Lagrangians L1 → X and L2 → X,
we can define a morphism from L1 to L2 to be a data of a Lagrangian morphism
N → L1 ×X L2, where L1 ×X L2 is endowed with the (n − 1)-shifted structure
obtained by Proposition 2.2.1 by taking the derived intersection of Lagrangian
morphisms. We then need a notion of composition which is given by the following
lemma:

1The shifted symplectic structure on the derived intersection is obtained from Proposition 2.2.1
where the construction of the shifted symplectic structure proves that X ×?n+1 Y ' X × Y as
n-shifted symplectic derived stacks.
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Lemma 2.2.15 ([ABB17, Corollary 2.15]). Let Li, i = 1..3 be Lagrangian morphism
in X (for a �xed symplectic structure on X). Then there is a map:

Lag(L1 ×X L2)× Lag(L2 ×X L3)→ Lag(L1 ×X L3)

that sends the Lagrangians N1 → L1 ×X L2 and N2 → L2 ×X L3 to a Lagrangian
structure on:

N1 ×L2 N2 → L1 ×X L3

Warning 2.2.16. The composition obtained by Lemma 2.2.15 is not associative on
the nose, but is so up to Lagrangeomorphism. A Lagrangeomorphism (see [ABB17,
Definition 3.2]) between two Lagrangian L1 → X and L2 → X is an equivalence
of derived stacks L1 → L2 commuting with the morphisms to X together with a
Lagrangian structures on the natural map:

L1 → L1 ×X L2

Then [ABB17, Proposition 3.7] tells us that the composition defined by Lemma
2.2.15 is associative up to canonical Lagrangeomorphism.

We can now define a category of Lagrangians over a fixed n-shifted shifted sym-
plectic derived stack.

De�nition 2.2.17. Let X be a n-shifted symplectic stack. The category of La-
grangians over X denoted Lag1(X) is the category:

– Whose objects are Lagrangian morphisms f : L→ X .
– Whose morphisms Lag1(f, g), with f : L1 → X and g : L2 → X, are given
by Lagrangian morphisms:

h : L→ L1 ×X L2

up to Lagrangeomorphisms (see Warning 2.2.16). The composition is
given by Lemma 2.2.15.

– The unit morphism of a Lagrangian L→ X is given by:

1L : L→ L×X L
with the diagonal Lagrangian structure (see Proposition 2.2.18).

Proposition 2.2.18 ([ABB17, Corollary 2.19]). Consider a Lagrangian morphism
L → X . Then the diagonal map 1L : L → L ×X L is a Lagrangian morphism for
the natural (n − 1)-shifted symplectic structure on L ×X L obtained by derived intersec-
tion.

Example 2.2.19. Lag1(?n+1) is exactly the category Sympn.

As the morphisms in Lag1(X) are given by Lagrangians, we can further give the
collection of morphisms a structure of category, making Lag1(X) into a 2-category1

that we will denote by Lag2(X).

1Actually the category of 1-morphisms will also have a space of morphisms given by La-
grangians, and therefore it can also be enriched in categories. This leads to a structure of 3-category
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De�nition 2.2.20. We can describe Lag2(X) to be the weak 2-category (see [ABB17,
Definition 4.1]) defined as follows:

– Objects are given by Lagrangian structures L→ X .
– The 1-morphisms from L1 to L2 are given by Lagrangians structures1:

L→ L1 ×X L2

– The unit 1-morphism is the diagonal Lagrangian:

1L : L× L×X L

– Given N1 and N2 two morphisms from L1 to L2, given by Lagrangians
Ni → L1 ×X L2. Then a 2-morphism from N1 to N2 is defined as a La-
grangian:

T → N1 ×L1×XL2 N2

up to Lagrangeomorphism.
– The unit 2-morphism 1 : N ⇒ N is given by the diagonal Lagrangian:

N → N ×L1×XL2 N

The 2-categorical structure is given by:

– the composition of 1-morphism is the same as in the 1-categorical setting.
In other words, the composition of N1 : L1 → L2 and N2 : L2 → L3,
given by Lagrangian N1 → L1 ×X L2 and N2 → L2 ×X L3, is given by the
Lagrangian:

N1 ×L1 N2 → L1 ×X L3

obtained from Lemma 2.2.15.

L1 L2 L3
N1

N1×L2
N2

N2

of Lagrangians. This idea goes on to define a structure of n-category on Lagrangians, and is made
more precise in the ∞-categorical context in [CHS21], where they described a (∞, n)-category of
Lagrangian as a n-fold Segal category.

1Here we do not take Lagrangians up to Lagrangeomorphisms since we define a weak 2-category,
where the associativity is only required up to a 2-morphism.
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– The vertical composition of 2-morphisms:

L1 L2

N1

N3

N2

T1

T2

is given by the natural Lagrangian structure on:

T1 ×N2 T2 → N1 ×L1×XL2 N3

provided again by Lemma 2.2.15.
– The horizontal composition:

L1 L2 L3

N1

N ′1

N2

N ′2

T1 T2

The horizontal composition is the data of a 2-morphism from P1 :=
N2 ×L2 N1 to P2 := N ′2 ×L2 N

′
1 given by a Lagrangian morphism:

T1 ×L2 T2 → P1 ×L1×XL3 P2

constructed in [ABB17, Proposition 2.20].

Example 2.2.21. Lag2(?n+1) is the 2-category whose objects are n-shifted symplec-
tic stacks, 1-morphism X → Y are Lagrangian correspondences L → X × Y
and a 2-morphism L1 → L2 is a Lagrangian structure N → L1 ×X×Y L2 up to
Lagrangeomorphisms.

Corollary 2.2.22. Take N ∈ Lag2(L1, L2). Then N ∈ Lag2(L2, L1) and we can
consider the composition N ◦N ∈ Lag2(L1, L1). Then there is a natural 2-morphism:

1L1 ⇒ N ◦N

given by the diagonal Lagrangian morphism:

N → N ×L2 N ×L1×XL1 L1 ' N ×L1×XL2 N
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The purpose of presenting this 2-category in such details is to obtain a 2-categorical
proof of the following theorem, which gives us a mean to construct Lagrangian
correspondences via derived Lagrangian intersections.

Theorem 2.2.23. Consider a Lagrangian correspondence L from X to Y . Let L1, L2 be
two Lagrangian morphisms in X . Consider the diagram:

L1 ×X L

L1 L L1 ×X L

X L2 ×X L Y

L2 L2 ×X L

The maps Li×XL→ Y are Lagrangian and taking the limit long the vertical morphisms,
we get a Lagrangian correspondence:

L1 ×X L×X L2

L1 ×X L2 L1 ×X L×Y L2 ×X L

Proof. We work in the 2-category Lag2(?n+1). To show that Li ×X L → Y is La-
grangian it is enough to view it as the composition of 1-morphisms in Lag2(?n+1):

? X Y
L1 L

Consider the following sequence of 1-morphisms:

? X Y X ?
L1 L L L2

The direct composition of these morphism is given by:

L1 ×X L×Y L×X L2

The key is to remember that there is a 2-morphism (from Corollary 2.2.22):

X X

1X

L×Y L

L
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where 1X the unit corresponding to the diagonal Lagrangian X → X ×X and L
is defined as the diagonal Lagrangian morphism L→' L×X×Y L. Precomposing
by L1 and post-composing by L2 we sucessively get the 2-morphisms:

L1 ×X L : L1 ⇒ L1 ×X L×Y L
L1 ×X L×X L2 : L1 ×X L2 ⇒ L1 ×X L×Y L×X L2

This last 2-morphism is exactly the Lagrangian correspondence we want since both
L1×X L2 and L1×X L×Y L2×X L are in fact symplectic so that this 2-morphism
is in fact a Lagrangian:

L1 ×X L×X L2 →(L1 ×X L2)×?n+1 (L1 ×X L×Y L2 ×X L)

' (L1 ×X L2)× (L1 ×X L×Y L2 ×X L)

�

2.3. Examples of Constructions of Lagrangian Fibrations.

2.3.1. Derived critical locus.

We discuss here some general result on the shifted symplectic geometry of the
derived critical locus. First we want to understand in general the (−1)-shifted
symplectic form on Crit(f). We use the universal property of the tautological
1-form (Lemma 2.1.4) to see that (df)∗ω = 0 (with ω = ddRλX the canonical
symplectic structure on T ∗X). Using the appropriate replacement to compute the
derived tensor product appearing in the proof of Proposition 1.2.21, ω induces a
closed 2-form on SpecX

(
SymOX

(TX [1]⊕ TX)
)
. Since the di�erential on the reso-

lution, SymOX
(TX [1]⊕ TX), is induced by Id : TX → TX [1] (plus the di�erentials

on TX and OX), the tautological 1-form ω−1 on T ∗[−1]X induces a closed 2-form
on SpecX

(
SymOX

(TX [1]⊕ TX)
)
which gives a homotopy1 between ω and 0. We

then have that the (−1)-shifted symplectic form is described by the self-homotopy
of 0 given by ω−1:

0 p∗ω = 0
ω−1

The proof of Proposition 2.2.1 tells us that ω−1 is the (−1)-shifted symplectic form
obtained on Crit(f).

We have seen in Remark 2.2.10 that π : Crit(f) → X is a Lagrangian fibration.
The morphism απ controlling the non-degeneracy condition of the Lagrangian
fibration (see Diagram 4) is still natural in the sense given by the following propo-
sition.

1Note that both ω and ω−1 are closed for the vertical di�erential since they are 1-forms. There-
fore, only the part of the di�erential given by TX [1]→ TX is involved and sends ω−1 to ω.
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Proposition 2.3.1. απ is equivalent to the following composition of equivalences:

(6) LCrit(f)/X ' 0×LT∗X/X 0 0×π∗XLX 0 ' π∗LX [−1]
0×β0

where β is the equivalence LT ∗X/X ' π∗XLX obtained from the Lagrangian �bration
πX : T ∗X → X .

Proof. The strategy here is to express the Diagram (4) as a pull-back of the same
type of diagrams.
First we express LCrit(f)[−1] as a pull-back above LT ∗X . This can be done by
observing that all squares in the following diagram are bi-Cartesians:

LCrit(f)[−1] π∗10∗LT ∗X/X 0

π∗2df
∗LT ∗X/X π∗10∗LT ∗X ' π∗2df

∗LT ∗X π∗2LX

0 π∗1LX LCrit(f)

Where π1 and π2 are the natural projections Crit(f) → X given by the pullback
diagram (and π1 = π2). We write Diagram (4) for π : Crit(f)→ X as:

0×LT∗X/X 0 0×π∗XLX 0 0

TX ×TT∗X TX LT ∗X/X ×LT∗X LT ∗X/X LT ∗X/X ×LT∗X/X LT ∗X/X

απ'0×απX 0

Id×prId

In this diagram, pullbacks have been omitted to keep the diagram easy to read. We
need to describe the morphism ωCrit(f) : TX ×TT∗X TX → LT ∗X/X ×LT∗X LT ∗X/X .
Recall from Remark 2.1.10 and the proof of the non-degeneracy in Proposition
2.2.1 that ωCrit(f) is Θdf×ωΘ0 where Θh : TX → Lh[−1] ' LX/T ∗X [−1] ' LT ∗X/X is
the natural morphism expressing the non-degeneracy of the Lagrangian structure
(see Definition 2.1.9). �

2.3.2. Non-degenerate functionals.

We consider the example of the derived critical locus where f may have a family
of critical points which are all non-degenerate in the directions normal to the strict
critical locus. We want to understand the quasi-isomorphism describing the non-
degeneracy condition of the Lagrangian fibration Crit(f)→ X in that situation.
We denote by S the strict critical locus, which comes with a closed immersion
i : S → X and whose structure sheaf is OS = i−1OX�I with I = 〈df.v, v ∈ TX〉.
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We assume that both X and S are smooth algebraic varieties. We denote by
Crit(f) the derived critical locus of f and we get a canonical morphism:

λ : S → Crit(f)

In order to define the Hessian quadratic form and the non-degeneracy condition,
we need to assume that the closed immersion S ↪→ X has a first order splitting.
Concretely, we assume in this Section that the following fiber sequence splits:

(7) TS i∗TX TS/X [1]

This assumption is necessary to be able to restrict Q to the normal part TS/X [1].

De�nition 2.3.2. The Hessian quadratic form is defined by the symmetric bilinear
map:

Q : Sym2
OS
i∗TX → OS

(w, v) 7→ d(df.v).w

We define non-degeneracy to be along the "normal" direction to S, by considering
the following diagram:

(8)

TS i∗TX TS/X [1]

LS/X [−1] i∗LX LS

0
Q

0Q̃

Both rows are split fiber sequences (by assumption in Diagram (7)). The left and
right vertical maps are the zero map because Q restricted to TS is zero and, since
Q is symmetric, Q composed with the projection to LS is also zero. We obtain
a map Q̃ (using Q and following the section and retract of the fiber sequences)
which corresponds to the map induced by Q on the normal bundle. Then the
non-degeneracy condition is the requirement that Q̃ is a quasi-isomorphism.

Since the di�erential on OCrit(f) is δ = ιdf (see Proposition 1.2.21), we have the
commutative diagram in QC(S):

(9)
i∗TX i∗OX

i∗LX
Q

ιdf

ddR

We will abusively write Q = ddR ◦ δ : i∗TX [1] → i∗LX for the map of degree 1
corresponding to the composition d ◦ ιdf : i∗TX → i∗LX of degree 0.
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In general, the natural map λ : S → Crit(f) is not an equivalence. This is due to
the fact that the partial derivatives of f will not in general form a regular sequence
and therefore Crit(f) has higher homology. The default to be a regular sequence
comes from vector fields that annihilate df . Such vector fields are in fact vector
fields on S when f is non-degenerate. With that idea in mind, we show that an
equivalent description of Crit(f) is given by T ∗[−1]S when Q is non-degenerate.

Proposition 2.3.3. There exists a natural map Φ : T ∗[−1]S → Crit(f) making the
following diagram commute:

T ∗[−1]S Crit(f)

S X

πS

Φ

π

i

Proof. Under our first order splitting assumption (Diagram (7)), the natural map
TS → i∗TX admits a retract, and therefore the natural map i∗T ∗X → T ∗S admits
a section: T ∗S 99K i∗T ∗X . We consider the following diagram:

T ∗X i∗T ∗X T ∗S

X S S

0

i

0 0

We want to pull-back these zero sections along the maps induced by df represented
by the vertical morphisms in the following commutative diagram:

T ∗X i∗T ∗X T ∗S

X S S

df

i

i∗df=0 0

This induces the following morphisms between the pull-backs:

Crit(f) S ×i∗T ∗X S T ∗[−1]S

We obtain a map Φ : T ∗[−1]S → Crit(f). The maps we obtain come from the
universal properties of the pull-backs therefore if we denote s0 : X → T ∗X the
zero section, we have s0 ◦ π ◦ Φ = s0 ◦ i ◦ πS . If we compose by the projection
πX : T ∗X → X, we get π ◦ Φ = i ◦ πS . �

Φ gives a relationship between the Lagrangian fibration structures on T ∗[−1]S →
S and Crit(f)→ X which we now analyse. The idea is to show that the di�erence
between these Lagrangian fibrations is in fact controlled by Q̃ (see Proposition
2.3.7 and Remark 2.3.9).
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Lemma 2.3.4. Φ induces a morphism TT ∗[−1]S/S → Φ∗TCrit(f)/X that �ts in the com-
mutative diagram

(10)

TT ∗[−1]S/S Φ∗TCrit(f)/X

π∗SLS[−1] Φ∗π∗LX [−1] ' π∗Si
∗LX [−1]

απS απ

where the bottom horizontal arrow is the pull-back along πS of the section LS[−1] →
i∗LX [−1] in the dual of the split �ber sequence (7).

Proof. The homotopy pull-back, Crit(f) = X ×hT ∗X X lives over X . We get the
equivalences:

TCrit(f)/X TX/X ×hTT∗X�X
TX/X ?×hTT∗X�X

? π∗LX [−1]' ' '

Proposition 2.1.23 tells us that the canonical fibrations on the cotangent stacks are
the canonical ones and therefore behave functorially (using Proposition 1.2.31).
This implies that the following commutative square is commutative:

TT ∗S/S TT ∗X/X

π∗SLS π∗Si
∗LX

βS βX

π∗Ss

where s is the section in the dual of the split fiber sequence (7). From Definition
2.1.20 we know that both απS and απ are the morphism induced by the morphisms
βS and βX via Diagram (6). We then obtain the commutative diagram:

TT ∗[−1]S/S 0×hTT∗S/S 0 π∗SLS[−1]

Φ∗TCrit(f)/X Φ∗
(

0×hTT∗X/X 0
)

Φ∗π∗LX [−1]

' 0×hβS 0

' 0×hβX 0

where the composition of the horizontal maps are exactly απS and απ thanks to
Proposition 2.1.23. �

Lemma 2.3.5. We �rst remark that Φ∗LCrit(f) can be described, as a sheaf of graded
modules (forgetting the di�erential), by:

Φ∗LCrit(f) ' SymOS
(TS[1])⊗OS (i∗LX ⊕ i∗TX [1])

where LX is generated by terms of the form dg with g ∈ OX and TX [1] is generated
by terms of the form dξ with ξ ∈ TX [1] ⊂ OCrit(f). Then, the internal di�erential on
Φ∗LCrit(f) is characterised by Q = d ◦ ιdf via δ(dξ) = Q(ξ) and δ(dg) = 0.
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Proof. The di�erential on SymOS
(TS[1]) ⊗OS (i∗LX ⊕ i∗TX [1]) is OT ∗[−1]S -linear

because ιdf is zero on TS[1]. Moreover, for ξ ∈ TX [1] ⊂ OCrit(f) = SymOX
TX [1],

we have δ ◦ d(ξ) = d ◦ δ(ξ) = d ◦ ιdf (ξ) = Q(ξ) (see Diagram (9)), and for g ∈ OX ,
δ ◦ d(g) = d ◦ δg = 0. �

Lemma 2.3.6. The composition:

π∗Si
∗TX [−1] Φ∗TCrit(f)/X Φ∗π∗LX [−1]

απ

is given by π∗SQ. Similarly, the composition:

π∗STS[−1] TT ∗[−1]S/S π∗SLS[−1]
απS

is 0 (the restriction of π∗SQ to S).

Proof. The left morphism is the morphism fitting in the fiber sequence:

π∗Si
∗TX [−1] Φ∗TCrit(f)/X Φ∗TCrit(f)

Which gives us:

π∗Si
∗TX [−1] Φ∗TCrit(f)/X Φ∗TCrit(f)

π∗Si
∗TX [−1] Φ∗π∗LX [−1] Φ∗π∗LX [−1]⊕ Φ∗π∗TX

απ '

The second row can be seen as the extension (by π∗S) of the fiber sequence:

i∗TX [−1] i∗LX [−1] i∗LX [−1]⊕ i∗TX

Since X and S are smooth, i∗TX [−1] and i∗LX [−1] are both quasi-isomorphic to
complexes concentrated in a single degree. This imposes that the dashed arrow
is equivalent to the connecting morphism of the induced long exact sequence
in cohomology. Therefore, it is equivalent to the map that sends a section s in
i∗TX [−1] to its di�erential, in i∗LX [−1] ⊕ i∗TX , which can in turn be seen as
an element in i∗LX . More concretely, denote s̃ any lift of s to an element in
i∗LX [−2]⊕ i∗TX [−1]. Using Lemma 2.3.5, its di�erential is given by

Q(s) = Q(s̃) ∈ i∗LX [−1] ⊂ i∗LX [−1]⊕ i∗TX .
We then apply π∗S to get the sequence we want. The second part of the statement
is proven the same way. �

Proposition 2.3.7. The map TT ∗[−1]S → Φ∗TCrit(f) induced by Φ is an equivalence if
and only if Q is non-degenerate.
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Proof. First, using the equivalences απ : Φ∗TCrit(f)/X → π∗Si
∗LX [−1] and απS :

Φ∗TT ∗[−1]S/S → π∗SLS[−1], we can show that the cofiber ofTT ∗[−1]S/S → Φ∗TCrit(f)/X

is equivalent to π∗SLS/X [−2]. Then Lemma 2.3.4 and 2.3.6 ensure that the upper
half of the following diagram is commutative:

(11)

π∗STS[−1] π∗Si
∗TX [−1] π∗STS/X

TT ∗[−1]S/S Φ∗TCrit(f)/X π∗SLS/X [−2]

TT ∗[−1]S Φ∗TCrit(f) F

Q̃

This diagram is then commutative and all rows and columns are cofiber sequences
and in particular F is both the homotopy cofiber of TT ∗[−1]S → Φ∗TCrit(f) and
the homotopy cofiber of Q̃. In particular, the homotopy cofiber of Q̃ is zero if and
only the homotopy cofiber of TT ∗[−1]S → Φ∗TCrit(f) is also zero. �

We now decompose απ into a part along S and a part normal to S. This decompo-
sition is by means of split fibered sequences coming from the split fiber sequence
(7).

Proposition 2.3.8. When Q is non-degenerate, the maps expressing the non-degeneracy
of the Lagrangian �brations �t in the commutative diagram:

TT ∗[−1]S/S TCrit(f)/X TS/X

π∗SLS[−1] π∗Si
∗LX [−1] LS/X [−1]

απS απ Q̃

where the rows are �ber sequences.

Proof. First, when Q is non-degenerate, the top horizontal sequence is fibered and
comes from the following diagram:

TT ∗[−1]S/S Φ∗TCrit(f)/X π∗STS/X

TT ∗[−1]S Φ∗TCrit(f) 0

π∗STS Φ∗i∗TX π∗STS�X [1]
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where all rows and columns are fibered and the cofiber of the second row is 0
thanks to Proposition 2.3.7 since we assumed that Q is non-degenerate. Using
Lemma 2.3.4 and Lemma 2.3.6, we obtain the following commutative diagram:

(12)

π∗STS[−1] Φ∗i∗TX [−1] π∗STS/X

TT ∗[−1]S/S Φ∗TCrit(f)/X π∗STS/X

π∗SLS[−1] Φ∗i∗LX [−1] π∗SLS/X [−2]

0 Q Q̃

απS απ

The only map the dashed arrow can be, in order to make the diagram commuta-
tive, is Q̃. �

Remark 2.3.9. If we do not assume Q non-degenerate, the cofiber F of the map
TT ∗[−1]S → Φ∗TCrit(f) will be non zero. We will denote by G the fiber of the natural
map F → TS/X . Then we can rewrite Diagram (12) as

π∗STS[−1] Φ∗i∗TX [−1] π∗STS/X

TT ∗[−1]S/S Φ∗TCrit(f)/X G

π∗SLS[−1] Φ∗i∗LX [−1] π∗SLS/X [−2]

0 Q Q̃

απS απ αN

The map αN : G → π∗SLS/X [−2] represent the "di�erence" between the maps απ
and απS from the Lagrangian fibrations. αN is still related to Q̃ in the sense that
the following diagram is commutative:

TS/X

G LS/X [−2]

Q̃

αN

Therefore the restriction of αN to TS/X is again Q̃.

Remark 2.3.10. As a non-example if we take f : A1 → A1 sending X to X3

3
, the

basic assumptions that made this section work are failing. The strict critical locus
S is not smooth since it is a fat point, and the sequence (7) does not split.
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2.3.3. G-equivariant twisted cotangents.

For X a smooth scheme, a twisted cotangent stack is a twist of the ordinary
cotangent stack by a closed 1-form of degree 1 on X, α ∈ H1(X,Ω1,cl

X ). Such
a closed form has an underlying 1-form of degree 1 that corresponds to a mor-
phism α : X → T ∗[1]X . The twisted cotangent bundle associated to α is defined to
be the following pull-back:

T ∗αX X

X T ∗[1]X

α

0

We refer to [Hab16] for more information on the relation between this definition
and the usual definition of twisted cotangent bundles. This is then a derived
intersection of Lagrangians (see Example 2.1.12) and therefore it is 0-shifted sym-
plectic. Moreover the Lagrangian fibration T ∗[1]X → X follows the assumptions
of Theorem 2.2.7 and therefore the map T ∗αX → X has a Lagrangian fibration
structure.

Now take G an algebraic group acting on the algebraic variety X . Consider a
character χ : G → Gm. We have the logarithmic form on Gm given by a map
Gm → A 1,cl(−, 0) which sends t to t−1dt. We get a closed 1-form on G described
by the composition:

G→ Gm → A 1,cl(−, 0)

This is also a group morphism for the additive structure on A 1,cl(−, 0). We can
therefore pass to classifying spaces and obtain a 1-shifted closed 1-form on BG:

αχ : BG→ BA 1,cl(−, 0) = A 1,cl(−, 1)

We can consider the pull-back of αχ along the G-equivariant moment map:

[
T ∗X�G

]
×[g

∗
�G] BG BG

[
T ∗X�G

] [
g∗�G

]
' T ∗[1]BG

αχ

µ

It turns out that the equivariant moment map [µ] is Lagrangian (see Proposition
4.3.1), which implies (Proposition 2.2.1) that this fiber product is 0-shifted sym-
plectic. It turns out that we have an equivalence of shifted symplectic derived
Artin stacks:
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[
T ∗X�G

]
×[g

∗
�G] BG ' T ∗α̂

[
X�G

]
Where α̂ denotes the pull-back of αχ to a 1-form of degree 1 on

[
X�G

]
. Therefore,

according to Theorem 2.2.7, the natural projection

T ∗α̂

[
X�G

] [
X�G

]
is a Lagrangian fibration.

To show the equivalence above, we use the composition of the following La-
grangian correspondences:

– The Lagrangian structure on the section
[
X�G

]
→ T ∗[1]

[
X�G

]
:

[
X�G

]

? T ∗[1]
[
X�G

]0

– Using Example 2.1.19, Proposition 4.1.19 and Lemma 4.1.25, we have:[
X × g∗�G

]
'
[
X�G

]
×[?�G]

[
g∗�G

]
We obtain the Lagrangian correspondence:

[
X × g∗�G

]
'
[
X�G

]
×[?�G]

[
g∗�G

]

T ∗[1]
[
X�G

] [
g∗�G

]
' T ∗[1]

[
?�G

]
– The Lagrangian obtained from the closed 1-form of degree 1, αχ:

BG

[
g∗�G

]
?

αχ

We then compose these Lagrangian correspondences:
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T ∗α̂

[
X�G

]
[
T ∗X�G

] [
X�G

]
[
X�G

] [
g∗ ×X�G

]
BG

? T ∗[1]
[
X�G

] [
g∗�G

]
?

αχ

The only thing we need to show is that this is a diagram of Lagrangian corre-
spondences and therefore we need to show that all squares in this diagrams are
pull-backs. The right most square is a pull-back from Proposition 4.1.19 and we

can recognize the pullback square defining T ∗α̂
[
X�G

]
.

We are left to prove that we have a natural equivalence:[
X�G

]
×
T ∗[1][X�G]

[
g∗ ×X�G

]
'
[
T ∗X�G

]
We are left to prove the following equivalence:
there it be[

X�G
]
×
T ∗[1][X�G]

[
g∗ ×X�G

]
'
[
X�G

]
×
T ∗[1][X�G]

[
X�G

]
×[?�G]

[
g∗�G

]
We now use the fact that the self intersection of the zero section in T ∗[1]

[
X�G

]
is T ∗

[
X�G

]
. This implies that:[
X�G

]
×
T ∗[1][X�G]

[
g∗ ×X�G

]
' T ∗

[
X�G

]
×[?�G]

[
g∗�G

]
We can now use the fact that we have a pull-back (see Proposition 4.1.29 or Ex-
ample 2.2.1 in [Saf16]):

T ∗
[
X�G

]
'
[
T ∗X�G

]
×[g

∗
�G] BG

We use that to decompose T ∗
[
X�G

]
in a fiber product and we obtain:[

X�G
]
×
T ∗[1][X�G]

[
g∗ ×X�G

]
'
[
T ∗X�G

]
×[g

∗
�G]
[
?�G

]
×[?�G]

[
g∗�G

]
'
[
T ∗X�G

]
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3. On the Derived Geometry of Lie Algebroids

Lie algebroids are the natural objects controlling in�nitesimal actions. They are,
in some sens, some kind of “generalized tangent bundle” and they determine
(through the anchor) a sheaf of tangent vectors which are though as the infini-
tesimal directions along which a Lie algebroid acts. The reason Lie algebroids
are the correct objects to encode infinitesimal actions can be explained by the
heuristic saying that:

Lie algebroids are to Lie groupoids what
Lie algebras are to Lie groups

In fact given a smooth groupoid (over a “nice enough” base):

G X
s

t

with e : X → G the unit, we can construct a Lie algebroid (see Construction 4.2.1)
with anchor given by the natural map:

ρ : e∗TsG /X → TX

The analogy is not perfect as not all Lie algebroids integrate to a smooth groupoid
(Definition 4.1.6). However, we will see in Section 4.2.1 that they integrate to a
more general type of object, called “formal groupoids” (Definition 4.1.6).

We will be interested, in Section 4, by the study of “infinitesimal” equivariant
geometry, as this kind of geometry naturally appears in the construction of the
BV complex in Section 5.
As we will see, equivariant geometry is simply the study of the geometry of the
“quotient” stack. In the infinitesimal case, we need to make sense of the notion of
in�nitesimal quotient stack, which is the purpose of Section 3.2.1.

We start in Section 3.1 by recalling the definition and homotopy theory of Lie al-
gebroids mainly following [Nui19a, Nui19b]. In Section 3.2.1, we define the notion
of infinitesimal quotient stack of a Lie algebroid. We will see that these are indeed
infinitesimal versions of the quotient by a groupoid in Section 4.2.1 by showing
that they are (in good situations) the formal completions of the projections of the
quotient stacks by smooth groupoids.
In Section 3.3, we discuss the notion of infinitesimal action of a Lie algebroid (up
to homotopy) on a map, f : Y → X, where X is the base of the Lie algebroid.
We also discuss the case of actions given by representations up to homotopy (Section
3.3.1) with in particular the examples of the adjoint and coadjoint actions.
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As we will work in formal geometry, from now on, all stacks will be locally finitely
presented. Moreover, we will assume that all our stacks admit a cotangent com-
plex.

3.1. Lie and L∞-Algebroids.

In this section, we recall the definitions and homotopy theory of Lie and L∞
algebroids. This section mainly follows [Nui19b, Nui19a].

3.1.1. De�nitions and basic properties of Lie algebroids.

We want to discuss the notion of Lie algebroid over a derived stack X . In di�er-
ential geometry, this would be defined as some structure on the module of global
sections of a vector bundle.

In algebraic geometry it is not enough to work on the algebra of global sections
(because it does not recover the structure of a Lie algebroid locally), and we should
therefore define Lie algebroids as an∞-sheaf of Lie algebroid structures.
We will not do that as this is beyond our goals to develop such a theory. There-
fore, in order to make sense of the homotopy theory of Lie algebroids, we restrict
ourselves to the context used in [Nui19a, Nui19b]. In practice, we are restricting
ourselves to work over an a�ne base X := Spec(A) of almost finite presentation.
In other words, since the base is a�ne, we go back to the situation where we can
define the structure of a Lie algebroid on the module of global sections.

De�nition 3.1.1 ([Nui19b, Definition 2.1]). A Lie algebroid over A ∈ cdga≤0 is
an A-module L together with a k-linear Lie algebra structure and an anchor map
ρ : L → TA such that:

– ρ is a map of A-module and of Lie algebras1.
– The failure of the Lie bracket to be A-linear is controlled by a Leibniz
formula:

[w, fv] = (−1)|f ||w|f [w, v] + ρ(w)(f).v

Recall from Notation 1.2.10 that we denote by L the linear stack associated to
L with anchor ρ : L → TX . We will interchangeably refer to L and L as a Lie
algebroid over X .

De�nition 3.1.2. A morphism of Lie algebroids over A is a morphism f : L →
L ′ such that:

– f commutes with the anchors.
– f defines a morphism of the underlying Lie algebras.

1The fact that this is a Lie algebra morphism is in fact a consequence of the Leibniz rule and
the Jacobi identity of the Lie bracket.
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This defines a category of Lie algebroids over A together with the notion of mor-
phisms from Definition 3.1.2. Moreover, we say that f is a weak equivalence if
the underlying map of A-modules is a quasi-isomorphism1. Localizing at these
weak-equivalences, this defines the ∞-category of Lie algebroids (which we also
denote by LieAlgdA). We will see in Section 3.1.2 that this category can also be
viewed as a semi model category.

Remark 3.1.3. Take A ∈ cdga≤0 and L ∈ ModA. A structure of Lie algebroid
on L is the data of a Lie algebroid L ′ together with a weak equivalence of the
underlying A-modules:

L ' L ′

In fact there is an ∞-category of Lie algebroid structures on L given by the
pullback of∞-categories:

LieAlgdA(L ) LieAlgdA

? ModA
L

Therefore a Lie algebroid structure on an A-module L is the data of a Lie alge-
broid whose underlying A-module is only weakly equivalent to L . Unfortunately,
it is not possible to transfer the structure of Lie algebroid along weak equivalences.
However, it is possible to transfer a “homotopy Lie algebroid structure” and get
∞-quasi-isomorphisms.

Indeed, similarly to the case of Lie algebras, we can consider the notion of ho-
motopy Lie algebroid, which we will call L∞-algebroid. Just like for Lie algebras
and L∞-algebras, it is a more complicated object but thanks to Corollary 3.1.14, it
turns out that it describes an∞-category equivalent to that of Lie algebroids. The
main advantage of L∞-algebroids lies in the notion of ∞-morphism (Definition
3.1.5) for which we have a version of the homotopy transfer theorem (Section 3.4).

De�nition 3.1.4 ([Nui19a, Definition 2.5]). A L∞-algebroid over an algebra A ∈
cdga is an A-modules L with the structure of a k-linear L∞-algebras and an
anchor map ρ : L → TA such that:

– ρ is both a map of A-module and of L∞-algebra.
– The failure of the 2-bracket to be A-linear is controlled by the Leibniz rule:

[w, fv] = (−1)|f ||w|f [w, v] + ρ(w)(f).v

– For n ≥ 3, the n-ary bracket is A-linear:

[v1, · · · , fvn]n = (−1)|f |(|v1|+···+|vn−1|)f [v1, · · · , vn]

1In particular, this definition implies that the forgetful functor LieAlgdA → ModA is
conservative.
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A morphism of L∞-algebroids over A is a morphism f : L → L ′ such that:
– f commutes with the anchors.
– f defines a morphism of the underlying L∞-algebras.

This defines a category of L∞-algebroids over A.
Moreover, we say that f is a weak equivalence if the underlying map of A-modules
is a quasi-isomorphism1. Localizing at these weak-equivalences, this defines the
∞-category of L∞-algebroids (which we also denote by L∞AlgdA). This ∞-
category is equivalent to the localization of a semi-model category also denoted
by L∞AlgdA.

Although this definition of morphism is simple, it is too strict. Instead, we want to
define a notion of morphism that only respects the L∞-structures up to homotopy.
Again, up to homotopy, this changes nothing. However this is the correct notion
of “weak” morphism that will appear in the homotopy transfer theorem.

De�nition 3.1.5 ([PS20, Definition 2.2]). A L∞-morphism of L∞-algebroids over
A, f : L  L ′, is given by A-linear skew-symmetric maps for n ≥ 1:

fn : L ⊗n → L ′[1− n]

such that:
– f1 commutes with the anchors.
– f defines an ∞-morphism of the underlying k-linear L∞-algebras (see
[LV12, Proposition 10.2.13]).

De�nition 3.1.6. A Lie or L∞-algebroid L is called perfect if the underlying
A-module of L is perfect.

Proposition 3.1.7. ConsiderX an a�ne stack satisfying Assumptions2 3.2.2 and a map
of formal derived stacks: f : X → Y such that Y admits a tangent complex. Then the
relative tangent complex has a structure of Lie algebroid3 with anchor the natural map:

TX/Y → TX
This construction is functorial in Y ∈ dStafp

/X .

Proof. From Lemma 1.3.20 we have a factorization:

X → ŶX → Y

Since Y is formal, ŶX is also formal and the map X → ŶX is a formal thickening
(Proposition 1.3.14). Therefore it can be viewed as a formal thickening in pre-
stack (see Remark 1.3.23 and Proposition 1.3.24), and corresponds to a formal

1In particular, this definition implies that the forgetful functor L∞AlgdA → ModA is
conservative.

2These are the assumptions necessary to identify a formal moduli problem under X with a Lie
algebroid on X . This will be discussed in details in Section 3.2.1.

3In the sens of Remark 3.1.3.
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moduli problem F (thanks to Theorem 1.3.22). Then we have an equivalence
(from Lemma 1.3.27 and the fact that the map ŶX → Y is formally étale):

TX/F ' TX/ŶX ' TX/Y

This uses the fact that since Y and ŶX are stacks, their relative tangents coincide
with their relative tangents when viewed as pre-stacks (see Proposition 1.3.24).
From Corollary 3.2.9, the relative tangent of a formal moduli problem, TX/F has
a structure of Lie algebroid and therefore so does TX/Y .
Taking the formal completion, the associated formal moduli problem and its as-
sociated Lie algebroid are all functors. �

We will also see in Proposition 3.2.33 that this construction is functorial in the
choice of X (base change).

Example 3.1.8. Let G be an a�ne algebraic group acting on X an a�ne stack.
Let g denote it Lie algebra. Then X × g has a structure of a Lie algebroid on X
given by:

(1)
ρ : X × g→ TX

given by the tangent of the action γ : G×X → X at the unit of G, given
by the composition:

X × g
e→ X ×G× g ' X × TG s0→ TX × TG→ TX

(2) The Lie bracket is defined by the Lie bracket on g extended to X×g using
the Leibniz property.

This is the in�nitesimal action associated to the action of G.
If G acts smoothly on X an Artin stack, this Lie algebroid is equivalent to the
Lie algebroid given by the relative tangent T

X/[X�G] from Example 3.1.7 of the

projection p : X →
[
X�G

]
.

Example 3.1.9.
– The tangent complex with the identity, id : TX → TX , for anchor is a Lie
algebroid.

– Example 3.1.8 extends to any map of L∞-algebra g → TX . Following
[Nui19a, Example 2.8], we can construct an action Lie or L∞-algebroid on
A ⊗ g defining left adjoint functors to the forgetful functors (see [Nui19a,
Lemma 2.10]):

Lie/TA LieAlgdA (Lie∞)/TA L∞AlgdA

– A (possibly singular) foliation of X is equivalent to a Lie algebroid on X
with injective anchor map.

– A Lie algebroid whose anchor is zero is the same thing as asking the Lie
bracket to be A-linear.
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3.1.2. Homotopy theory for Lie algebroid.

We will extract the essential elements of homotopy theory of Lie and L∞ alge-
broid from [Nui19a, Nui19b]. This sets up to necessary homotopy theory and
the most important idea of this section is that up to homotopy, Lie algebroids
and L∞-algebroids give equivalent ∞-categories. This holds essentially for the
same reasons than the fact that the categories of Lie algebras and L∞-algebras
are Quillen equivalent.

Theorem 3.1.10 ([Nui19a, Theorem 3.1]). The categories LieAlgdA and L∞AlgdA
both admit a right proper, tractable semi-model structure such that:

– A map is a weak equivalence if and only if it is a quasi-isomorphism1.
– A map is a �bration if and only if it is a degreewise surjection.

Remark 3.1.11. The classes of weak equivalences and fibrations given by Theorem
3.1.10 do not define a model structure as there is in general no fibrant replacement
as explained in [Nui19a, Example 3.2].

Theorem 3.1.12 ([Nui19a, Theorem 3.3]). The forgetful functors:

U : LieAlgdA → Mod
/TA
A L∞AlgdA → Mod

/TA
A

are right Quillen functors with the following properties:

– they preserve co�brant objects.
– they preserve sifted homotopy colimits.

The homotopy theory of Lie algebras and Lie algebroids are also related thanks
to the following result:

Proposition 3.1.13 ([Nui19a, Proposition 3.4]). There is a Quillen adjunction2:

LieA LieAlgdA
i

ker

The right adjoint, ker send a Lie algebroid to the kernel of its anchor map. Moreover its
right derived functor detects equivalences and preserves all sifted homotopy colimit.

Corollary 3.1.14 ([Nui19a, Corollary 3.8]). The inclusion j : LieAlgdA → L∞AlgdA
is the right adjoint of a Quillen equivalence. In particular, any L∞-algebroid is weakly
equivalent to a Lie algebroid.

1These are the same weak equivalences we discussed in Definition 3.1.2. Therefore, this makes
this definition a (semi)-model for the∞-categories of Lie and L∞ algebroids over A.

2The model structure on LieA is the usual one, transferred from the free-forget adjunction
LieA a ModA.
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Note that we have a commutative diagram of right Quillen functors:

LieAlgdA L∞AlgdA

LieA L∞AlgA

ker ker

w∗

where w∗ is the restriction functor coming from the map of operads:

w : Lie∞ → Lie

This map is an equivalence of operads (even a cofibrant replacement) and induces
a Quillen equivalence between the categories of Lie algebras and L∞-algebras (see
[Hin97, Theorem 4.7.4]).

3.2. In�nitesimal Quotient by a Lie Algebroid and Geometric Properties.

The notion of “infinitesimal quotient” by an infinitesimal action is not an obvious
one. More often than not in the literature, given a Lie algebroid (i.e. an infini-
tesimal action on its base), its infinitesimal quotient is solely defined algebraically
by the Chevalley–Eilenberg algebra of the Lie algebroid (see for example [PS20]).
However there are two problems; the choice of the Chevalley–Eilenberg algebra as
a representative of derived infinitesimal invariants is a priori not canonical, and
the relation to a notion of geometric in�nitesimal quotient is unclear1.

In this section we provide another construction of a formal stack that we call in�n-
itesimal quotient and explain its relationship with the Chevalley–Eilenberg algebra.
However, it will still not be clear from the definition that this indeed corresponds
to a sensible notion of infinitesimal quotient. It is only in Section 4.2.1 that can
explain (in good situations) that the infinitesimal quotient of X by a Lie algebroid
L , is the formal completion of the projection to the quotient by a groupoid G
integrating L , giving a factorization:

X →
[
X�L

]
'

̂[X�G

]
X
→
[
X�G

]
We will start by describing the relationship between Lie algebroids and formal
moduli problems. It turns out to be, under some technical conditions, an instance
of an equivalence obtained from of a Koszul duality context (Definition D.2.5 and
Theorem D.2.11).
Then from formal moduli problems, we have seen in Section 1.3.2 that we can
obtain formal thickenings of the base. This will define the in�nitesimal quotient of
X by a Lie algebroid L .

1As we will see, the infinitesimal quotient is in particular not the spectrum of the Chevalley–
Eilenberg algebra and therefore care must be taken in order to relate algebraic operations on the
Chevalley–Eilenberg algebras and geometric operations on the infinitesimal quotients.
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3.2.1. Quotient stack of a Lie algebroid.

It is a well known result (Theorem D.1.9) that the category of Lie algebras is
equivalent to the category of “pointed formal moduli problems”1. We will explain
that, in a similar way, Lie algebroids over an a�ne baseX correspond (under some
technical assumptions on X) to formal moduli problems under X (see Theorem
3.2.1). We refer to Appendix D for a recollection on formal moduli problems and
Koszul duality contexts.
We claim that such formal moduli problems represent “infinitesimal quotients” of
X . We will see in Section 4.2.1 why this is the case.

Theorem 3.2.1 ([Nui19b, Theorem 6.1]). Suppose that A ∈ cdga≤0 is co�brant
and recall that FMPA denotes the ∞-category of formal moduli problems under X :=
Spec(A). Then we have an adjunction:

MC : LieAlgdA FMPA : T̃X/−

Moreover this is an equivalence whenever A is eventually coconnective. The notation T̃X/−
is similar to the one for the relative cotangent complex for reasons that will be made clear
with Lemma 3.2.8.

To have the equivalence of this theorem, we will often use the following assump-
tions:

Assumption 3.2.2. For a derived stack X we consider the following assumption:

– X is a�ne, and X = Spec(A) with A ∈ cdga≤0.
– A is co�brant.
– A is almost �nitely presented.
– A is eventually coconnective.

De�nition 3.2.3. Given a Lie algebroid L over X satisfying Assumptions 3.2.2.
Then the in�nitesimal quotient of X by L is defined as:[

X�L

]
:= MCL

where (−) denotes the functor of Theorem 1.3.22 extending formal moduli prob-
lems to formal thickenings of X . This stack is defined as the stackification of the
prestack: [

X�L

]
pre

:= MCL pre

1Formal moduli problems for the deformation context on cdga/k, viewed as pointed a�ne
spaces.
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Remark 3.2.4. It is a priori unclear why this is called a quotient. This will be
explained in Section 4.2.1, where we will show that it can be identified (in good
situations) with the formal completion of a quotient map:

p : X →
[
X�G

]
We now proceed to explain Theorem 3.2.1. It turns out that the equivalence comes
from a Koszul duality context (Definition D.2.5) using Theorem D.2.11. This Koszul
duality context is given by an adjunction that involves the Chevalley–Eilenberg
functor:

De�nition 3.2.5. The underived Chevalley–Eilenberg functor is the functor:

CE : LieAlgdA
(
cdga/A

)op

L (Hom(SymA L [1], A), δCE)

With the di�erential δCE determined by:
– its action on A, given by δA + ρ∗ ◦ ddR with ρ∗ ◦ ddR the composition:

A→ LA[−1]→ L ∨[−1]

– its action on L ∨[−1], given by δL ∨ + ∆ where δL ∨ is the dual of the
di�erential on L , and ∆ is such that for all α ∈ L ∨[−1], and v, w ∈ L :

(∆α)(v, w) = α([v, w])− ρ(v)(α(w)) + ρ(w)(α(v))

– In general the formula is given, up to signs, by:

δCEα(v1, · · · , vn) =δAα(v1, · · · , vn)−
∑
i

α(v1, · · · , δL vi, · · · , vn)

+
∑
i

ρ(vi) (α(v1, · · · , vi−1, vi+1, · · · , vn))−
∑
i<j

α ([vi, vj], v1, · · · , vn)

If L is perfect, then this is equivalently a di�erential on1:(
ŜymA L ∨[−1], δCE

)
Moreover, this functor induces a functor between the associated∞-categories:

CE : LieAlgdA →
(
cdga/A

)op

The underived Chevalley–Eilenberg functor preserves weak equivalences between
A-cofibrant2 Lie algebroids (see the proof of [Nui19b, Proposition 4.1]). Therefore
the derived Chevalley–Eilenberg functor can be computed by taking anA-cofibrant
replacement.

1In which case the di�erential is completely determined by its action on A and L ∨[−1].
2An A-cofibrant Lie algebroid is a Lie algebroid whose underlying module is cofibrant.
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Proposition 3.2.6. Let A ∈ cdga≤0 be co�brant of almost �nite presentation. Then the
Chevalley–Eilenberg functor has a right adjoint:

CE : LieAlgdA
(
cdga/A

)op
: D

such thatD(B → A) := T̃A/B is given by the A-module TA/B together with Lie algebroid
structure given by the sub-lie algebroid (Remark [Nui19b, Remark 4.20]):

TA/B ' DerB(A,A)→ TA

We see with Example D.2.8 that when A is eventually coconnective (in other words if
X = Spec(A) satis�es Assumptions 3.2.2), this adjunction forms a Koszul duality context
for the (dual) deformation contexts discussed in Examples D.1.2 and D.2.4. This implies
Theorem 3.2.1 thanks to Theorem D.2.11.

Remark 3.2.7. We can now describe the functor MC in the context of Assumptions
3.2.2. From Corollary D.2.10, we have that for all L ∈ LieAlgdA:

MCL := Map
LieAlgdA

(D(−),L )

Lemma 3.2.8. If X = Spec(A) satis�es Assumptions 3.2.2, then we have a commuta-
tive diagram:

LieAlgdA FMPA

ModA

MC

U
TA/−

Where the functor U forgets the Lie algebroid structure.

Proof. From Proposition D.2.12, we have the commutative diagram:

LieAlgdA FMPA

Sp

Ψ

Θ T

where Θ(L ) is the spectrum object given for each n ≥ 0 by:

Map
LieAlgdA

(Free(A[−n− 1]),L )

This is equivalently the spectrum object obtained by applying the stable Dold–Kan
functor to spectrum object in A-modules given for each n ≥ 0 by:

Hom
LieAlgdA

(Free(A[−n− 1]),L ) ' Hom
Mod

/TA
A

(A[−n− 1], U(L ))
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Similarly T is the tangent functor (see Section D.2.1) and can also be viewed as
an A-module. The following equivalence shows that T ◦MC gives back the same
A-module as Θ:

Hom
FMPA

(SpfA(A� A[n]),MCL ) ' Map
LieAlgdA

(D(A� A[n]),L )

' Map
LieAlgdA

(Free(A[−n− 1]),L )

where the second equivalence follows from the fact that for a Koszul duality con-
text, the functorD sends the spectrum object (A�A[n]) of the deformation context
to the spectrum object of the dual deformation context (Free(A[−n−1])) (see Ap-
pendix D.2.2 for more details).

In both cases, the element in Sp comes from the stable realization of the spectrum
object given for all n ≥ 0 by:

Hom
Mod

/TA
A

(A[−n− 1], U(L )) 'Hom
ModA

(A[−n− 1], fiber(U(L )→ TA))

'fiber(U(L )→ TA))[n+ 1]

Therefore, this spectrum object corresponds to the A-module1:

U(L )[1]⊕ρ TA
Therefore the functors Θ and T both factor trough ModA (and the factorizations
commute with MC). However these new functors are not quite the functors we
want. To obtain the diagram we want, (with the relative tangent) we need to ob-
serve that the A-module we obtain is the pullback on A of the tangent of MCL

and we want the relative tangent instead.

We have a natural map TA → U(L )[1]⊕ρ TA and the relative tangent is the fiber
of this map, which clearly gives U(L ), the underlying module of L . �

Corollary 3.2.9. LetX = Spec(A) satisfying Assumptions 3.2.2. If F ∈ FMPA, then
thanks to Theorem 3.2.1, there exists a Lie algebroid L such that F ' MCL . Moreover
the relative tangent TX/F has a structure of Lie algebroid making it equivalent to L . In
other words, the underlying module of L is weakly equivalent to TX/F .

This is a rather convoluted way to obtain a Lie algebroid structure on the relative
tangent, TX/F . The main problem being that the Lie algebroid structure obtained
through the functor T̃X/− is not explicit. However, in the situation where we take
F = SpfA(B) for B ∈ cdga/A, we have the following:

1Recall that if V andW are complexes, and f : V →W is a map of complexes, then we denote
by V [1] ⊕f W the complex whose underlying module is V [1] ⊕W with di�erential given by the
sum of the di�erential on V , the di�erential on W and f viewed as a map of degree 1.
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Lemma 3.2.10. If X = Spec(A) satis�es Assumptions 3.2.2, we have an equivalence
of formal moduli problems:

MCD(B) ' SpfA(B)

Proof. As functors on Art/A, we have the equivalences:

MCD(B) ' Map
LieAlgdA

(D(−),D(B))

' Map
(cdga/A)

op
(CE(D(−)), B)

'Map
cdga/A

(B,CE(D(−)))

'Map
cdga/A

(B,−)

'SpfA(B)

where the fourth equivalence is due to the fact that CE and D defines an equiv-
alence between Artinian and good algebras (Proposition D.2.9) and therefore the
unit and counit of the adjunction are equivalences when restricted to these alge-
bras. �

Corollary 3.2.11. Let X := Spec(A) satisfying Assumptions 3.2.2 and B ∈ cdga/A.
We have the following:

(1) The underlying module of the Lie algebroid associated with the formal spectrum
SpfA(B) is TA/B ' TX/SpfA(B).

(2) Therefore, from Corollary 3.2.9, TA/B has a structure of Lie algebroid making it
equivalent to T̃X/SpfA(B).

(3) Using Lemma 3.2.10, there are equivalences of Lie algebroids:

T̃X/SpfA(B) ' T̃X/MCD(B)
' D(B)

Therefore the Lie algebroid structure on T̃A/SpfA(B) is the one coming fromD(B), described
in Proposition 3.2.6 with underlying module TA/B .

Corollary 3.2.12. There is an equivalence of Lie algebroids:

TA/SpfA(B)
pre
' TA/B

Proof. Using Corollary 1.3.28, we have an equivalence of A-modules:

TA/SpfA(B)
pre
' TA/SpfA(B)

This gives TA/SpfA(B)
pre

the structure of Lie algebroid coming from Corollary
3.2.11 �

Remark 3.2.13. In the literature (see for example [PS20]), the infinitesimal quo-
tient of X by a Lie algebroid L is often represented by the Chevalley–Eilenberg
algebra of L . Indeed, these algebras describe some kind of “derived invariants”.
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However, we will see in Section 4.1.2 that MCL (and its extension to a formal
stack) is a better candidate to be some kind of quotient. We can relate MCL to
the Chevalley–Eilenberg algebra of L by using the counit of the adjunction:

L → D(CE(L ))

It gives us a morphism:

MCL → MCD(CE(L )) ' SpfA(CE(L ))

However, this will in general not be an equivalence as this would correspond to say-
ing that the derived Chevalley–Eilenberg functor is fully-faithful. We expect that
we need a variant of SpfA(−) that would remember the graded mixed structure
on the Chevalley–Eilenberg algebra to solve this issue for perfect Lie algebroids.

Even if the derived Chevalley–Eilenberg functor behaves rather badly, it turns out
that the underived Chevalley–Eilenberg functor has nice properties:

Lemma 3.2.14. Take L and L ′ two Lie algebroids over A ∈ cdga≤0 a �nitely pre-
sented1 algebra. We consider a map (over A) of graded mixed complexes:

Φ : CEε−gr(L ′)→ CEε−gr(L )

Assume that the map between the weight 1 part of these graded mixed algebras is given by
the dual of the diagram in Mod

/TA
A :

L L ′

TA

f

ρ
ρ′

Then f is a morphism of Lie algebroids.

Proof. First we want to show that f commutes with the anchors. But because the
mixed di�erential restricted to A is a derivation A → L ∨[−1], it factors through
LA[−1] and we get a commutative diagram:

LA (L ′)∨

L ∨

f∨

This diagram is the dual (by assumption) to the commutative diagram:

L L ′

TA

f

ρ
ρ′

1In particular, from [Lur17, Theorem 7.4.3.18], it is equivalent to saying that H0(A) is finitely
generated and TA is perfect.
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To show that f preserves the Lie bracket, we take α ∈ (L ′)∨[−1] and use the fact
that:

Φ(δCEα) = δCE(Φ(α)) = δCE(α ◦ f)

For all v, w ∈ L , this equality implies that:

α ([f(v), f(w)]′) + ρ′(f(v))(α(f(w)))− ρ′(f(w))(α(f(v)))

= α(f([v, w])) + ρ(v)(α(f(w)))− ρ(w)(α(f(v)))

using the fact that ρ′ ◦ f = ρ, this implies that:

α ([f(v), f(w)]′) = α(f([v, w]))

and therefore f preserves the Lie bracket, and is a morphism of Lie algebroids. �

Lemma 3.2.15. Let A ∈ cdga≤0. The Chevalley–Eilenberg functor factors through
graded mixed algebras over A (where A is seen as a graded mixed algebra concentrated in
weight 0):

LieAlgdA
(
cdga/A

)op

(
cdgaε−gr

/A

)op

CE

CEε−gr |−|

If we assume that A ∈ cdga≤0 is �nitely presented. Then the essential image of CEε−gr

restricted to perfect Lie algebroids is given by the graded mixed algebras E such that there
is an equivalence1:

Egr ' HomA (Symgr
A L [1], A)

for some L ∈ Perf(A).
Moreover, restricted to strictly perfect2 Lie algebroids, the strict functor, CEε−gr, is fully-
faithful.

Proof. Define the weight p part to be:

CE(L )ε−gr(p) := HomA (Symp
A L [1], A)

From the definition of δCE, the Chevalley–Eilenberg di�erential clearly splits in a
part preserving the weight (given by the internal di�erentials on A and L ∨[−1])
and a part increasing it by exactly 1 (given by the duals of the anchor and the
Lie bracket). This defines the structure of a graded mixed complex3. From the

1In other words, it is a semi-free graded mixed algebra generated by A in weight 0 and L ∨[−1]
in weight 1.

2Strictly perfect modules are modules finitely presented projective instead of being only quasi-
isomorphic to such a module.

3another way to view this is to observe that δCE respects the natural complete filtration on the
completed symmetric algebra. Moreover the di�erential decomposes in the weight components
δCE = δ0 + δ1 and therefore, under the equivalence of Corollary C.2.5, we get a graded mixed
structure with mixed di�erential δ1.
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definition of the realization functor (Definition C.1.8) we can see that:∣∣CEε−gr(L )
∣∣ ' CE(L )

We now turn to the proof of faithfulness and assume A finitely presented. A map
of Lie algebroid f : L → L ′ is completely determined by the map it induces on
the Chevalley–Eilenberg graded mixed algebras by looking at the induced map
(L ′)∨[−1]→ L ∨[−1] in weight 1, and knowing that the strict dualization (−)∨ is
fully-faithful on strictly perfect complexes.

For the essential image, take E a graded mixed algebra over A as in the statement
having L ∨[−1] in weight 1. Then we can construct a Lie algebroid structure on
L as follows:

– The mixed di�erential restricted to A gives a map:

A→ L ∨[−1]

This map is a derivation and factors though ddR : A → LA[−1]. We get a
map LA → L ∨ (of degree 0) whose dual defines the anchor (since L and
LA are perfect).

– Let α ∈ L ∨[−1] and v, w ∈ L , then we consider:

(εα)(v, w) + ρ(v)(α(w))− ρ(w)(α(v))

where ε is the mixed di�erential. Note that from Definition 3.2.5, this is
what we expect to be α([v, w]). We can show that this expression is A-linear
in α. This gives us a k-linear map:

L ⊗L → L

sending (v, w) to the unique element, denoted [v, w], such that:

α([v, w]) = (εα)(v, w) + ρ(v)(α(w))− ρ(w)(α(v))

Using this formula and the fact that ε2 = 0, we can check that this is a Lie
bracket and that the Leibniz rule holds.

To show that CEε−gr is full (when restricted to strictly perfect Lie algebroids),
consider any map over A:

φ : CEε−gr(L )→ CEε−gr(L ′)

This map is determined by what it does on each weight and since the Chevalley–
Eilenberg graded mixed algebra is generated is weight 0 and 1 (for strictly perfect
Lie algebroids), φ is completely determined by:

φ0 : A→ A := id φ1 : L ∨[−1]→ (L ′)∨[−1]

Using the fully-faithfullness of the functor (−)∨ (on perfect Lie algebroids), we
get a map of linear stacks L ′ → L . The fact that φ preserves the Chevalley–
Eilenberg di�erentials implies that this is a map of Lie algebroids over A (since A
is finitely presented, thanks to Lemma 3.2.14). �
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This lemma has an analogue where we replace Lie algebroids by L∞-algebroids
and graded mixed algebras by weak graded mixed algebras.

Lemma 3.2.16. The derived graded mixed Chevalley–Eilenberg functor, CEε−gr, is con-
servative when restricted to perfect Lie algebroids.

Proof. We consider the following commutative diagram:

Map
LieAlgdA

(L ,L ′) Map
cdgaε−gr

/A

(
CEε−gr(L ′),CEε−gr(L )

)

MapA(L ,L ′) MapA(L ′∨,L ∨)

Take a morphism of Lie algebroids f : L → L ′ such that it induces an equivalence
CEε−gr(L ′)→ CEε−gr(L ). In particular, it induces an equivalence (L ′)∨ → L ∨.
The dualization functor (−)∨ is fully-faithful on perfect modules and therefore con-
servative. Moreover, the forgetful functor LieAlgdA → ModA is also conservative
which implies that the morphism of Lie algebroids L → L ′ is also an equivalence,
and therefore CE is a conservative functor. �

We will use the following notations:

Notation 3.2.17.

– CE is the Chevalley–Eilenberg functor, giving an algebra over A.
– CEε−gr the Chevalley–Eilenberg functor giving a graded mixed algebra (see
Proposition 3.2.15). It can also be viewed as a weak graded mixed algebra1

that we denote CEhε−gr. The Chevalley–Eilenberg di�erential is the total
di�erential for this graded mixed structure and therefore CE :=

∣∣CEε−gr
∣∣,

where |−| is the realization functor given by Proposition C.1.9.
– CEhε−gr is the weak graded mixed Chevalley–Eilenberg algebra of a L∞-
algebroid.

– CEgr is the underlying graded algebra of CEε−gr (see Lemma C.1.6) where
we forget the mixed structure.

– Since weak graded mixed complexes are equivalent to complete filtered
objects (see Appendix C.2), we denote by CEcpl the associated complete
filtered algebra to CEε−gr. It is described, thanks to Proposition C.2.8, by
the following filtration:

F pCEcpl(L ) '
∏
p′≥p

(
Symp′

A L [1]
)∨

1Considering the Chevalley–Eilenberg algebra as a weak graded mixed algebra is relevant when
viewing it as a L∞-algebroid.
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Since CE(L ) is non-negatively weighted, each F pCEcpl(L ) is a di�er-
ential graded algebras with the di�erential being the Chevalley–Eilenberg
di�erential. The same hold for L∞-algebroids.

Remark 3.2.18. As the∞-category of L∞-algebroids is equivalent to the category
of Lie algebroids (Corollary 3.1.14) we can define the infinitesimal quotient of a
L∞-algebroid as the infinitesimal quotient of any Lie algebroid equivalent to it.

3.2.2. Pullback and base change of Lie algebroids.

In this section we will use X := Spec(A), Y := Spec(B) and Z := Spec(C) with
A, B and C non-positively graded cofibrant cdgas of almost finite presentation.
We will described both the base change and pullbacks of Lie algebroids, defining
in the process the notion of morphisms of Lie algebroids over di�erent bases. We
will show that these constructions can also be viewed from an algebraic point of
view using their Chevalley–Eilenberg algebras. Many of these constructions on
Lie algebroids are adapted and generalized from [Kla17].

De�nition 3.2.19. Take L a Lie algebroid over X . We define f !L to be the Lie
algebroid over Y defined as the fiber product:

f !L f ∗L

TY f ∗TX

f !ρ f∗ρ

f∗

together with:

– An anchor f !ρ given by the projection:

f !L → TY

– Picking a model where the map A → B is a cofibration, this pullback
becomes strict and the Lie bracket is defined on TY ×f∗TX f ∗L by:

[X + gv, Y + hw] = [X, Y ] + (gh [v, w] + LX(h).w −LY (g).v)

This defines a Lie algebroid structure on f !L and given the choice of a cofibrant
replacement A→ B, this construction defines a model for that Lie algebroid.

Remark 3.2.20. In [Kla17], this base change is not always possible. The extra
condition they required ensures that the strict fiber product is a vector bundle. Since
we work in the more general context of linear stacks, such a (derived) fiber product
always exists and is linear (thanks to Proposition 1.2.17). Then the rest of the
definition still makes sense of a strict model of the homotopy pullback and defines
the desired Lie algebroid structure.
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Warning 3.2.21. Although somewhat natural, we will see later in this section that
Definition 3.2.19 might not be quite the definition we want. We will later on change
this definition to Definition 3.2.30. We expect both definitions to agree and every-
thing we discuss in this section also makes sense for the second definition.

De�nition 3.2.22. Let L ′ and L be Lie algebroids over Y and X respectively.
Then a morphism of Lie algebroids (over di�erent bases) is defined by a commu-
tative diagram:

L′ L

Y X

φ

f

where φ is induced by the composition of a morphism φ! : L ′ → f !L of Lie
algebroids over the same base (Definition 3.1.2) with the natural morphism from
the pullback Lie algebroid f !L → L .

We will rephrase this base change in terms of base change for their Chevalley–
Eilenberg graded mixed algebras. To do so, we first need to make sense of the
notion of morphism between Chevalley–Eilenberg algebras over di�erent bases.

De�nition 3.2.23. Given f : A → B and Lie algebroids L2 and L1 over A and
B respectively, we say that φ : CEε−gr(L2) → CEε−gr(L1) is amorphism of graded
mixed complexes over f if the following diagram commute1:

CEε−gr(L2) CEε−gr(L1)

A B
f

Using this definition, the Chevalley–Eilenberg functor can be extended over dif-
ferent bases:

Construction 3.2.24. We can define a strict (not derived) functor:

CEε−gr : LieAlgd→
(
cdgaε−gr

)op

that sends any morphism of Lie algebroids:

L1 L2

Y X
f

to a morphism of graded mixed algebras CEε−gr(L2)→ CEε−gr(L1) over f .

1This is a diagram of graded mixed algebras where A and B are concentrated in weight 0. The
vertical morphisms are the natural projections.
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The definition of this functor on objects given by the usual Chevalley–Eilenberg
algebra. Any morphism of Lie algebroids as described above induces a map of
modules over the morphism f : B → A:

φ : L ∨
2 [−1]→ L ∨

1 [−1]

We also get morphisms in higher weights:

(Symp
A L2[1])∨ → (Symp

A L1[1])∨

This defines a morphism between the graded Chevalley–Eilenberg algebras (be-
cause f and φ preserve the internal di�erentials). We only need to check that this
map preserves the mixed di�erential. Essentially, this map preserves the mixed
di�erential restricted to the weight 0 part ε|A := ρ∗◦ddR because the map L1 → L2

is compatible with the anchors (because L1 → f !L2 must be compatible with the
anchors from Definition 3.1.2):

L1 f ∗L2

TY f ∗TX

And the rest of the compatibilities are due to the fact that the map L1 → L2 is a
morphism of Lie algebras (because both L1 → f !L2 and f !L2 → L2 are maps of
Lie algebras) and the fact that they preserve of the anchors, since the Chevalley–
Eilenberg di�erential is build out of the Lie bracket and anchor (see Definition
3.2.5).

It turns out that the Chevalley–Eilenberg functor over di�erent bases behaves sim-
ilarly to the one over a fixed base:

Lemma 3.2.25. The strict Chevalley–Eilenberg functor factors through graded mixed
algebras:

LieAlgd (cdga)op

(
cdgaε−gr

)op

CE

CEε−gr |−|

We assume that the bases are a�ne and �nitely presented. The essential image of CEε−gr

restricted to strictly perfect Lie algebroids is given by the graded mixed algebras E such
that there is an equivalence1:

Egr ' HomA (Symgr
A L [1], A)

for A ∈ cdga≤0 �nitely presented and L ∈ Perf(A).

1In other words, it is a semi-free graded mixed algebra generated by A, a non-positively graded
and finitely presented algebra, in weight 0 and L ∨[−1] in weight 1.
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Moreover, restricted to strictly perfect Lie algebroids, the strict mixed graded Chevalley–
Eilenberg functor, CEε−gr, is fully-faithful.

We can now rephrase the base change construction in algebraic terms. To do that,
we observe that the anchor map L → TA is a map of Lie algebroids1 (over the
same base) and therefore induces a map of graded mixed algebras2:

DR(A) ' CEε−gr(TA)→ CEε−gr(L )

Lemma 3.2.26. Given a Lie algebroid L over X an a�ne stack �nitely presented and
f : Y → X , then we have a pushout square in the category of graded mixed algebras:

DR(A) DR(B)

CEε−gr(L ) CEε−gr(f !L )

where f !L is the pullback Lie algebroid of De�nition 3.2.19 and the morphism:

CEε−gr(L )→ CEε−gr(f !L )

is induced by the morphism of Lie algebroids f !L → L .

Proof. Up to taking a cofibrant replacement of f : A → B, we can chose B to
be semi-free over A. This implies that DR(B) is semi-free over DR(A). Indeed,
if B = SymA F∨ with F projective. Then using a connection on F , have an
equivalence (see Section 1.2.5):

DRgr(B) ' Symgr
SymA F∨

(
SymA F∨ ⊗A

(
LA ⊕∇ F

)∨
[−1]

)
' SymA (F∨ ⊕ LA[−1]⊕F∨[−1])

' SymDRgr(A) (DRgr(A)⊗A (F∨ ⊕F∨[−1]))

where F∨[−1] is in weight 1. Moreover by functoriality there is a map DR(A)→
DR(B), which is therefore a cofibration and we can compute the homotopy pushout
as a strict pushout. Its underlying graded algebra can be computes as the pushout
of the underlying graded algebras:

Symgr
A LA[−1] Symgr

B LB[−1]

Symgr
A L ∨[−1] Symgr

B (f ∗L ∨[−1]
∐

f∗LA[−1] LB[−1])

1TA is viewed as a Lie algebroid over X with the identity as anchor map (see Example 3.1.9).
2The first equivalence is due to the fact that A is assumed to be cofibrant and finitely presented.

Therefore thanks to Corollary 1.4.5 we get the desired equivalence
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Since a strict model for f !L is also obtained through a cofibrant (or just semi-free)
replacement of A→ B, we have for that model that:

CEgr(f !L ) ∼= Symgr
B (L ∨[−1]

∐
LA[−1]

LB[−1]) ' CEgr(L )⊗DRgr(A) DRgr(B)

We only have to show that the graded mixed structures coincide.

– The weight 0 part of the Chevalley–Eilenberg di�erential clearly coincides
with the weight 0 part of the di�erential of the pushout.

– The part of the di�erential of weight 1, restricted to B, is ρ∗ ◦ ddR with the
anchor being the natural projection:

ρ : TB ×f∗TA f ∗L → TB

the natural projection. This coincides with the di�erential on the pushout
given by the composition:

B ' B ⊗A A
ddR→ LB[−1] ' LB[−1]

∐
f∗LA[−1]

f ∗LA[−1]

ρ∗→ LB[−1]
∐

f∗LA[−1]

f ∗L ∨[−1]

where the last map coincide with the natural inclusion:

LB[−1]→ LB[−1]
∐

f∗LA[−1]

f ∗L ∨[−1]

– Take µ ∈ LB[−1] and α ∈ L ∨[−1]. Then α induces an element (which
we all also call α), in f ∗L ∨[−1], seen as a map f ∗L → B with α(v) :=
α(1⊗ v) = f(α(v)).
Then for all X, Y ∈ TB[1], g, h ∈ B and v, w ∈ L [1] such that f∗X =

gρ(v) and f∗Y = hρ(w), we have that the part of the Chevalley–Eilenberg
di�erential on CE(f !L ) in weight 1 can be described by:
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δCE(µ+ α)(X + gv, Y + hw) = µ([X, Y ]) + ghα[v, w] +X(h)α(w)− Y (g)α(v)

−X(µ(Y ))−X(hα(w))

+ Y (µ(X)) + Y (gα(v))

= µ([X, Y ]) + ghα[v, w] +X(h)α(w)− Y (g)α(v)

−X(µ(Y ))−X(h)α(w)− hX(α(w))

+ Y (µ(X)) + Y (g)α(v) + gY (α(v))

= µ([X, Y ]) + ghα[v, w]

−X(µ(Y ))− hX(f(α(w)))

+ Y (µ(X)) + gY (f(α(v)))

= µ([X, Y ])−X(µ(Y )) + Y (µ(X))

+ ghα[v, w]− hgρ(v)(α(w)) + ghρ(w)(α(v))

= µ([X, Y ])−X(µ(Y )) + Y (µ(X))

gh (α[v, w]− ρ(v)(α(w)) + ρ(w)(α(v)))

We can clearly identify both the mixed structure on DR(B) and the mixed
structure on CE(L ) that defines the di�erential on the tensor product.

�

Corollary 3.2.27. If L = 0 is the trivial Lie algebroid, then CEε−gr(L ) ' A and
we get an equivalence:

CEε−gr(f !L ) ' DR(B)⊗DR(A) A ' DR(B/A)

where the second equivalence comes from De�nition 1.4.2.
Moreover, f !0 is equivalent to TB/A as Lie algebroids, and we have:

CEε−gr(TB/A) ' DR(B/A)

Moreover if Y = Spec(B) satis�es Assumptions 3.2.2, it coincides with the Lie algebroid
D(A) described in Proposition 3.2.6 (where B and A are exchanged).

Proof. The pushout from Lemma 3.2.26 becomes exactly the pushout describing
the relative de Rham algebra in Definition 1.4.2. The Lie algebroid structure on
TB/A from Proposition 3.2.6 is clearly the one whose Chevalley–Eilenberg algebra
is equivalent to DR(B/A). �

We want to show that the relative tangent Lie algebroid construction (Proposition
3.1.7) is functorial in the choice of base. However, to do that we need to understand
the infinitesimal quotient by f !L .
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We would expect, by “naturality” to have a commutative diagram:

(13)

Y X

[
Y�f !L

]
pre

[
X�L

]
pre

ψ

The problem is that the existence of ψ is a priori unclear. However, if it exists we
have the following:

Lemma 3.2.28. Take f : Y → X a map of �nitely presented stacks satisfying Assump-
tions 3.2.2. Take L a Lie algebroid over X and suppose that the morphism ψ in Diagram
(13) exists, then there is an equivalence of Lie algebroids:

f !L ' T̃
Y/[X�L ]

pre

In particular, this implies that we have an equivalence of formal thickenings of Y :[
Y�f !L

]
pre
'

̂([
X�L

]
pre

)
Y

Proof. We have a natural morphism:

φ :
[
Y�f !L

]
pre
→
[
X�L

]
pre
×(

[X�L ]
pre

)
DR

([
Y�f !L

]
pre

)
DR

'
[
X�L

]
pre
×(

[X�L ]
pre

)
DR

YDR

'
̂([

X�L

]
pre

)
Y

φ is clearly a nil-equivalence between formal thickening of Y in pre-stacks. It
induces a morphism of Lie algebroids:

T̃
Y/
[
Y�f !L

]
pre

' f !L → T̃
Y/

̂(
[X�L ]

pre

)
Y

We will show that the underlying module of this morphism in an equivalence.
Consider the following commutative diagram:

f !L TY

f ∗L f ∗TX f ∗h∗T[X�L ]
pre

The lower sequence is fibered thanks to Lemma 3.2.8, Lemma 1.3.27 and Defini-
tion 3.2.3. Moreover the square is a pullback. Therefore we have an equivalence
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of quasi-coherent sheaves on Y (over TY ):

f !L
∼→ fiber

(
TY → f ∗h∗T[X�L ]

pre

)
' T

Y/[X�L ]
pre

�

Remark 3.2.29. The Lie algebroid T̃
Y/

̂(
[X�L ]

pre

)
Y

as all the properties we want:

(1) For any morphism of Lie algebroid L ′ → L over di�erent bases, the
underlying morphism of A-modules factors as follows:

L ′ → T̃
Y/

̂(
[X�L ]

pre

)
Y

→ L

(2) We have a commutative diagram:

Y X

̂([
X�L

]
pre

)
Y

[
X�L

]
pre

ψ

The only downside is that according is that it is unclear whether or not these maps
in (1) are morphisms of Lie algebroids according to the previous definition.

However, the definition of Lie algebroid morphism over di�erent bases in based
on the fact that f !L → L is a morphism of Lie algebroid by de�nition. We could
as well say that the natural morphism:

T̃
Y/

̂(
[X�L ]

pre

)
Y

→ T̃
X/[X�L ]

pre

is a morphism of Lie algebroids and de�ne morphisms of Lie algebroids over dif-
ferent bases as a morphism of Lie algebroids over Y :

L ′ → T̃
Y/

̂(
[X�L ]

pre

)
Y

Essentially we claim that f !L should be de�ned as T̃
Y/

̂(
[X�L ]

pre

)
Y

.

De�nition 3.2.30. From now on, f !L will be defined as the Lie algebroid:

T̃
Y/

̂(
[X�L ]

pre

)
Y

The results and definitions we have discussed so far with the previous definition
still hold with the new one. Moreover whenever the morphism of Diagram (13)
exists, both definitions are equivalent thanks to Lemma 3.2.28.
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Remark 3.2.31. The previous and the new definition of f !L have in fact equivalent
underlying A-modules (even if we don’t know if their Lie algebroid structures
coincide).

Remark 3.2.32. In fact we expect that Lemma 3.2.28 should holds without assum-
ing that the map of Diagram (13) exists (which is in fact equivalent to proving
that the map exists). However we do not have a proof of this.

Proposition 3.2.33. Consider X , X ′ satisfying Assumption 3.2.2, and Y , Y ′ two for-
mal stacks. Assume that X and X ′ are �nitely presented. We consider the commutative
diagram:

X Y

X ′ Y ′

f

h

Then, there is a morphism of Lie algebroids over f (for the Lie algebroids structures obtained
in Proposition 3.1.7):

TX/Y → TX′/Y ′
This holds if Y and Y ′ are formal pre-stacks instead.

Proof. We just need to find a morphism of Lie algebroids over X :

TX/Y → f !TX′/Y ′

Using Definition 3.2.30, this is equivalent to having a morphism of Lie algebroids
over the same base:

TX/Y → TX/Y ′ ' TX/Ŷ ′X
Notice that we have a commutative diagram:

X

ŶX Ŷ ′X

By naturality of the construction in Proposition 3.1.7 of Lie algebroid structures
on the relative tangent (over the same base), we get a morphism of Lie algebroids:

TX/Y → TX/Y ′

�

We also have some naturality properties of the base change construction.

Lemma 3.2.34. Consider f : Y → X and L , L ′ two Lie algebroids over X with a
morphism ψ : L → L ′ of Lie algebroids and f : Y → X . Then there is a morphism of
Lie algebroids:

f !ψ : f !L → f !L ′
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such that the following commutative diagram of Lie algebroids (over di�erent bases) com-
mute:

f !L L

f !L ′ L ′

Proof. Since f ! amounts to taking an actual pullback (over TX), we get a natural
linear morphism f !ψ : f !L → f !L ′ of modules fitting in the diagram. We only
have to show that this preserves the Lie bracket and is compatible with the anchor.
The compatibility with the anchor is a consequence of the definition of f ! via a
pullback along the map TY → f ∗TX . The preservation of the Lie bracket is a
consequence of the compatibility of the anchors and the fact that ψ preserves the
Lie brackets (looking at the formula of Definition 3.2.19). �

Lemma 3.2.35. Just like an ordinary base change, if we have g : Z → Y and f :
Y → X where X , Y and Z are all �nitely presented, then there is an equivalence of Lie
algebroids over Z :

g!f !L
∼→ (f ◦ g)!L

Proof. Since f ! and g! amounts to taking a pullback, we have an equivalence of
linear stacks:

g!f !L
∼→ (f ◦ g)!L

Then using Lemma 3.2.26, the Chevalley–Eilenberg algebras are given by pushouts
and therefore we get a natural morphisms between the associated Chevalley–
Eilenberg algebras. Then we can use Lemma 3.2.14 to show that this is a map
of Lie algebroids. Since the underlying map of modules is an equivalence, which
defines an equivalence of Lie algebroids �

The second type of operation we are interested in is the fiber product of Lie alge-
broids. We start with the fiber product over the same base.

Lemma 3.2.36. The pullback of Lie algebroids exists1. Taking the underlying modules
is a right adjoint therefore the underlying module of the pullback is a pullback of the
underlying module.

Combining pullbacks of Lie algebroids and the base change of Lie algebroids, we
can make sense of the pullback of Lie algebroids over di�erent bases.

Proposition 3.2.37. We can take pullbacks of Lie algebroids over di�erent bases. That
is, if LX , LY and LZ are Lie algebroids over �nitely presented bases X , Y and Y
respectively, and if φf : LX → LZ , φg : LY → LZ are morphisms of Lie algebroids
over f : X → Z and g : Y → Z respectively. Then there is a Lie algebroid structure on

1Because homotopy limits exist in a semi-model category as explained in [Nui19a, Remark 2.13].
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LX ×LZ
LY over X ×Z Y and there are Lie algebroid morphisms making the following

square a pullback square in the category of Lie algebroids over di�erent bases:

LX ×LZ
LY LY

LX LZ

Proof. This pullback is defined as the pullback of the Lie algebroids over the base
X ×Z Y (using Lemma 3.2.36) given by the base change of LX , LY and LZ to
X ×Z Y (using Definition 3.2.19 and Lemma 3.2.34). More precisely, consider the
pullback diagram:

X ×Z Y X

Y Z

v

u f

g

By definition a morphism LX → LZ is a Lie algebroid morphism LX → f !LZ

(idem for LY → LZ). Using Lemma 3.2.34 we get two morphisms of Lie alge-
broids:

v!LX → v!f !LZ u!LY → u!g!LZ

Since u!g! = (g ◦ u)! = (f ◦ v)! = v!f !, we get a pullback diagram defining the
pullback of Lie algebroids (where our notation omits the base changes in the fiber
product in order to keep it simple).

LX ×LZ
LY v!LX

u!LY v!f !LZ ' u!g!LZ

This pullback is indeed a Lie algebroid on X×Z Y and any cone of Lie algebroids
other it gives a cone over the previous diagram of Lie algebroids over the base
X ×Z Y . Therefore it is a fiber product thanks to Lemma 3.2.36. �

Remark 3.2.38. The notion of base change and pullback of L∞-algebroids along
morphisms (but not ∞-morphisms) also makes sense. Essentially, adding higher
brackets (n ≥ 3) to the constructions add no di�culty as they are all A-linear.
In particular, there is a Chevalley–Eilenberg weak graded mixed algebra functor,
CEhε−gr, characterizing the L∞-algebroid structure (in the sens of a generalization
of Lemma 3.2.25).
The easiest way to understand pullbacks and base changes in that setting is to use
the tensor product in the category of weak graded mixed algebras. The underlying
graded spaces are unchanged compared to the Lie algebroid part, but the tensor
product in weak graded mixed algebras automatically defines the higher brackets.
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3.3. In�nitesimal Action of Lie Algebroids.

The goal of this section is to make sense of the notion of the infinitesimal action
(up to homotopy) of a Lie algebroid.

We start in Section 3.3.1 by discussing the special case of “linear actions” up
to homotopy, which are given by representations up to homotopy of Lie algebroids.
We then explain that these representations up to homotopy are equivalent to L -
connections that are �at up to homotopy. We also describe relevant examples (e.g.
the adjoint and coadjoint representations) and properties of such representations.
Then we define in Section 3.3.2 the general notion of infinitesimal action of a
Lie algebroid, and prove that representations up to homotopy are, under some
technical assumption, actions up to homotopy.

3.3.1. Representation up to homotopy.

Our interest in representation up to homotopy of Lie algebroids lies in the fact that
they are “linear” infinitesimal actions up to homotopy of Lie algebroids (Theorem
3.3.14) and provide useful examples of actions up to homotopy such as the adjoint
and coadjoint infinitesimal actions (Example 3.3.10).

Given a vector space V , a linear action of a group G on V is the data of a represen-
tation of k[G] on V , or in other words, the structure of a k[G]-module on V . Simi-
larly, a representation up to homotopy will defined as a module over CE(L )hε−gr.

This section is mostly a rephrasing and a generalization of [AC12], adapted to our
context of derived algebraic geometry. In that section we will only consider Lie
algebroids over a�ne bases of almost finite presentation.

De�nition 3.3.1. A representation up to homotopy of a perfect Lie algebroid L over
X is the data of a weak graded mixed module1:

M ∈ Modhε−gr

CEhε−gr(L )

such that it underlying graded module Mgr ∈ Modgr
CEgr(L ) is isomorphic

2 to:

Mgr ∼= CEgr(L )⊗A E

with E ∈ QCgr(X) a graded quasi-coherent sheaf on X . We call this a represen-
tation up to homotopy of L on E . We denote the category of representations up to
homotopy of L by RepL and the category of representations up to homotopy of
L on E ∈ QCgr(X) by RepL (E ).

1The category of weak graded mixed CEhε−gr(L )-modules is the category of modules according
to Definition A.1.3 over CEhε−gr(L ) ∈ cdgahε−gr in the good model category M = Modhε−gr

k .
2A more homotopic version would be to require only a weak equivalence. For our use, this

stricter notion will be enough.
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Remark 3.3.2. In other words, a representation up to homotopy is the data of a
weak graded mixed structure on CEgr(L )⊗A E . This can be viewed, after taking
the realization (Remark C.2.9), as the structure of CE(L )-module on CE](L )⊗A
E . In other words, it is a di�erential D on CE](L ) ⊗A E such that for all v ∈
CE(L ) and e ∈ E :

D(v ⊗ e) = δCE(v)⊗ e+ v ⊗De

Remark 3.3.3. The natural augmentation from the Chevalley–Eilenberg weak
graded mixed complex to A (where X = Spec(A)) induces a functor:

Modhε−gr

CEhε−gr(L )
→ Modhε−gr

A

|−|→ ModA

This is essentially the pullback functor along CEhε−gr(L )→ A. This functor sends
a representation up to homotopyM to the underlyingA-module E on which it acts.

It turns out that the notion of representation (up to homotopy) of a Lie algebroid
L coincide with the notion of L -connections that are flat up to homotopy.

De�nition 3.3.4. Given a Lie algebroid L over X, a L -connection on a linear
stack E is the data of a L -covariant derivative, that is, a k-linear map:

∇ : L ⊗ E → E

such that for all f ∈ A, v ∈ L and s ∈ E :

∇fv = f∇v

∇v(fs) = ρ(v)(f).s+ f∇vs

Construction 3.3.5 ([AC12, Definition 2.9]). Consider L a cofibrant Lie alge-
broid and ∇ a connection1 on L . We can define the following L -connections:

– Basic L -connection on L defined by:

∇bas
v w := ∇ρ(w)v + [v, w]

– Basic L -connection on TX defined by:

∇bas
v X := ρ(∇Xv) + [ρ(v), X]

Note that ρ ◦ ∇bas = ∇bas ◦ ρ and therefore this defines a L -connection on the
linear stack associated to the complex2 TX ⊕ρ L [1].
The basic curvature, [AC12, Definition 2.10], is the curvature of that L -connection
given by:

Rbas
∇ (v, w)(X) := ∇X([v, w])− [∇Xv, w]− [v,∇Xw]−∇∇bas

w Xv −∇∇bas
v Xw

1Recall that when X is a�ne and L is a cofibrant Lie algebroid (and therefore a cofibrant
A-module thanks to Theorem 3.1.12), then Proposition 1.2.40 shows that there exists such a
connection.

2Recall that if V andW are complexes, and f : V →W is a map of complexes, then we denote
by V [1] ⊕f W the complex whose underlying module is V [1] ⊕W with di�erential given by the
sum of the di�erential on V , the di�erential on W and f viewed as a map of degree 1.
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The following proposition gives a more concrete description of what a represen-
tation up to homotopy is.

Proposition 3.3.6. A representation up to homotopy on E of a perfect Lie algebroid L
can be equivalently described as the following data:

– A L -connection ∇ on E .
– An element:

ω2 ∈ Sym2
A L ∨[−1]⊗A End(E )[1]

such that dE(ω2) +R∇ = 0 where R∇ is the curvature of ∇.
– For each i > 2, we have:

ωi ∈ Symi
A L ∨[−1]⊗A End(E )[i− 1]

such that:
dE(ωi) + d∇ωi−1 + ω2 ◦ ωi−1 + · · · = 0

We write D = dE + d∇ + ω2 + ω3 + · · · .

Proof. Consider the weak graded mixed structure on CEgr(L ) ⊗A E defining the
representation up to homotopy. Then the collection of dE together with the mixed
di�erentials εp for p ≥ 1 are maps:

E → Symp
A L ∨[−1]⊗A E [p− 1]

For p = 1, we have E → L ∨⊗AE [−1] that defines an L -connection on E (thanks
to the Leibniz rule satisfied by ε1). Then, for p ≥ 2 we rename the elements ob-
tained ωi.

If we decompose the equations defining a weak graded mixed structure (Definition
C.2.1) we get:

– For p = 0 we get d2
E = 0.

– For p = 1 we have dE ◦ d∇ + d∇ ◦ dE = 0.
– For p = 2 we have [dE, ω2] + d2

∇ = 0 and d2
∇ is the curvature of ∇.

– The other equations are straightforward. In fact all the equations can be
written in the following compact form:∑

p+q=i

ωp ◦ ωq = 0

with the convention ω0 = dE and ω1 = d∇.
Conversely, given the data of a connection and ωi as in the statement, we want to
reconstruct a weak mixed structure on CEgr(L )⊗ E . Again each ωp gives a map:

E → Symp
A L ∨[−1]⊗A E [p− 1]

and the equations: ∑
p+q=i

ωp ◦ ωq = 0
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are exactly the equations of Definition C.2.1 describing a weak graded mixed
structures. �

Remark 3.3.7. A strict representation is a representation up to homotopy such
that the weak graded mixed structure is in fact a graded mixed structure on the
nose, in other words, ε≥2 := ω≥2 = 0. Therefore it is exactly given by a A-module
E together with �at L -connection on E .
In general the terms ω≥2 are closure terms making the connection flat “up to
homotopy” (see [Cra04, Section 3.1]).

Example 3.3.8 (Variation of [AC12, Example 3.8]). Consider E = F⊕F [−1] ∈
QC(X) with X := Spec(A), where E is equipped with the di�erential induced
by the identity ∂ : F → F [−1]. Then, given a L -connection on F , we can
define a representation up to homotopy on E given by the following di�erential
on CE(L )⊗A E :

D := dF + ∂ +R∇

Indeed D2 = 0 amount to the equations:
– d2

F = 0 and dF commutes with everything because ∂ is the identity and the
connection respects dF .

– ∂2 = 0, and we have:

∂ ◦R∇ = R∇ ◦ ∂
– Because the connection preserve the di�erential on F , we also have:

dF ◦R∇ = R∇ ◦ dF
– (R∇)2 = 0.

Example 3.3.9. Take Ẽ ∈ RepL(E ) and F̃ ∈ RepL(F ) and a morphism f : Ẽ →
F̃ of weak graded mixed modules inducing a morphism f : E → F . Then the
fiber:

G̃ := fiber(f : Ẽ → F̃ )

is a representation up to homotopy on the fiber:

G := fiber(f : E → F ) ' E ⊕f F [−1]

Example 3.3.10. Recall from Section A.2 that we can construct the cotangent
complex in any good model category, in particular in the category of weak graded
mixed complexes (see Section A). This gives us the following:

Thε−gr

CEhε−gr(L )
∈ Modhε−gr

CEhε−gr(L )
Lhε−gr

CEhε−gr(L )
∈ Modhε−gr

CEhε−gr(L )

The notions of adjoint and coadjoint representations is described in [AC12, Section
3.2]. We expect that the graded mixed tangent and cotangent complexes should
recover these representations up to homotopy.
Indeed, in a somewhat similar manner to when we use connections to compute the
tangent complex of linear stack and semi-linear representations of a derived stack,
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we expect that a graded mixed version of connection could also us to compute the
graded mixed complexes and make them representations up to homotopy on:

p∗Tgr
CE(L )gr p∗Lgr

CE(L )gr

Construction 3.3.11 (Variation of [AC12, Example 4.1]). Given a represen-
tation up to homotopy R ∈ Modhε−gr

CEhε−gr(L )
on a A-module E , we can obtain a

representation up to homotopy on it dual, E ∨, by considering the strict dual1 of
R enriched in weak graded mixed modules:

R∨ := Homhε−gr

CEhε−gr(L )
(R,CEhε−gr(L )) ∈ Modhε−gr

CEhε−gr(L )

We can check that (R∨)gr ' (Rgr)∨ ' CEgr(L )⊗A E ∨.

3.3.2. Action of Lie algebroids.

In this section, we are only going to consider co�brant Lie algebroids over a�ne
bases of almost finite presentation.

The typical example of an action is the action of L on its base X, with the idea
in mind that the associated infinitesimal quotient stack associated to L is the in-
finitesimal quotient of X by the action of L .

Taking the motivating example of a Lie algebra g viewed as a Lie algebroid over
the point ?, we see that g act trivially on the point. However, we want to make g
act on more geometric spaces that just the point. Classically, an action of g on Y is
an in�nitesimal action2 g→ TY which always gives (thanks to the second point of
Example 3.1.9) the Lie algebroid OY ⊗g on Y called the action Lie algebroid. What
we take from this example is that this action of g on Y is exactly the structure of
a Lie algebroid on f ∗g over Y where f is the canonical map Y → ?. Keeping this
idea and extending it to Lie algebroids over X instead of ?, we get the following
definition:

De�nition 3.3.12. An in�nitesimal action of a Lie algebroid L over X on f :
Y → X is a structure of Lie algebroid on f ∗L over Y such that the following
commutative diagram:

f ∗L L

Y X
f

defines a morphism of Lie algebroids over di�erent bases (Definition 3.2.22).
This infinitesimal action is up to homotopy if f ∗L has a L∞-structure and the
morphism is an∞-morphism.

1In other words the enriched Hom functor defining the dual is not derived.
2In this context, it is just a map of Lie algebras.
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We denote the category of infinitesimal actions of L up to homotopy by ActL .

Remark 3.3.13. To speak about infinitesimal quotients by such an action, we would
need Y to satisfy Assumptions 3.2.2 so that it fits into the framework of Section
3.2.1. In concrete examples this will not always be the case. However, we will see
in Section 4.2.1 how to give a generalized notion of infinitesimal quotient.

Theorem 3.3.14. Let X be a�ne of almost �nite presentation and L a perfect Lie
algebroid over X . We have a strict functor:

ψ : Repafp,≥0
L → ActL

that sends a representation up to homotopy on E ∈ QCafp,≥0(X), a non-negatively graded
quasi-coherent sheaf on X of almost �nite presentation, to an in�nitesimal action on the
linear stack E along the projection πE : E → X .

Proof. Given a representation up to homotopy given by:

M ∈ Modhε−gr

CEhε−gr(L )

such that Mgr ∼= CEgr(L ) ⊗A E with E non-negatively graded of almost finite
presentation. We consider the associated free weak graded mixed CEhε−gr(L )-
algebra, SymCEhε−gr(L ) M

∨, whose underlying graded algebra is isomorphic to:

SymCEgr(L ) CEgr(L )⊗A E ∨ ∼= Symgr
SymA E∨ π

∗
EL ∨[−1]

with πE : E → X .
This defines a L∞-structure on π∗EL over E since a representation up to ho-
motopy can only increase the arity in L ∨[−1] and therefore the right hand side
is in the essential image of the Chevalley–Eilenberg functor. This gives π∗EL a
structure of Lie algebroid over E. Notice that because E is almost presented and
non-negatively graded, E is a�ne of finite presentation.

Moreover, there is a map (coming from the unit of the free-forget adjunction)
CEhε−gr(L ) → SymCEhε−gr(L ) M

∨ commuting with the natural inclusion A →
SymA E ∨. Therefore, thanks to Lemma 3.2.25, we get a morphism of Lie alge-
broid f ∗L → L that defines the desired action.

This construction is natural in the Chevalley–Eilenberg algebras and since the
strict Chevalley–Eilenberg functor is fully faithful on perfect Lie algebroids (thanks
to Lemma 3.2.25), this construction of the action is functorial. �

Remark 3.3.15. The reason we need to restrict to representations up to homotopy
on coconnective almost finitely presented modules is that this is the necessary con-
dition to ensure that E is a�ne of almost finite presentation which is the necessary
context to speak about Lie algebroids.
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3.4. Homotopy Transfer Theorem.

This section aims at proving a version of the homotopy transfer theorem for L∞-
algebroids. In the context of di�erential geometry, a transfer theorem for Lie
algebroids is proven in [PS20, Section 2.3]. We recall the proof of this result in the
context of derived algebraic geometry. In this section all the Lie algebroids are
strictly perfect.

Theorem 3.4.1. Let f : L → L ′ be a linear quasi-isomorphism of strictly perfect
A-modules. Then for any L∞ algebroid structure on L ′ over X = Spec(A), there is a
L∞-algebroid structure on L over X and an extension of f to an∞-quasi-isomorphism1:

f∞ : L → L ′

The rest of the section is going to be devoted to the proof of this theorem. First,
we need to define the notion of deformation retract.

De�nition 3.4.2. A deformation retract is a pair of map in ModA:

L Mh

p

i

such that pi = id, p is a quasi-isomorphism and [d, h] = id− ip.
This is a special deformation retract if moreover ph = hi = h2 = 0.

Lemma 3.4.3. For any linear quasi-isomorphism f : L → L ′ there is zig-zag of special
deformation retracts:

L M L ′i

p p′

i′

with h, h′ : M → M the homotopies of degree −1 of the deformation retracts and such
that p′ ◦ i = f .

Proof. f comes from a quasi-isomorphism of A-modules, L → L ′, and therefore
factor as:

L M L ′triv.cof. triv.fib.

Moreover we can chose M to be the mapping cylinder of f given by:

L ⊕L [1]⊕L ′

with di�erential given by δ(a1, a2, a
′) = (da1 + a2,−da2, da

′ − f(a2)).
We get a special deformation retract:

1An ∞-quasi-isomorphism is an ∞-morphism whose linear component f1 : L → L ′ is a
quasi-isomorphism.
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L ⊕L [1]⊕L ′ L ′
h′

p′

i′

where i′ is the inclusion, p′(a1, a2, a
′) = f(a1) + a′ and h′(a1, a2, a

′) = (0, a1, 0).

We have another special deformation retract:

L L ⊕L [1]⊕L ′
h

p

i

Indeed, we find a retract of L → L ⊕L [1]⊕L ′ by having a lift:

L L

L ⊕L [1]⊕L ′ 0

triv.cof.

id

fib.
p

This implies that p is a homotopy inverse for i, since i is a quasi-isomorphism and
p ◦ i = id. Therefore i ◦ p is homotopic to the identity with homotopy h.

These are in fact only deformation retracts but this is a classical result (see [Cra04,
Remark 2.3]) that any deformation retract can be modified to a special deformation
retract. �

We are now going to deal with transfer on the left and on the right along a special
deformation retract:

L M
i

p
h

Lemma 3.4.4. If L is a L∞-algebroid, then there exists a L∞-algebroid structure on
M such that both p and i are L∞-morphisms.

Proof. Using the deformation retract we get a splitting (an isomorphism):

M ∼= L ⊕N

with N = ker(p) a contractible complex so that there is an isomorphism:

N ∼= cone(id : K → K )

Indeed, first notice that h restricted to N is valued in N and restricted to N
we have [d, h] = id (since i ◦ p = 0 on N ). Then if we take K = ker(d), we
can show that N = K ⊕K ′ where K ′ is the cokernel of d. It turns out that
h : K ′ → K [1] is an isomorphism. With the condition [d, h] = id, we get an
isomorphism N ∼= K ⊕K [1] together with the di�erential K [1] → K , which
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is exactly the cone of id : K → K .

Then picking a connection on K (which exists since K is projective as a direct
summand of M which is projective), we can define a representation up to homo-
topy on N thanks to Example 3.3.8. This induces an action of L on N (using
Theorem 3.3.14) which we will denote by ˜N ∈ Modhε−gr

CEhε−gr(L )
. Doing so, we can

define a structure of Lie algebroid on M by defining its Chevalley–Eilenberg weak
graded mixed algebra as the free weak graded mixed complex:

CEhε−gr(M ) := Free
(

˜N ∨[−1]
)

This is a Chevalley–Eilenberg algebra of M since the underlying graded object of
this free weak graded mixed algebra is:

Symgr
A (L ∨[−1]⊕N ∨[−1]) ∼= Symgr

A (M ∨[−1])

and therefore we get a L∞-structure on M .
The natural projection and inclusion induced by p and i are compatible with
the di�erentials and therefore induce strict morphisms of L∞-algebroids since
the strict Chevalley–Eilenberg functor is fully-faithful on perfect L∞-algebroids
(thanks to a L∞ variation of Lemma 3.2.25). �

Lemma 3.4.5. If M is an L∞-algebroid, then there exists an L∞-algebroid structure
on L and an extension of i to an∞-quasi-isomorphism i∞.

Proof. We define an anchor on L by the composite ρ ◦ i.
To define the brackets, we use the homotopy transfer theorem for Lie∞-algebras
(see [LV12, Theorem 10.3.2]). This gives us a sequence of k-linear maps:

in : L ×n →M

These maps are in factA-linear for thanks to the side condition h2 = 0 and h◦i = 0.
The binary bracket is defined by:

[x, y]L := p([i(x), i(y)]M )

We can show that it satisfies the Leibniz rule using the equation pi = id. �

Remark 3.4.6. So far we talked about Lie algebroids, the objects given by Defi-
nition 3.1.1 and Lie algebroid structures on a module, defined via Remark 3.1.3.
The first type of objects are models of Lie algebroids but this notions is not in-
variant by weak equivalence (unlike the second notion). The homotopy transfer
theorem ensures that if a module L has a structure of Lie algebroid, then L is
a L∞-algebroid such that the algebroid structures are equivalent via the transfer
along ∞-equivalences between the underlying modules of the di�erent models.
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4. Equivariant Symplectic Geometry

In this section, we are going to develop equivariant and “infinitesimally equivari-
ant” geometry, as well as derived symplectic geometry in that context. The study
of (infinitesimal) equivariant geometry boils down to the study of the geometry
of (infinitesimal) quotient stacks. The end goal is to make sense of a generalized
notion of symplectic reduction for Segal groupoids actions and their infinitesimal
version, Lie algebroids actions.

We start by setting up the necessary derived equivariant geometry needed for
Segal groupoids actions in Section 4.1, and for Lie algebroid actions in Section
4.2.
In both cases, we study the geometric properties of the (infinitesimal) quotients.
In particular we are interested in taking pullbacks of such quotients and in com-
puting their tangent complexes.

Moreover, we will discuss the heuristic saying that infinitesimal quotients should
be viewed as an “infinitesimal version” of quotients by Segal groupoids. This
requires a precise understanding of the relationship between Segal groupoids and
Lie algebroids. We discuss the “derivation” and “integration” of Segal groupoids
and Lie algebroids in Section 4.2.1.
Furthermore, we also show that much of the constructions for Lie algebroids are
but the “infinitesimal versions” of the same constructions for Segal groupoids.

Then, in Section 4.3 we recall the notion of moment maps and symplectic re-
duction for a group action following [AC21]. We then generalize these results to
Segal groupoid and Lie algebroid actions and show in each case that we can create
new moment maps and symplectic reductions by a procedure of “derived intersec-
tion of Lagrangians”. This produces interesting examples of (−1)-shifted moment
maps on the derived critical locus, which are going to be at the heart of the BV
constructions in Section 5.

4.1. G -Equivariant Symplectic Geometry.

We are interested in the equivariant geometry with respect to the action of a Segal
groupoid. As we will see, it amounts to studying the associated quotient.
We will pay particular attention to the tangent and cotangent complexes of these
quotient stacks, as well as their derived symplectic geometry.

4.1.1. G -equivariant maps and quotients.

We start by defining more precisely the di�erent notions of Segal groupoids we
are going to use, and make sense of the notion of action of a Segal groupoid.
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De�nition 4.1.1 ([TV08, Definition 1.3.1.6]). We say that a simplicial1 derived
stack G • is a Segal groupoid over X if the following conditions holds:

(1) G 0 ' X
(2) For all n > 0, there are weak equivalences:∏

0≤i<n

σi : G n ∼→ G 1 ×X · · · ×X G 1︸ ︷︷ ︸
n−times

(3) There is a weak equivalence:

d1 × d2 : G 2 → G 1 ×d0,d0

X G 1

Given a Segal groupoid G • over X, we define the quotient stack as the colimit of
the simplicial diagram denoted by: [

X�G

]
It comes with a natural projection that we will generically denote by:

p : X →
[
X�G

]
We denote by sn : G n → X the composition of all the “source maps” d0 : G n →
G n−1 and tn : G n → X the composition of the “target maps” dn−1 : G n → G n−1.

Remark 4.1.2. The first condition of a Segal groupoid G • is essentially saying that
it is a kind of 1-category object with objects X and morphisms G 1. In particular
the composition can morally be obtained by “inverting” the the equivalence in:

G 1 ×X G 1 ∼← G 2 d1→ G 1

The second condition says that any horn diagram (element in G 1 ×d0,X,d0 G 1):

x y

z

can be filled uniquely (up to homotopy). This implies that all “morphisms” in G 1

are invertible.

De�nition 4.1.3. Let G •X be a Segal groupoid over X and G •Y a Segal groupoid
over Y . Then a morphism of Segal groupoids, denoted φ : G •X → G •Y over a map
f : X → Y is a morphism between the simplicial derived stacks G •X → G •Y such
that it is given by f on the 0-simplices.

1Unlike the usual conventions, we denote the simplicial stack with a lower bullet to have conve-
nient notations later on.
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Example 4.1.4. The nerve of a groupoid:

G X
s

t

is a Segal groupoid and the quotient stack of a groupoid is by definition (see
1.1.14) the quotient if its nerve.

Example 4.1.5. Given a map f : X → Z, we can define a Segal groupoid over X,
C(f) given by the Čech nerve:

C(f)n := X ×Z · · · ×Z X︸ ︷︷ ︸
n−times

with the simplicial structure obtained from the natural projections and the diago-
nals. Condition (1) is the associativity of the pullback and the second condition
is also clear.

De�nition 4.1.6. Let G • be a Segal groupoid over X .
– The Segal groupoid is called smooth ([TV08, Definition 1.3.4.1]) if each G n

is an Artin stack and all the structure maps G n → G n−1 are smooth (in the
sens of [TV08, Definition 1.3.3.1]). In particular, from [TV08, Proposition
1.3.4.2], the associated quotient stack is again Artin1.

– The groupoid is called formal if each G n is a formal stack and all structure
morphisms are nil-equivalences.

Remark 4.1.7. We can also consider Segal groupoids in pre-stacks. The definitions
are identical except for the fact that G • is a simplicial pre-stack instead. The
stackification-inclusion adjunction induces an adjunction between the categories
of Segal groupoids in pre-stacks and Segal groupoids in stacks2.

A class of examples of such groupoids come from the action of groups. By group
we mean, a group object in derived stacks. A group can act on a stack X via a
morphism ρ : G×X → X satisfying the usual conditions for an action.

Example 4.1.8. Take G a group acting on a derived stacks X with action ρ :
G×X → X . Then G×X has a groupoid structure given by:

G×X X
ρ

prX

whose quotient is
[
X�G

]
(see Example 1.1.14). In fact, such a groupoid structure

is equivalent to the data of an action of G on X . We will say that G acts smoothly
on X if the corresponding groupoid is smooth in the sens of Definition 4.1.6 (and
in particular, G and X are Artin).

1Artin stacks can even be de�ned as successive quotients of such groupoids.
2The stackification of a Segal groupoid in pre-stacks is a groupoid in stacks because the stacki-

fication functor preserves small limits.
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Remark 4.1.9. Let G • be a formal Segal groupoid over X . Then we can show that
the projection:

p : X →
[
X�G

]
is a nil-equivalence. However, nothing ensures that the quotient is formal. There-
fore this projection might not be a formal thickening according to Definition 1.3.18.

We can obtain formal Segal groupoids out of a rather large class of groupoids.

Construction 4.1.10. Take G • a Segal groupoid over X such that each G n is
formal (in particular both smooth groupoids and formal groupoids verify this con-
dition). Then we can define the formal completion, Ĝ •, of this groupoid as the Segal
groupoid given by formal completion at the unit:

Ĝ n := Ĝ n
X

Since taking the formal completion commutes with taking the pullbacks (Corollary
1.3.13), this is again a Segal groupoid.

Using the fact that derived stacks form a model topos, they satisfy a version Gi-
raud’s theorem (Proposition 1.1.15). In particular quotients are “e�ective”:

Lemma 4.1.11. Given a Segal groupoid G n over X , the natural projection:

p : X →
[
X�G

]
is an e�ective epimorphism and we have equivalences for all n ≥ 1:

G n ' X ×[X�G ] · · · ×[X�G ] X︸ ︷︷ ︸
n-times

' C(p)n

This de�nes an equivalence of groupoids over X :

G • ' C(p)•

Equivariant geometry is the study of the geometry of quotient stacks and of equi-
variant maps between derived stacks.

De�nition 4.1.12. Let f : X → Y be a morphism of derived stacks. Consider
G • a Segal groupoid over X . Then the structure1 of an invariant map with respect
to G • on f is the data of a factorization through the projection p:

X Y

[
X�G

]
f

p
[f ]

1Being equivariant is a structure on f and not a property. In a strict setting (e.g. strict quotients
of schemes) the map [f ] would necessarily be unique and equivariance would become a property.
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If now H • is a Segal groupoid over Y , then the structure of an equivariant map
with respect to G • and H • on f is a structure of an invariant map on:

p ◦ f : X →
[
Y�H

]
In other words, this is the data of a morphism [f ] fitting in the commutative
diagram:

X Y

[
X�G

] [
Y�H

]
f

[f ]

In what follows, we are going to say that f is equivariant when referring to the
data of [f ] giving f the structure on an equivariant map.

We also have constructions on groupoids similar to the ones in Section 3.2.2:

Construction 4.1.13.

– Let f : Y → X be a map of derived stacks and G • a Segal groupoid over
X . Then there is a Segal groupoid f !G • over Y called the base change
groupoid defined, by analogy with Definition 3.2.30, as the Segal groupoid:

f !G • := C(p ◦ f)• ' Y ×[X�G ] · · · ×[X�G ] Y︸ ︷︷ ︸
•-times

– Given G •, G •1 and G •2 groupoids overX with morphisms of Segal groupoids
G •1 → G • and G •2 → G •, then the pullback G •1 ×G • G •2 is a groupoid over
X .

– Combining these two constructions, we can define the pullback of groupoids
over di�erent bases. This is a pullback because of Lemma 4.1.14.

Lemma 4.1.14. LetH •, G • be groupoids over Y andX respectively and φ : H • → G •

a morphism of groupoids over f : Y → X . Then φ factors through a unique morphism:

H • → f !G •

Proof. First notice that there is an equivalence:

C(p◦f)n := Y ×[X�G ] · · · ×[X�G ] Y︸ ︷︷ ︸
n-times

'
(
Y ×X G 1 ×X Y

)
×Y · · · ×Y

(
Y ×X G 1 ×X Y

)︸ ︷︷ ︸
n−times

We have a unique natural (i.e. commuting with the source and target maps) mor-
phism:

H 1 s×φ1×t−→ Y ×X G 1 ×X Y
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Which induces unique natural morphisms:

H n ∼→H1 ×Y · · · ×Y H 1︸ ︷︷ ︸
n−times

→ C(p ◦ f)n

which in turn define a unique morphism of groupoids:

H • → f !G •

�

We can now turn to the notion of action of a Segal groupoid. Similarly to the
motivating example in the introduction of Section 3.3.2, we can look at the case
of an action of a group G. G is naturally seen as a groupoid over the point. An
action of G on Y is equivalent to the structure of a groupoid given by Y ×G over Y
(Example 4.1.8), whose source map is the natural projection (and the target map
defines the action). Here the projection Y × G can be viewed as the pullback of
the “source map” G→ ? along the natural augmentation X → ?. This motivates
the following definition:

De�nition 4.1.15. An action of a Segal groupoid G • over X on f : Y → X is the
data of a groupoid:

f ∗G • := G • ×s•X Y

where sn : G n → X are the source maps1.

Given an action of G • on f we will denote the quotient by
[
Y�G

]
. We will see

with Proposition 4.2.17 that a Segal groupoid action naturally induces an action
of the associated Lie algebroids (Construction 4.2.1).

Lemma 4.1.16. Consider a pullback of derived stacks:

Y X

Z
[
X�G

]
f

q p

g

then we have that:
(1) the map Y → Z is an e�ective epimorphism.
(2) we have an action of G • on f : Y → X .
(3) we have an equivalence:

Z '
[
Y�G

]
and g := [f ] gives f a structure of equivariant map with respect to the action.

Proof.

1The choice of the source maps instead of the target maps is purely conventional as the source
and target maps play an interchangeable role.
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(1) The pullback of the e�ective epimorphism:

p : X →
[
X�G

]
is Y → Z, and it is an e�ective epimorphism thanks to [Lur09b, Proposi-
tion 6.2.3.15].

(2) We have equivalences:

Y ×Z Y 'X ×[X�G ] Z ×Z Z ×[X�G ] X

'X ×[X�G ] Z ×[X�G ] X

'X ×[X�G ] X ×[X�G ] Z

'G ×p◦s
[X�G ]

Z

'G ×sX Y

where the fourth equivalence uses Lemma 4.1.11. This gives G ×sX Y the
structure of a groupoid over Y and the source map is clearly the projection
from Y . More generally we get:

C(q)n := Y ×Z · · · ×Z Y︸ ︷︷ ︸
n−times

' G n ×snX Y

Indeed we can proceed inductively and get:

C(q)n 'C(q)n−1 ×Z Y
'G n−1 ×sn−1

X Y

'G 1 ×X · · · ×X G 1︸ ︷︷ ︸
(n−1)−times

×sXY

'G 1 ×X · · · ×X G 1︸ ︷︷ ︸
(n−1)−times

×sX
(
X ×[X�G ] X

)
×X Y

'G 1 ×X · · · ×X G 1︸ ︷︷ ︸
(n−1)−times

×s,sX G 1 ×tX Y

'G 1 ×X · · · ×X G 1︸ ︷︷ ︸
(n−1)−times

×s,tX G 1 ×sX Y

'G 1 ×X · · · ×X G 1︸ ︷︷ ︸
(n)−times

×sXY

'G n ×snX Y

Moreover, having the commutative square of the statement ensures that
there is a map of groupoids:

C(q)• → C(p)•
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which induces a map of groupoids:

G • ×s•X Y → G •

and therefore defines an action of G on f .
(3) The equivalence follows from Proposition 1.1.15 and the previous equiva-

lence of groupoids over Y :

C(q)n ' G n ×snX Y

This shows that G • ×s•X Y is the groupoid whose quotient is equivalent to
Z.

�

Remark 4.1.17. The previous lemma is essentially unraveling the content of [TV08,
Proposition 1.3.5.1].

Lemma 4.1.18. Let f : Y → X be a map of derived stacks and G • a Segal groupoid
over X acting on Y → X . Then we have a pullback diagram:

Y X

[
Y�G

] [
X�G

]
f

[f ]

Proof. Given an action of G •, we consider the morphism of Segal groupoids f ∗G • →
G •. This morphism is Cartesian in the sens given in [TV08, Proposition 1.3.5.1]1.
Denote by Y0 the pullback of the diagram. Then from Proposition 4.1.19, there is
an action of G • on f0 : Y0 → X and the morphism f ∗0 G • → G • is also Cartesian.
This implies that the natural morphism f ∗G • → f ∗0 G • is also Cartesian. The
image of this under the colimit functor is the equivalence:[

Y�G

]
∼→
[
Y0�G

]
From Proposition 4.1.19, and by definition of Y0, this is an equivalence. The
colimit functor restricted to Cartesian morphism over f ∗0 G • is fully-faithful thanks
to [TV08, Proposition 1.3.5.1] and therefore reflects equivalences. In particular,
we get a natural equivalence2:

Y
∼→ Y0

�

1In the sens that it is in the essential image of the functor described in that proposition.
2This is because the category of Segal groupoids in [TV08, 1.3.5] is viewed with its level-wise

projective model structure, for which fibrations and equivalences are defined level-wise.
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Proposition 4.1.19. We consider the morphisms f : X → Z and g : Y → Z . Let
G • be a Segal groupoid over Z , and take actions of G • on f and g. We obtain morphisms
between the quotients: [

X�G

]
→
[
Z�G

] [
Y�G

]
→
[
Z�G

]
Then there is a canonical pullback action1 of G • on X×Z Y such that we get a pullback
square2: [

X ×Z Y�G

] [
X�G

]
[
Y�G

] [
Z�G

]
Proof. First we now from Lemma 4.1.11 that G • ' C(pX)• where pX is the projec-
tion:

pX : X →
[
X�G

]
Now consider the following diagram:

X ×Z Y Y

[
X�G

]
×[Z�G ]

[
Y�G

] [
Y�G

]

X Z

[
X�G

] [
Z�G

]
All squares are pullback squares. Indeed, the front and back squares are pullbacks
by definition. The other squares (except for the left side square) are also pullbacks
thanks to Lemma 4.1.18. Since all squares but the left face in this cube are pull-
backs, then the left face must also be a pullback square by formal properties of
pullbacks in a commutative cube.

Now using Lemma 4.1.16, this shows that the map

X ×Z Y →
[
X�G

]
×[Z�G ]

[
Y�G

]
1By pullback action, we mean that this is an action for any of the maps in the pullback diagram

of f and g.
2Recall that that in that square, the pullback Segal groupoids are G • ×s•Z (−).
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is an e�ective epimorphism and we have the equivalences thanks to the proof of
Lemma 4.1.16:

C(pX ×pZ pY )n 'C(pY )n ×snY (X ×Z Y )

'C(pZ)n ×snZ Z ×Z (X ×Z Y )

'C(pZ)n ×snZ (X ×Z Y )

'G n ×snZ (X ×Z Y )

Moreover we have a commutative diagram of Segal groupoids:

C(pX ×pZ pY )• C(pY )•

C(pX)• C(pZ)•

This makes C(pX ×pZ pY )• the groupoids given by the “pullback action”. And
because the pX ×pZ pY is an e�ective epimorphism, we get an equivalence:[

X�G

]
×[Z�G ]

[
Y�G

]
'
[
X ×Z Y�G

]
�

4.1.2. Tangent and cotangent complexes of quotient stacks.

To study G -equivariant geometry is to study the quotient stacks. In particular,
we would like to have a better understanding of quasi-coherent sheaves on such
quotient and on their tangent and cotangent complexes.
A first remark we can make is that since p is an e�ective epimorphism, using
[Lur09b, Lemma 6.2.3.16.], the pullback along p is a conservative functor between
the slice categories. In particular, this implies that the functor:

p∗ : QC
([
X�G

])
→ QC(X)

is conservative.

Moreover, it turns out that p∗T
[
X�G

]
is easy to compute. However, in order to

describe it, we need to understand the notion of “tangent to a groupoid” G .
In the case of a group, the tangent is simplyG×g, with g the Lie algebra associated
to G. For a groupoid, the situation is more complicated, but we can produce a Lie
algebroid associated to G playing the same role as g. We will describe this in details
with Construction 4.2.1. For now it su�ces to say that we can construct a Lie
algebroid over X, when X satisfies Assumptions 3.2.2, encoding the infinitesimal
action of G on X .
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In fact for this section, we do not need the full Lie algebroid, but only the under-
lying anchored linear stack. Given a Segal groupoid G • we will therefore consider
the following anchored module associated to G •:

L := T
X/[X�G ]

ρ→ TX

Therefore, we can work in a more general context where X is a stack that admits
a cotangent complex.

Proposition 4.1.20. Let G • be a Segal groupoid over X . Then we have that:

p∗T[X�G ] = L [1]⊕ρ TX

where ρ : L → TX is the anchor.

Proof. By definition of L , using the fiber sequence defining the relative tangent
complex, we get:

p∗T[X�G ] ' cofib(ρ : L → TX) ' TX ⊕ρ L [1]

�

Remark 4.1.21. Unfortunately, it is more di�cult to compute the tangent complex

T[X�G ] because quasi-coherent sheaves on
[
X�G

]
are not always easy to describe.

However, if G = X ×G comes from a smooth action of an a�ne group acting on
a derived Artin stack X, then we have an equivalence:

G−QC(X) ' QC
([
X�G

])
It sends aG-equivariant sheaf F ∈ QC(X) to the limit of the cosimplicial diagram
OG• ⊗F . The pullback functor p∗ along the projection amounts to forgetting the
G-action. More details are given in the proof of Proposition 4.1.22

Proposition 4.1.22. Under the identi�cation and assumptions of Remark 4.1.21, we
have an equivalence of G-equivariant modules:

L[X�G] ' LX ⊕
ρ OX ⊗ g∗[−1]

where ρ isG-equivariant withG acting on LX by the cotangent action and on g∗[−1]⊗OX

by the coadjoint action.

Sketch of proof. When G is a�ne, we have an equivalence:

G−QC(X)→ QC(X ×G•)Cart

where the right hand side is the category of Cartesian cosimplicial presheaves (see
[TV08, Definition 1.2.12.1.]). This equivalence sends V ∈ QC(X) to the cosim-
plicial set OG• ⊗OX V .
Moreover, there is an equivalence:

lim : QC(X ×G•)Cart → QC
([
X�G

])



155

This works under the assumption that the cosimplicial diagram satisfies descent
according to [TV08, Definition 1.2.12.1] which is the case whenG acts smoothly on
X a derived Artin stacks, in the sens that X×G is a smooth groupoid (Definition
4.1.6). This is because the functor QC satisfies smooth descent (since it satisfies
fpqc descent).
Moreover, the G-module LX ⊕ρ

∗
OX ⊗ g∗[1] is equivalent to the limit of the cosim-

plicial diagram of G-equivariant modules:

lim(LX ⊕ρ
∗
OX ⊗ (g∗)⊕•)

This is sent to the Cartesian cosimplicial diagram:

lim(OG? ⊗ (LX ⊕ρ
∗
OX ⊗ (g∗)⊕•))

Since this is the limit of a bicosimplicial diagram, it is computed by the diagonal
and we get:

OG• ⊗ (LX ⊕ρ
∗
OX ⊗ (g∗)⊕•)) ' LX⊗G•

Therefore taking the limit of this diagram recovers L[X�G]. �

Corollary 4.1.23. If G if a�ne and acting smoothly on X an Artin stack, the action
of G on LX ⊕ρ

∗
OX ⊗ g∗[−1] gives an action on its associated linear stack such that:[

AX(LX ⊕ρ
∗
OX ⊗ g∗[−1])�G

]
' T ∗

[
X�G

]
Proof. We have a pullback diagram:

AX
(
p∗L[X�G]

)
X

T ∗
[
X�G

] [
X�G

]p

This is a pullback since this is the pullback of the linear stack T ∗
[
X�G

]
along p.

Therefore from Proposition 1.2.17, this pullback is the linear stack associated to
p∗L[X�G].

We can then use Proposition 4.1.20 and Lemma 4.1.16 to show that T ∗
[
X�G

]
is

a quotient of AX(LX ⊕ρ
∗
OX ⊗ g∗[−1]) by an action of G.

We need to show that this is exactly the action described in Proposition 4.1.22. We
observe that if we take the associated linear stack to the Cartesian quasi-coherent
sheaf we used in the proof of Proposition 4.1.22, we get a Cartesian simplicial stack
over X ×G•, and we have a commutative diagram:
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QC
([
X�G

])
QC(X ×G•)Cart

dSt
/[X�G]

(
sdSt/X×G•

)Cart

The horizontal arrows are equivalences with left adjoint given by the colimit func-

tor. Therefore T ∗
[
X�G

]
is both the linear stack associated with L[X�G] and the

colimit of the simplicial diagram:

T ∗(X ×G•) ' T ∗X × (g∗)×• ×G• ' AX
(
LX ⊕ρ

∗
OX ⊗ g∗[−1]

)
×G•

where these equivalence are the linear version of the equivalences explained in the
proof of Proposition 4.1.22.

Therefore T ∗
[
X�G

]
is the quotient of:

AX
(
LX ⊕ρ

∗
OX ⊗ g∗[−1]

)
by the natural action described in Proposition 4.1.22.
By e�ectivity of the quotient, this is the only action (up to equivalence) of G on

AX
(
p∗L[X�G]

)
whose quotient is T ∗

[
X�G

]
. �

4.1.3. Some symplectic structures on quotients by a group action.

In this section, we discuss some element of the symplectic G-equivariant geometry
for G a group acting smoothly on X a derived Artin stack.

Example 4.1.24. The Lie algebra g of an a�ne group G admits an adjoint and a
coadjoint action:

G× g→ g G× g∗ → g∗

We can see these actions as the natural actions on G on the tangent and cotangent
complexes of BG (see Proposition 4.1.22).

Lemma 4.1.25 ([AC21, Example 1.6]). IfG if an a�ne group, there is an equivalence:

T ∗[n+ 1]BG '
[
g∗[n]�G

]
Proof. Consider the following pullback:

g∗[n] ?

T ∗[n+ 1]BG BG
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This is a pullback because this is a pullback of linear stacks (Lemma 1.2.18) and
therefore is the linear stack associated with p∗LBG[n+ 1] given, thanks to Proposi-
tion 4.1.20, by g∗[n]. We have seen in Lemma 4.1.16 that it implies that T ∗[n+1]BG
is equivalent to a quotient of the pullback, g∗[n] byG. This quotient is the quotient
by the coadjoint action thanks to Corollary 4.1.23. �

Remark 4.1.26. T ∗[n + 1]BG, and thus
[
g∗[n]�G

]
, is canonically (n + 1)-shifted

symplectic.

Proposition 4.1.27. The natural projection g∗ →
[
g∗�G

]
is Lagrangian.

Moreover, the pullback of the symplectic form on g∗ is zero on the nose and the Lagrangian
structure can be chosen to be zero.

Proof. Since the symplectic structure described in Remark 4.1.26 is the canonical
symplectic structure on a shifted cotangent, there is a model where it is strict in
the sens that ω is equal to its underlying 2-form. The pullback of this 2-form is
given by the composition:

Tg∗ → p∗T[g
∗
�G]

ω[→ p∗L[g
∗
�G] → Lg∗

Using Proposition 4.1.20, we have that:

p∗T[g
∗
�G] ' Tg∗ ⊕ρ Og∗ ⊗ g[1] ' Og∗ ⊗ (g∗ ⊕ g[1])

Then our composition is given by:

Og∗ ⊗ g∗ → Og∗ ⊗ (g∗ ⊕ g[1])
id→ Og∗ ⊗ (g∗ ⊕ g[1])→ Og∗ ⊗ g[1]

This composition is strictly zero and is both a homotopy and strict fiber sequence,
which proves that the “zero homotopy” is a Lagrangian structure. �

Proposition 4.1.28. The zero map ?→ g∗[n] induces a Lagrangian morphism:

BG→
[
g∗[n]�G

]
Moreover, the pullback of the symplectic form onBG is zero on the nose and the Lagrangian
structure can be chosen to be the zero isotropic structure.

Proof. This is the map induced by the zero section BG → T ∗[n + 1]BG using
the equivalence of Lemma 4.1.25. From Remark 2.1.14, since the zero section on
T ∗[n + 1]BG is strictly closed, we can pick the closure terms to be zero, which
corresponds to taking a Lagrangian structure given by the 0 isotropic structure on
the zero section. �
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Proposition 4.1.29. If X is Artin and G is a�ne, acting smoothly on X , we have a
pullback:

T ∗
[
X�G

]
BG

[
T ∗X�G

] [
g∗�G

]
where G acts on T ∗X by the cotangent action1 and T ∗X → g∗ is the dual of the
in�nitesimal action.

Proof. The first step is to notice that there is an equivalence:

T ∗X ×g∗ ? ' AX
(
p∗L[X�G]

)
To see that, notice that we have a commutative diagram:

T ∗X ×g∗ ? X ?

T ∗X X × g∗ g∗

where all squares are Cartesian. The leftmost square is a pullback of linear maps
between linear stacks . Therefore, from Lemma 1.2.18, the pullback is the linear
stack associated to the fiber:

fiber (T ∗X → X × g∗)

which is exactly AX
(
p∗L[X�G]

)
.

Then taking the quotient of this equivalence by the natural action of G, the result
becomes a consequence of Proposition 4.1.19 since we have a pullback of quo-
tients by actions of G. Then we use Corollary 4.1.23 to identify the quotient of

AX
(
p∗L[X�G]

)
by G with T ∗

[
X�G

]
. �

We will see in Section 4.3.1, that the map T ∗X → g∗ is a moment map and

therefore the canonical symplectic structure on T ∗
[
X�G

]
coincides with the one

obtained from the pullback viewed as a derived intersection of Lagrangian mor-
phisms.

1For any g ∈ G, the action induces a morphism φg : X → X that induces a map T ∗X → T ∗X
by pulling-back along φg. This induces an action G × T ∗X → T ∗X . This the action induced by
the dual of the anchor of the action Lie algebroid LX → OX ⊗ g∗[−1].
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4.2. L -Equivariant Symplectic Geometry.

In this section, we adapt the results of Section 4.1 to “infinitesimal actions” of Lie
algebroids and discuss the relationship between G -equivariant and L -equivariant
geometry.

We start in Section 4.2.1 by exploring the relationship between Lie algebroids and
groupoids, describing the “derivation” of a groupoid and the “integration” of a
Lie algebroid.
Moreover, we will explain that in good situations, the infinitesimal quotients of
Lie algebroids are the formal completions of the projections to the quotients by
the groupoids integrating the Lie algebroids. This in particular explains the ter-
minology “infinitesimal quotient” that we use.

Then we will see in Section 4.2.2 the definitions and basic properties ofL -equivariant
geometry. This is very similar to Section 4.1.1 and in particular, L -equivariant
geometry is the geometry of the infinitesimal quotients by Lie algebroids and their
infinitesimal actions.

Then Section 4.2.3 deals with the description of the tangent and cotangent com-
plexes of infinitesimal quotients.

4.2.1. Derivation and integration of Lie algebroids.

In this section, we discuss the procedure of “derivation” that produces a Lie al-
gebroid out of a Segal groupoid. We will then show that Lie algebroids always
“integrates” to a formal Segal groupoid. This is the analogue of the Lie di�erenti-
ation and integration between Lie groups and Lie algebras.
We then proceed to show that in good situations, the infinitesimal quotient of a
Lie algebroid can be identified with the formal thickening given by the formal
completion of the projection to the quotient stack associated to a Segal groupoid
integrating the Lie algebroid: [

X�L

]
'

̂[X�G

]
X

We start with the description of the derivation procedure. Take G • a Segal groupoid
over X = Spec(A) satisfying Assumptions 3.2.2. We would like to define the Lie
algebroid associated to G • as the relative tangent:

L := T
X/[X�G ]

together with the Lie algebroid structure obtained from Proposition 3.1.7. How-
ever, to use this proposition, we need the quotient stack to be formal, which is not
quite general enough for the integration procedure.
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Indeed, typical examples of groupoids whose quotient stacks are formal are smooth
groupoids1 (Definition 4.1.6), and it is well known that Lie algebroids do not always
integrate to smooth Segal groupoids (see [CF03]). In general, it does not even seem
true that Lie algebroids integrate to Segal groupoids whose quotients are formal,
but we will see that they integrate to formal Segal groupoids (Definition 4.1.6).
Therefore we are interested in Segal groupoids that admit a formal completion
(Construction 4.1.10) in particular, Segal groupoids such that G n is formal for all
n ≥ 0.

Furthermore, the correspondences between Lie algebroids, formal moduli prob-
lems and groupoids in much better behaved in pre-stacks. Since we still want to
obtain stacks and Segal groupoids in stacks, we need to consider Segal groupoids
in stack that are obtained as the stackification of a Segal groupoid in pre-stacks
(the Segal groupoid in pre-stacks being some additional data).

In what follows, the bases, X and Y , are always a�ne. They will interchangeably
be viewed as stacks or pre-stacks and we will not make any di�erence in notation
between when they are seen as stacks or pre-stacks.

Construction 4.2.1. Take G • a Segal groupoid over X = Spec(A) satisfying
Assumptions 3.2.2. We assume that G • is given by the stackification of a groupoid
G •pre in formal pre-stacks2. Then we can construct a Lie algebroid as follows:

(1) Take the formal completion of the groupoid G •pre, denoted Ĝ •pre (Construc-
tion 4.1.10).

(2) Use [GR20, Theorem 2.3.2] and the equivalence:

BX : fpGpd
∼→ Thickpre(X)

where fpGpd denotes the category of formal Segal groupoids over X in
the category of pre-stacks. We get BX(Ĝ •pre) ∈ Thickpre(X), which is
equivalent to the data of a formal moduli problem under X thanks to
Theorem 1.3.22.

(3) We take the associated Lie algebroid using the equivalence of Theorem
3.2.1:

LG := T̃
X/BX(Ĝ •pre)

This construction is clearly natural with respect to morphisms of groupoids G •pre →
(G ′)•pre over a fixed base. Moreover we have:

BX(Ĝ •pre) '
[
X�LG

]
pre

1The quotient stack of a smooth Segal groupoid is Artin and therefore formal thanks to Example
1.3.5.

2In particular if G • is already formal, then the assumption is satisfied with G •pre = j(G •) (viewed
as a pre-stack).
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Remark 4.2.2. This construction depends on the choice of G •pre. When G • is
formal, we will by default consider that G •pre = j(G •) where j : dSt→ dpSt is the
inclusion of stacks in pre-stacks. Moreover since j preserves formal completions
(Proposition 1.3.24), we have that:

Ĝ •pre ' j(Ĝ •)

Remark 4.2.3. This is a priori di�erent from the classical di�erentiation of a
groupoid (see for Example [Cal21, Section 1.2.3]). Classically, the Lie algebroid is
obtained as a Lie algebroid structure on:

LG := e∗TsG /X

where TsG /X denotes the relative tangent along the source map s with anchor given
by t∗. We will see in Lemma 4.2.4 that there is an equivalence of anchored linear
stacks:

e∗TsG 1/X ' TX/[X�G ]

We do not know whether it is an equivalence of Lie algebroids whenever the clas-
sical construction makes sense or not (i.e. if the Lie brackets coincide).

Lemma 4.2.4. Let G • be any Segal groupoid over X with X any derived stack such that
both G 1 and X admit a cotangent complex. Then we have an equivalence of anchored
A-modules:

e∗TsG 1/X T
X/[X�G ]

TX

∼

ρ

where ρ denotes the following composition:

e∗TsG 1/X → e∗TG 1
t∗→ TX

Proof. Consider the pullback square:

G 1 X

X
[
X�G

]
t

s p

p

Since this is a pullback, we have an equivalence in QC(G ):

TsG /X ' t∗T
X/[X�G ]
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This equivalence is part of the commutative diagram:

TsG 1/X t∗T
X/[X�G ]

TG 1 t∗TX

∼

t∗

We then only have to pullback this last diagram along the unit e to show the
result. �

Proposition 4.2.5. Let G • be a Segal groupoid over X , with X a stack that satis�es
Assumptions 3.2.2. Assume that each G n is formal. Then there is an equivalence of A-
modules:

LG := T
X/BX(j(Ĝ •)) ' TX/[X�G ]

Proof. In [GR20, Section 2.4], it is shown that there is a pullback diagram in
dpStafp:

j(Ĝ 1) X

X BX

(
j(Ĝ •)

)
This implies that:

T
X/BX(j(Ĝ •)) ' e∗Ts

j(Ĝ 1)/X
' e∗Ts

Ĝ 1/X

Note that since Ĝ • and X are stack, taking their tangents in stacks or pre-stack is
the same. Moreover, from Lemma 1.3.20, the map Ĝ • → G • is formally étale, and
therefore we have:

e∗Ts
Ĝ 1/X

' e∗TsG 1/X

Finally, we can conclude using Lemma 4.2.4. �

If fact the assumption that for each n ≥ 0, G n is formal has very nice consequences
on the properties of the associated Lie algebroid and its quotient.

Proposition 4.2.6. Take G • a Segal groupoid over X with X satisfying Assumptions
3.2.2 and such that for each n ≥ 0, G n is a formal stack. Then we have an equivalence:[

X�LG

]
pre

:= BX

(
j(Ĝ )

)
' j

(
̂[X�G

]
X

)
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Proof. We have an equivalence of formal groupoids in pre-stacks:

X ×
j

(
̂[X�G ]

X

) X 'j
(
X × ̂[X�G ]

X

X

)

'j

(
X ×[X�G ]×[X�G ]

DR

XDR
X

)

'j
((

X ×[X�G ] X
)
×XDR×[X�G ]

DR

XDR
XDR

)
'j
(
G 1 ×G 1

DR
XDR

)
'j(Ĝ 1)

This equivalence extends to the n-simplices:

X ×
j

(
̂[X�G ]

X

) · · · ×
j

(
̂[X�G ]

X

) X︸ ︷︷ ︸
n−times

' j(Ĝ n)

Therefore, since BX is the inverse of the functor sending f : X → Y to C(f)•, we
get an equivalence:

j

(
̂[X�G

]
X

)
' BX(j(Ĝ •))

�

Corollary 4.2.7. Take G • a Segal groupoid overX withX satisfying Assumptions 3.2.2
and such that for each n ≥ 0, G n is a formal stack. Then we have the following:

(1) We have an equivalence: [
X�LG

]
'

̂[X�G

]
X

(2) We have equivalences of A-modules:

T
X/[X�G ] ' TX/[X�LG

] ' LG

Moreover, these equivalences give these modules the Lie algebroid structure com-
ing from the one on LG .

Proof.
(1) By definition we have:

BX

(
j(Ĝ •)

)
'
[
X�LG

]
pre

Using Proposition 4.2.6 and the stackification functor, we get:[
X�LG

]
:= Stf

([
X�LG

]
pre

)
' Stf

(
j

(
̂[X�G

]
X

))
'

̂[X�G

]
X
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(2) We have the following equivalences:

LG ' TX/[X�LG
]
pre

' TX/BX(j(Ĝ )) ' TX/j
(
̂[X�G ]

X

) ' T
X/

̂[X�G ]
X

' T
X/[X�LG

]

Moreover since the map
̂[X�G

]
X
→
[
X�G

]
is formally étale, we get:

T
X/[X�G ] ' TX/ ̂[X�G ]

X

' T
X/[X�LG

]

�

Remark 4.2.8. This shows that if G • a Segal groupoid over X with X satisfying
Assumptions 3.2.2 and G • is a formal stack, then the formal completion of a
quotient stack is equivalent to the infinitesimal quotient of X by the associated
Lie algebroid. This explains why we call them “infinitesimal quotients”.

So far, picking G •pre in Construction 4.2.1 is not useful if we restrict to Segal
groupoids such that G • is formal, which covers a rather large class of examples.
However, when we want to integrate a Lie algebroid, it is unclear whether we will
get a Segal groupoid of that sort. We will see that the integration procedure actu-
ally produces a Segal groupoid in pre-stacks G •pre.

We now turn toward the integration procedure.

De�nition 4.2.9. Given a Lie algebroid L overX withX satisfying Assumptions
3.2.2. We say that a Segal groupoid G • over X integrates L if L is equivalent (as
Lie algebroids) to LG , the Lie algebroid associated to G •.

Remark 4.2.10. Note that it is hopeless to have an integration procedure such that
for all Segal groupoid G • over X, G • is the integration of its associated Lie alge-
broid L since this property fails even for groups and Lie algebras. However, we
can hope in good situations to recover the formal completion, Ĝ •, of the groupoid
we started with.

We are now going to prove a version of Lie’s third theorem, stating that every Lie
algebroid ( over a base satisfying some assumptions) admits a formal integration.

Proposition 4.2.11. Take L a Lie algebroid over X with X satisfying Assumptions
3.2.2. Consider the in�nitesimal projection:

h : X →
[
X�L

]
We de�ne the Segal groupoid:

G •L := C(h)• ' X ×[X�L ] · · · ×[X�L ] X︸ ︷︷ ︸
•−times
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Then L is the Lie algebroid associated to G •L , obtained from Construction 4.2.1 using the
Segal groupoid in pre-stacks given by:

(GL )•pre := C(hpre)
• ' X ×[X�L ]

pre

· · · ×[X�L ]
pre

X︸ ︷︷ ︸
•−times

with
hpre : X →

[
X�L

]
pre

Proof. First, we want ot show that (GL )•pre is a formal Segal groupoid whose stacki-
fication in G •L . Clearly, X and (GL )•pre are formal stacks. Moreover, the projection:

p : X →
[
X�L

]
pre

is a nil-equivalence and this implies that all the structure morphisms of the Segal
groupoid are nil-equivalences, making G •L a formal Segal groupoid. Moreover
since the stackification functor preserves pullbacks, we have:

Stf((GL )•pre) ' G •L

We clearly have an equivalence:

BX((GL )•pre) '
[
X�L

]
pre

since BX is the inverse of the functor sending a formal thickening f : X → Y to
the formal Segal groupoid given by C(f). Then under Assumptions 3.2.2, the Lie

algebroid associated to
[
X�L

]
is L itself (using the Segal groupoid in pre-stack

(GL )•pre). �

This proves that any Lie algebroid over X satisfying Assumptions 3.2.2 can be
integrated to a formal Segal groupoid (in our case G •L ). Moreover this defines a
functor (over a fixed base) that sends L to G •L .

Remark 4.2.12. The Segal groupoid we produce, G •L , is not smooth and it is
well known that Lie algebroids do not always integrate to a smooth groupoids (see
[CF03]). In general, GL is instead the stackification of a formal groupoid in formal
pre-stacks. It is worth noting that the natural projections:

X →
[
X�GL

]
X →

[
X�(GL )pre

]
are nil-equivalences. However, they are not formal thickenings as the quotients
need not be formal (pre)-stacks.

One of the main drawback in having to use these pre-stacks is that the relative
tangent of the infinitesimal quotient stack does not recover the Lie algebroid1.

1This is essentially because the stackification functor does not preserve the tangent complexes
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However, we have seen earlier that if L is a Lie algebroid associated with a good
class of Segal groupoid, then the relative tangent of the infinitesimal quotient stack
is equivalent to L . This motivates the following definition:

De�nition 4.2.13. A Lie algebroids L over X an a�ne stack satisfying Assump-
tions 3.2.2. Then L is said to integrate well if there exists a Segal groupoid G •

such that for each n ≥ 0, G n is a formal stack and such that G • integrates L , in
other words, there is an equivalence of Lie algebroids:

L ' LG

Such a G • will be called a good integration of L . If G • is smooth, it is called a
smooth integration of L .

Lemma 4.2.14. LetL be a Lie algebroid overX an a�ne stack satisfying Assumptions
3.2.2 that integrates well. Then there is an equivalence:

T
X/[X�L ] ' L

Proof. Pick G • a good integration of L . Then thanks to Corollary 4.2.7 and the
fact that L ' LG , we have the equivalences:

T
X/[X�L ] ' TX/[X�LG

] ' LG ' L

�

Proposition 4.2.15. Let G • be a Segal groupoid over X an a�ne stack satisfying As-
sumptions 3.2.2. We assume that G • = Stf

(
G •pre

)
and consider LG the Lie algebroid ob-

tained from Construction 4.2.1 using G •pre. Then there is an equivalence of Segal groupoids:

Stf
(
Ĝ •pre

)
' G •LG

Proof. We have by definition that:

BX(Ĝ •pre) '
[
X�LG

]
pre

Therefore we get:

Ĝ •pre ' C

(
X →

[
X�LG

]
pre

)
:= (GLG

)•pre

Using the stackification functor, we get:

Stf
(
Ĝ •pre

)
' G •LG

�

Remark 4.2.16. In particular, if for each n ≥ 0, G n is a formal stack, then G •pre =
j(G •) and since j commutes with the formal completion we get:

Ĝ • ' G •LG
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Therefore the integration of the groupoid associated to G • is not G • itself, but
rather its formal completion.

We now turn to the behavior of the di�erentiation and integration constructions
with respect to actions of Lie algebroids and Segal groupoids. First we are going
to look at actions on f : Y → X, a map of stacks satisfying Assumptions 3.2.2.

This di�erentiation procedure behaves well with respect to actions in the sens that
any action on f : Y → X of a Segal groupoid G • such that for each n ≥ 0, G n is
a formal stack, induces an infinitesimal action of its associated Lie algebroid LG

on f .

Proposition 4.2.17. Let G • be a Segal groupoid over X such that G • is a formal stack
and for each n ≥ 0, G n is a formal stack. Then consider an action of G • on f : Y → X
and suppose that both X and Y satisfy Assumptions 3.2.2. Then this induces an action of
LG on f , and this de�nes a functor:

ActG → ActLG

Proof. Consider the following commutative diagram:

Y X

̂[Y�G

]
Y

[
X�LG

]
[
Y�G

] [
X�G

]
Where

[
X�LG

]
'

̂[X�G

]
X

thanks to Corollary 4.2.7. The outer square is a

pullback as a consequence of Lemma 4.1.16.
The lower square is a pullback because of the equivalences:

̂[Y�G

]
Y
'
[
Y�G

]
×[Y�G ]

DR

YDR

'
[
Y�G

]
×[Y�G ]

DR

[
Y�G

]
DR
×[X�G ]

DR

XDR

'
[
Y�G

]
×[X�G ]

DR

XDR

'
[
Y�G

]
×[X�G ]

[
X�G

]
×[X�G ]

DR

XDR

'
[
Y�G

]
×[X�G ]

[
X�L

]
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Therefore the upper square is also a pullback and the map:

Y →
̂[Y�G

]
Y

is a formal thickening.
Since f ∗G • = G • ×s•X Y also satisfies that each f ∗G n is formal, and its quotient

stack is
[
Y�G

]
, then

̂[Y�G

]
Y
is equivalent to the quotient of Y by the Lie algebroid

associated to f ∗G • (again thanks to Corollary 4.2.7).
Looking at the relative tangent of these pullbacks and using Corollary 4.2.7, we
get the equivalences:

T
Y/[Y�G ] ' TY/ ̂[Y�G ]

Y

∼→ f ∗T
Y/[X�G ] ' f ∗L

This gives f ∗L the structure of a Lie algebroid.

We want to find a morphism of Lie algebroids f ∗L → L . To do that, notice that
we have a pullback diagram (because j preserves pullbacks):

Y X

j

(
̂[Y�G

]
Y

)
j
([
X�LG

])
From Proposition 4.2.6 we have the equivalences:

BX

(
j(f̂ ∗G •)

)
' j

(
̂[Y�G

]
Y

)
BX

(
j(Ĝ •)

)
' j

(
̂[X�G

]
X

)
Therefore these are all formal pre-stacks and we can use Proposition 3.2.33 which
shows that:

T
Y/j

(
̂[Y�G ]

Y

) → T
X/j

(
̂[X�G ]

X

)
is a morphism of Lie algebroids.
Then we get a morphism of Lie algebroid:

f ∗L ' T
Y/

̂[Y�G ]
Y

' T
Y/j

(
̂[Y�G ]

Y

) → T
X/j

(
̂[X�G ]

X

) ' T
X/

̂[X�G ]
X

' L

�

Proposition 4.2.18. Let f : Y → X be a morphism of a�ne stacks satisfying Assump-
tions 3.2.2. Let L be a Lie algebroid on X with an action on f . Then this induces an
action of the formal groupoid integrating L on f de�ning a functor:

ActL → ActGL
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Proof. Given an action ofL on f : Y → X, we first need to prove this statement for
the pre-stacks. We first show that the following commutative diagram in pre-stacks
is a pullback1:

Y X

[
Y�L

]
pre

[
X�L

]
pre

Denote by P the pullback, and φ : Y → P the natural morphism. P and Y are
formal and φ is a nil-equivalence because:

PDR '
([
Y�L

]
pre

)
DR

∼← YDR

Moreover we have a fiber sequence:

TY/P → T
Y/[Y�L ]

pre

→ φ∗T
P/[Y�L ]

pre

' f ∗T
X/[X�L ]

pre

The second morphism is clearly an equivalence as both complexes are equivalent
to φ∗L and therefore φ is formally étale. This proves that φ is an equivalence
thanks to Lemma 1.3.21.

Now we have the following equivalences:

(Gf∗L )1
pre 'Y ×[Y�L ]

pre

Y

'X ×[X�L ]
pre

[
Y�L

]
pre
×[Y�L ]

pre

Y

'X ×[X�L ]
pre

Y

'
(
X ×[X�L ]

pre

X

)
×X Y

'(GL )1
pre ×sX Y

'f ∗(GL )1
pre

Moreover, by induction, we get that:

(Gf∗L )npre '(Gf∗L )n−1
pre ×Y (Gf∗L )1

pre

'f ∗ (GL )n−1
pre ×Y (Gf∗L )1

pre

'f ∗ (GL )n−1
pre ×Y Y ×[Y�L ]

pre

Y

'f ∗ (GL )n−1
pre ×Y f

∗(GL )1
pre

'f ∗ (GL )npre

1We will show in Proposition 4.2.25 that a map of Lie algebroid induces such a commutative
diagram.
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Therefore the Segal groupoid integrating f ∗L is equivalent to a Segal groupoid
structure on (GL )•pre ×s•X Y . Moreover, since there is a natural morphism of
groupoids (Gf∗L )•pre → (GL )•pre over f , this defines an action of (GL )•pre on f .
Then the statement is the stackification of this construction. �

The main issue we will have is that all of this only works if X and Y satisfy
Assumptions 3.2.2 which is too strict for most examples we will be interested in
(e.g. the derived critical locus, zero loci of moment maps etc...).
We need to come up with a weakened notion of infinitesimal quotient. We actually
only need this for infinitesimal quotients of actions on f : Y → X whereX satisfies
Assumptions 3.2.2 and Y is a�ne of almost finite presentation.

De�nition 4.2.19. Let f : Y → X be a morphism of stack with X satisfying As-
sumptions 3.2.2 and Y a�ne of almost finite presentation. Take L a Lie algebroid
over X . Then a weak in�nitesimal quotient of Y by L is a derived stack, denoted

by
˜[Y�L

]
, that fits in the pullback diagram:

Y X

˜[Y�L

] [
X�L

]

Note that the existence of such
˜[Y�L

]
is not guarantied, nor is its uniqueness.

Remark 4.2.20. This notion does not really use an action of L . Therefore, even
if L does not act on f in the sens of Definition 3.3.12, this defines a notion of
weak infinitesimal quotient.
Note that this does not even depend on the Lie algebroid structure on X but only
on its infinitesimal projection:

h : X →
[
X�L

]
Remark 4.2.21. Since this construction only depends on the infinitesimal quo-
tient projection, we can also define a weak infinitesimal quotient compatible with a

weak infinitesimal quotient
˜[Y�L

]
along a morphism Y ′ → Y as a derived stack
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˜[Y ′�L

]
fitting in a pullback diagram:

Y ′ Y

˜[Y ′�L

] ˜[Y�L

]
In particular it is also automatically a weak infinitesimal quotient of L along the
composition:

Y ′ → Y → X

One of the main di�culty when dealing with (weak) infinitesimal quotients of Lie
algebroids is that we do not know whether there is an equivalence:

T
X/[X�L ] ' L

However, we have seen in Lemma 4.2.14 that if L integrates well (in the sens of
Definition 4.2.13), then the relative tangent recovers L .

Corollary 4.2.22. Let
˜[Y�L

]
be a weak in�nitesimal quotient of f : Y → X as

before. Assume that L integrates well. Then using the pullback de�ning
˜[Y�L

]
and

Lemma 4.2.14, we get an equivalence in QC(Y ):

T
Y/

˜[Y�L ]
' f ∗T

X/[X�L ] ' f ∗L

This Corollary does not give a Lie algebroids structure on f ∗L since Y does not
need to satisfy Assumptions 3.2.2. Therefore we cannot recover an action of L
as in Proposition 4.2.17.
Clearly, if Y satisfy Assumptions 3.2.2 and L has an action on Y → X, then[
Y�L

]
is a valid choice of weak infinitesimal quotient (but not necessarily the

only one even up to equivalence).

Example 4.2.23. The Lie algebroid associated with a smooth action of an a�ne
group G on X (with X satisfying Assumptions 3.2.2) is exactly the action Lie alge-
broid of Example 3.1.8.

To see that, observe that G is naturally a groupoid over the point ? with Lie
algebroid given by the Lie algebra g associated to G. Then a smooth action of
G on X is exactly a smooth action as in Proposition 4.2.17. Therefore the Lie
algebroid associated with the action groupoid G × X is f ∗g = X × g. Since the
morphism X × g→ g must be a morphism of Lie algebroids, this implies that the
Lie bracket on X × g is exactly the Lie bracket described in Example 3.1.8.
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4.2.2. L -equivariant maps and (weak) in�nitesimal quotients.

This section is about having an analogue to Section 4.1.1 for infinitesimal action.
We start by defining the notion of L -equivariant map by analogy to Definition
4.1.12.

De�nition 4.2.24. Let f : X → Y be a morphism of derived stacks. Assume
that L is a Lie algebroid over X, a stack satisfying Assumptions 3.2.2. Then the
structure of an invariant map with respect to L on f is a factorization through the
“projection”1:

X Y

[
X�L

]
f

h
[f ]

If L ′ is a Lie algebroid over Y (with Y also satisfying Assumptions 3.2.2), then
we say that [f ] is the structure of an equivariant map with respect to L and L ′ on f
if the map:

h ◦ f : X →
[
Y�L ′

]
is L -equivariant in the sens given before. In other words, this is the data of a
morphism [f ] fitting in the commutative diagram:

X Y

[
X�L

] [
Y�L ′

]
f

[f ]

From now on we will say that f is equivariant when referring to the data of the
map [f ].

These notion of invariance and equivariance also make sens in pre-stacks by re-
placing all the infinitesimal quotient by the pre-stacks they are coming from.

In Section 4.1.1, any morphism between quotient stacks would come from a mor-
phism between Segal groupoids thanks to Lemma 4.1.11. The infinitesimal pro-
jections are no longer e�ective epimorphisms in general but we still have the fol-
lowing:

1We still call the natural formal thickening:

h : X →
[
X�L

]
a “projection” by analogy with the groupoid case. But it needs not be an e�ective epimorphism.
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Proposition 4.2.25. Take map f : Y → X of �nitely presented a�ne stacks satisfying
Assumptions 3.2.2 and L ′ and L , Lie algebroids over Y and X respectively. Then we
have that:

– A morphism of Lie algebroids L ′ → L over f : Y → X induces an equivariant
map [f ]. Moreover, it is obtained as the stacki�cation of an equivariant map in
pre-stacks:

[f ]pre :
[
Y�L ′

]
pre
→
[
X�L

]
pre

– Given an equivariant map [f ], if it comes from the stacki�cation of an equivariant
map in pre-stacks [f ]pre, then there is a map, L

′ → L , of Lie algebroids over f .
– Given an equivariant map [f ], if L ′ and L integrate well in the sens of De�ni-
tion 4.2.13, then there is a morphism of Lie algebroids L ′ → L over f .

Proof. If we have a morphism of Lie algebroids L ′ → L over f , then by definition
it factors as:

L ′ → f !L → L

From Definition 3.2.30 we have a commutative diagram:

Y X

[
Y�f !L

]
pre
'

̂([
X�L

]
pre

)
Y

[
X�L

]
pre

Moreover the naturality of the infinitesimal quotient construction over the same
base gives a commutative diagram:

Y

[
Y�L ′

]
pre

[
Y�f !L

]
pre

Therefore we get a commutative diagram:

Y X

[
Y�L ′

]
pre

[
X�L

]
pre

which induces an equivariant map structure after stackification.
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Conversely, given an equivariant map in pre-stack:

Y X

[
Y�L ′

]
pre

[
X�L

]
pre

[f ]

We have a factorization of [f ] fitting in the commutative diagram:

Y X

[
Y�L ′

]
pre

[
Y�f !L

]
pre
'

̂([
X�L

]
pre

)
Y

[
X�L

]
pre

We have this factorization because the formal completion is equivalent to the fiber
product:[

X�L

]
pre
×(

[X�L ]
pre

)
DR

YDR '
[
X�L

]
pre
×(

[X�L ]
pre

)
DR

([
Y�L ′

]
pre

)
DR

and therefore receives a natural morphism from
[
Y�L ′

]
pre
.

The square is induced by the natural morphism of Lie algebroids f !L → L over
f and the commutative triangle on the left induces (by naturality over a fixed base)
a morphism of Lie algebroids L ′ → f !L , which is exactly the data of a morphism
of Lie algebroids L ′ → L over f .

For the last statement, observe that under the assumptions on L ′ and L , we can
take:

[f ]pre := j([f ]) :
[
Y�L ′

]
pre
' j

([
Y�L ′

])
→
[
X�L

]
pre
' j

([
X�L

])
and use the previous result. �

Proposition 4.2.26. Let X and Y be stacks satisfying Assumptions 3.2.2 and G • a
Segal groupoid over X that is a good integration of a Lie algebroid L . Then we have an
equivalence of Lie algebroids:

f !LG ' Lf !G

Proof. It is enough to show that the associated formal groupoids in pre-stacks are
equivalent. The formal groupoid in pre-stacks associated to f !LG is the formal
completion:

Y ×[Y�f !LG

]
pre

Y ' Y × ̂(
[X�LG

]
pre

)
Y

Y



175

Or the other side, the formal groupoid associated to Lf !G is the groupoid given
by:

̂(
Y ×[X�G ] Y

)
' Y × ̂[X�G ]

Y

Y

We can then conclude by using the equivalences:

̂(
Y ×[X�G ]

pre

Y

)
'
[
X�G

]
×[X�G ]

DR

XDR ×XDR
YDR

'
[
X�LG

]
pre
×XDR

YDR

'
[
X�LG

]
pre
×(

[X�LG
]
pre

)
DR

YDR

'
̂([

X�LG

]
pre

)
Y

�

It turns out that pullbacks of an infinitesimal quotient projection are themselves
infinitesimal quotient given by an infinitesimal action (by analogy with Lemma
4.1.16).

Lemma 4.2.27. Let X be a stack satisfying Assumptions 3.2.2, Z a formal stack and
L a Lie algebroid on X that integrates well. Consider the following pullback diagram:

Y X

Z
[
X�L

]
Assume that Y also satis�es Assumptions 3.2.2. Then we have the following:

(1) Y → Z is a formal thickening and therefore is equivalent to the data of a formal
moduli problem F .

(2) There is an equivalence in QC(Y ):

TY/Z
∼→ f ∗L

giving f ∗L a structure of Lie algebroid.
(3) There is an in�nitesimal action of L on Y → X such that:

Z '
[
Y�L

]
Proof.

(1) Applying (−)DR (which is a right adjoint) we have that the morphism:

YDR → ZDR
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is the pullback morphism of the equivalence:

XDR →
[
X�L

]
DR

Therefore Y → Z is a formal thickening (since both Y and Z are for-
mal). Since Y satisfies Assumptions 3.2.2, Theorem 1.3.22 implies that Z
is equivalent to the extension of a formal moduli problem under Y , F .

(2) The relative cotangent of these formal thickenings are equivalent (because
of the pullback) and thanks to Lemma 4.2.14 (with our assumption that L
integrates well), we have:

T
X/[X�L ] ' L

Therefore f ∗L has a structure of Lie algebroid given by the Lie algebroid
structure on the relative cotangent TY/F . Here we use the equivalences:

TY/F ' TY/Fpre
' TY/j(Z) ' TY/Z ' f ∗T

X/[X�L ] ' f ∗L

using Lemma 1.3.27, Proposition 1.3.14 and Lemma 4.2.14.
(3) Proposition 3.2.33 gives us a morphism of Lie algebroids:

f ∗L ' TY/Z ' TY/j(Z) → T
X/j([X�L ]) ' TX/[X�L ] ' L

This is exactly the data of an action of L on Y → X such that there is
an equivalence of Lie algebroids:

f ∗L ' T̃Y/F
Therefore there is an equivalence:

MCf∗L ' F

This implies that f ∗L is a Lie algebroid on Y whose infinitesimal quo-
tient is:

Z ' F '
[
Y�L

]
�

Remark 4.2.28. If we only assume that Y is a�ne and almost finitely presented,
and if Z can be any derived stack, then Z is by definition a weak infinitesimal quo-
tient of Y by L . This makes the “weak analogue” of Lemma 4.2.27 tautological.
More precisely we get:

– The morphism Y → Z is a nil-equivalence.
– If L integrates well then from Lemma 4.2.14, there is an equivalence:

TY/Z
∼→ f ∗L

– For any L (even if it does not integrate well), Z is a weak infinitesimal
quotient along:

Z :=
˜[Y�L

]
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Lemma 4.2.29. Take a morphism f : Y → X of a�ne stacks satisfying Assumptions
3.2.2, and an action of a Lie algebroids L on f . Then we have a pullback diagram:

Y X

[
Y�L

] [
X�L

]
Proof. It is enough to show that we have a pullback diagram:

Y X

[
Y�L

]
pre

[
X�L

]
pre

which is shown in the proof of Proposition 4.2.18. �

We will now turn to pullbacks of infinitesimal quotient stacks of Lie algebroids.
First recall that any action of the Lie algebroid L over f : X → Y induces a map
between their infinitesimal quotient stacks thanks to Proposition 4.2.25:[

X�L

]
→
[
Y�L

]
We want show by analogy to Proposition 4.1.19 that the fiber product of the infin-
itesimal quotient stacks is the infinitesimal quotient stack associated to the fiber
product of the Lie algebroids.

In practice, this would requires us to assume that X, Y , Z and X ×Z Y all sat-
isfy Assumptions 3.2.2 which is very restrictive1. Therefore we will only make an
analogue for weak infinitesimal quotients.

Proposition 4.2.30. Let L be a Lie algebroid over Z satisfying Assumptions 3.2.2.
Consider Y and X a�ne stack of almost �nite presentation together with some maps:

X → Z Y → Z

Take
˜[X�L

]
and

˜[Y�L

]
to weak in�nitesimal quotient along those morphisms. Then

we have that:
˜[

X ×Z Y�L

]
:=

˜[X�L

]
×[Z�L ]

˜[Y�L

]
is a weak in�nitesimal quotient of along both X ×Z Y → X and X ×Z Y → Y (in
the sens given by Remark 4.2.21) inducing the same weak in�nitesimal quotient structure
along the maps X ×Z Y → Z .

1In particular the fiber product of stacks satisfying Assumptions 3.2.2 does not necessarily satisfy
Assumptions 3.2.2.
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Proof. Consider the following commutative cube:

X ×Z Y X

˜[X�L

]
×[Z�L ]

˜[Y�L

] ˜[X�L

]

Y Z

˜[Y�L

] [
Z�L

]
We only need to show that all the square involving the dashed arrow are pullback.
But this is automatic since all the other squares are pullback squares by definition
of weak infinitesimal quotients. �

Remark 4.2.31. In the previous proposition we can replace Z together with its Lie
algebroid by Z ′ a�ne of almost finite presentation together with a weak infinitesi-
mal quotient:

Z ′ →
˜[Z ′�L

]
Remark 4.2.32. If we assume that X, Y , Z and X ×Z Y all satisfy Assumptions
3.2.2, then we can replace the weak infinitesimal quotients by the actual infinites-
imal quotients and by actual actions. In particular we can show that there is an
induced action on the pullback such that:[

X ×Z Y�L

]
'
[
X�L

]
×[Z�L ]

[
Y�L

]
4.2.3. Tangent and cotangent of in�nitesimal quotient stacks.

We already know from Lemma 3.2.8 and Corollary 1.3.28 that for L a Lie alge-
broid over X satisfying Assumptions 3.2.2, we have an equivalence of Lie alge-
broids:

T
X/[X�L ]

pre

' L

From this we get, similarly to Proposition 4.1.20, an equivalence:

p∗T[X�L ]
pre

' TX ⊕ρ L [1]

Moreover, if L integrates well (in the sens of Definition 4.2.13) then we also have:

p∗T[X�L ] ' TX ⊕
ρ L [1]
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We can, by analogy to to Corollary 4.1.23, that under some good conditions,

T ∗
[
X�L

]
is a weak infinitesimal quotient of AX

(
p∗L[X�L ]

)
.

Lemma 4.2.33. LetL be a Lie algebroid over X satisfying Assumptions 3.2.2 and such
that L integrates well. Then there is a pullback:

AX(LA ⊕ρ L ∨[−1]) T ∗
[
X�L

]

X
[
X�L

]
h

Proof. First, this is the pullback of a linear stack, therefore this pullback is the

linear stack AX
(
p∗L[X�L ]

)
. Under Assumptions 3.2.2, we have seen that:

p∗L[X�L ] ' LX ⊕
ρ L ∨[−1]

�

Proposition 4.2.34. Assume that LA is non-negatively graded and almost �nitely pre-
sented, and that L is almost �nitely presented, concentrated in non-positive degrees and

integrates well. Then T ∗
[
X�L

]
is a weak in�nitesimal quotient ofAX(LA⊕ρL ∨[−1]).

Proof. The assumptions ensure that AX(LA ⊕ρ L ∨[−1]) is a�ne of almost finite

presentation. Then Proposition 4.2.33 shows that T ∗
[
X�L

]
is a weak infinitesimal

quotient of AX(LA ⊕ρ L ∨[−1]) according to Definition 4.2.19. �

4.3. Shifted Moment Maps and Derived Symplectic Reduction.

In this section, we develop the notion of moment maps for Lie algebroids and Segal
groupoids. The main motivation is to define symplectic reduction in these contexts.

We start in Section 4.3.1 by recalling the classical notion of moment map and
symplectic reduction for group actions in the context of derived algebraic geom-
etry as developed in [AC21]. We recall the main important properties of these
objects, notably the fact that they behave well under “good Lagrangian intersec-
tions” (Theorem 4.3.10).

Then in Section 4.3.2 we generalize these notion and define the notion of in�ni-
tesimal moment map for the infinitesimal action of a Lie algebroid. We show that
this definition naturally contains the notion of in�nitesimal symplectic reduction and
that it is also well behave with respect to “good Lagrangian intersections”.
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Finally, we will explain in Section 4.3.3 that the notion of infinitesimal moment
maps and infinitesimal symplectic reduction transfers directly to a notion of mo-
ment map and symplectic reduction for Segal groupoids by mimicking the defi-
nitions of Section 4.3.2. Therefore moment maps and symplectic reductions also
have the same properties.
The context of Segal groupoids is the most general and in particular, it recovers
the case of moment maps for group actions (see Example 4.3.24) and the example
of the dual of the anchor of the associated Lie algebroid (Proposition 4.3.25).
Moreover, we will see with Theorem 4.3.30 that in fact, the infinitesimal moment
maps and infinitesimal symplectic reductions are in fact obtained via Construc-
tion 4.2.1, Proposition 4.2.17 and formal completions, from moment maps and
symplectic reductions of Segal groupoids. This follows the ideas of Section 4.2.1
making all the constructions for Lie algebroids the “infinitesimal versions” of the
corresponding constructions for Segal groupoids.

4.3.1. For groups.

Let X be a smooth symplectic manifold and G a smooth action of a Lie group on
X acting by symplectomorphisms. Suppose further that the action is Hamiltonian1

so that there exists a moment map:

µ : X → g∗

This map can be shown to satisfy the following properties:

(1) µ is G-equivariant.
(2) µ is Hamiltonian in the sens that for all v ∈ g we have a vector field−→v ∈ TX

the image of v under the “infinitesimal action” g→ TX . Then the moment
condition require −→v to be Hamiltonian2:

ddR(〈µ, v〉) = ι−→v ωX

We will want to rephrase these conditions. The first condition is unchanged as
equivariant maps make sense in derived geometry. For the second condition,
the following proposition explains that this condition implies that the symplectic
structure on X can be viewed as a Lagrangian structure.

Proposition 4.3.1. If µ : X → g∗ is a moment map, then it is G-equivariant and
there is a map:

[µ] :
[
X�G

]
→
[
g∗�G

]
1Meaning that the infinitesimal action g→ TX is given by Hamiltonian vector fields, v 7→ −→v =

{Hv,−} inducing a Lie algebra morphism µ∗ : g → OX sending v to the Hamiltonian function
Hv.

2This condition is saying that µ∗(v) is the Hamiltonian vector fields controlling the action of v
where µ∗ : g→ OX is the comoment map.
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This map is Lagrangian and there is an equivalence of derived symplectic1 stacks:

X '
[
X�G

]
×[g

∗
�G] g

∗

Proof. We already now thanks to Lemma 4.1.18 that this pullback is X as derived
stack. We only need to check that the symplectic structure on the Lagrangian
intersection coincides with the symplectic structure on X .

First, recall from Lemma 4.1.27 that the Lagrangian structure on g∗ →
[
g∗�G

]
is

given by the 0 Lagrangian structure. Moreover, from [Cal21, Example 1.32], we
have that the moment condition implies that ωX , the symplectic structure on X

defines a Lagrangian structure on
[
X�G

]
→
[
g∗�G

]
. This is due to the second

condition of moment maps. Then the construction of the symplectic structure on
X from the proof Proposition 2.2.1 gives us that the symplectic structure is given
by the following loop at zero in the space of closed 2-forms of degree 1:

0
ωX 0

�

We will therefore rephrase the second condition by asking [µ] to be a Lagrangian
structure such that the derived intersection:[

X�G
]
×[g

∗
�G] g

∗

is equivalent to X as a symplectic stack. We know that they are already equivalent
as derived stacks thanks to Lemma 4.1.18 and the symplectic part is an extra
structure required by the moment map.

De�nition 4.3.2 ([AC21, Definition 2.3]). Let X be a n-shifted symplectic Artin
stack together with a smooth action of G. Given a G-equivariant map µ : X →
g∗[n], then the structure of a n-shifted moment map on µ is a Lagrangian structure
on:

[µ] :
[
X�G

]
→
[
g∗[n]�G

]
such that there is an equivalence of n-shifted symplectic stacks:

X '
[
X�G

]
×[g∗[n]�G

] g∗[n]

1Recall from Proposition 4.1.27 that the map:

g∗ →
[
g∗�G

]
is also Lagrangian. Therefore

[
X�G

]
×[

g∗�G
] g∗ is the derived intersection of Lagrangian mor-

phisms and is therefore 0-shifted symplectic from Proposition 2.2.1.
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Remark 4.3.3. In di�erential geometry, the conditions to be a moment map are
properties of the map. As often in derived geometry, these properties become extra
structures. Indeed, being equivariant is the structure of an equivariant map, as
we have seen in Definition 4.1.1 and the second condition becomes the data of
a Lagrangian structure. Therefore being a moment map will be a structure on the
map µ, and as often, we will keep saying that µ is a moment map to refer to µ
together with a structure of moment map.

We are interested in the procedure of symplectic reduction. Classically, it amounts
(under the condition that these constructions exist) to do the following:

– Take the zero locus1 of the moment map:

Z(µ) ?

X g∗[n]µ

– Take its quotient by the induced action of G:

Xred :=
[
Z(µ)�G

]
– Construct a symplectic structure on Xred with a symplectic structure ω
such that p∗ω = i∗ωX with:

p : Z(µ)→
[
Z(µ)�G

]
i : Z(µ)→ X

In classical geometry, this procedure only exists under some assumptions (ensur-
ing the existence of the zero locus and quotient). However, in derived geometry
these constructions are always possible and generalize the classical constructions.

De�nition 4.3.4 ([AC21, Definition 2.3]). We define the symplectic reduction of X
along the n-shifted moment map µ : X → g∗[n] to be the fiber product:

Xred BG

[
X�G

] [
g∗[n]�G

]
[µ]

Since it is a derived intersection of Lagrangian in a (n + 1)-shifted symplectic
derived stack, it is naturally n-shifted symplectic.

1This can be generalized to taking the pre-image of any coadjoint orbit of g∗[n] (see [Cal21,
Section 2.1.2]). We are not going to consider this degree of generality.
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Remark 4.3.5. Taking this pullback took care of all 3 steps of the classical con-
struction at once. Indeed, from Proposition 4.1.19, this pullback is equivalent
to: [

X ×g∗[n] ?�G
]

Therefore Xred is exactly the quotient of the fiber of µ. And the symplectic struc-
ture comes for free from the fact that it is a derived intersection of Lagrangian
morphisms (Propositions 4.3.1 and 4.1.28).

Moreover, since the Lagrangian structure on BG →
[
g∗[n]�G

]
is the zero struc-

ture, and the Lagrangian structure on the moment map is given by the symplectic
structure on X, the symplectic structure on Xred is in some sens “induced” by the
symplectic structure on X .

The following proposition is one of the main observation that will motivate the
definition generalizing of the notion of moment map for Lie algebroids in Section
4.3.2. Moreover Sections 4.3.2 and 5 will motivate the fact that these Lagrangian
correspondences will be the defining feature of a generalized notion of symplectic
reduction (Definitions 5.1.3 and 5.1.4), viewed as a procedure to obtain symplectic
stacks from quotients of “almost derived critical loci”.

Proposition 4.3.6 ([AC21, Remark 2.4]).
If µ : X → g∗[n] is a n-shifted moment map, there is a Lagrangian correspondence:

Z(µ)

Xred X

Example 4.3.7. If we consider the moment map µ : T ∗X → g∗ from the cotangent
action of G on T ∗X . Then its symplectic reduction is given, thanks to Proposition

4.1.29 by T ∗
[
X�G

]
.

Following the ideas from Section 2.2, it turns out that we can construct moment
maps by a “Lagrangian intersection” procedure and that symplectic reduction
commutes with these Lagrangian intersections. To sketch the main ideas, [AC21,
Definition 2.8] gives us a notion of derived symplectic reduction of a Lagrangian struc-
ture on L→ X .
To express this definition, we will use the 1-category of Lagrangians over the (n+1)-
shifted point1, Lag1(?n+1) (see Section 2.2.3). We can rephrase their definition as
follows:

1We consider the 1-category of Lagrangians over the point. Objects are then n-shifted symplectic
stacks and morphisms are (equivalence classes of) Lagrangian correspondences.
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De�nition 4.3.8. A Lagrangian reduction of a Lagrangian structure on L → X is
given by a factorization Lred ∈ Lag1(?n+1)(?n+1, Xred) of L ∈ Lag1(?n+1)(?n, X)
by Z(µ) ∈ Lag1(?n)(Xred, X):

L

Lred Z(µ)

? Xred X

Remark 4.3.9. [AC21, Definition 2.8] is spelled out di�erently but is in fact equiv-
alent to asking for this factorization. Moreover, thanks to Proposition 4.2.27, the
Lagrangian reduction is obtained as a quotient for an action of G on L:

Lred '
[
L�G

]
Theorem 4.3.10 ([AC21, Theorem C]).
Let µ : X → g∗[n] be a n-shifted moment map. Let L,L′ be Lagrangians in X and
Lred, L

′
red derived symplectic reductions of L and L

′. Then the moment map on X induces
a structure of moment map on:

µ−1 : L×X L′ → ?×g∗[n] ? ' g∗[n− 1]

Moreover there is a natural equivalence of (n− 1)-shifted symplectic stacks:

(L×X L′)red ' Lred ×Xred
L′red

Example 4.3.11. The derived critical locus of aG-equivariant function is equipped
with a (−1)-shifted moment map:

Crit(f)→ g∗[−1]

Indeed, the induced action on T ∗X admit a moment map µ : T ∗X → g∗ whose

symplectic reduction is T ∗
[
X�G

]
(see Example 4.3.7) and the Lagrangians 0, df :

X → T ∗X have a symplectic reductions given by the natural Lagrangian structures
on [0] and d[f ]:

Xred :=
[
X�G

]
→ (T ∗X)red ' T ∗

[
X�G

]
where the last equivalence is a consequence of Proposition 4.1.29. Then Theo-
rem 4.3.10 implies that Crit(f) → g∗[−1] is a (−1)-shifted moment map and its
symplectic reduction is:

Crit(f)red ' Crit([f ])
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4.3.2. For Lie algebroids.

We want to generalize the definition of a moment map for infinitesimal actions of
Lie algebroids. As we are working with Lie algebroids again, we will assume that
X = Spec(A) satisfies Assumptions 3.2.2.

The goal is two-fold, we want to recover the infinitesimal counterpart of Section
4.3.1 (moment maps for groups actions) and extend it to infinitesimal actions
of Lie algebroids. The critical example is given by the dual of the anchor map
ρ∗ : T ∗X → L∗ (Proposition 4.3.17) which we think of as an analogue of the cotan-
gent moment map µ : T ∗X → g∗.

Given a map µ : Y → L∗[n] of derived stacks1 over X, with Y → X where Y is
a�ne almost finitely presented and X satisfies Assumptions 3.2.2, we ask ourself
how to define a structure of an infinitesimal n-shifted moment map on µ when L
is a Lie algebroid over X .

The naive approach would be to try to mimic directly the definition for group
action by asking for a Lagrangian structure on the infinitesimal quotient. This
fails immediately as we do not have a natural infinitesimal action of L on L∗[n]
giving an analogue to Lemma 4.1.25, and there is also no obvious choice of an
infinitesimal action of L on Y .

However, it turns out that for µ : T ∗X → L∗ the dual of an anchor, the fiber Z(µ)
of the infinitesimal moment map admits a natural infinitesimal action of L (up
to homotopy) given by Proposition 4.2.34. Using this fact and Proposition 4.3.6
leads to the following definition:

De�nition 4.3.12. Take L a Lie algebroid on X, and a map µ : Y → L∗[n] of
stacks over X where Y is a�ne almost finitely presented and X satisfies Assump-
tions 3.2.2. We suppose that the fiber of the moment map, denoted Z(µ), is also
a�ne of almost finite presentation2. Then the structure of an in�nitesimal n-shifted
moment map on Y , where Y is n-shifted symplectic, is the data of:

– A weak infinitesimal quotient
˜[Z(µ)�L

]

1Recall that by convention L = AX(L ) and L∗ := AX(L ∨).
2For example if Y = AX(E ) with E non-negatively graded and finitely presented, µ is a lin-

ear map of linear stacks and L is non-positively graded, then Z(µ) is a�ne of almost finite
presentation.



186

– A Lagrangian correspondence:

Z(µ)

˜[Z(µ)�L

]
Y

In that case, the in�nitesimal symplectic reduction of µ is defined to be:

Yred :=
˜[Z(µ)�L

]
Remark 4.3.13. If Z(µ) satisfies Assumptions 3.2.2, then we can instead ask for
an action of L on Z(µ)→ X and take:

˜[Z(µ)�L

]
:=
[
Z(µ)�L

]
Remark 4.3.14. In this definition, the structure of Lie algebroid does not play any
role on L∗[n]. In fact we can generalize this definition to any map µ : Y → Z
where Z is a linear stack (or more generally, to any derived stack over X together
with a choice of a “0 section”)1.

Remark 4.3.15. In general, the symplectic reduction is part the data of the moment
map µ due to the non-uniqueness of weak infinitesimal quotient.

Example 4.3.16. If µ : X → g∗ is a moment map, then it is an infinitesimal mo-
ment map. We view g as a Lie algebroid over the point ?, then g acts infinitesimally
on g∗ and X (induced by the actions of G) and therefore the fiber Z(µ) also has
a canonical infinitesimal action on Z(µ).
This is exactly the infinitesimal version of Section 4.3.1, and we will see with
Lemma 4.3.31 that the infinitesimal version of the Lagrangian correspondence of
Proposition 4.3.6 is a Lagrangian correspondence:

Z(µ)

[
Z(µ)�Z(µ)× g

]
X

This gives µ : X → g∗ the structure of an infinitesimal moment map. This is ex-
actly the infinitesimal action we obtain by applying Theorem 4.3.30 to the moment
maps for group actions.

1The requirement of this “0 section” is there to make sense of the fiber Z(µ).
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Heuristically, the anchor map L → TX is supposed to represent the infinitesimal
action of L onX . Similarly to the fact that for a group action, the map T ∗X → g∗

is a moment map, we want to prove that the map T ∗X → L∗ is an infinitesimal
moment map.

Proposition 4.3.17. Assume that X satis�es Assumptions 3.2.2 such that LX is non-
negatively graded and �nitely presented. Suppose thatL is a non-positively graded, almost
�nitely presented Lie algebroid that integrates well. If the canonical closed 2-form on

T ∗
[
X�L

]
is symplectic1, then the dual of the anchor ρ∗ : T ∗X → L∗ can be equipped

with the structure of an in�nitesimal moment map with weak in�nitesimal quotient given
by:

(T ∗X)red ' T ∗
[
X�L

]
Proof. We can show that Z(ρ∗) ' AX(LX ⊕ρ

∗
L ∨[−1]). The assumptions on LX

and L ensure that Z(ρ∗) is a�ne of almost finite presentation so it makes sense
to speak of moment map structure.

Moreover, Proposition 4.2.34 shows that Z(ρ∗) admits a weak infinitesimal quotient
given by:

˜[
Z(ρ∗)�L

]
' T ∗

[
X�L

]
It has a canonical symplectic structure.

We now only have to find the structure of a Lagrangian correspondence:

Z(ρ∗)

T ∗
[
X�L

]
T ∗X

f g

1It is in particular the case if L integrates to a smooth Segal groupoid thanks to Proposition
4.3.32.
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Both symplectic structures being the canonical ones, their pullback are in fact
equal1, and we can choose the 0 isotropic correspondence. To show the non-
degeneracy, we need to show that the following square is a pullback:

TZ(ρ∗) g∗TT ∗X

f ∗T
T ∗[X�L ] LZ(ρ∗)

Taking the fiber of this commutative diagram we can show that we have:

π∗L π∗L

TZ(ρ∗) g∗TT ∗X

f ∗T
T ∗[X�L ] LZ(ρ∗)

∼

where the fiber on the left is computed thanks to thanks to Corollary 4.2.22 (since
L integrates well) and the fiber on the right is computed using connections on
T ∗X and Z(ρ∗).

In general the fiber of a pullback in a stable category are equivalent if and only
square on the right is a pullback:

fib(A→ B) A B

fib(C → D) C D

∼

We can see that by considering the following diagram:

fib(A→ B) ' fib(C → D) A C

0 B D

∼

Then the left square is a pullback and the outer square is a pullback if and only if
the fibers are equivalent. Then it is a general property of the pullback in a stable

1In the model given by:

Z(µ) = AX
(
p∗L[X�L ]

)
' AX(π∗(LX ⊕ρ

∗
L ∨[−1]))
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category that if the outer square and the left square are Cartesians then the right
square is also Cartesian. �

Now we are going to see that similarly to the situation for group action, this notion
of moment map is well behaved with respect to Lagrangian intersections. To do
so we will need an analogue to the notion of symplectic reduction of a Lagrangian
morphism (Definition 4.3.8).

De�nition 4.3.18. Consider a Lagrangian L1 → Y with a Lagrangian structure
and L1 a�ne of almost finite presentation. An in�nitesimal symplectic reduction of
the Lagrangian L1 → Y with Y equipped with an infinitesimal n-shifted moment
map µ : Y → L∗[n], is the data of a factorization of the Lagrangian morphism
L1 ∈ Lag1(?(n+1))(?n, Y ) by Z(µ) ∈ Lag1(?(n+1))(Yred, Y ) (see Definition 2.2.17).

L1

(L1)red Z(µ)

? Yred Y

Remark 4.3.19. Definition 4.3.18 is exactly the same as Definition 4.3.8. We can
however describe more explicitly the important features of this definition.
By definition, an infinitesimal symplectic reduction of a Lagrangian L1 → Y with
an infinitesimal n-shifted moment map µ : Y → L∗[n] is the data of:

– A factorization of L1 → Y :

L1 Z(µ) Y

– A weak infinitesimal quotient (L1)red of the map L1 → Z(µ) compatible
with Z(µ)→ Xred according to Remark 4.2.21.

– A Lagrangian structure on:

(L1)red '
[
Z(µ)�L

]
→ Xred

We are now able to prove that the “Lagrangian intersection” of a moment map is
a shifted moment map:

Theorem 4.3.20. Let µ : Y → L∗[n] be an in�nitesimal n-shifted moment map and
L1 → Y and L2 → Y Lagrangian morphisms with in�nitesimal symplectic reductions.
Then the in�nitesimal moment map µ induces an in�nitesimal moment map:

µ−1 : L1 ×Y L2 → L∗[n− 1]

such that the reduction is given by:

(L1 ×Y L2)red ' (L1)red ×Yred
(L2)red
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Proof.

– We need a weak infinitesimal quotient of Z(µ−1). Since L1, L2 and Z(µ)
all have a weak infinitesimal quotient, then from Proposition 4.2.30 and
Remark 4.2.31, their pullback defines a weak infinitesimal quotient1 such
that:

(L1 ×Y L2)red :=
˜[

Z(µ−1)�L

]
' (L1)red ×Yred

(L2)red

Moreover, this is a derived intersection of Lagrangians and therefore it is
(n− 1)-shifted symplectic.

– We are in the situation of Theorem 2.2.23:

L1

(L1)red Z(µ) L1

˜[Z(µ)�L

]
L2 Y

(L2)red L2

The maps (Li)red →
˜[Z(µ)�L

]
are Lagrangian and from Definition 4.3.18

we have the equivalences:

(14) Li ' (Li)red × ˜[Z(µ)�L

] Z(µ)

Moreover the vertical morphisms on the left and right sides are all clearly
Lagrangians. Therefore we get a Lagrangian correspondence:

(L1)red ×[Z(µ)�L

] Z(µ)×[Z(µ)�L

] (L2)red

(L1)red × ˜[Z(µ)�L

] (L2)red

(
(L1)red × ˜[Z(µ)�L

] Z(µ)

)
×E

(
(L2)red × ˜[Z(µ)�L

] Z(µ)

)

1This is a weak infinitesimal quotient of L1, L2 and Z(µ) and by extension also of X .
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– Using Equation (14) we get the equivalences:

(L1)red × ˜[Z(µ)�L

] Z(µ)× ˜[Z(µ)�L

] (L2)red

'(L1)red × ˜[Z(µ)�L

] Z(µ)×Z(µ) Z(µ)× ˜[Z(µ)�L

] (L2)red

'L1 ×Z(µ) L2

'Z(µ−1)

– Using again Equation (14) we get the equivalence:(
(L1)red × ˜[Z(µ)�L

] Z(µ)

)
×Y

(
(L2)red × ˜[Z(µ)�L

] Z(µ)

)
' L1 ×Y L2

– Using Remark 4.3.19 and Proposition 4.2.30 we get:

(L1)red × ˜[Z(µ)�L

] (L2)red '
˜[L1�L

]
× ˜[Z(µ)�L

] ˜[L2�L

]
'

˜[
L1 ×Z(µ) L2�L

]
'

˜[
Z(µ−1)�L

]
In short we get the following Lagrangian correspondence:

Z(µ−1)

(L1 ×Y L2)red '
˜[

Z(µ−1)�L

]
L1 ×Y L2

�

Example 4.3.21. Take L a Lie algebroid over X an a�ne stack satisfying As-
sumptions 3.2.2 such that L integrates well, and consider L1 = L2 = X with
Lagrangian morphisms s0, df : X → T ∗X where s0 is the zero section. We have
thatX has an infinitesimal symplectic reduction (for both Lagrangian morphisms),
with respect to the infinitesimal moment map structure on ρ∗ : T ∗X → L∗ given
by Proposition 4.3.17, if and only if the map:

X
df→ T ∗X

ρ∗→ L∗
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is homotopic to zero1. Under that condition, we have factorization of Lagrangians:

X

[
X�L

]
Z(ρ∗)

? T ∗Xred ' T ∗
[
X�L

]
T ∗X

d̃f

d[f ]

where d̃f is the natural factorization of df obtained thanks to the condition ρ∗◦df '
0. This square is a pullback because the outer and the right squares (see Lemma
4.2.33) in the following commutative diagram are pullbacks:

X Z(ρ∗) X

[
X�L

]
T ∗
[
X�L

] [
X�L

]
It follows from Definition 4.3.18 that X → T ∗X is a Lagrangian morphism with
infinitesimal symplectic reduction given by:

d [f ] :
[
X�L

]
→ T ∗

[
X�L

]
This also works similarly for s0 and we can use Theorem 4.3.20 to show that:

– The map Crit(f)→ L∗[−1] is an infinitesimal (−1)-shifted moment map.
– Its infinitesimal symplectic reduction is given by:

Crit(f)red '
[
X�L

]
×
T ∗[X�L ]

[
X�L

]
:= Crit([f ])

4.3.3. For groupoids.

We will now give a definition of a moment map for actions of Segal groupoids and
then see that “infinitesimal” moment maps from Section 4.3.2 are the “infinitesi-
mal version” of the moment maps for Segal groupoids (see Theorem 4.3.30).

The critical examples we want to recover are the moment maps for a group actions
(Example 4.3.24) and the dual of the anchor T ∗X → L∗[n] (Proposition 4.3.25) of
a Lie algebroid.

1The same condition is necessary for s0 to have a Lagrangian reduction, but this is automatic.
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Remark 4.3.22. Recall that for any Segal groupoid G • overX a derived stack, such
that the cotangent complexes of each G n exists, then we can define the anchored
linear stack:

L := AX
(
T
X/[X�G ]

)
→ TX

In this degree of generality, we do not know if this is a Lie algebroid, but in order
to mimic the role of L∗[n] in the previous section, having just an anchored linear
stack is enough.

The notion of moment map in this situation can be directly adapted from the
infinitesimal case.

De�nition 4.3.23. Take G • a Segal groupoid over X such that the cotangent
complexes of each G n exists, and µ : Y → L∗[n] a map of derived stacks over X,
where L is the linear stack of Remark 4.3.22. Assume that Y is n-shifted symplectic.
Then the structure of a n-shifted moment map on µ is the data of:

– An action of G • on Z(µ) (Definition 4.1.15).

– A n-shifted symplectic structure on
[
Z(µ)�G

]
.

– A Lagrangian correspondence:

Z(µ)

[
Z(µ)�G

]
Y

In that case, the symplectic reduction of µ is defined to be:

Yred :=
[
Z(µ)�G

]
Example 4.3.24. In the situation where G • := G×• seen as a groupoid over ?,
we consider a smooth action of G on X a derived Artin stack with moment map
µ : X → g∗ (in the sens of Definition 4.3.2). Clearly, g is the Lie algebroid
associated toG×•. SinceG acts on bothX and g∗, it acts on Z(µ), and Proposition
4.3.6 gives µ the structure of a moment map in the sens of Definition 4.3.23.

Proposition 4.3.25. If we have a Segal groupoid G • over X as in De�nition 4.3.23
and L as in Remark 4.3.22. Then the dual of the anchor map µ : T ∗X → L∗ has

a moment map structure such that its symplectic reduction is T ∗
[
X�G

]
whenever the

canonical closed 2-form on T ∗
[
X�G

]
is symplectic1.

Proof. Notice that there is an equivalence Z(µ) ' AX
(
p∗L[X�G ]

)
(thanks to Propo-

sition 4.1.20) and therefore Z(µ) is part of the pullback diagram:

1This is the case whenever G • is a smooth Segal groupoid since the quotient is Artin.
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Z(µ) X

T ∗
[
X�G

] [
X�G

]
π

Therefore from Lemma 4.1.16, there is an action of G on Z(µ) whose quotient is

T ∗
[
X�G

]
. We are left to show that there is a Lagrangian correspondence:

Z(µ)

T ∗
[
X�G

]
T ∗X

h i

It is not hard to see that the pullbacks of the (canonical) symplectic structures to
Z(µ) coincide on the nose and therefore we can consider the 0 isotropic corre-
spondence. We want to show that it is non-degenerate. This amounts to showing
that the following square is Cartesian:

TZ(µ) h∗T
T ∗[X�G ]

i∗TT ∗X LZ(µ)

Similarly to the proof of Proposition 4.3.25, taking the fiber of the horizontal mor-
phism we get in both case π∗L . Indeed, from the pullback describing Z(µ) we
get:

T
Z(µ)/T ∗[X�G ] ' π∗T

X/[X�G ] := π∗L

�

Now we are again going to see that moment maps are well behaved with respect
to Lagrangian intersections using a direct analogue of the notion of infinitesimal
symplectic reduction of Lagrangian morphisms:

De�nition 4.3.26. A symplectic reduction of a Lagrangian L1 → Y with Y
equipped with a n-shifted moment map µ : Y → L∗[n] (for an action of G •)
is the data of a factorization (L1)red ∈ Lag1(?n, Yred) of the Lagrangian morphism
L1 ∈ Lag1(?n, X) by Z(µ) ∈ Lag1(Yred, Y ):
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L1

(L1)red Z(µ)

? Yred Y

Remark 4.3.27. Definition 4.3.26 is exactly the same as Definition 4.3.8. We can
describe more explicitly the important features of this definition.
Thanks to Lemma 4.1.16, a symplectic reduction of a Lagrangian L1 → Y with a
n-shifted moment map µ : Y → L∗[n] is the data of:

– A factorization of L1 → Y :

L1 Z(µ) Y

– An action of G • on L1 such that the map L1 → Z(µ) is equivariant. In
particular, the groupoid on L1 is coming from an action of the groupoid on
Z(µ) (itself coming from an action on Y ). Therefore there is an equivalence
(Lemma 4.1.16):

L1 ' Z(µ)×Yred

[
L1�G

]
– A Lagrangian structure:

(L1)red '
[
L1�G

]
→ Yred '

[
Z(µ)�G

]
Theorem 4.3.28. Let µ : Y → L∗[n] be a n-shifted moment map and L1 → Y and
L2 → Y Lagrangian morphisms with symplectic reductions. Then the moment map µ
induces a moment map:

µ−1 : L1 ×Y L2 → L∗[n− 1]

Moreover, there is a natural equivalence:

(L1 ×Y L2)red ' (L1)red ×Lred
(L2)red

Proof.

– We need an action of L on Z(µ−1). We have:

Z(µ−1) '(L1 ×Y L2)×(X×L∗[n]X) (X ×X X)

'L1 ×Z(µ) L2

Since L1, L2 and Y all have an action of G •, by pullback of actions of
groupoids (Proposition 4.1.19). We get a pullback action of G • on Z(µ−1).
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– We have thanks to Proposition 4.1.19:[
Z(µ−1)�G

]
'
[
L1 ×Z(µ) L2�G

]
'
[
L1�G

]
×[Z(µ)�G

] [L2�G

]
'(L1)red ×Yred

(L2)red

This is a derived intersection of Lagrangians by assumption therefore it is
(n− 1)-shifted symplectic.

– We are in the situation of Theorem 2.2.23:

L1

(L1)red Z(µ) L1

[
Z(µ)�G

]
L2 Y

(L2)red L2

We have that the maps (Li)red →
[
Z(µ)�G

]
are Lagrangian morphisms

and thanks to Remark 4.3.19 and Lemma 4.1.18 we have:

(15) Li ' (Li)red ×[Z(µ)�G

] Z(µ)

Moreover, the vertical morphisms on the left and right sides are all La-
grangians by assumption and from Definition 4.3.18

Therefore we get a Lagrangian correspondence:
(L1)red ×[Z(µ)�G

] Z(µ)×[Z(µ)�G

] (L2)red

(L1)red ×[Z(µ)�G

] (L2)red

(
(L1)red ×[Z(µ)�G

] Z(µ)

)
×Y

(
(L2)red ×[Z(µ)�G

] Z(µ)

)

– Using Equation (15) we get:

(L1)red ×[Z(µ)�G

] Z(µ)×[Z(µ)�G

] (L2)red

'(L1)red ×[Z(µ)�G

] Z(µ)×Z(µ) Z(µ)×[Z(µ)�G

] (L2)red

'L1 ×Z(µ) L2

'Z(µ−1)
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– Using again Equation (15) we get:(
(L1)red ×[Z(µ)�G

] Z(µ)

)
×Y

(
(L2)red ×[Z(µ)�G

] Z(µ)

)
' L1 ×Y L2

– Using Remark 4.3.27 and Proposition 4.1.19 we get:

(L1)red ×[Z(µ)�G

] (L2)red '
[
L1�G

]
×[Z(µ)�G

] [L2�G

]
'
[
L1 ×Z(µ) L2�G

]
'
[
Z(µ−1)�G

]
In short have a Lagrangian correspondence:

Z(µ−1)

[
Z(µ−1)�G

]
L1 ×Y L2

�

Corollary 4.3.29. Let G • be a smooth Segal groupoid over X . The Lagrangian maps
s0, df : X → T ∗X have symplectic reductions given by:

s0, d [f ] :
[
X�G

]
→ T ∗

[
X�G

]
as soon as f is G -invariant. Using Proposition 4.3.25 and Theorem 4.3.28, we get a
(−1)-shifted moment map Crit(f) → L∗[−1] whose symplectic reduction is exactly the
G -equivariant derived critical locus, Crit([f ]).

Proof. Since f is equivariant, df factors through Z(µ) (idem for s0) and we have
the diagram:

X

[
X�G

]
Z(µ)

? T ∗
[
X�G

]
T ∗X

The square is clearly a pullback from Lemma 4.1.18 and the maps:[
X�G

]
→ T ∗

[
X�G

]
are either d [f ] or the zero section (and therefore they are Lagrangian).
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Therefore df and s0 both have a symplectic reduction.
We have seen in Proposition 4.3.25 that T ∗X → L∗ is a moment map with symplec-

tic reduction T ∗
[
X�G

]
and using Theorem 4.3.28, we get a (−1)-shifted moment

map:

µ−1 : Crit(f)→ L∗[−1]

whose symplectic reduction is:

Crit(f)red '
[
X�G

]
×
T ∗[X�G ]

[
X�G

]
=: Crit([f ])

�

Following the idea of Section 4.2.1 where we want to explain that infinitesimal
quotients by Lie algebroids are formal completions along the projections to the
quotients by groupoids. Similarly, we have that infinitesimal symplectic reductions
are formal completions of symplectic reductions and more generally all the con-
structions of Section 4.3.2 are “infinitesimal versions” of the constructions of the
current section.

Theorem 4.3.30. Let L be a Lie algebroid over X , an a�ne stack satisfying Assump-
tions 3.2.2. We assume that L integrates well and we pick G • a good integration of L
(see De�nition 4.2.13). Take µ : Y → L∗[n] a n-shifted moment map for G • and Li → X
(i = 1..2) Lagrangian morphisms with symplectic reduction for G such that Y , Li and
Z(µ) are all a�ne of almost �nite presentation. Then we have the following:

(1) µ has a canonical in�nitesimal moment map structure with symplectic reduction
given by the weak in�nitesimal quotient obtained as the formal completion:

˜[Z(µ)�L

]
:=

̂[
Z(µ)�G

]
X

(2) The in�nitesimal symplectic reductions of Li (for i = 1..2) are given by the weak
in�nitesimal quotients obtained as the formal completions of the symplectic reduc-
tions of Li:

˜[Li�L

]
:=

̂[Li�G

]
X

(3) The in�nitesimal shifted moment map obtained by Lagrangian intersection (The-
orem 4.3.20):

µ−1 : L1 ×Y L2 → L∗[n− 1]

is the moment map obtained by the �rst construction applied to shifted moment
map obtained via Lagrangian intersection for groupoids (Theorem 4.3.28).
Therefore, the in�nitesimal symplectic reduction of the derived intersection is

the formal completion of the projection to the symplectic reduction of the derived
intersection.
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Lemma 4.3.31. Take Z and Y two a�ne stacks of almost �nite presentation. Let G be
a groupoid over Z and take a Lagrangian correspondence:

Z

X Y

then there is a canonical Lagrangian correspondence:

Z

X̂Z Y

Proof. Recall from Lemma 1.3.20 that there is a factorization:

Z → X̂Z → X

where the first map is a formal thickening and the last map is formally étale. We
get the diagram:

Z

X̂Z X

X

p

i

Pulling back the symplectic structure along i gives again a symplectic structure
because i is formally étale. Therefore the isotropic correspondence can be chosen
to be the same. Then since the non-degeneracy condition only depends on the
tangent and cotangent complexes, i being formally étale implies that the isotropic
correspondence we obtained is also non-degenerate. �

Proof of Theorem 4.3.30. The proof is based on taking formal completions to define
weak infinitesimal quotients:
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(1) With Lemma 4.3.31, we need to show that the formal completion is a weak
infinitesimal quotient. Consider the following commutative diagram:

Z(µ) X

̂[
Z(µ)�G

]
Z(µ)

[
X�L

]
'

̂[X�G

]
X

[
Z(µ)�G

] [
X�G

]

First from Corollary 4.2.7 (since G • is a good integration of L ), we have
the equivalence:

[
X�L

]
'

̂[X�G

]
X

The outer square is a pullback because of Lemma 4.1.18. The lower
square is a pullback because of the equivalences:

̂[
Z(µ)�G

]
Z(µ)
'
[
Z(µ)�G

]
×[Z(µ)�G

]
DR

Z(µ)DR

'
[
Z(µ)�G

]
×[Z(µ)�G

]
DR

([
Z(µ)�G

]
×[X�G ] X

)
DR

'
[
Z(µ)�G

]
×[Z(µ)�G

]
DR

[
Z(µ)�G

]
DR
×[X�G ]

DR

XDR

'
[
Z(µ)�G

]
×[X�G ]

DR

XDR

'
[
Z(µ)�G

]
×[X�G ]

[
X�G

]
×[X�G ]

DR

XDR

'
[
Z(µ)�G

]
×[X�G ]

̂[X�G

]
X

Therefore the upper square is also a pullback and
̂[

Z(µ)�G

]
Z(µ)

is both

a weak infinitesimal quotient and the symplectic reduction for the infini-
tesimal moment map thanks to Lemma 4.3.31.
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(2) We have the commutative diagram:

Li Z(µ)

̂[Li�G

]
Li

̂[
Z(µ)�G

]
Z(µ)

[
Li�G

] [
Z(µ)�G

]
where all squares are pullback squares (for the same reason as in the

proof of (1)). Moreover, it is not hard to see (using again that the lower
vertical maps are formally étale, as in the proof of Lemma 4.3.31) that the
maps:

˜[Li�L

]
:=

̂[Li�G

]
Li
→
[
Z(µ)�L

]
have Lagrangian structures canonically determined by the Lagrangian struc-
tures on [

Li�G

]
→
[
Z(µ)�G

]
Moreover,

̂[Li�G

]
Li
is a weak infinitesimal quotient for exactly the same

reason than
̂[

Z(µ)�G

]
Z(µ)

in the proof of (1). This gives Li the structure

of an infinitesimal Lagrangian symplectic reduction with reduction given

by
̂[Li�G

]
Li
.

(3) Consider the diagram where all squares are pullbacks:

L1 Z(µ) L2

̂[L1�G

]
L1

̂[
Z(µ)�G

]
Z(µ)

̂[L2�G

]
L2

[
L1�G

] [
Z(µ)�G

] [
L2�G

]
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The idea is that taking the fiber along the horizontal morphisms produces
the Lagrangian intersections we are looking for, and the formal comple-
tion of the pullback morphisms is the pullback of the formal completions
(Corollary 1.3.13).
More precisely, the moment map structure on:

µ−1 : Z(µ−1) ' L1 ×Z(µ) L2 → L∗[−1] ' X ×L∗ X
is given by the pullback action (Proposition 4.1.19) and gives us a La-
grangian correspondence:

Z(µ−1)

[
Z(µ−1)�G

]
L1 ×Y L2

with: [
Z(µ−1)�G

]
'
[
L1�G

]
×[Z(µ)�G

] [L2�G

]
Then the infinitesimal moment map induced by first construction is

given by the same underlying map µ−1, the same fiber of the moment
map, Z(µ−1), and we only need to find the weak infinitesimal quotient. It
is given by the formal completion which can be computed as (again thanks
to Corollary 1.3.13):

̂([
L1�G

]
×[Z(µ)�G

] [L2�G

])
Z(µ−1)

'
̂([

L1�G

]
×[Z(µ)�G

] [L2�G

])
L1×Z(µ)L2

'
̂[L1�G

]
L1

× ̂[
Z(µ)�G

]
Z(µ)

̂[L2�G

]
L2

But the last term is exactly the weak infinitesimal quotient obtained by
Lagrangian intersection of the infinitesimal moment maps by the infinites-
imal Lagrangian reductions described before.

�

To compute the particular example of this construction applied to the dual of the
anchor map T ∗X → L∗ (with respect to a groupoid action), we use the following
proposition:

Proposition 4.3.32. Let X be an a�ne stack satisfying Assumptions 3.2.2. Take L
a Lie algebroid over X that integrates well to a good groupoid G . Then there is an
equivalence:

T ∗
[
X�L

]
'

̂(
T ∗
[
X�G

])
Z(µ)
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Proof. We consider the following morphism:[
X�L

]
'

̂[X�G

]
X

α→
[
X�G

]
Then we have a commutative diagram such that all squares are pullbacks:

Z(µ) X

α∗T ∗
[
X�G

]
'

̂(
T ∗
[
X�G

])
Z(µ)

[
X�L

]
'

̂[X�G

]
X

T ∗
[
X�G

] [
X�G

]
The outer square is clearly a pullback square since there is an equivalence:

p∗L[X�G ] ' LX ⊕
ρ∗ L ∨[−1]

For the lower square, α∗T ∗
[
X�G

]
is the pullback by definition.

From Corollary 4.2.7, since L integrates well, we get the equivalence:[
X�L

]
'

̂[X�G

]
X

Finally using Corollary 1.3.13 this shows that
̂(

T ∗
[
X�G

])
Z(µ)

is also the pullback

of the lower square.

Using Lemma 1.3.20, the map:

̂[X�G

]
X

α→
[
X�G

]
is formally étale. Therefore there is an equivalence:

α∗T ∗
[
X�G

]
∼→ T ∗

[
X�L

]
�

In particular ifL integrates well to G •, then this proposition shows that T ∗
[
X�L

]
is canonically symplectic if and only if T ∗

[
X�G

]
is also canonically symplectic.
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5. Derived Perspective of the BV Complex

The classical BV construction is a mean to build an algebra of classical observables
associated with a space of fieldsX together with an action functional f taking into
account some symmetries of the system. There are two di�erent approaches to
construct these algebras:

Construction 5.0.1. The idea for the first construction is given by the following
two steps:

(1) First, take S a “space of solutions” to the Euler–Lagrange equation. In our
setting it amounts to solving df = 0.

(2) Then take a “infinitesimal quotient” of S by a Lie algebroid of “maximal
symmetries” so that this infinitesimal quotient is (−1)-shifted symplectic.

This is the approach corresponding to the construction in [FK14] which we will
discuss in more details in Construction 5.1.1.

Construction 5.0.2. The second approach takes these operations in reverse:

(1) First take a Lie algebroid “of symmetries” on X . In particular, f must be
equivariant with respect to the infinitesimal action of this algebroid and we
get a map1:

[f ] :
[
X�L

]
→ A1

k

(2) We take the derived critical locus of the equivariant map viewed as the
(derived) space of solutions of the Euler–Lagrange equations.

This is similar to the approach of [CG21] which is going to be studied in more
details in Section 5.3.3 (in a restricted setting).

The goal of this section is to provide a setting fitting and generalizing both con-
structions. We will argue that both constructions are intances of a notion of “gen-
eralized derived symplectic reduction” of the derived critical locus by a choice of
given infinitesimal symmetries.

Moreover, we will discuss a variation of this construction for symmetries which
are not infinitesimal but given by Segal groupoids of symmetries.

Finally, we show in Section 5.3 that any groupoid or Lie algebroid of “o�-shell
symmetries” induces a canonical BV construction by symplectic reduction of a
canonical (−1)-shifted moment map on the derived critical locus.

1Or rather “being” equivariant is the data of such a map (see Definition 4.2.24).
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5.1. BV as a Generalized Derived Symplectic Reduction.

In this section, we start in Section 5.1.1 by explaining in more details Constructions
5.0.1 and 5.0.2 and show that they are both instances of a notion of “generalized
symplectic reduction” of the derived critical locus (see Section 5.1.2).

In Section 5.2.1 we try to explain to what extent this general construction still
resembles the usual BV constructions. We will in particular see that we get the
same kind of algebras (Proposition 5.2.3). However, in general we cannot strictify
the (−1)-shifted symplectic structure as it may admit “higher” terms (Theorem
5.2.8).

5.1.1. Context and construction for in�nitesimal actions.

Through all of Section 5, we will take X = Spec(A) a smooth a�ne algebraic
variety1 and a map f : X → A1

k. We start by describing the BV algebra as
constructed in [FK14]:

Construction 5.1.1.
(1) The first step is to pick a resolution of the strict critical locus. We take a

semi-free resolution called the Koszul–Tate resolution (Construction 1.2.22)
of the strict critical locus of a function f (denoted by KT(f)). We have:

KT(f) := (SymA (TA[1]⊕LKT[2]) , δKT)

where LKT is projective concentrated in non-positive degrees. LKT and
δKT are chosen so that the cohomology of this complex is concentrated in
degree 0 and giving in degree 0 by:

A�〈df.X,X ∈ TA〉
(2) From here we consider the following graded algebra (with no di�erential):

BV]
FK = SymA

(
TA[1]⊕LKT[2]⊕ L̂ ∨

KT[−1]
)

where the symbol −̂means that we take the completion along the Chevalley–
Eilenberg terms, L ∨

KT[−1] (see Notation B.2.5).
(3) This graded algebra is (−1)-shifted symplectic together with the canonical2

symplectic structure.
(4) By an inductive procedure, we can construct a BV charge ([FK14, Theorem

4.5]), Q ∈ (BV]
FK)0 satisfying the Classical Master Equation:

{Q,Q} = 0

1In particular, X satisfies Assumptions 3.2.2
2Canonical is the sens that it is induced by the canonical symplectic structure on Crit(f)

(induced by the Poisson pairing between B and TB [1]) and the canonical pairing between LKT[2]
and L ∨KT[−1]. This is the strict structure from Definition 5.2.6



206

This can be equivalently phrased as finding a di�erential δFK on BV]
FK

that is Hamiltonian, δFK = {Q,−}. This di�erential also respects the filtra-
tion given by the symmetric power in L ∨[−1]. Moreover, this di�erential
restricts to the Koszul–Tate di�erential defining a map, BVFK → KT(f),
of algebras. We get the full BV algebra:

BVFK :=
(

BV]
FK, {−,−}, Q

)
We will try to rephrase this construction as follows:

– Start by taking the derived critical locus whose algebra of functions1 is
SymA TA[1] with di�erential ιdf (thanks to 1.2.21). Then taking the Koszul–
Tate resolution amounts to adding “anti-ghost fields” (see Remark 1.2.23)
generating LKT[2] that will kill the higher cohomology of the derived crit-
ical locus, in other words, kill the symmetries of f . Note that there is a
natural map:

KT(f)→ Crit(f)

– We can pullback the sympletic form of the derived critical locus to a pre-
symplectic form on KT(f) and the “kernel” of this pre-symplectic form is
essentially given by LKT, in other words the “anti-ghost fields generating
the symmetries”.

– We add “ghost fields” dual to the anti-ghost fields to kill this kernel, and
we get a symplectic structure. Adding these ghost fields amounts to taking
the Chevalley–Eilenberg algebra of a L∞-algebroid of maximal symmetries
over the Koszul–Tate resolution.

It also turns out that the use of KT(f) is to restrictive if we want to recover
Construction 5.0.2. Indeed, in most case, this second construction cannot recover
a full resolution of the strict critical locus. This construction is given by:

Construction 5.1.2.
(1) Start with a Lie algebroid (or L∞-algebroid) L over X of “infinitesimal

symmetries”, i.e. such that f is L -equivariant, and we have a map:

[f ] :
[
X�L

]
→ A1

(2) Take the derived critical locus Crit([f ]) who is naturally (−1)-shifted sym-
plectic.

Heuristically2, the first step amounts to considering the Chevalley–Eilenberg alge-
bra of the Lie algebroid of symmetry we start with (which amounts to first add the
ghost fields).

1This is also called the Koszul complex, to which we then add the Tate terms, LKT to produce
the Koszul–Tate resolution.

2As we have seen in Sections 3 and 4, this heuristic is not really clear. In practice the Chevalley–
Eilenberg algebra is use as a model for derived invariant although its relationship to infinitesimal
quotient is not clear.
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Then taking the derived critical locus amounts to adding the anti-fields and anti-
ghost fields. Let us have an incorrect motivating discussion. We somehow look at
the derived critical locus of a functional on the Chevalley–Eilenberg algebra. We
would think that its algebra of functions would be like:

SymCE(L ) TCE(L )[1] ' SymA (TA[1]⊕L [2]⊕L ∨[−1])

and we would recover the general shape of the BV algebra from [FK14]. However,
the di�erential on this algebra would be the contraction ιd[f ] and linearization of
the Chevalley–Eilenberg di�erential which cannot account for all the correction
terms of the Koszul–Tate di�erential on L [2] (in particular the terms increasing
the symmetric power cannot appear).

The correct way to view the relation between the second and first constructions
is discussed in Sections 5.3.2, 5.3.3 and 5.3.4. However, this discussion motivates
a generalization of Construction 5.1.1 where we add anti-ghost fields, but not
necessarily making it a resolution. This procedure of adding anti-ghost fields
corresponds to choosing an almost derived critical locus (Definition 1.2.24).

5.1.2. Generalized BV construction.

The idea that we had so far boils done to taking an almost derived critical locus
S ↪→ Crit(f) and then take its quotient to make it (−1)-shifted symplectic. This
is the general idea behind symplectic reduction, and we will describe the BV con-
struction in those terms. This motivates, by analogy with Definition 4.3.12, the
following definition of generalized symplectic reduction and generalized infinites-
imal symplectic reduction.

De�nition 5.1.3. Let Y be a n-shifted symplectic derived stacks and g : S → Y
a map. Then a generalized symplectic reduction of Y along g is the following data:

– A Lie groupoid G over S such that Yred :=
[
S�G

]
is n-shifted symplectic.

– A Lagrangian correspondence:

S

Yred Y

De�nition 5.1.4. Let S be a�ne of almost finite presentation and Y a n-shifted
symplectic derived stack. Take g : S → Y a map. Then a generalized in�nitesimal
symplectic reduction of Y along g is the following data:

– A n-shifted symplectic “infinitesimal quotient” of S denoted:

Yred :=
[
S�L

]
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– A Lagrangian correspondence:

S

Yred Y

Convention 5.1.5. Note that the notion of “in�nitesimal quotient” in the previous def-
inition is unclear. We have the following possible notion of in�nitesimal quotient:

(1) The �rst naive notion that mimics Construction 5.1.1 is to consider a perfect L∞-
algebroid L on S and de�ne:

Yred := Spec(CE(L ))

However, the natural projection S → Yred needs not be a formal thickening,
therefore the adjective “in�nitesimal” is not really �tting.

(2) We can could consider the formal completion of the previous example:

Yred := ̂Spec(CE(L ))S

From Lemma 4.3.31, if Spec(CE(L )) is part of a Lagrangian correspondence,
then so is its formal completion. Moreover, this formal completion is a formal
thickening of S.

(3) In a similar idea, we can also consider in�nitesimal quotients of the form:

Yred := SpfA(CE(L ))

(4) In Section 3.2.1, we de�ne the notion of in�nitesimal quotient of a Lie algebroid.
If S satis�es Assumptions 3.2.2, we can de�ne:

Yred := MCL '
[
S�L

]
For example, S satis�es Assumptions 3.2.2 if S = KT(f), but S will not

satisfy these Assumptions in the context of Construction 5.1.2.
(5) S admits a map S → X where X satis�es Assumptions 3.2.2 and L is a Lie

algebroid on X . We can consider the weak in�nitesimal quotients (De�nition
4.2.19) associated to L .
We will typically use this notion of weak in�nitesimal quotient in the situation

where we have “o�-shell symmetries” (De�nition 5.1.14).

Claim 5.1.6. The di�erent notions of in�nitesimal quotients given in De�nition 5.1.5
are related as follows:

– Any in�nitesimal quotient in the sens of (1) induces an in�nitesimal quotient in
the sens of (2) by formal completion. A generalized symplectic reduction for (1)
induces a generalized symplectic reduction for (2). Therefore the second de�nition
is strictly better as it is a formal thickening.
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– We have a natural morphism:

SpfA(CE(L ))
pre
→ ̂Spec(CE(L ))S

– If S satis�es Assumptions 3.2.2, then any Lie algebroid over S acts on S along
the identity S → S. Then the in�nitesimal quotient of S is a weak in�nitesimal
quotient. Therefore in�nitesimal quotients in the sens of (4) are weak in�nitesimal
quotients in the sens of (5).

We can observe that there are essentially two kinds of infinitesimal quotients. The
ones based on the Chevalley–Eilenberg algebra, which are useful to relate these
quotient with BV-like algebras as we described before.
The other ones are infinitesimal quotient as discussed in Sections 3 and 4 which
we claim to be a more geometric approach to infinitesimal quotients.
We believe that in order to reconcile the two pictures, we need to remember the
graded mixed structure on the Chevalley–Eilenberg algebra (at least when the Lie
algebroid is perfect). The correct notion of infinitesimal quotients and the tools
to manipulate them still need to be improved on.

We have said multiple times in Section 4.3 that the equivariant derived critical lo-
cus Crit([f ]) is the symplectic reduction of the derived critical locus. As Crit([f ])
is supposed to represent the BV-construction (following Construction 5.0.2). In
particular Crit(f) itself should be viewed as the simplest derived critical locus.
Then we argue that adding ghosts and anti-ghosts fields geometrically corresponds
to taking a generalized symplectic reduction, motivating the following definitions:

De�nition 5.1.7. A BV construction for f is the structure of generalized derived
symplectic reduction on S, an almost derived critical locus, along the map:

S → Crit(f)

De�nition 5.1.8. An in�nitesimal BV construction for f is the structure of gener-
alized infinitesimal derived symplectic reduction on S, an almost derived critical
locus of almost finite presentation, along the map:

S → Crit(f)

Again, this definition depends on the choice of a notion of infinitesimal quotient
as in Definition 5.1.5.

Remark 5.1.9. Given an almost derived critical locus S on f , the existence of a
BV construction (infinitesimal or not) for that S is not obvious. A large class of
examples of BV constructions will be given in Section 5.3.

Given an almost derived critical locus S on f and assuming that it admits a gener-
alized symplectic reduction (infinitesimal or not) there is a priori no reason to have
a unique such reduction associated to S and f . There is in fact a full topological
space of such structures which needs not be contractible or even connected.
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Remark 5.1.10. It is worth noticing that any two BV constructions are related by
a Lagrangian correspondence:

S1 ×Crit(f) S2

S1 S2

BV1 Crit(f) BV2

Viewed those Lagrangians as admissible morphisms, this defines a neither full or
faithful sub-category of Lag1(?)/Crit(f).

Remark 5.1.11. Our abstract definition of BV construction (infinitesimal or not)
might be “too general” a priori and have nothing to do with what a BV algebra
usually “looks like”. Although our objects are in fact much more general than the
classical construction mainly due to the added flexibility of homotopy structures,
we will see argue in Section 5.2.1 that our construction still “looks like” the classical
BV construction.

Remark 5.1.12. The construction from [FK14] and [CG21] are both infinitesimal
BV constructions. Some ideas behind global (non-infinitesimal) BV construction
for group actions are discussed in [BSS21]. Our definition however works in a
more general context including Segal groupoid actions.

We will conclude this section by showing that infinitesimal BV constructions are
the formal completions of “good1” BV constructions following the same ideas as
developed in Section 4.2.1 and with Theorem 4.3.30.

Theorem 5.1.13. Let S be an almost derived critical locus satisfying Assumptions 3.2.2.
Take a good BV construction on S, that is:

– An action of a “good” Segal groupoid G • on S.
– A Lagrangian correspondence:

S

[
S�G

]
Crit(f)

p

From Corollary 4.2.7, the in�nitesimal quotient of S by the Lie algebroid associated to G
is the formal completion of the projection p.

Then,
[
S�LG

]
is an in�nitesimal BV construction.

1By good we mean that the Segal groupoid acting is such that each G n is a formal stack. These
are the good Segal groupoids of Definition 4.2.13.
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Proof. We use Corollary 4.2.7 and Lemma 4.3.31 to get a Lagrangian correspon-
dence:

S

[
S�LG

]
Crit(f)

This defines the structure of infinitesimal BV construction. �

We will see a more general version of this when discussing “o�-shell symmetries”
in the following section.

5.1.3. O�-shell symmetries.

In this Section, we are going to discuss BV constructions that arise from an action
(infinitesimal or not) on X such that f is equivariant with respect to that action.

De�nition 5.1.14. We say that an action on an almost derived critical locus S is
an action by o�-shell symmetries if:

– It is o�-shell, that is, it comes from an action (in the sens of 4.1.15) of a
groupoid G over X on πS : S → X .

– f is G -equivariant in the sens of Definition 4.1.12.

De�nition 5.1.15. Let S be an almost derived critical locus of almost finite pre-
sentation. Then an infinitesimal quotient Yred is a weak infinitesimal quotient by
o�-shell symmetries if:

– There is an algebroid L on X such that f is L -equivariant (Definition
4.2.24).

– Yred is a weak infinitesimal quotient of S along S → X .
If S satisfies Assumptions 3.2.2, we instead require that the quotient comes from
an infinitesimal action of L on S → X .

De�nition 5.1.16. An o�-shell (in�nitesimal) BV construction is a (infinitesimal) BV
construction whose symplectic reduction is obtained either by:

– a quotient of S by a groupoid of o�-shell symmetries.
– or a weak infinitesimal quotient coming from an algebroid of infinitesimal
o�-shell symmetries.

Remark 5.1.17. Not only there are plenty of examples of such o�-shell symmetries,
but we will see in Sections 5.3.3 and 5.3.4 that for any Lie algebroid of o�-shell
symmetries (infinitesimal or not), we can construct an (infinitesimal or not) BV
construction essentially given by the equivariant derived critical locus.

Proposition 5.1.18. Let G be a smooth groupoid of o�-shell symmetries overX satisfying
Assumptions 3.2.2. Then its associated Lie algebroidL is a Lie algebroid of in�nitesimal
o�-shell symmetries.
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Moreover, any smooth o�-shell BV construction on S induces an in�nitesimal o�-shell BV
construction.

Proof. Similarly to the proof of Theorem 4.3.30, we consider the following commu-
tative diagram:

S X

̂[S�G

]
S

[
X�L

]
'

̂[X�G

]
X

[
S�G

] [
X�G

]
Just like in the proof of Theorem 4.3.30, all the squares of the diagram are pullback

squares and
̂[S�G

]
S
defines a weak infinitesimal quotient.

Moreover f is L -equivariant because the following diagram commutes:

X A1

[
X�L

]
[
X�G

]

f

Therefore, L and
̂[S�G

]
S
define an o�-shell infinitesimal symmetry. Moreover if[

S�G

]
is part of a Lagrangian correspondence making it an o�-shell BV construc-

tion, then by Lemma 4.3.31,
̂[S�G

]
S
is also part of a Lagrangian correspondence,

making it an o�-shell infinitesimal BV construction. �

5.2. Stricti�cation and BV Charge.

The goal of this section is to compare the infinitesimal BV construction to that
of [FK14]. One of the main di�culty to compare our construction to the classical
one is that we define an infinitesimal quotient stack while they only construct the
associated Chevalley–Eilenberg algebra.

Unfortunately, the tangent and cotangent complexes of the Chevalley–Eilenberg
algebras are complicated to compute mostly because it is unclear how to take a
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cofibrant resolution of this algebra even for perfect Lie algebroids. We expect that
working with the graded mixed Chevalley–Eilenberg algebras instead might sim-
plify this issue.

In order to still be able to still discuss the comparison between our geometric
description of the BV construction and the algebraic construction, we will need
to restrict ourself to an underived setting. In this section only, we will consider
underived construction. In particular, tensor product, direct sums, Hom functors
will not be derived in this section.
We will adopt a framework similar to the one described in [PS20, Section 3.2]. We
will consider perfect Lie algebroids concentrated in non-positive degrees over an
almost derived critical locus S = Spec(R) with:

R := ((SymA TA[1]⊕LS[2]) , δS)

We will restrict to non-positively graded perfect Lie algebroids, consider the un-
derived tangent complex, TB defined as the underived module of derivations of B.
Since A is cofibrant, we have that TA ' TA. We will keep writing TA bearing in
mind that we use the model given by TA.
Since we take a perfect L∞-algebroid L , its Chevalley–Eilenberg algebra is the
completion of a semi-free algebra. Up to picking a connection, we have that:

TCE(L ) ' CE(L )⊗A (TA ⊕L [1])

together with a di�erential making it a module over CE(L ). We also have:

h∗TCE(L ) ' TA ⊕ρ L [1]

with h : CE(L )→ A. Note that this is exactly the same as h∗T[X�L ].

We will consider an underived analogue to the de Rham algebra defined as:

DR(B) :=
(

ŜymB Ω1
B[−1], D = ddR + δB

)
where Ω1

B is the module of Kähler di�erentials whose dual is TB.
Just like the derived version, this algebra is filtered complete and ddR increases the
weight by 1 while δB preserves the weight. Then (closed) p-forms of degree n on
CE(L ) are de�ned similary to Proposition 1.4.17 by:

A p(B, n) ' |DR(p)(B)[n+ p]|∆

A p,cl(B, n) '
∣∣F pDRcpl(B)[n+ p]

∣∣
∆
'

∣∣∣∣∣∏
i≥p

DR(p+ i)(B)[n+ p]

∣∣∣∣∣
∆

We refer to [PS20, Section 3.4] for the more explicit description of these forms.
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5.2.1. Stricti�cation.

In this section we will consider an infinitesimal BV construction as the following
data, fixing an almost derived critical locus S of almost finite presentation and
assuming that it admits an infinitesimal BV construction:

– Y := Spec(CE(L )) where L is a perfect Lie algebroid on S concentrated
in non-positive degree.

– ωY a (−1)-shifted symplectic structure on Y .
– γ the data of the Lagrangian correspondence defining the generalized sym-
plectic reduction.

Such a tuple will denoted (L, S, ωY , γ). Moreover, we are going to consider S of
the form S = Spec(R) with:

R := (SymA (TA[1]⊕LS[2]) , δS)

We will be interested in understanding these infinitesimal BV constructions only
up to the following notion of equivalence:

De�nition 5.2.1. An equivalence (L , S, ωY , γ)→ (L ′, S, ω′Y , γ
′) is the following

data:

– An equivalence between the Chevalley–Eilenberg algebras:

f : CE(L ′)
∼→ CE(L )

Note that this induces an equivalence between the “infinitesimal quotient
stacks”, Y ∼→ Y ′.

– A homotopy between closed 2-forms:

ωY ∼ f ∗ωY ′

– A homotopy between the Lagrangian correspondences:

γ ∼ f ∗γ′

For now let us chose S that admits a generalized symplectic reduction and (L , S, ωY , γ)
be an infinitesimal BV construction.

Lemma 5.2.2. The non-degeneracy condition of the Lagrangian correspondence implies
that there is a quasi-isomorphism:

φ : R⊗A L ∨
S [−2]

∼→ L ∨[−2]

Proof. Consider the following commutative diagram, obtained by using a connec-
tion on Crit(f) and on R, viewed as semi-linear stack on X = Spec(A) (for
simplicity we will omit the notation ∇ and keep in mind that the di�erential in
the following diagram are non-trivial):
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(16)
R⊗A L ∨

S [−2] TR R⊗A (TA ⊕ LA[−1])

L ∨[−2] R⊗A (TA ⊕ LA[−1])⊕L ∨[−2] R⊗A (TA ⊕ LA[−1])

R⊗A L ∨
S [−2] TR ⊕L [1] ' h∗TCE(L ) R⊗A (TA ⊕ LA[−1])⊕L [1]

L ∨[−2] Ω1
R[−1]⊕L ∨[−2] ' h∗Ω1

CE(L )[−1] Ω1
R[−1]

Id

φ ' Id

Id

ω[0

We have that:

– All sequences from left to right are fibered.
– The rightmost square of the front and back faces are homotopy Cartesian.
– The plain maps from the front to the back face are related through the
symplectic structures and the natural quasi-isomorphism obtained from
the Lagrangian correspondence.

– Therefore dashed maps obtained by universal properties are weak equiva-
lences.

�

Using the results of Section 3.4, we can transfer the L∞-algebroid structure from
L to R⊗LS such that their Chevalley–Eilenberg algebras are equivalent (via an
∞-quasi-isomorphism). Pulling back the symplectic structure and the Lagrangian
correspondence along this equivalence we get:

Proposition 5.2.3. (L , S, ωY , γ) is equivalent in the sens of De�nition 5.2.1 to:

(π∗SLS, φ
∗ωY , φ

∗γ)

With πS : S → X . In particular, the Chevalley–Eilenberg algebra of this equivalent
L∞-algebroid is given by:

SymA

(
TA[1]⊕LS[2]⊕ L̂ ∨

S [−1]
)

where we use Notation B.2.5 to denote the completion with respect to the Chevalley–
Eilenberg terms given by L ∨

S [−1].

Proof. Using the equivalence φ between perfect L∞-algebroids, this implies that
the associated Chevalley–Eilenberg algebras are equivalent since the Chevalley–
Eilenberg functor preserves weak equivalences between L∞-algebroid whose un-
derlying module are cofibrant (A-cofibrant L∞-algebroids). �
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Remark 5.2.4. There is this curious observation that π∗SLS is a L∞-algebroid on
S although LS is a priori not a an algebroid overX . If LS is itself a L∞-algebroid,
we are going toward the idea of o�-shell symmetries.

From now we will work with (π∗SLS, φ
∗ωY , φ

∗γ) and drop the φ∗ notation. Now we
will try to describe the symplectic structure we obtain.

Lemma 5.2.5. h∗ω0 is1 part of the following commutative diagram where rows are split
exact sequences:

R⊗A (L ∨
S [−2]⊕LS[1]) h∗TCE(L ) ' R⊗A (TA ⊕ LA[−1]⊕L ∨

S [−2]⊕LS[1]) i∗TCrit(f) ' R⊗A (TA ⊕ LA[−1])

R⊗A (L ∨
S [−2]⊕LS[1]) h∗Ω1

CE(L )[−1] ' R⊗A (TA ⊕ LA[−1]⊕L ∨
S [−2]⊕LS[1]) i∗Ω1

Crit(f)[−1] ' R⊗A (TA ⊕ LA[−1])

h∗ω0 i∗ωCrit(f)

In particular, h∗ω0 ∼ i∗ωCrit(f) + ωφ with ωφ the part of h∗ω0 corresponding to the
identity of R⊗A (L ∨

S [−2]⊕LS[1]).

Proof. Using connections and Diagram (1), the bottom face gives us the diagram:

R⊗A L ∨
S [−2] h∗TCE(L ) ' R⊗A (TA ⊕ LA[−1]⊕L ∨

S [−2])⊕L [1] i∗TCrit(f) ⊕L [1] ' R⊗A (TA ⊕ LA[−1])⊕L [1]

L ∨[−2] h∗Ω1
CE(L )[−1] ' R⊗A (TA ⊕ LA[−1]⊕LS[1])⊕L ∨[−2] Ω1

R[−1] ' R⊗A (TA ⊕ LA[−1]⊕LS[1])

φ h∗ω0

Using φ to replace L by R⊗A LS via Lemma 5.2.2, we get:

R⊗A L ∨
S [−2] h∗TCE(L ) ' R⊗A (TA ⊕ LA[−1]⊕L ∨

S [−2]⊕LS[1]) i∗TCrit(f) ⊕R⊗A LS[1] ' R⊗A (TA ⊕ LA[−1]⊕LS[1])

R⊗A L ∨
S [−2] h∗Ω1

CE(L )[−1] ' R⊗A (TA ⊕ LA[−1]⊕LS[1]⊕L ∨
S [−2]) Ω1

R[−1] ' R⊗A (TA ⊕ LA[−1]⊕LS[1])

h∗ω0

Taking the fiber of this whole diagram object-wise at the natural projection to the
diagram:

R⊗A LS 0 R⊗A LS[1]

R⊗A LS 0 R⊗A LS[1]

we get exactly the diagram from the Lemma and it follows from Diagram (1) that
the vertical morphism are the identities. �

1Here h?ω0 is the map induced on the pullback h?ω0 : h∗TCE(L ) → h∗LCE(L )[−1]. It should
not be confuse with the pullback of the 2-form, denoted h∗ω0 given by the composition:

TR → h?TCE(L ) → h∗LCE(L )[−1]→ LR[−1]
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De�nition 5.2.6. We define a (necessarily strict) symplectic 2-form ωst of degree
−1 on CE(L )] by the following map of graded space:

T ]
CE(L ) =

(
CE(L )⊗R i∗TCrit(f) ⊕ CE(L )⊗A (L ∨

S [−2]⊕LS[1])
)]

→
(
CE(L )⊗R i∗LCrit(f)[−1]⊕ CE(L )⊗A (L ∨

S [−2]⊕LS[1])
)]

=
(
Ω1

CE(L )

)]
[−1]

given by the identity plus i?ω[Crit(f). This is a (−1)-shifted symplectic form when
we forget the di�erential on A (denoted by the ] symbol).

Remark 5.2.7. We define ωst as the identity plus the canonical symplectic structure
from Crit(f), and therefore its pullback, h?ωst, is exactly given by i∗ωCrit(f) +ωφ.
This is compatible with the result of Lemma 5.2.5. However, nothing ensures us
that ωst is compatible with the di�erential so it might not even be a 2-form on
CE(L ) itself.

Theorem 5.2.8. The (−1)-shifted symplectic form ω on Y can be described by1:

ω = ωst + ω̃

with h?ωst = i∗ωCrit(f) + ωφ and h?ω̃ = 0.

Proof. From the following Lemma 5.2.5, we know that h?ω0 = h?ωst. Now, it follows
that ω − ωst = ω̃ is such that h?ω̃ = 0. �

In the end, we find that although our construction has similarities to the classi-
cal construction of BV, working up to homotopy and with almost derived critical
loci adds so much more flexibility that we cannot completely recover a notion of
“uniqueness up to equivalence” of the BV construction as can be found in [FK14]
for example.

Moreover, our construction does not provide a BV charge and we do not have a
good way to phrase this condition in a meaningful homotopy invariant way. How-
ever, even if we do not have a BV charge, the infinitesimal quotient we obtain is
(−1)-shifted symplectic with a symplectic structure compatible with the di�eren-
tial on the algebra of functions. We do not think that a BV charge should exist in
such degree of generality.

Nevertheless, it turns out that a rather large class of example of BV construction
admits a BV charge. As we will see, a BV construction is Hamiltonian as soon as
the symplectic structure is given by ωst (without the extra terms).

1Note that neither summand is actually a 2-form as they might not be compatible with the
di�erential.
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5.2.2. Hamiltonian vector �eld and BV charge.

The goal of this section is to prove that if we have a BV construction (π∗SLS, ωY , γ)
such that ωY = ωst, then there is a BV charge and we can give a formula for the
BV charge provided by the homological perturbation lemma.

The BV charge is nothing but a Hamiltonian vector field for the natural di�erential
on the Chevalley–Eilenberg algebra, CE(π∗SLS), associated to the Lie algebroid
of symmetries on S. To simplify the notations, in this section, we will denote
L := π∗SLS the L∞-algebroid over R. The key insight that will make this section
work is the following proposition:

Proposition 5.2.9. There is an isomorphism (we are considering the strict construction
of these graded mixed algebras) of graded mixed algebras:

Pol(CE(L ),−1)
'→ DRε−gr(CE(L ))

such that:
– Pol(CE(L ),−1) denotes the graded mixed complex of (−1)-shifted polyvector
�elds on CE(L ) with mixed di�erential given by [Πst, ]SN, where the bracket is
the Schouten–Nijenhuis bracket, and Πst is the bivector �eld de�ning the (strict)
Poisson structure dual to ωst.

– DRε−gr is the graded mixed version of DR described at the beginning of Section
5.2.

– The map induces the identity of CE(L ) in weight 0 and sends a derivation
X ∈ TCE(L ) to ιXωst ∈ Ω1

CE(L )[−1].

De�nition 5.2.10. A vector field X ∈ TCE(L ) of degree 1 is called Hamiltonian if:

X =
[
Πst, Q

]
for some Q ∈ CE(L ) (the part of weight 0). In particular this is equivalent, using
Proposition 5.2.9, to saying that ιXωst = ddRQ.

If we consider δCE ∈ TCE(L ) of degree 1. Then finding a BV charge amounts to
show that ιδCE

ωst is ddR-exact. First we will see with Theorem 5.2.25 that we have
a strong deformation retract:

DR(R) DR(CE(L ))
i∞

p
h∞

Then ιδCE
ωst is exact for the total di�erential if and only if p(ιδCE

ωst) is exact for
the total di�erential. We will see in Corollary 5.2.14 that p(ιδCE

ωst) = ddRf and
restricted to the weight 0 part, given by A, the total di�erential is D = δA + ddR =
ddR. Therefore we have that:

ιδCE
ωst = D(i∞(f) + h∞(ιδCE

ωst))
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Moreover, in Lemma 5.2.29 we show that i∞ preserves the de Rham weight and
h∞ decreases it by 1. Since ιδCE

ωst has de Rham weight at most 1 (since it is valued
in Ω1

CE(L )), we have that:

Q := i∞(f) + h∞(ιδCE
ωst) ∈ CE(L )

Moreover, Q is of degree 0 and therefore Q ∈ CE(L ). This implies that:

DQ = ddRQ+ δCEQ

Since the de Rham weight of ιδCE
ωst is exactly 1 and δCEQ has de Rham weight 0,

this implies that δCEQ = 0 and we get:

ιδCE
ωst = ddRQ

We have proven the following:

Theorem 5.2.11. A BV construction as above with strict symplectic structure has a BV
charge given by the formula:

Q := i∞(f) + h∞(ιδCE
ωst) ∈ CE(L )

We now need to state and prove the claims we used to prove this theorem. First
recall that the Chevalley–Eilenberg di�erential respects the Chevalley–Eilenberg
filtration and can therefore be decomposed in weight components:

δCE := δ0 + δ1 + · · ·

In what follows we will consider two di�erent filtrations:

– The filtration coming from the de Rham algebra we will call the de Rham
weight. It is denoted as before by F pDR(CE(L ))

– The filtration induced by the Chevalley–Eilenberg filtration that we will
call the Chevalley–Eilenberg weight. It is denoted by F p

L DR(CE(L )).

We refer to Definition 5.2.21 for more details on those filtrations.

Lemma 5.2.12. We have the following:

(1) δ0 restricted to R is exactly the di�erential on R, δR.
(2) The restriction of δ0 to LS[2] is such that (ιδ0)|LS [2]ω ∈ F 1

L DR(A)
(3) For g ∈ A, ιdg is a derivation on SymA TA[1] and ιιdgω = ddRg.

Proof. The first claim is clear by definition of the Chevalley–Eilenberg di�erential.

For the second claim, (δ0)|LS [2] is zero on element generated by A and TA[1] and
non-zero on LS[2]. Such a derivation is a linear combination of elements of the
form a ∂

∂π
for π ∈ L and a ∈ R. But ιa ∂

∂π
ωst = aωst( ∂

∂π
,−). Since ωst pairs L [2]

and L ∨[−1] ∈ F 1DR(A), it shows that aω( ∂
∂π
,−) ∈ F 1DR(A) ∩ F 1

L DR(A).
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For the last claim, everything happens as if we are working on Crit(f) with its
canonical symplectic structure. By definition we have:

ιιdgω0 = ω[0(ιdg)

We want to translate the problem in the Poisson setting. To do so we recall that
ω[0 and Π[ are inverses of each other. Applying Π[ to the equality ιιdgω0 = dg, we
obtain:

Π[ιιdgω0 = Π[(dg)

But Π[ιιdgω0 = Π[ω[0(ιdg) = ιdg. Therefore we are left to prove that:

ιdg = Π[(dg) = {g,−}
But on Crit(f), the Poisson structure is on SymOX

TX [1] and is induced by the
pairing 〈f,X〉 = X(f) because it is the Poisson structure associated to the canoni-
cal symplectic structure. Therefore {g,−} sends an element of OX to 0 and sends
X ∈ TX [1] to X(g) = dg.X = ιdgX, which shows that ιdgX = {g,X}. �

The lemma above describes ιδ0ω
st. We now turn to the description of the terms of

higher filtration δ≥1.

Lemma 5.2.13.
ιδ≥1

ωst ∈ F 1
L DR(CE(L ))

Proof. Since δ≥1 is valued in F 1
L DR(CE(L )) then so is ιδ≥1

ωst. �

Corollary 5.2.14.
p(ιδCE

ωst) = ddRf

Proof. We use Lemma 5.2.12 and Lemma 5.2.13 in combination with Lemma 5.2.18
saying that:

F 1
L DR(CE(L )) ⊂ ker(p)

This shows that:
p(ιδCE

ωst) = p(ddRf) = ddRf

�

5.2.3. Deformation retract of de Rham algebras.

The goal of this section is to compute the de Rham complexes of linear and
Chevalley–Eilenberg stacks. This is a purely technical section that is required
for the proof of Theorem 5.2.11.

For linear derived stacks

LetX = Spec(A) withA cofibrant of almost finite presentation andF ∈ Perf(X)
concentrated in non-negative degrees. The linear stack associated to F can be
represented by B = SymA F∨ ∈ cdga≤0 endowed with the di�erential δB = δA +
δF∨ .
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Notation 5.2.15. In this section we will use the following notations:

β1···k := β1 ∧ · · · ∧ βk
βi1···k

∧

= β1 ∧ · · · ∧ βi−1 ∧ βi+1 ∧ · · · ∧ βk
We will write:

DRgr(B) ' Symgr
A LA[−1]

And the mixed structure of DRε−gr is the de Rham di�erential. Moreover, using a
connection on F , we have:

Ω1
B ' π∗(F ⊕∇ LA)

Then we get:

DR(B) ' ŜymA LA[−1]⊗A ŜymA F∨[−1]⊗A SymA F∨

' SymA

(
L̂A[−1]⊕ F̂∨[−1]⊕F∨

)
Where the di�erential on the right hand side is describe by the following:

Lemma 5.2.16. The total di�erential is given by:

DB = ddR + δF∨ + δvA + δvF∨ + δ∇

with:
– ddR the de Rham di�erential.
– δvA the vertical di�erential on DR(A) extended by zero on F∨[−1] and F∨.

δvA = δA + δLA

– δvF∨ the di�erential onF∨[−1] coming from the di�erential δF∨ onF∨ extended
B-linearly and by 0 on LA[−1] and F∨.

– δF∨ = δB − δA is the di�erential on F∨.
– δ∇ the part of the di�erential induced by the connection, valued in:

ŜymA LA[−1]⊗A Sym≥1
A F∨

Proof. By definition we have DB = ddR + δvB the decomposition in de Rham and
vertical di�erential. Moreover δvB restricted to B is δB itself and δvB on LB[−1] is
the natural di�erential on LB[−1]. Using Proposition 1.2.39, we have:

LB[−1] ' B ⊗A
(
LA[−1]⊕∇ F∨[−1]

)
where the right hand side is the A-module with di�erential given by

δB + δvF∨ + δLA + δ∇

Moreover δB+δLA = δF∨+δvA and δ∇ is the part of the di�erential sending F∨[−1]
to an element in (LA[−1]⊗A F∨) [−1] via the covariant derivative. �

We are now ready to define the maps we need for the deformation retract. Before
that we want to define two filtrations:
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– The de Rham �ltration, denoted F pDR(B), given by the complete filtration
associated with the graded mixed structure on DR(B). This is the filtration
associated with the ideal generated by LA[1] and F∨[−1] (see Example
B.2.4).

– The F -�ltration denoted F p
F DR(B) induced by the natural filtration on

SymB F∨ of the symmetric algebra, generated by the termsF∨ andF∨[−1]
in DR(B).

De�nition 5.2.17. There are maps:

DR(A) DR(B)
i

p
h

with:
– i is the map induced by the projection AX(F )→ X and therefore respects
the total di�erentials. This map preserves both the de Rham filtration and
the F -filtration.

– p is the map induced by the 0 section X → AX(F ) and therefore respects
the total di�erentials. It also preserves both filtrations.

– h is a degree−1 derivation defined on homogeneous elements, f ∈ B, αi ∈
LA[−1], i = 1 · · · p, dξi ∈ F∨[−1], i = 1 · · ·m and ηi ∈ F∨, i = 1 · · ·m′ by:

h(fα1···p ∧ (dξ)1···m ∧ η1···m′) =
1

m+m′

m∑
i=1

εhfα1···p ∧ (dξ)i1···m
∧

∧ ξi ∧ η1···m′

With εh obeying the sign rule for h a degree -1 derivation:

εh = (−1)nh , nh =
i−1∑
j=1

(|ξj|+ 1) +
m∑

j=i+1

(|ξj|+ 1)|ξi|

In short, h turns a dξ to a ξ. Therefore h preserves the F -filtration and
reduces the de Rham weight by 1.

Lemma 5.2.18.

ker(p) =
∏
p+q≥1

ŜymB LB[−1]⊗B Ŝym
≥p
B F∨[−1]⊗B Sym≥qB F∨ := F 1

F DR(B)

Proof. In other words, we need to show that the kernel of p is the ideal of DR(B)
generated by F∨ and F∨[−1]. Since p is the map induced by the 0 section of
the linear stack, it corresponds to the projection SymB F∨ → B and induces the
projection:

DR(B) ' SymA

(
̂LA[−1]⊕F∨[−1]⊕F∨

)
→ ŜymA LA[−1] ' DR(A)

Therefore the kernel of this map is indeed the ideal generated by F∨ and F∨[−1].
�
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Theorem 5.2.19. i, p and h de�ne a deformation retract:

DR(A) DR(B)
i

p
h

Proof. It is straightfoward that p ◦ i = id. We need to show that h is an homotopy
between id and i ◦ p that is id − i ◦ p = [d, h]. On generator of DR(B), denoted
by f ∈ B, αi ∈ LA[−1], i = 1 · · · p, dξi ∈ F∨[−1], i = 1 · · ·m and ηi ∈ F∨, i =
1 · · ·m′, we get:

(id− i ◦ p)(fα1···p ⊗ 1⊗ 1) = 0

(id− i ◦ p)(dξ1···m ∧ η1···m′) = dξ1···m ∧ η1···m′ if m+m′ 6= 0

It is straightforward to check that [d, h](fα1···p) = 0 since h sends ŜymB Ω1
B[−1] to

zero. We only have to check this equation on terms of the form dξ1···m ∧ η1···m′ .

ddR ◦ h(dξ1···m ∧ η1···m′) = ddR

(
1

m+m′

m∑
i=1

εhdξ
i
1···m

∧

∧ ξi ∧ η1···m′

)

=
1

m+m′

(
m∑
i=1

ε1dξ1···mη1···m′ +
m′∑
k=1

m∑
i=1

εdhdξ
i
1···m

∧

dηkξiη
k
1···m′

∧

)
with:

ε1 = (−1)n1 , n1 = nh +
∑
j 6=i

(|ξj|+ 1) +
m∑

j=i+1

(|ξj|+ 1)(|ξi|+ 1)

n1 =
i−1∑
j=1

(|ξj|+ 1) +
m∑

j=i+1

(|ξj|+ 1)|ξi|+
∑
j 6=i

(|ξj|+ 1) +
m∑

j=i+1

(|ξj|+ 1)|ξi|+
m∑

j=i+1

(|ξj|+ 1)

=2×
∑
j 6=i

(|ξj|+ 1) + 2×
m∑

j=i+1

(|ξj|+ 1)|ξi|

Since this number is even, ε1 = 1 and we have:
m∑
i=1

ε1dξ1···mη1···m′ = m× dξ1···mη1···m′

Now we consider εdh:

εdh = (−1)ndh , ndh = nh+
∑
j 6=i

(|ξj|+1)+|ξi|+
k−1∑
j=1

|ηj|+
k−1∑
j=1

|ηj|(|ηk|+1)+|ξi|(|ηk|+1)

we get

ndh =
i−1∑
j=1

(|ξj|+1)+
m∑

j=i+1

(|ξj|+1)|ξi|+
m∑
j=1

(|ξj|+1)−1+
k−1∑
j=1

|ηj|(|ηk|+2)+|ξi|(|ηk|+1)
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Now for h ◦ d:

h ◦ d(dξ1···m ∧ η1···m′) = h

(
m′∑
k=1

εddξ1···m ∧ dηkηk1···m′

∧

)

with:

εd = (−1)nd , nd =
m∑
j=1

(|ξj|+ 1) +
k−1∑
j=1

|ηj|+
k−1∑
j=1

|ηj|(|ηk|+ 1)

Therefore we get:

h◦d(dξ1···m∧η1···m′) =
1

m+m′

(
m′∑
k=1

ε2dξ1···m ∧ η1···m′ +
m∑
i=1

m′∑
k=1

εhddξ
i
1···m

∧

dηkξiη
k
1···m′

∧

)

We have:

ε2 = (−1)n2 , n2 = nd +
m∑
j=1

(|ξj|+ 1) +
k−1∑
j=1

|ηj||ηk|

n2 =
m∑
j=1

(|ξj|+ 1) +
k−1∑
j=1

|ηj|+
k−1∑
j=1

|ηj|(|ηk|+ 1) +
m∑
j=1

(|ξj|+ 1) +
k−1∑
j=1

|ηj||ηk|

=2×
m∑
j=1

(|ξj|+ 1) + 2×
k−1∑
j=1

|ηj|(|ηk|+ 1)

since n2 is even, ε2 = 1 and:

m′∑
k=1

ε2dξ1···m ∧ η1···m′ = m′ × dξ1···m ∧ η1···m′

Finally we have:

εhd = (−1)nhd , nhd = nd +
i−1∑
j=1

(|ξj|+ 1) +
m∑

j=i+1

(|ξj|+ 1)|ξi|+ |ξi|(|ηk|+ 1)
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nhd =
m∑
j=1

(|ξj|+ 1) +
k−1∑
j=1

|ηj|+
k−1∑
j=1

|ηj|(|ηk|+ 1) +
i−1∑
j=1

(|ξj|+ 1)

+
m∑

j=i+1

(|ξj|+ 1)|ξi|+ |ξi|(|ηk|+ 1)

=
m∑
j=1

(|ξj|+ 1) +
k−1∑
j=1

|ηj|(|ηk|+ 2) +
i−1∑
j=1

(|ξj|+ 1)

+
m∑

j=i+1

(|ξj|+ 1)|ξi|+ |ξi|(|ηk|+ 1)

Now to show the result, we need to show that nhd = ndh + 1 mod 2 but a straight-
foward calculation show that:

nhd − ndh = 1

This shows that:

[d, h](dξ1···m ∧ η1···m′) =
1

m+m′
((m+m′)× dξ1···m ∧ η1···m′) = dξ1···m ∧ η1···m′

�

Theorem 5.2.20. (p, i, h) forms a strong deformation retract. In other words we have:

ph = hi = h2 = 0

Proof. Using the same notations as before, we have:

ph(dξ1···mη1···m′) = p

(
1

m+m′

m∑
i=1

εhdξ
i
1···m

∧

∧ ξi ∧ η1···m′

)
= 0

For α a p-form of degree n on B:

hi(α) = h(α) = 0

h2(dξ1···mη1···m′) = h

(
1

m+m′

m∑
i=1

εhdξ
i
1···m

∧

∧ ξi ∧ η1···m′

)

=
1

(m+m′)2

m∑
i=1

εh

(
i−1∑
k=1

ε1dξ
i,k
1···m

∧

∧ ξi ∧ ξj ∧ η1···m′ +
m′∑

k=i+1

ε2dξ
i,k
1···m

∧

∧ ξi ∧ ξj ∧ η1···m′

)
with

ε1 = (−1)n1 , n1 =
k−1∑
j=1

(|ξj|+ 1) +
m∑

j=k+1

(|ξj|+ 1)|ξk| − |ξk|
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ε2 = (−1)n2 , n2 =
k−1∑
j=1

(|ξj|+ 1)− |ξi| − 1 +
m∑

j=k+1

(|ξj|+ 1)|ξk|+ |ξk||ξi|

Note that here n1 = n1(i, k) and n2 = n2(i, k)

εh = (−1)nh , nh =
i−1∑
j=1

(|ξj|+ 1) +
m∑

j=i+1

(|ξj|+ 1)|ξi|

n1 + nh mod 2 =
i−1∑
j=k

(|ξj|+ 1) +
m∑

j=i+1

(|ξj|+ 1)|ξi|+
m∑

j=k+1

(|ξj|+ 1)|ξk| − |ξk|

=
i−1∑

j=k+1

(|ξj|+ 1) +
m∑

j=i+1

(|ξj|+ 1)|ξi|+
m∑

j=k+1

(|ξj|+ 1)|ξk|+ 1

n2 + nh mod 2 =
k−1∑
j=i

(|ξj|+ 1)− |ξi| − 1 +
m∑

j=k+1

(|ξj|+ 1)|ξk|+ |ξk||ξi|

+
m∑

j=i+1

(|ξj|+ 1)|ξi|

=
k−1∑
j=i+1

(|ξj|+ 1) +
m∑

j=k+1

(|ξj|+ 1)|ξk|+ |ξk||ξi|+
m∑

j=i+1

(|ξj|+ 1)|ξi|

The term in (i, k) for k < i is then:

(−1)(n1+nh)(i,k)dξi,k1···m

∧

∧ξi∧ξj∧η1···m′ = (−1)|ξi||ξk|×(−1)n1+nhdξi,k1···m

∧

∧ξk∧ξi∧η1···m′

The term for (k, i) is then given by:

(−1)(n2+nh)(k,i)dξk,i1···m

∧

∧ ξk ∧ ξi ∧ η1···m′

But it turns out that:

(n1 + nh)(i, k) + |ξi||ξk| = (n2 + nh)(k, i) + 1

This proves that (−1)(n1+nh)(i,k)dξi,k1···m

∧

∧ ξi ∧ ξk ∧ η1···m′ = −(−1)(n2+nh)(k,i)dξk,i1···m

∧

∧
ξk ∧ ξi ∧ η1···m′ for all k < i and therefore the sum over all i, k must be 0. �

For Chevalley–Eilenberg algebras

Take this time L a perfect L∞-algebroid concentrated in non-positive degree over
X = Spec(A) with A cofibrant of almost finite presentation. We denote:

B := CE(L ) ' ŜymA L ∨[−1]
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with di�erential δB := δCE = δ0 + δ1 + · · · the weight decomposition of the
Chevalley–Eilenberg di�erential for the standard filtration on CE(L ). Under the
conditions described at the beginning of Section 5.2, we have:

DR(B) ' ŜymA (L ∨[−1]⊕ LA[−1]⊕L ∨[−2])

together with a di�erential described in Lemma 5.2.22.

De�nition 5.2.21.
– We define the Chevalley–Eilenberg filtration1 of DR(B) the filtration in-
duced by the Chevalley–Eilenberg filtration on CE(L ). :

F p
L DR(B) :=

∏
n≥0

ŜymA LX [−1]⊗A Ŝym
≥n
A L ∨[−2]⊗A ŜymA

≥p−n
L ∨[−1]

In particular we have again that F i
L DR(B) ⊂ ker(p) for all i ≥ 1.

– |DR| (B) is also naturally endowed with the usual de Rham filtration in-
duced by the de Rham weight:

F p
dRDR≥p(B) :=

∏
i≥p

DR(B)(i)

Lemma 5.2.22. The di�erential is given by:

DB = ddR + (δCE − δA) + δvA + ρ∗ + δvL ∨[−2] + δ+ + δ∇

with:
– ddR the de Rham di�erential. It has Chevalley–Eilenberg weight 0 and de Rham
weight 1.

– δvA the vertical di�erential on ŜymA LA[−1] = DR(A) extended by zero on
L ∨[−2] and L ∨[−1]. It has de Rham and Chevalley–Eilenberg weight 0.

– δCE−δA = δL ∨[−1] +δ1 +δ2 +· · · is the di�erential onB (minus δA) extended by
0 on LB[−1] andL ∨[−2]. δL ∨[−1] has de Rham weight 0 and δi has Chevalley–
Eilenberg weight i.

– δvL ∨[−2] is the di�erential on L ∨[−2] induced by δL ∨[−1] = δ0 − δA. It has de
Rham and Chevalley–Eilenberg weight 0.

– ρ∗ : LA[−1]→ L ∨[−2] isA-linear and extended by 0 onL ∨[−2] andL ∨[−1].
It has de Rham weight 0 and Chevalley–Eilenberg weight 1.

– δ+ is the part of the di�erential induced by (δ1−ρ∗◦ddR)+δ2 + · · · onL ∨[−2].
In particular it is valued in F 2

LB and increases the Chevalley–Eilenberg weight
by 1 or more.

– δ∇ the part of the di�erential induced by the connection, valued in:

ŜymA LA[−1]⊗A Ŝym
≥1

A L ∨[−1]

and having de Rham and Chevalley–Eilenberg weight 0.

1This is the analogue of the F -filtration from before.
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We recapitulate these properties by:

ddR (δCE − δA) δvA ρ∗ δvL ∨[−2] δ+ δ∇
CE weight 0 ≥ 1 0 1 0 ≥ 1 0
DR weight 1 0 0 0 0 0 0
Valued in F 1 F 1

L F 1 F 1 ∩ F 1
L F 1 ∩ F 1

L F 1 ∩ F 2
L F 1 ∩ F 1

L

Proof. By definition we have DB = ddR + δvB the decomposition in de Rham and
vertical di�erentials. Moreover δvB restricted to B is δB itself and δvB on LB[−1] is
the natural di�erential on LB[−1]. Using the description of TCE(L ) given at the
beginning of Section 5.2, we have:

LB[−1] ' B ⊗A (LA[−1]⊕L ∨[−2])

where the right hand side is the B-module with di�erential given by

δA + δvL ∨[−1] + δLB + δ∇ + δ̃1 + δ̃2 + · · ·

where δ̃i is the part of the di�erential on LB[−1] induced by δi (it increases the
Chevalley–Eilenberg weight by i).

Note that δ̃1 = ρ̃∗ ◦ d+ δ̂1 and ˜ρ∗ ◦ d is exactly ρ∗ : LA[−1]→ L ∨[−1].
We get δ̃1 = ρ∗ + δ̂1 where δ̂1 is valued in F 2DR(B).
Then we can define:

δ+ = δ̂1 + δ̃2 + · · ·
It increases the Chevalley–Eilenberg weight by at least 1 and is valued in F 2DR(B).
Moreover we have:

δB + δLA = δL ∨[−1] + δvA + δ1 + δ2 + · · ·
with δ1 + δ2 + · · · = δB − δA = δCE − δA and δ∇ is the part of the di�erential
sending F∨[−1] to an element in LA[−1]⊗A F∨ via the covariant derivative. �

Lemma 5.2.23. In this situation the augmentation CE(L ) → A only have a section
when “forgetting” the terms Chevalley–Eilenberg di�erential that increases the Chevalley–
Eilenberg weight. Doing this gives CEgr(L ) and it gives the completion of the algebra of
function of a semi-linear stack. With the same formulas as in De�nition 5.2.17, we have
the maps:

DR(A) (DR(B)], δ′)
i

p
h

where the underlying algebra DR(B)] is endowed with a di�erential given by the parts of
the di�erential described in Lemma 5.2.22 that preserve the Chevalley–Eilenberg weight:

δ′ := ddR + δF∨[−1] + δvA + δvL ∨[−2] + δ∇

In particular, it forms a strong deformation retract thanks to Theorems 5.2.19 and 5.2.20.
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Lemma 5.2.24. h respects the Chevalley–Eilenberg �ltration.

Proof. We can see from the formula defining h that it sends an element of Chevalley–
Eilenberg weight m + m′ given by fα1···ndξ1···mη1···m′ to a sum of elements of
Chevalley–Eilenberg weight also m+m′ (or 0 if m = 0 which is also of Chevalley–
Eilenberg weight m+m′). �

Theorem 5.2.25. We obtain a new strong deformation retract:

DR(A) DR(B)
i∞

p
h∞

with:
i∞ = i+ h ◦

∑
(∆h)k ◦∆ ◦ i

h∞ = h+ h ◦
∑

(∆h)k ◦∆ ◦ h

Remark 5.2.26. Since p is induced by the projection B → A (which respects the
di�erentials), p respects the total di�erentials on the nose and therefore we will get
p∞ = p. However, as there is no natural map B → A respecting the di�erentials,
i needs to be deformed in order to respect the di�erentials.

Proof. This new strong deformation retract is obtained by the homological pertur-
bation Lemma for the strong deformation retract of Lemma 5.2.23. We obtain:

DR(A) DR(B)
i∞

p∞
h∞

With DR(A) endowed with the di�erential DB,∞.
We have that DB = δ′ + ∆ with ∆ that can be described using Lemma 5.2.22.
Then the formulas for the homological perturbation Lemma give us (see [Cra04]):

p∞ = p+ p ◦
∑

(∆h)k ◦∆ ◦ h

i∞ = i+ h ◦
∑

(∆h)k ◦∆ ◦ i

h∞ = h+ h ◦
∑

(∆h)k ◦∆ ◦ h

DB,∞ = DB + p ◦
∑

(∆h)k ◦∆ ◦ i

We just need to show that DA,∞ = DA and p∞ = p. It is enough to prove that
p ◦
∑

(∆h)k ◦∆ = 0, which follows from the fact that ∆ increases the Chevalley–
Eilenberg weight, and therefore is valued in F 1

LB ⊂ ker(p) and the fact that h
preserves the Chevalley–Eilenberg weight (Lemma 5.2.24). �

Corollary 5.2.27. The de Rham cohomology of CE(L ) is isomorphic to the de Rham
cohomology of the base A.
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Corollary 5.2.28. A closed element a ∈ DR(CE(L )) is exact if and only if p(f) is
exact in DR(A). Moreover, if p(f) = DBb, we have:

a = DA(i∞(b) + h∞(a))

Proof. If a is exact then so is p(a) since p respects the di�erentials. Moreover if
p(a) = DBb then we have:

a = i∞ ◦ p∞(a) +DB ◦ h∞(a)− h∞ ◦DA(a)

= i∞ ◦DBb+DA ◦ h∞(a)− h∞ ◦DA(a)

= DA(i∞(b) + h∞(a))

�

Finally we need to understand the behavior of all the maps with respect to the de
Rham weight.

Lemma 5.2.29. We have the following:
– i preserves the de Rham weight.
– p preserves the de Rham weight.
– h reduces the de Rham weight by 1.
– ∆ increases the de Rham weight by at most 1.
– i∞ preserves the de Rham weight.
– h∞ decreases the de Rham weight by 1.

5.3. Examples of BV Constructions.

In this section we will show that our framework encompasses and generalizes many
of the already existing constructions (within the restriction of our framework). In
particular we recover the two classes of constructions given by:

– The BV construction on the Koszul–Tate resolution of f .
– The equivariant derived critical locus for a functional with o�-shell sym-
metries (infinitesimal or not).

For the second type of construction, we will see that this recovers the BV formal-
ism for group actions as discussed in [BSS21], the infinitesimal BV formalism for
o�-shell actions of Lie algebroids and in the most general case, the BV formalism
for o�-shell actions of groupoids.

We will also see that for o�-shell actions, the heuristics described in Constructions
5.0.2 and 5.0.1 coincide.

5.3.1. BV construction for the Koszul–Tate resolution.

We are going to explain how the construction in [FK14] fits in our framework (see
Construction 5.1.1). More precisely, their construction is a BV construction for
the almost derived critical locus given by a Koszul–Tate resolution of the strict
critical locus.
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In this section we will take S := KT(f) the a�ne stack given by a Koszul–Tate
resolution of f and assume that the module LKT is perfect. Moreover, for this
example, we need to put ourselves in the setting described at the beginning of
Section 5.2 and consider underived tangent and cotangent complexes.

The second step of the construction ensures that the (−1)-shifted symplectic struc-
ture we consider is in fact the strict symplectic structure, ωst as described in Defi-
nition 5.2.6 on the graded algebra (without di�erential):

SymA

(
TA[1]⊕LKT[2]⊕ L̂ ∨

KT[−1]
)

Then Step (4) amounts to finding a L∞-algebroid structure on π∗SLKT whose as-
sociated Chevalley–Eilenberg algebra has a di�erential not only compatible with
the symplectic structure but also Hamiltonian1.

Now from the construction of the BV charge, we now that the cdga BVFK is the
Chevalley–Eilenberg algebra associated with a L∞-algebroid structure on π∗LKT

over KT(f). We will consider the infinitesimal quotient from Definition 5.1.5 given
by the formal completion of the spectrum of this Chevalley–Eilenberg algebra.
Then the associated infinitesimal BV construction is:[

KT(f)�π∗sLKT

]
:= BVFK := ̂Spec(CE(LKT))KT(f)

We then want to prove that this is a generalized infinitesimal symplectic reduction,
which is exactly the content of the following theorem. For this theorem, we need
again to be able to compute h∗TBVFK

which is the pullback of the tangent complex
of a Chevalley–Eilenberg algebra of a Lie algebroid over an a�ne base. From the
setting described in Section 5.2 we have:

h∗T[KT(f)�π∗LKT

] ' TKT(f) ⊕ρ π∗LKT[1]

Note that in this context, all the notions (except for (5) which is a weaker notion)
of infinitesimal quotient of Definition 5.1.5 are equivalent. Then we have:

1Using the discussion in Section 5.2, it turns out that the main input of the construction is not
that there is a BV charge, but rather that there exists a Lie algebroid compatible with the strict
symplectic structure.



232

Theorem 5.3.1. There is a Lagrangian correspondence1:

KT(f)

BVFK Crit(f)

Proof. The pullback of the canonical symplectic structures are equal in KT(f) and
therefore we can chose the 0 isotropic correspondence structure. To conclude that
this is a Lagrangian correspondence, we observe that the following diagram is
homotopy Cartesian:

TKT(f) p∗TCrit(f) ' p∗Ω1
Crit(f)[−1]

h∗TBVFK
' h∗Ω1

BVFK
[−1] Ω1

KT(f)[−1]

From our assumptions we have that:

p∗TBVFK
' TKT(f) ⊕ρ π∗LKT[1]

And a connection on the semi-linear presentation of the stack KT(f)→ Crit(f)
gives an equivalence:

TKT(f)
∼= i∗TCrit(f) ⊕∇ π∗L ∨

KT[−2]

Plugging these equivalences in the diagram proves that it is Cartesian. �

This implies that BVFK is an infinitesimal BV construction in the sens of Defini-
tion 5.1.8 for the inclusion KT(f) → Crit(f) of a Koszul–Tate resolution of the
strict critical locus. In particular, it is a BV construction where all the symmetries
of f are taken into account.

5.3.2. Group actions and moment maps.

This section motivates a notion of BV construction for group actions instead of
the infinitesimal actions of their Lie algebras. The idea is that such a construction
would remember the global action of the group and therefore global phenomena in-
duced by the group action. This idea is discussed in more details in [BSS21] where
they study the G-equivariant derived critical locus as a model for such a refined
notion of BV construction. We argue that this is an instance of BV construction
in our sens, and it is a particular example of the more general construction in
Section 5.3.4.

1In this setting mixing derived and underived constructions a Lagrangian correspondence in
defined using the symplectic geometry as defined in [PS20]. In particular the non-degeneracy
condition tells that the strict tangent and cotangent complexes are part of a homotopy Cartesian
square.
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We are interested in the BV construction where the action on S is given by an ac-
tion of a group G. Again, given an arbitrary almost derived critical locus, nothing
ensures the existence of such a BV construction. However, we will see that given
a group action of o�-shell symmetries (Definition 5.1.14), we can always construct
an almost derived critical locus S whose generalized symplectic reduction is given
by a quotient of S by an action of G.

Let G be an a�ne algebraic group acting on X such that f : X → A1
k is G-

invariant. Then there is moment map µ : T ∗X → g∗ (Definition 4.3.2) whose

symplectic reduction is T ∗
[
X�G

]
(Example 4.3.7).

From Example 4.3.11, we know that by taking the Lagrangian intersection of µ,
we have a (−1)-shifted moment map µ−1 : Crit(f) → g∗[−1] whose symplectic
reduction is Crit([f ]). We will show that Crit([f ]) is a BV construction for the
inclusion Z(µ)→ Crit(f). All we are lacking is to show that Z(µ−1) is an almost
derived critical locus:

Lemma 5.3.2. Z(µ−1) is an almost derived critical locus.

Proof. Consider the following diagram where all squares are pullbacks:

Z(µ) X ?

T ∗X g∗ ×X g∗
µ×π

The left most square is a pullback of linear stacks over X therefore we have:

Z(µ) ' AX(LX ×g∗⊗OX OX) ' AX(LX ⊕µ g∗[−1]⊗ OX)

In particular, since X = Spec(A), it is a�ne and its algebra of functions is
SymA (A⊗ g[1]⊕ TX).

Now consider the commutative diagram:

X T ∗X X

X g∗ ×X X

X X X

df s0

s0 s0

This diagram is commutative because f is G-equivariant and taking the limit of
this diagram either first horizontally and then vertically or vice versa, we get an
equivalence:

Z(µ−1) := Crit(f)×g∗[−1]×X X ' X ×Z(µ) X
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The right hand side is clearly a�ne with algebra of functions:

A⊗SymA TA⊕µA⊗g[1] A ' SymA (TA[1]⊕µ A⊗ g[2])

and the di�erential restricted to TA[1] is the contraction ιdf . This shows that
Z(µ−1) is an almost derived critical locus. �

This lemma together with Example 4.3.21 shows the following:

Theorem 5.3.3. Let X be an Artin stack and G an a�ne group of o�-shell symmetries
acting on X . Then Crit([f ]) is a generalized symplectic reduction of Z(µ−1)→ Crit(f)
and is therefore an o�-shell BV construction on f (with S = Z(µ−1)).

We have seen with Proposition 4.2.6 and Example 4.1.8 that
[
Z(µ−1)�X × g

]
is

the formal completion of the map Z(µ)→
[
Z(µ−1)�G

]
.

Corollary 5.3.4. If Y :=
[
S�G

]
is a BV construction obtained by an action of o�-shell

symmetries (that is a BV construction as in Theorem 5.3.3) such that G acts on X . Then
the formal completion

Ŷ ' ŶS '
[
S�X × g

]
is an in�nitesimal BV construction in the sens of De�nition 5.1.8.

Proof. This is a direct consequence of Theorem 5.1.13. �

Remark 5.3.5. One of the intersecting feature of the BV construction for aG-action
on X of o�-shell symmetries is that it can be understood both from the point of
view of Construction 5.0.1 and of Construction 5.0.2. For the first point of view, it
is given, by definition, by a quotient of an almost derived critical locus (fitting in
a Lagrangian correspondence). For the second point of view, we have shown that

this is also the derived critical locus of the quotient map [f ] :
[
X�G

]
→ A1 (i.e.

the equivariant derived critical locus):

Crit([f ]) '
[
X�G

]
×
T ∗[X�G]

[
X�G

]
'
[
Z(µ−1)�G

]
5.3.3. Lie algebroid action and moment maps.

In the previous section we had the BV construction from a group action of o�-shell
symmetries. In this section we will show that a similar construction can be made
from an infinitesimal action of a Lie algebroid of o�-shell symmetries.

We know from Example 4.3.21, that if L is a Lie algebroid of o�-shell infinitesi-
mal symmetries on X (Definition 5.1.15), then Crit(f)→ L∗[−1] is a (−1)-shifted
moment map with infinitesimal symplectic reduction given by the L -equivariant
derived critical locus Crit([f ]).
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Just like in Lemma 5.3.2, we can show that Z(µ−1) is an almost derived critical
locus if L is of almost finite presentation and concentrated in non-positive degrees
(see Proposition 4.2.34 knowing that X is a smooth algebraic variety).
This proves the following:

Theorem 5.3.6. Given a Lie algebroid of o�-shell symmetries L , then Crit([f ]) is an
in�nitesimal BV construction (for S = Z(ρ∗−1)).

Again, this infinitesimal BV construction from a Lie algebroid of o�-shell symme-
tries on X can be understood both from the point of view of Construction 5.0.1
and of Construction 5.0.2. For the first point of view, it is by definition a weak infin-
itesimal quotient of an almost derived critical locus Z(ρ∗−1). For the second point

of view, this is the derived critical locus of the quotient map [f ] :
[
X�L

]
→ A1.

5.3.4. BV construction for groupoid action.

This section provides the most general BV construction for o�-shell symmetries.
It is very similar to both Sections 5.3.2 and 5.3.3.

Theorem 5.3.7. Let G • be a smooth1 Segal groupoid of o�-shell symmetries on X and
take a moment map, µ : T ∗X → L∗, for this action according to De�nition 4.3.23. Then
there is a moment map obtained from Corollary 4.3.29:

µ−1 : Crit(f)→ L∗[−1]

whose symplectic reduction is Crit([f ]), making it an o�-shell BV construction:

Z(µ−1)

Crit([f ]) Crit(f)

Proof. This is essentially a consequence of Example 4.3.21 and the fact that Z(µ−1)
is again an almost derived critical locus. �

Recall from Proposition 5.1.18 that any good (in the sens of Definition 4.2.13 Se-
gal groupoid of o�-shell symmetries over X induces a Lie algebroid of o�-shell
infinitesimal symmetries with weak infinitesimal quotient the formal completion:

̂[
Z(µ−1)�G

]
Z(µ−1)

' ̂Crit([f ]G )Z(µ−1)

1In fact this can be generalized to any G • such that the canonical 2-form T ∗
[
X�G

]
is symplectic.
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Morover, from Proposition 5.1.18, it is an o�-shell infinitesimal BV construction:

Z(µ−1)

̂Crit([f ]G )Z(µ−1) Crit(f)

Proposition 5.3.8. Let X be an a�ne stack satisfying Assumptions 3.2.2. Take L a
Lie algebroid over X that integrates well to a smooth1 groupoid G . Then we have an
equivalence:

Crit([f ]L ) ' ̂Crit([f ]G )Z(µ−1)

Proof. Recall from Proposition 4.3.32 that we have an equivalence:

T ∗
[
X�L

]
'

̂(
T ∗
[
X�G

])
Z(µ)

Then we have the equivalences:

̂Crit([f ]G )Z(µ−1) 'Crit([f ]G )×Crit([f ]G )DR
Z(µ−1)DR

'
([
X�G

]
×
T ∗[X�G ]

[
X�G

])
×(

[X�G ]
DR
×

(T∗[X�G ])
DR

[X�G ]
DR

) (XDR ×Z(µ)DR
XDR

)
'
([
X�G

]
×[X�G ]

DR

XDR

)
×(

T ∗[X�G ]×(T∗[X�G ])
DR

Z(µ)DR

) ([X�G

]
×[X�G ]

DR

XDR

)
'
̂[X�G

]
X
× ̂(T ∗[X�G ])

Z(µ)

̂[X�G

]
X

'
[
X�G

]
×
T ∗[X�L ]

[
X�G

]
'Crit([f ]L )

where the fifth equivalence follows from Proposition 4.3.32 and Corollary 4.2.7. �

This proposition implies that if L integrates to a smooth Segal groupoid, then
the infinitesimal BV construction obtained via Proposition 5.1.18 out of the BV
construction given by Crit([f ]G ) is equivalent to the infinitesimal BV construction
given by Crit([f ]L ) from Theorem 5.3.6.

1In fact this can be generalized to any good integration G • such that the canonical 2-form

T ∗
[
X�G

]
is symplectic.
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Appendix A. Model Categorical Setup

A.1. Good Model Structures.

In this section, are are going to define the notion of “good” model structure. First,
recall that Modk is equipped with its projective model structure where weak equiva-
lences are quasi-isomorphims and fibrations are degree-wise surjective morphisms.
Moreover, Modk satisfies the monoid axiom1 as well as some other properties en-
suring that we have a model structure on commutative monoids in Modk (namely
commutative di�erential graded k-algebras) and on modules over those. We for-
malize these properties to define the notion of good model structure.

De�nitionA.1.1 ([CPT+17, Section 1.1]). ConsiderM a closed symmetric monoidal
Modk-enriched (with tensor and cotensor) combinatorial model category. In other
word, M is a symmetric monoidal Modk-model algebra as in [Hov99, Definition
4.2.20]. Moreover, [CPT+17, Proposition A.1.1] shows that M is stable. Then M
will be called a good model category if it satisfies:

– The unit 1 is a cofibrant object in M .
– For any cofibration j : X → Y in M , any object A ∈ M , and for any
morphism u : A⊗X → C in M the strict push-out square in M :

C D

A⊗X A⊗ Y
is a homotopy pushout square.

– For any cofibrant object X ∈M , the functor X ⊗− : M →M preserves
weak equivalences (i.e. X is ⊗-flat).

– M is a tractable model category, that is, there are generating sets of cofi-
brations I, and trivial cofibrations J in M with cofibrant domains.

– Equivalences are stable under filtered colimits and finite products in M .

Notation A.1.2. Given a symmetric monoidal category M , we denote by cdgaM

the category of unital commutative monoids in M and we will call them algebras
in M . For the categories of graded algebras, filtered algebras, complete filtered
algebras, graded mixed algebras and weak graded mixed algebras (see Appendix
B and C), we will write cdgagr, cdgafilt, cdgacpl, cdgaε−gr and cdgahε−gr respectively.

De�nition A.1.3. A (left)-module N ∈ M over an algebra A ∈ cdgaM is a (left)
action µ : A⊗M →M satisfying the usual axioms of a module.

1The monoid axiom in a symmetric monoidal model category M ([SS00, Definition 2.1]) is
an axiom on the model structure given in [SS00, Definition 2.2] which gives some results ([SS00,
Theorem 3.1]) on the model structure on modules and algebras over a commutative monoid in
M .
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The category of A-module is denoted ModM
A . For the categories of graded mod-

ules, filtered modules, complete filtered modules, graded mixed modules, weak
graded mixed modules, we will use the simpler notations Modgr

A , Modfilt
A , Modcpl

A ,
Modε−gr

A and Modhε−gr
A respectively.

Proposition A.1.4. Take M a good model category then:

– M satis�es the monoid axiom and therefore the category cdgaM has a canonical
model structure (de�ned via the free-forget adjunction).

– For any A ∈ cdgaM , the category of A-modules is endowed with the structure of
a symmetric monoidal combinatorial model category, for which the equivalences
and �brations are de�ned in M . In particular, �brations and weak-equivalences
are detected in M . Moreover, ModM

A carries a model structure making it a good
model category (see the introduction of [CPT+17, Section 1.3.1]).

– For any equivalence A→ A′ in cdgaM , the extension-restriction Quillen adjunc-
tion:

ModM
A ModM

A′

is a Quillen equivalence.

Remark A.1.5. Since ModM
A is a good model category we can take again com-

mutative monoids and module in ModM
A which essentially gives us A-algebras in

M and their modules.

RemarkA.1.6. In [Lur07, Theorem 1.5.14], it is shown that there is an equivalence:

ModM
A ' Stab

(
cdgaM

/A

)
Moreover, [Lur07, Remark 1.5.17] tells us that if the tensor product is exact in
each variable, then taking N ∈ ModM

A then its image under the composition:

ModM
A Stab

(
cdgaM

/A

)
cdgaM

/A
' Ω∞

is given by the square zero extension A�N → A defined in A.2.1.

Given F : M → M ′ a symmetric monoidal functor between two good model
categories. Then it naturally induces functors:

F : cdgaM → cdgaM ′ F : ModM
A → ModM ′

F (A)

Example A.1.7. We have the following good model categories:

– Modk is a good model category and we will denote:

cdga := cdgaModk
ModA := ModModk

A

for all A ∈ cdga. Thanks to Proposition A.1.4, for all A ∈ cdga we have
that ModA is a good model category.
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– Given M a good model category, the category of graded mixed objects in
M , denoted M ε−gr is again a good model category for its injective model
structure (see Appendix C).
In particular for M = Modk we get graded mixed complexes, algebras

and modules denoted by Modε−gr
k , cdgaε−gr and Modε−gr

A for A ∈ cdgaε−gr.

Assumption A.1.8. In what follows, we will use two extra conditions on our good model
structure:

(1) The tensor product is exact in each variables.
(2) The tensor product commutes with coproducts.

All the examples of good model categories we consider satisfy these two additional condi-
tions.

A.2. Cotangent Complex in M .

Let M be a good model category satisfying Assumptions A.1.8. We are going
to recall the construction of the tangent and cotangent complexes in such a good
model category M . We will also discuss some functoriality properties with respect
to the choice of M .

De�nition A.2.1. Given any B-module N , we can construct the trivial square
zero extension (see [TV08, Section 1.2.1]), B �N , given by the direct sum as a
B-module, and with the product defined by the following map:

(FA⊕ FM)⊗ (FA⊕ FM)

(FA⊗ FA)⊕ ((FA⊗ FM)⊕ (FM ⊗ FA))⊕ FM ⊗ FM

FA⊕ FM

∼

µA⊕(µM+µM )⊕0

This defines a functor B �−:

ModB cdgaM
A//B

M B �M

Example A.2.2. If M = Modk then A � M is the commutative algebra with
product:

(a,m)(̇a′,m′) = (aa′, am′ + a′m)

The main point of this definition is to get the following description of derivations:

Lemma A.2.3. There is an isomorphism of B-modules1:

HomcdgaM
A//B

(B,B �M) ∼= DerM
A (B,M)

1This can in fact be enriched either in ModM
B or in ModB .
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De�nition A.2.4. Given f : A → B, the cotangent complex of B relative to A is
defined as the B-module LM

B/A representing derived A-linear derivations:

HomB

(
LM
B/A,M

) ∼= RDerA(B,M)

Construction A.2.5. Thanks to [CPT+17, Lemma 1.3.4 and Remark 1.3.6], the
functor:

B �− : ModB → cdgaM
A//B

has a derived left adjoint LM and by definition we have:

LM
B/A := LM (A→ B

id→ B)

De�nition A.2.6. In general, the relative tangent complex of f : A → B is the
B-module of derived A-linear derivations of B:

TM
B/A := RDerM

A (B,B)

Using the defining property of the cotangent complex we get:

TM
B/A ' HomM

B

(
LM
B/A, B

)
Proposition A.2.7. As explained in Proposition A.1.4, given a morphism f : B → B′

of A-algebras, we get an adjunction:

f ∗ : ModM
B ModM

B′ : f∗

Then we get a map of B′-modules:

f ∗LM
B/A → LM

B′/A

Moreover the co�ber of this map is LM
B′/B .

Proof. Any derivation φ : B′ →M restricts to a derivation φ : B → f∗M inducing
a map1 DerB′(B

′,M)→ DerB(B, f∗M). This induces a morphism:

HomB′(LB′/A,M)→ HomB(LB/A, f∗M) ' HomB′(f
∗LB/A,M)

and therefore induces a morphism f ∗LB/A → LB′/A.
To compute the cofiber, we compute the fiber after applying HomB′(−,M):

fiber

(
Hom

cdgaM
A//B′

(B′, B′ �M)→ Hom
cdgaM

A//B

(B,B � f∗M)

)

1This is induced by the restriction map:

Hom
cdgaM

/B′

(B′, B′ �M)→ Hom
cdgaM

/B′

(B,B′ �M) ' Hom
cdgaM

/B

(B,B � f∗M)
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In other words, this is the fiber of the map that sends a derivation φ : B′ →M to
its restriction φ : B → f∗M . But this is exactly the same as the fiber:

fiber

(
Hom

cdgaM
A//B′

(B′, B′ �M)→ Hom
cdgaM

A//B′

(B,B′ �M)

)
which is given by derivations φ : B′ → M such that φ|B ' 0, and therefore φ is
valued a B-linear derivation. This proves that this fiber is equivalent to:

Hom
cdgaM

B//B′

(B′, B′ �M) ' Hom′B
(
LB′/B,M

)
�

Corollary A.2.8. Given f : A → B and g : B → C , we have a homotopy �ber
sequence:

LM
B/A ⊗B C LM

C/A LM
C/B

In particular for A = k we write LM
B/k = LM

B and we get:

LM
B ⊗B C LM

C LM
C/B

Proposition A.2.9. Consider the following pushout diagram:

A B

C D

f

g i

j

then we have a pushout diagram:

i∗f ∗LM
A ' j∗g∗LM

A i∗LM
B

j∗LM
C LM

D
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Appendix B. Filtrations and Completions

B.1. Filtered and Complete Filtered objects.

Essentially, a filtered object valued in M a good model category is a sequence of
maps:

· · · → F 1V → F 0V → F−1V → · · ·
which we view as a decomposition of colimF pV in “sub-objects1”.

De�nition B.1.1. Let (Z,≥) denote the category associated to the ordered set
Z in which there is a unique morphism i → j if and only if i ≥ j. The category
of �ltered objects in a good model category M (Definition A.1.1), is the functor
category:

M filt := Fun ((Z,≥),M )

An object in M filt will be denoted by F •V , or simply FV , with F pV ∈M being
the evaluation of the functor at p ∈ Z.
A filtered object is called non-negatively �ltered if F−pV = 0 for all p > 0.

Construction B.1.2.
– Since M is symmetric monoidal, then so is M filt and the tensor product
of A and B in M filt is defined by:

(Z,≥) (Z,≥)× (Z,≥) M ×M M
n7→

∐
i+j=n

i×j
A×B −⊗M−

– To each filtered complex F •V , we can associated its colimit:

V := colim
p∈(Z,≥)

F pV

This is left adjoint to the constant functor2 :

colim : M filt M : κ

– To each filtered objects FV we can define it associated graded Gr(FV ) ∈
M gr, defined as:

Grp(FV ) := F pV�F p+1V

This defines a functor:

M filt →M gr

called the associated graded to a filtered object.
1We say “sub-objects” because these maps are often considered as cofibrations (up to take a

cofibrant replacement in the category of filtered objects).
2Sending an objects V to the filtered object with constant filtration given by F pV = V for all

p ∈ Z.
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Proposition B.1.3. M filt is a closed symmetric monoidalModk enriched combinatorial
model category. Moreover, from [CCN21, Remark 2.18], 1 is co�brant.

Remark B.1.4. M filt is enriched over Modfilt
k by setting:

F pHom
M filt

filt(FV, FW ) := Hom
M

(F pV, F pW )

The Modk-enrichment is given by:

Hom
M filt

(FV, FW ) := colim Hom
M filt

filt(FV, FW ) := colimp Hom
M

(F pV, F pW )

Remark B.1.5. The usual notion of �ltered complex is a sequence of monomor-
phisms of cochain complexes:

· · · → F 1V → F 0V → F−1V → · · ·
It turns out that these are exactly the cofibrant objects1 in Modfilt

k . Up to taking a
fibrant replacement, we can always assume that our filtered complexes are of that
form.

Lemma B.1.6. The colimit functor is symmetric monoidal:

colim(FA⊗ FB) ' colim(FA)⊗ colim(FB)

Proof. The goal is to compute:

colim
n

⊕
p+q=n

F pA⊗ F qB

The direct sums are finite direct sums and therefore they are coproducts. We need
to compute the following colimit over the diagram Z×Z with a unique morphism
(i, j)→ (i′, j′) if and only if |i′ − i|+ |j′ − j| ≤ 1.

colim
p,q∈Z

F pA⊗ F qB

Since tensor product of modules commute with direct sums, we get:

colim
p,q∈Z

F pA⊗ F qB ' colim
p∈Z

F pA⊗ colim
q∈Z

F qB ' A⊗B

�

A filtered object FV can be though of as a collection of sub-object F pV of its
colimit V . As p goes to infinity, F pV becomes smaller and smaller. We want to
consider those filtration where F pV converges to zero and is also “complete”:

1More generally, cofibrant objects in M filt are weight wise cofibrant objects with cofibrations
between them: F p+1V → F pV .
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De�nition B.1.7. A filtered objects FV ∈ M filt is called complete if there is an
equivalence (with V := colimFV ):

V
∼→ lim

p∈(Z,≤)

V�F pV

The full sub-category of complete objects is denote byM cpl. The inclusionM cpl →
M filt has a left adjoint called the completion functor :

(̂−) : M filt M cpl : ι

Given a filtered complex FV , its completion is given by the filtered object:

F̂ V = lim
p∈Z

V�F pV F pV̂ := lim
p≥q

F pV�F qV

Construction B.1.8.
– We have a left adjoint functor ([Mou21, Definition 3.2]):

Modgr ModcplTot

where Tot sends a graded complex (V (p))p∈Z to the complete filtered com-
plex given by:

Tot(V ) =
⊕̂
p∈Z

V (p) F pV :=
∏
q≤0

V (q − p)

– The functor Gr defined on filtered objects restricts to a functor on complete
filtered objects.

– We can define a functor:

colim : M cpl →M filt colim→ M

This is a composition of a left adjoint with a right adjoint.
– Similarly to Remark B.1.4, complete filtered objects in M are enriched
over filtered complexes, and even in complete filtered complexes thanks to
the proof of [CCN21, Proposition 2.6]. Moreover it is also enriched over
Modk using the colim functor.

– The tensor product does not restrict to the category of complete filtered
objects. However, we can define a completed tensor product ⊗̂ on M cpl

given by:

F̂ V ⊗̂F̂W :=
̂

ι(F̂ V )⊗ ι(F̂W )

This makes ⊗̂ a closed symetric monoidal structure on M cpl and (̂−)
becomes symmetric monoidal functor (see [CCN21, Proposition 2.6]). In
other words, the natural map:

̂FA⊗ FB → F̂A⊗̂F̂B
is an equivalence.
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Proposition B.1.9. For M a good model category, there is a model structure on M cpl

given by:

– weak equivalences being morphisms f : FA→ FB such that the map:

Gr(f) : Gr(FA)→ Gr(FB)

is a graded weak equivalences1.
– The �brations are morphisms inducing a �bration2 of graded objects:

Gr(f) : Gr(FA)→ Gr(FB)

– A co�bration f : FA→ FB is a an admissible co�bration. In other words, each
map F pA→ F pB is a co�bration, and the maps:

F pA
∐

F p+1A

F p+1B → F pB

are also co�brations (see [CCN21, Lemma 2.17]).

This is a closed symmetric monoidal Modk-enriched, combinatorial model structure.

Proposition B.1.10 ([CCN21, Proposition 2.6]). The adjunction:

(̂−) : M filt M cpl : ι

is a Quillen adjunction between symmetric monoidal model categories.

De�nition B.1.11. Given FA and FB two (complete) filtered complexes, then
we can define their direct sum to be the (complete3) filtered complex given by:

F p(FA⊕ FB) = F pA⊕ F pB

We are giving a few consequences of this result:

Lemma B.1.12. The underlying complex of a direct sum of �ltered complexes is the �nite
sum of the �ltered complexes:

colim(FV ⊕ FW ) ' colim(FV )⊕ colim(FW ) ' V ⊕W

Proof. Since the direct sum of cochain complexes is their coproduct, it commutes
with colimits and we have:

colim
p∈Z

F p(FV ⊕ FW ) = colim
p∈Z

F pV ⊕ F pW ' colim
p∈Z

F pV ⊕ colim
p∈Z

F pW ' V ⊕W

�

1These are weak equivalences in Mgr, that is, weak equivalences in each weight.
2A fibration f : V → W of graded objects in Mgr is a weight-wise fibration, that is each

fp : V (p)→W (p) is a fibration.
3The direct sum of a finite number of complete filtered complexes can be shown to also be

complete.
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Lemma B.1.13. The completion of a �nite direct sum of �ltered complexes is the �nite
direct sum of their completions:

̂FV ⊕ FW ' F̂ V ⊕ F̂W

Proof. Using Lemma B.1.12, we must compute the following limit:

lim
p

V ⊕W�F pV ⊕ F pW ' lim
p

V�F pW ⊕
V�F pW

Finite direct sums of complexes coincide with the finites products of the same
complexes and therefore commute with limits:

̂FV ⊕ FW ' lim
p

V�F pV ⊕
W�F pW ' F̂ V ⊕ F̂W

It is not hard to see using the same manipulations that the complete filtration on
̂FV ⊕ FW coincide with the natural complete filtration on F̂ V ⊕ F̂W . �

B.2. Filtered and Filtered Complete Algebras.

This is the goal of the section to present the necessary elements on filtered alge-
bras, that is commutative monoids in filtered objects.

Proposition B.2.1. The category of �ltered (complete) algebras admits a model structure
whose �brations and weak-equivalences are detected by the forgetful functor cdgafilt →
Modfilt

k . Moreover, there is a free-forget Quillen adjunction:

Modfilt
k cdgafilt

Proposition B.2.2. The completion-inclusion adjunction for �ltered complexes can be
lifted to a Quillen adjunction of �ltered algebras:

(̂−) : cdgafilt cdgacpl

Moreover, the following diagram of left adjoints commutes1:

Modfilt
k Modcpl

k

cdgafilt cdgacpl

(̂−)

(̂−)

Proposition B.2.3. The colimit-constant adjunction for �ltered complexes can be lifted
to an adjunction of �ltered algebras:

colim : cdgafilt cdga : κ

1Because the diagram of right adjoints easily commutes.
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Moreover, the following diagram of left adjoints commutes1:

Modfilt
k Modk

cdgafilt cdga

colim

colim

In particular the last two propositions imply that the colimit functor from com-
plete filtered algebras to algebras commutes with the forgetful functor to (filtered)
modules.

Example B.2.4.
– Take F an A-module. We can consider the non-negatively graded filtration
on SymA F given by

F p SymA F := Sym≥pA F :=
⊕
n≥p

Symn
A F

These are the polynomials in F with coe�cients inA. This can be extended
for F a quasi-coherent sheaf on a derived stack X by replacing A by OX .

– Given A a commutative algebra and I an ideal of A, we consider the fil-
tration given by F pA = Ip and its completion is defined as:

ÂI := lim
n∈Z

A�In

This corresponds the the topological completion for the I -adic topology on
A. Given a morphism B → A, we can consider M the augmentation ideal
defining a filtration on B. This gives the completion of B → A denoted
B̂A.

– k[t] can be viewed as the symmetric algebra on a single generator, t, with
coe�cients in k. From that point of view, its completions is the algebra
of formal power series k[[t]]. We obtain the same result by considering the
I -adic completion for I = (t).
More generally, the symmetric completion is equivalent to the com-

pletion of the symmetric algebra SymA F by the ideal generated by F ,
I = (F ). We denote that completion by:

ŜymA F

Notation B.2.5. Consider a A-module F = F1 ⊕ F2. We want to consider the
completion along F2 only. In other words, we consider the completion along the
ideal generated by F2 in SymA F . This completion will be denoted by:

SymA(F1 ⊕ F̂2)

1Because the diagram of right adjoints easily commutes.
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Moreover we have that:

SymA(F1 ⊕ F̂2) ' SymA F1 ⊗A ŜymA F2

Notation B.2.6. If we consider a A-module F . Then SymA F can be given the
structure of a graded algebra. We denote by Symgr

A F the (non-negatively) graded
algebra where the weight p part is given by:

Symp
A F

This is the natural associated graded to the natural filtration on the symmetric
algebra described in Example B.2.4.
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Appendix C. Graded Mixed Objects

C.1. Graded Mixed Complexes.

We are going to give the relevant results and constructions on graded mixed
complexes. We follow the grading convention of [CPT+17] and recall that our
good model categories (Definition A.1.1) are exactly the categories introduce in
[CPT+17, Section 1.1]. Essentially, given a good model category M , we look at
graded objects on M , introducing a “weight grading” and then add a “mixed
di�erential” that will increase that weight.

De�nition C.1.1. We consider the category of graded object in M denoted by
M gr. Its objects are families (V (p))p∈Z of elements in M and its morphism are
the weight preserving morphisms.

Remark C.1.2. Graded objects inM can be viewed as the functor category Fun(Z,M )
where the only morphisms in Z are the identities. As such it comes with the projec-
tive model structure where fibration, cofibration and weak-equivalences are defined
object-wise.

Remark C.1.3. M gr is clearly enriched in Modgr
k (since M is enriched in Modk)

by taking the weight-wise enrichment M .

Notation C.1.4. Take E ∈M gr.
– The weight p part of E is denoted E(p)
– We denote by E((q)) the graded object whose weight grading is shifted by
q such that:

E((q))(p) := E(p− q)
In particular, if V is concentrated in weight 0, then V ((−p)) is concen-

trated in weight p.
– A morphism f : E → E ′ is the data of a collection of morphisms in each
weight denoted:

fp : E(p)→ E ′(p)

De�nition C.1.5. A graded mixed complex E in M is given by:
– A graded object E ∈M gr.
– A morphism called the mixed di�erential:

ε : E → E((−1))[−1]

such that ε2 = 0. This decomposes into maps:

εp : E(p)→ E(p+ 1)[−1]

increasing the weight by 1.
We denote by M ε−gr the category of graded mixed complexes whose morphisms
are weight-preserving morphisms that respect the mixed di�erentials.



250

From the assumptions onM , M ε−gr is enriched in Modε−gr
k (denoted by Hom

M ε−gr

ε−gr(−,−))

but also in Modk by defining:

Hom
M ε−gr

(E,F ) := ker

(
ε : Hom

M ε−gr

ε−gr(E,F )(0)→ Hom
M ε−gr

ε−gr(E,F )(1)[1]

)
Lemma C.1.6. Denote 1[ε] := 1�1((1))[1] the square zero extension of 1 by 1((1))[1]
viewed as a module over 1 of weight −1 and degree −1. Then a graded mixed complexes
is exactly a graded 1[ε]-module:

M ε−gr ' Modgr
1[ε]

Moreover the projection 1[ε]→ 1 induces an adjunction:

M ε−gr ' Mod1[ε] Modgr
1 'M gr

Proof. The projection 1[ε]→ 1 induces a forgetful functor1:

Modgr
1[ε] → Modgr

1 'M gr

We get this way the collection of objects (E(p))p∈Z. The structure of 1[ε] ' 1 �
1((1))[1]-module on E is given by a product 1((1))[1]⊗E → E which is given by
a map ε : E → E((−1))[−1]. The square-zero product is equivalent to saying that
ε2 = 0. �

Proposition C.1.7. There is a model structure on M ε−gr whose weak equivalences and
co�brations are de�ned through the forgetful functor:

Uε : M ε−gr →M gr

De�nition C.1.8. The hom-tensor adjunction (applied to the unit 1M and using
the Modk enrichment) induces the following adjunctions:

Modk M : |−|

Modε−gr
k M ε−gr : |−|

where |−| are called realization functors. In particular, for M = Modε−gr
k the first

adjunction defines a realization functor:

|−| : Modε−gr
k → Modk

Proposition C.1.9 ([CPT+17, Proposition 1.5.1]). WhenM = Modk, then we have:

|−| := Hom(k,−)

This is the derived internal Hom which is computed by taking a co�brant resolution k̃ → k
in the projective model structure2. In particular we get:

1This functor forgets the mixed di�erential.
2The projective model structure is the model structure on graded mixed complexes induced by

the projective model structure on Modk.
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|E| := Hom(k̃, E) '
∏
p≥0

E(p)

where the right hand side is endowed with the total di�erential DE := dE + ε.

Remark C.1.10. It will turn out that graded mixed complexes can be seen as com-
plete filtered objects (see Section C.2). Under this fully-faithful inclusion, denoted
by Tot, we have that:

|E| := Hom
Modcpl

(Tot(k),Tot(E))

where Tot(k) is in fact a fibrant cofibrant complete filtered object such that F pk =
k if p ≥ 0 and 0 otherwise. Then we can also use Definition C.1.12, Corollary
C.1.13 and Remark B.1.4 to prove the proposition.
This avoids the di�culty of taking a cofibrant replacement for k.

Remark C.1.11. Similarly, if k̃((−q)) → k((−q)) is a cofibrant resolution we we
can define:

F p |E| := Hom(k((−q)), E) '
∏
p≥q

E(p)

where the right hand side is again endowed with the total di�erential DE = dE +ε.
As the notation suggests this define a filtration on |E| which coincide with the
natural filtration by taking the Hom functor from Remark C.1.10 but enriched in
complete filtered objects.

De�nition C.1.12. First observe that the derived hom gives us for all q ∈ Z:

Hom(k((−q)), k((−q − 1))) ' k

Picking 1 ∈ k corresponds to taking a collection of maps k((−q))→ k((−q − 1)).
They induce, for all p ∈ Z, the following maps:

F p+1 |E| → F p |E|

defining a filtered object whose colimit is |E| itself. This filtration is complete and
we denote by Tot(E) this filtered object, which defines a functor:

Tot : Modε−gr
k → Modcpl

k

This generalizes the functor of Construction B.1.8.

Corollary C.1.13. If E ∈ Modε−gr
k is non-negatively weighted, then we have:

colim Tot(E) ' |E|

Remark C.1.14. In general colim ◦Tot is called the Tate realization of E (see
[CPT+17, Definition 1.5.2]).
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We have seen in Example A.1.7 that if M is a good model category then M ε−gr

is also a good model category and therefore its category of commutative monoids
has a natural model structure, and modules over those also form good model
categories (see Section A.1).

Notation C.1.15. We denote by cdgaε−gr
M the category of commutative monoid in

M ε−gr.
Given A ∈ cdgaε−gr

M , we denote by Modε−gr
A the category of commutative monoid

in M ε−gr.

C.2. Weak Graded Mixed and Complete Filtered Objects.

We observed thanks to Definition C.1.12 that graded mixed complexes give com-
plete filtered object. But the functor Tot is not an equivalence and its essential
image is given by the filtered objects whose di�erential has a weight decomposition
concentrated in weight 0 and 1.
If the following we will define a notion of weak graded mixed complex whose
mixed di�erential increases the weight by an arbitrary degree, so that the complete
filtered realization of those will recover all complete filtered objects.

De�nition C.2.1 ([CCN21, Definition 2.23]). A weak graded mixed complex in M
is a weight graded complex E ∈M gr equipped with maps in M of weight k and
degree 1 for all k ≥ 1:

δk : E → E((−k))[−1]

such that: (
d+

∑
k≥1

δk

)2

= 0

with d the di�erential on E.
This condition can be rephrased as:

d ◦ δk + δk ◦ d+
∑
i+j=k

δi ◦ δj = 0

We denote by M hε−gr the category of graded mixed complexes whose morphisms
are morphisms of graded objects that commute with δk.

We have seen in Lemma C.1.6 that graded mixed complexes are modules over
1[ε]. It turns out that weak graded mixed complexes are module over a co�brant
resolution of 1[ε].

Lemma C.2.2. Consider 1[εi | i ≥ 1] the semi-free commutative monoid inM generated
by εi in degree 1 and weight i with di�erential given, for all k ≥ 1, by:

δ(εk) = −
∑
i+j=k

εiεj

Then this is a quasi-free resolution of 1[ε].
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Lemma C.2.3. The category of weak graded mixed complexes is equivalent to the category
of graded modules over 1[εi | i ≥ 1].

Proof. The proof is essentially an adaptation of the proof of Lemma C.1.6. �

Remark C.2.4. This description of weak graded mixed complexes makes it a good
model category as it is a category of modules over the good model category M gr.

Corollary C.2.5. The inclusion of strict graded mixed complexes in weak graded mixed
complexes is an equivalence:

M ε−gr ' Modgr
1[ε] → Modgr

1[εi | i≥1] 'M hε−gr

This equivalence is part of the extension-restriction of scalars adjunction associated to the
weak equivalence 1[εi | i ≥ 1] → 1[ε]. Therefore this is a Quillen equivalence thanks to
Proposition A.1.4.

In a similar way to homotopy algebraic structures (such as L∞-algebras or alge-
broids for example), weak graded mixed complexes come equipped with a notion
of∞-morphism between weak graded mixed objects.

De�nition C.2.6. An∞-morphism between weak graded mixed complexes E and E ′ is
the data of a collection of maps φk : E → E ′ of degree 0 and weight k such that
for all k ≥ 0 we have: ∑

i+j=k

(εiφj + φiεj) = 0

where ε0 = d by convention. We denote by M hε−gr
∞ the category of weak graded

mixed complexes with the∞-morphisms.

Remark C.2.7. From [CCN21, Remark 2.26], M hε−gr
∞ has almost a model struc-

ture and the inclusion M hε−gr → M hε−gr
∞ induces an equivalence between the

∞-categories obtained after localizing at the weak-equivalences.

The totalization functor of Construction B.1.8 and Definition C.1.12 can be ex-
tended to an equivalence from weak graded mixed complexes.

Proposition C.2.8 ([CCN21, Proposition 2.27]). The functor:

Tot : Modhε−gr
k → Modcpl

k

sending E to the complete �ltered cdga whose underlying �ltered graded module is given
by Construction B.1.8 to which we add the total di�erential D = d +

∑
k≥1 εk, induces

an equivalence of∞-categories.
Remark C.2.9. The realization functor of Definition C.1.8 extends to weak graded
mixed complexes. Moreover, if M = Modk, we get an analogue of Proposition
C.1.9 expressing the realization as:

|E| '
∏
p≥0

E(p)
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together with the total di�erential DE = dE + ε1 + ε2 + · · · .

Lemma C.2.10. If E is a non-negatively weighted weak graded mixed object, then:

colim Tot(E) ' |E|

Proof. This is a direct consequence of Remark C.2.9. �

Lemma C.2.11. We have a commutative diagram:

Modε−gr
k Modcpl

k

Modgr
k

Tot

Forget
Gr

where Forget is the functor that forgets the mixed di�erentials εi for i ≥ 1 induced by the
scalar extension along 1[εi | i ≥ 1]→ 1. It is similar to the adjunction in Lemma C.1.6.
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Appendix D. Formal Moduli Problem and Koszul Duality Context

This section aims to describe the notion of formal moduli problems. In Section
3.1, we talk about the formal moduli problems under a base corresponding to a Lie
algebroid. It is similar to the well known correspondence between Lie algebras and
(commutative) formal moduli problems. We are going to present the general the-
ory behind such correspondences and the essential definitions and tools involved
to understand them.

D.1. Formal Moduli Problems.

This section is about axiomatizing the notion of deformation functors. The idea
is that deformations can be understood as functors sending a class of “small pa-
rameter objects” called “Artinian”, to a space of deformations along such objects.
For example such a deformation functor assigns for each choice of Artinian local
algebra A an ∞-groupoid of deformations of X along Spec(A). As the category
of local Artinian algebras and the notion of “infinitesimal” object will play an im-
portant role, we will start, following [Lur11], [CG18] and [CCN20], by defining a
general framework in which we can speak of deformations along such objects.

D.1.1. Artinian and small algebras in a deformation context.

The general idea behind Artinian algebras is to have a class of algebras considered
“small” so that deforming along those algebras amounts to consider in�nitesimal
deformations, that is, looking at the formal neighborhood of what we want to
deform. We will always assume that our ambient category A , in which we will
define the notion of Artinian object, has a terminal object. This leads to the
general framework of deformation context:

De�nition D.1.1 ([Lur11, Definition 1.1.3]). A deformation context is a pair (A , {Eα}α)
where A is a presentable1∞-category and {Eα}α is a set of objects in Stab(A )2,
the stabilization of A .

Intuitively, {Eα}α correspond to the first-order objects we want to deform along.
To compare with the classical picture, we take A to be the category of algebras.
Then first order deformation are deformations along k[ε], and we take it as the
underlying object of the spectrum E = (· · · , k[ε2], k[ε1], k[ε0], · · · ), where k[εi] is
the 2-dimensional k-augmented algebra with |εi| = −i and ε2i = 0.
In our situation, the family {Eα}α will always contains only a single spectrum
object. Here are some other examples of deformation contexts.

1A is presentable if it is generated by a small set of “small objects” under homotopy colimits.
2Recall that objects in Stab(A ) correspond to spectrum objects on A∗, i.e., a sequence E =

(· · · , a2, a1, a0, a−1, · · · ) of pointed objects of A , such that ai is equivalent to the loop space Ωai+1.
For n ≥ 0, we denote Ω∞−nE = an.
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Example D.1.2.
– For A = ModA (with A ∈ cdga), we can defined the deformation context

(ModA, {E}) with only one spectrum object ([CG18, Example 2.2]):

E = (A� A[n])n∈Z

– Given A ∈ cdga, we consider A = cdga/A and and we can define the
following deformation context1:(

cdga/A, {E = (A� A[n])n∈Z}
)

whereA�A[n] is the square zero extension ofA byA[n] ([CG18, Remark
2.5]). We will call this deformation context A/A.

From a deformation context, we can define the notion of “small” objects and mor-
phisms using Ω∞−nEα as building blocks.

De�nition D.1.3 ([Lur11, Definition 1.1.14]). Given a deformation context (A , {Eα}α∈T )
we say that:

– A morphism f : B → B′ is called elementary if it is given by a pullback of
the form:

B ?

B′ Ω∞−n(Eα)

f

for some α ∈ T and n ≥ 1.
– A morphism f : B → B′ is called small if it is a finite composition of
elementary morphisms.

– An object B ∈ A is called Artinian, if the morphism A → ? is small2. We
denote by ArtA the full sub-category of A given by small objects.

Example D.1.4. Going back to the example of A-augmented algebras, we have
Ω∞−nE = A � A[n] so that in order to compute the homotopy pullback of ? →
Ω∞−nE, one can replace the point ? = A by the algebra A � (A[n] ⊕ A[n − 1])
(notice that n ≥ 1), with di�erential induced by the identity A[n]→ A[n− 1].
The strict pullback exhibits therefore B as a square zero extension of B′ along
A[n− 1].

We will now specialize these definitions to the deformation contexts we are inter-
ested in, namely A/A.

Proposition D.1.5. The category Art/A is the smallest full sub-category of cdga/A such
that:

– A� A[n] ∈ Art/A for all n ≥ 0

1Note that Stab(cdga/A) ' Stab(cdgaA//A) ' ModA.
2Artinian objects can be though as “small” objects. In fact they are called “small” in [Lur11].
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– For any B ∈ Art/A and any map B → A � A[n] with n ≥ 1, the homotopy
pullback B ×A�A[n] A is also Artinian:

B ×A�A[n] A A

B A� A[n]

Proof. By definition, we have that A�A[n] is Artinian since the map A�A[n]→ A
is elementary, given by the pullback:

A� A[n] A

A A� A[n+ 1]

Moreover, the map B×A�A[n]A→ B is elementary, therefore if B is Artinian, then
the composition B ×A�A[n] A → B → 0 is small as well. Therefore A/A satisfies
the properties given in the proposition. It is the smallest such category because
any Artinian object can be obtained by definition from some A � A[n] in finitely
many pullbacks along A→ A� A[n] for n ≥ 1. �

D.1.2. Formal moduli problems.

The main idea is that a “formal moduli problem” is a functor sending B to an
∞-groupoid of deformations. For example, given an object X, we will be inter-
ested in studying the functor that sends an Artinian object A to the “space of all
deformations” of X along A.

De�nition D.1.6 ([Lur11, Definition 1.1.14]). Given a deformation context (A , {Eα}α∈T ),
a functor between∞-categories:

F : ArtA → Gpd∞

is called a formal moduli problem if it satisfies the following conditions:
– Deformations along the point (terminal object) are trivial:

F (?) ' ?

– Any pullback in ArtA along a small morphism φ : A → B is sent to a
pullback in Gpd∞:

F


A′ A

B′ B

φ

 =

F (A′) F (A)

F (B′) F (B)

F (φ)
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The ∞-category of such functors will be denoted FMP (A , {Eα}α∈T ) or FMPA

for short if the choice of the collection of spectrum objects Eα is clear. For the
deformation context we are interested in, we will use the notation1:

FMPA := FMPA/A

De�nition D.1.7. For any B ∈ cdga/A the following functor is a formal moduli
problem:

SpfA(B) : Art/A Gpd∞

C Map
cdga/A

(B,C)

Moreover we get a functor cdga/A → FMPA sending B to SpfA(B).
SpfA(B) is called the formal spectrum of B over A.

Proposition D.1.8. Following [Lur11, Lemma 1.1.20], a morphism f : B → C
between Artinian algebras, B,C ∈ Art/A is small if and only if it induces a surjection of
commutative rings H0(B)→ H0(C). Therefore the second condition of De�nition D.1.6
can be rephrased as follows:
Any pullback in Art/A such that H0(B) → H0(C) or H0(B′) → H0(C) is surjective
is sent to a pullback in Gpd∞:

F


A′ A

B′ B

φ

 =

F (A′) F (A)

F (B′) F (B)

F (φ)

It recovers the classical Schlessinger condition (see [Sch68]).

It is an old heuristic that (commutative) deformation problems (over k) are clas-
sified by Lie algebras and it is due to a kind of duality (Koszul duality context)
that is in fact related to the Koszul duality of the Lie and commutative operads
(see [CCN20]). This heuristic is formalized by the following theorem:

Theorem D.1.9 (See [Lur11] and [Pri10]). There is an equivalence of∞-categories:

MC : AlgLie FMP : T[−1]
∼

1This should be though of as the commutative formal moduli problems over A or under Spec(A).
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Warning D.1.10. For g a Lie algebra, the one thinks of MC as the functor assign-
ing to an Artinian algebra A the space space of Maurer–Cartan elements1. Un-
fortunately, this space does not generally define a formal moduli problem, but is
not far from doing so. Indeed, on finite dimensional g, the Maurer–Cartan functor
gives the correct functor. The functor MC generalizes the Maurer–Cartan functor
in order to circumvent this problem.

D.2. Formal Moduli Problems and Koszul Duality.

The goal of this section is to make sensee of the generalization of Theorem D.1.9
to an arbitrary Koszul duality context while discussing the specific example of
formal moduli problem under Spec(A) and Lie algebroids.

D.2.1. Tangent complex of a formal moduli problem.

The goal of this section is to explain that the algebra controlling a given formal
moduli problem is in some sens the “tangent” of this formal moduli problem. This
explains why first-order deformations and obstructions to lifting deformations are
controlled by the tangent complex.

To motivate the following definition, we will start by explaining the example of
the formal spectrum (Definition D.1.7) of an A-augmented commutative algebra
B. We have that

SpfA(B)(C) = Map
cdga/A

(B,C)

In the case of first order deformations, C = A[ε], this mapping space corresponds
to the tangent complex of Spec(B) at the point f : Spec(A) → Spec(B). It is
shown in [TV08, Proposition 1.4.1.6] that the geometric realization of connective
truncation of TB,f ' f ∗TB is given by:

(17) SpfA(B)(A� A[n]) ' Map
cdga/A

(B,A� A[n]) ' Map
A

(A, f ∗TB[n]) ' |f ∗TB[n]|

Indeed the map f : B → A induces a map:

Map
cdga/A

(A,A�M)→ Map
cdga/A

(B,A�M) ' Map
cdga/A

(B,B � f∗M)

The right hand side is represented by f ∗LB and withM = A we recover the claim.
This motivates the definition of the “tangent” as the evaluation of the formal mod-
uli problem functor at all “first-order elements”2 of a given deformation context.

1The space of Maurer–Cartan elements of a Lie algebra g is the space of elements x ∈ g
satisfying the Maurer–Cartan equation:

dx+
1

2
[x, x] = 0

2Recall that such “first-order” objects correspond to the elements in {Ω∞−n(Eα)}α∈T,n∈N, for
example the square zero extensions A�A[n] in the case of A-augmented algebras.
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De�nition D.2.1 (Tangent Functor, [Lur11, Section 1.2]). Given a deformation
context (A , {Eα}α), we define the tangent complex of a formal moduli problem F
at α to be the spectrum object:

F (Eα) ∈ Sp := Stab(sSet)

which we denote1 TF in case there is only a single α ∈ T .

This spectrum object verifies Ω∞−nF (Eα) ' F (Ω∞−nEα) for all n ≥ 0 (see [Lur11,
Remark 1.2.7]). Notice that the tangent complex TF is not actually a cochain
complex but rather only a spectrum object a priori. These two categories are
related by the composition:

(18) ModA
Forget−→ ModZ

DK' Stab(sAb)
Forget−→ Stab(sSet) = Sp

Proposition D.2.2 ([CCN20, Lemma 2.15]). A formal moduli problem F ∈ FMPA

has a unique pre-image in ModA under the functor (18), which we also denote by TF .
Moreover for any n ≥ 0, we have an equivalence:

Map
ModA

(A[−n],TF ) ' F (A� A[n])

It turns out that the associated spectrum object to f ∗TB (given by the composition
(18)) coincides with the spectrum object given by the collection of SpfA(B)(A�
A[n]) so that the cotangent complex f ∗TB is the representative of tangent functor
TSpfA(B), thanks to the equivalence (17).

D.2.2. Koszul Duality Context.

Going back again to the setting of a general deformation contextA , we are looking
to identify an∞-category of algebraic objects B to FMPA .
The formal spectrum Spf from in Definition D.1.7 is a functorial way to construct
formal moduli problems out of objects of A . Assuming the existence of the desired
equivalence, we could construct a functor:

D : A op Spf−→ FMPA
∼→ B.

This functor should be interpreted as a “weak duality” functor, which is not an
equivalence, but at least its restriction to Artinian objects should behave as an
equivalence into a subcategory of B given by “good” objects.
In this section, we introduce the notion of Koszul duality context as the appropriate
axiomatic framework that enables us to obtain the desired equivalence, which we
give with Theorem D.2.11.

1This notation is by analogy to the tangent complex but is a priori only a (collection of) spectrum
objects. However, we will see that TF can be “represented” by an actual tangent complex.



261

De�nition D.2.3 (Dual Deformation Context, [CG18, Definition 2.11]). A pair
(B, {Fα}α∈T ) is called a dual deformation context if B is a presentable∞-category
and Fα ∈ Stab(Bop).

We say that an object (resp. morphism) of B is good if it is Artinian when consid-
ered in (Bop, {Fα}α∈T )1. We denote by Bgd the full sub-category of good objects
of B.

Example D.2.4.
– If A ∈ cdga. Then

(
ModA, (A[n])n∈Z

)
is a deformation context and since

taking the opposite category exchanges the suspension and desuspension
functor, we get the dual deformation context

(
ModA, (A[−n])n∈Z

)
.

When A is bounded and concentrated in non-positive degrees, [CG18,
Lemma 2.16] tells us that an element M ∈ ModA in this dual deformation
context is good if it is perfect and cohomologically concentrated in positive
degrees (see also [CG18, Remark 2.17])

– There is a dual deformation context:

(LieAlgdA, {Free(0 : A[−n]→ TA)}n∈Z)

Note that every good Lie algebroid have underlying cofibrant A-module
and is finitely generated (when forgetting the di�erential) over TA (see
[Nui19b, Lemma 6.10]).

De�nition D.2.5 (Koszul Duality Context, [CG18, Definition 2.18]).
A weak Koszul duality context is the data of:

– A deformation context (A , {Eα}α∈T )
– A dual deformation context (B, {Fα}α∈T )
– An adjunction:

D : A Bop : D′

such that for all n ≥ 0, there is an equivalence Ω∞−nEα ' D′ (Ω∞−nFα).

It is called a Koszul Duality context if the following hold:
(1) for every object B ∈ Bgd, the counit morphism DD′A → A is an equiva-

lence.
(2) For each α, the functor

Θα : B → Sp

sending B ∈ B to the spectrum object given by:(
MapB(Ω∞−nEα, B)

)
n∈Z ∈ Sp

1Here (Bop, {Fα}α∈T ) is generally not a deformation context since Bop will in general not be
presentable. However the definition of Artinian object still makes sensee in Bop.
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is conservative and preserves sifted colimits.

Remark D.2.6. A weak Koszul duality context together with condition (1) gives us
a weak deformation theory according to the terminology of Lurie, [Lur11, Defini-
tion 1.3.1]. A Koszul duality context is an example of a deformation theory according
to [Lur11, Definition 1.3.9].

Example D.2.7. Let A ∈ cdga≤0 bounded. We have a Koszul duality context given
by the dualization ([CG18, Example 2.20]):

(−)∨ :
(
ModA, (A[n])n∈Z

) (
Modop

A , (A[−n])n∈Z
)

: (−)∨

Example D.2.8 ([CG18, Theorem 3.9] and [Nui19b] ).
With the (dual) deformation context of Examples D.1.2 and D.2.4, if A is cofibrant
non-positively graded, almost finitely presented and eventually coconnective (in
other words satisfies Assumption 3.2.2), then we have a Koszul duality context:

CE : LieAlgdA
(
cdga/A

)op
: D

Proposition D.2.9 ([CG18, Proposition 2.22]).
Given a Koszul duality context (with the same notations as in De�nition D.2.5), we have
the following:

– D (Ω∞−nE) ' Ω∞−nF for all n ≥ 0.
– For every Artinian objectA ∈ ArtA , the unit mapA→ D′DA is an equivalence.
– The adjunction D a D′ induces an equivalence:

D : ArtA

(
Bgd

)op
: D′

– If M ∈ ArtA and f : A → B is a small morphism in A then D sends the
pullback diagram:

P A

M B

f

to a pullback diagram.

Corollary D.2.10. Given a Koszul duality context, we can construct the following func-
tor:

ψ : B Fun (Bop,Gpd∞) Fun (A ,Gpd∞)◦D

Then ψ factor through FMP(A , {Eα}) and we get a map:
Ψ : B → FMP(A , {Eα})

It turns out that the definition of Koszul duality context ensures that the map
Ψ : B → FMP(A , {Eα}) is in fact an equivalence.
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Theorem D.2.11 ([CG18, Theorem 2.33] or [Lur11, Theorem 1.3.12]). Given a
Koszul duality context as above, the functor Ψ is an equivalence:

Ψ : B → FMP(A , {Eα})

Proposition D.2.12 ([CG18, Proposition 2.36]). We have the following commutative
diagram:

B FMP (A , {Eα})

Sp

Ψ

Θ T

Remark D.2.13. This diagram shows that TF is equivalent to Θ(TF ) with TF ∈ B
so that this tangent functor has more structure that being just a spectrum object.
Moreover when A = A/A and F = Spf(B) then TF = f ∗TB with f : B → A (see
Lemma 1.3.27).
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