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Abstract

In this thesis we study the relation between Chen theory of formal homology connection, Universal Knizh-
nik—Zamolodchikov connection and Universal Knizhnik—Zamolodchikov-Bernard connection. In the first
chapter, we give a summary of some results of Chen. In the second chapter we extend the notion of formal
homology connection to simplicial manifolds. In particular, this allows us to construct formal homology
connection on manifolds M equipped with a smooth/holomorphic properly discontinuos group action of
a discrete group G. We prove that the monodromy represetation of that connection coincides with the
Malcev completion of the group M/G. In the second chapter, we use this theory to produces holomorphic
flat connections and we show that the universal Universal Knizhnik—Zamolodchikov-Bernard connection
on the punctured elliptic curve can be constructed as a formal homology connection. Moreover, we
produce an algorithm to construct such a connection by using the homotopy transfer theorem. In the
third chapter, we extend this procedure for the configuration space of points of the punctured elliptic
curve. Our approach is very general and it can be used to construct flat connections on more challenging
manifolds equipped with a group action. For example it can be used for the configuration space of points
of a higher genus Riemann surface.
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Sommario

In questa tesi studiamo la relazione tra la teoria sviluppata da Chen sulle connessioni omologiche formali,
la connessione universale Knizhnik—Zamolodchikov e la connessione universale Knizhnik—Zamolodchikov-
Bernard. Nel primo capitolo diamo un breve sommario dei risultati di Chen qui usati. Nel secondo capi-
tolo estendiamo la nozione di connessioni omologiche formali alle varieta simpliciali. Tale estensione ci
permette di costruire una connessione omologica formale su una varieta M sulla quale agisce un gruppo
discreto G in maniera liscia e propriamente discontinua. In questa tesi viene dimostrato che la rappresen-
tazione monodromica della connessione di cui sopra, coincide con il completamento de quoziente M/G.
Nel secondo capitolo, la teoria sviluppata nel capitolo precedente viene usata per costrure connessioni
olomorfe, in particolare, dimostriamo che la connessione universale Knizhnik—Zamolodchikov-Bernard
sulla curve ellittica puntata puo essere costruita come una connessione omologica formale di Chen. In-
oltre, utilizzando il teorema del trasferimento omotopico, viene prodotto un algoritmo per la costruzione
di tale connessione. Nel terzo capitolo, questo procedimento viene esteso allo spazio dei punti della curve
ellittica puntata. L approccio utilizzato in questa tesi é molto generale e puo essere usato per costruire
connessioni piatte su un ampia classe di varieta equipaggiate di un azione di un gruppo.Per esempio,
esso puo essere utilizzato per costruire una connessione piatta sullo spazio di configurazione dei punti su
una superficie di Riemann di genere piu alto.
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Overview

The construction of formal homology connection goes back to Chen [13]. Given a smooth manifold M, a
formal homology connection consists in a differential §* on the free algebra of H, (M) and a formal power
series C with coefficients in the differential graded algebra of smooth differential forms on M such that C
is a twisting cochain. In this thesis we call (C,6*) a homological pair. In fact, it is a generalization of the
notion of flat connections on a smooth manifold. It can be constructed on any connected compact smooth
manifold by choosing differential graded subalgebra quasi-isomorphic to the cohomology of the manifold
(1-model) and by choosing a certain vector space decomposition on that subalgebra. This objects were
constructed by [13] in order to study the cohomology of the loop space of simply connected manifolds. In
the non-simply connected case, a homological pair (C,§*) induces an ordinary flat connection d — C on
the trivial bundle on M where the fiber is the Malcev Lie algebra of the fundamental group and where
monodromy representation is the Malcev completion of the fundamental group.

By using a result of Arnold ([2]), it is possible to show that the universal Knizhnik—Zamolodchikov
connection (KZ connection for short) on the configuration space of points on the plane is an example of
a connection induced by a homological pair. The KZ connection is a holomorphic flat connection on the
(holomorphic) trivial bundle and it was constructed by Drinfeld for the study of quantum groups [18], by
using some system of differential equation called Knizhnik—Zamolodchikov equation [45]. In particular, he
used the holonomy of this connection to construct the first example of the so called (Drinfeld) associator.
Nowadays, these objects play a crucial role in several area of mathematics like number theory, braided
category, knot theory, graph complexes, Lie theory and Grothenideck-Teichmiiller theory.

The elliptic version of the Knizhnik—Zamolodchikov equation is constructed in [4] (see also [5]). Using
these equations, Calaque, Enriquez and Etingof constructed an elliptic version of the KZ connection
in [11] called universal Knizhnik—Zamolodchikov-Bernard connection (KZB connection for short). It
is a holomorphic flat connection on the configuration space of points on the punctured elliptic curve
on a holomorphic bundle. Unfortunately, the ordinary Chen theory cannot be used to construct this
connection, one of the reasons is that a homological pair induces only a smooth connection in general,
the second is that the KZB connection is defined on a more complicated bundle (isomorphic to the trivial
bundle).

In this thesis we do the following: we extend Chen theory to simplicial manifolds and we show that the
KZB connection is a flat connection induced by our extended notion of homological pairs. Our methods
is very general and it can be used to construct higher genus version of the KZ-connection. We use the
following strategy. Assume that our manifold is the quotient of a manifold M by a holomorphic action
of a discrete group G. The nerve M,G is a simplicial manifold. The vector space of smooth differential
forms on M,G is bigger than the one of M /G, and it carries naturally the structure of a Cw.-algebra (a
differential graded algebra which is commutative up to homotopy). We show that each 1-model for the
above Cy-algebra equipped with a particular vector space decomposition induces a flat connection on
a (trivial) bundle over M /G where the fiber corresponds to the Malcev Lie algebra of m1 (M/G). The
construction of the connection is purely algebraic and is intimately related to the homotopy transfer
theorem for C-algebras, this latter fact allows us to give an explicit formula for the connection that
depends only by the choice of the initial 1-model equipped with a vector space decomposition. We
investigate the dependence of the connection on these choices and we conclude that they are “unique”
modulo (smooth) gauge equivalences and an automorphism of the fiber. The connection is homolorphic
if so is the 1-model.

We consider the the punctured elliptic curve, we construct a holomorphic 1-model. This give us a
homological pair that induces precisely the KZB connection on the punctured elliptic curve. We apply
a similar argument to the configuration space of points of the punctured elliptic curve and we construct



a Cwo-algebra B, (0). We get a homological pair that induces the KZB connection on the configuration
space of points on the punctured elliptic curve. Our methods can be applied to other type of simplicial
manifolds. In particular, it can be used to construct flat connections on the configuration space of points
of punctured Riemann surfaces with higher genus which are holomorphic if we provide a holomorphic
1-model.

The thesis is subdivided as follows. In the first chapter, we give a short introduction about Chen theory
and we present in a more detailed way the results of the thesis. In the second chapter, we extend Chen
theory to simplicial manifolds and we investigate some properties of the obtained flat connections and
its relation with ordinary Chen theory. In the third chapter, we show that the KZB connection on the
punctured torus is induced by a homological pair. In the last chapter, we extend this to the configuration
space of points on the punctured elliptic curve and we compare KZ and KZB connection in terms of
Co-algebras.

Notation

Let k be a field of characteristic zero. We work in the unital monoidal tensor category of graded vector
spaces (grVect,®,k,7) where the field k is considered as a graded vector space concentrated in degree
0, the twisting map is given 7(v ® w) := (—1)I*l*lw ® v, and the tensor product is the ordinary graded
tensor product. For a graded vector space V*®, V? is called the homogeneous component of V, and for
v € V¥ we define its degree via |v| := i. For a vector space W := ®;c;W; we denote by proy, : W — W,
the canonical projection. For a graded vector space V'* we denote by V[n] the n-shifted graded vector
space, where (V[n])" = V. For example, k[n] is a graded vector space concentrated in degree —n (its
—nth homogeneous component is equal to k, the other homogeneous component are all equal to zero). A
(homogeneous) morphism of graded vector spaces f : V* — W* of degree |f| := r is a linear map such
that f(V?) C V. For two graded vector spaces V, W, the set of morphisms of degree n is denoted
Homyy, .., (V,W). More generally, the set of maps between V and W is again a graded vector space
Homygy.., (V, W) for which the i-homogeneous elements are those of degree i. The tensor product of
homogeneous morphisms is defined through the Koszul convention: for two morphisms of graded vector
spaces f : V* = W®and g : V'* — W' the tensor product f®@g : (V@ W)* — (V'@ W’)® on the
homogeneous elements is given by

(f®9) (v@w):= (~1)F(f(v) @ g(w)).

We denote by s : V — V[1], s7! : V[1] — V the shifting morphisms that send V" to V[1]"~! =
k@ V®=V"and V[1|"* = k ® VTl = U+l to U+l respectively. Those maps can be extended to a
map s” : V — Vin], (the identity map shifted by n). Note that s” € Hom™" (V,V[n]). A graded vector
space is said to be of finite type if each homogeneous component is a finite dimensional vectorspace. A
graded vector space V*® is said to be bounded below at k if there is a k such that V! = 0 for | < k.
Analogously it is said to be bounded above at k if there is a k such that V! = 0 for [ > k. Let (V,dy) be
a differential graded vector space, then V®" is again a differential graded vector space with differential

dv®n(’U1®---®’Un) = i2v1®--~®dvvi-~-®vn,
i=1

where the signs follows from the Koszul signs rule. Let (V,dy), (W,dw) be differential graded vector
spaces, then Homjy.., (V, W) is a differential graded vector space with differential

of :==dwf—(-1)fd,.

For a (complex) smooth manifold M, we denote by (Apgr (M),d,A) the differential graded algebra of
(complex) smooth differential forms.



Chapter 1

Introduction

The goal of this chapter is to present the main results of the thesis and to give a introduction about
homological pairs. In Section 1.1 we give a general overview about some results of Chen. In Section
1.2 we give an overview about the results of Chapter 2, we extend the notion of homological pair to
simplicial manifolds, we restrict our attention to manifolds equipped with a discrete group action and
we compare it with the ordinary Chen theory. These results are contained in [50]. In Section 1.3, we
give a short introduction to universal KZ and KZB connection and we present the results of Chapter 3
and 4. These results are contained in [51].

1.1 Homological pairs

In this section, we give a summary of some results of [13]. We work on the field of real numbers.

1.1.1 Differentiable spaces

Definition 1.1.1. By a n-dimensional convex set we shall mean a n dimensional convex set in R™.
A differentiable space M is a set M with a family U (M) of maps o : U — M, called plots on M, where

a) each U is a convex set,

b) if « : U — M is a plot, V a convex set and 6 : V — U; a smooth map, then a0 : V — M is
also a plot,

¢) every constant map from a convex set into M is a plot,

d) if V is a convex set, {V;} is a cover of convex open sets of U and there exists amap o : U — M
such that each restriction «|y, is a plot, then o : U — M is also a plot.

We denote a differential space by its underlying set M. A pair (M,U (M)) that satisfies conditions a),
b),c) is called pre-differential space.

For each set M equipped with a family of maps U(M), each of whose domain is a convex set,
there exists a unique maximal subfamily U’ such that (M,U(M)’) is a differentiable space. We call
U(M)' the differentiable space structure of M generated by U. In particular, for a pre-differentiable
space (M,U(M)"), the differential space structure generated by U’ is the subset U C U’ of maps that
satisfy condition d). We call (M,U(M)) the differentiable space associated to the pre-differentiable space
(M,UMY).

Definition 1.1.2. A morphism f : M — N between differentiable spaces is a map f : M — N such
that for any plot @« : U — M, fa is a plot on N.

Each convex set V is naturally a differentiable space, where
UV):={a : U—V]|«aissmooth }.
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In particular, for a differentiable space M and a convex set V, amap a : V — M is a plot if and only
if it is a morphism of differentiable spaces.
A smooth manifold X is naturally a differentiable space, where

UX):={a : U— X |« is smooth }.

Remark 1.1.3. If we replace the word “convex” with the word “open” in Definition 1.1.1 , we have the
definition of diffeological space (see [34]). For the relationship between these two categories, see [3]. In
particular the category of smooth manifolds (with corners) embeds fully and faithfully into both the
categories. Hence, differentiable spaces are an extension of the category of smooth manifolds.

They have several interesting properties (see [3]). Let M, N be differentiable spaces.
1. A subset S C M is a differentiable space where U(S) is defined as follows: oo € U(S) if o € U(M).

2. Consider the projections pp; : M X N — M, py : M x N — N. Then, M x N is again a
differentiable space where the plots are o/ x o : V' x U’ — M x N such that Py (¢ x @) is a plot
in M and Py (¢/ X @) is a plot in N. In particular, the projection pys, pn are differentiable maps.

3. Let M be a differentiable space and let ~ be an equivalence relation on M. Let M’ := M/ ~ be
the quotient and let p : M — M/ ~ be the projection. Then o : V' — M’ is a plot on M if there
exist an open cover 7; : V; < V and a collection of plots a;; : V; = M such that ai; = poy. This
defines a differentiable structure on M’.

4. Let C*° (M, N) be the set of morphisms between M and N. Let evys : C* (M,N) — N be the
evaluation map. Then C* (M, N) is a differentiable space, where the plots are given by

UC® (M,N)) i={a : U—C=(M,N) | evara € U(N)}.

We define a de Rham functor on the category of differentiable spaces.

Definition 1.1.4. A smooth p-form w on a pre-differentiable space M is a collection (w,) of smooth
p-forms indexed by plots a : V — M in U (M), so that w, is an ordinary smooth p-form on V. The
family (w,) satisfies the following compatibility condition: if & : V' — M is a plot, V a convex set and
6 : V' — V a smooth map, then

(1.1) (0*w),, = was.

We can consider w,, being intrinsically a*w.
The smooth forms on M generate a differential graded algebra A%, ,(M). Its vector space structure is
given by
(v+w), = Vo +Wa, (Aw), = AWa,

the differential and wedge product are given by
(dw), = dwa, (WAW), =ws AW .

We call AY, (M) the de Rham algebra of M. Note that any morphism f : M — N induces a differential
graded algebra map f* : Apr (N) — Apr (M) via

(ffw), = wsa.

Let M’ be a pre-differentiable space and M its associated differentiable space. Then Apgr (M') is
naturally isomorphic to Apgr (M).

Definition 1.1.5. A plot @ : U — M is said to be compact if U is compact. For a p-form w on M, we
define

<w,a> = fU Wa, lf dlm{] =D,
0, otherwise .



1.1.2 Iterated integrals
Let M be a differentiable space and I = [0,1]. We denote its path space by
PM :=C*(I,M)={y : I = M|~ is differentiable }.

By the discussion in the previous section, a plot on PM isamap « : V — PM such that ¢, : IXV — M,
defined by ¢, (¢, &) := a (&) (t) is a plot on M.

Definition 1.1.6. Let o : U — PM be a plot. We say that « starts at x € M if a(£)(0) = « for any
& € V. We say that « ends at x € M if a(§)(1) =z for any £ € V. Let a : U — PM be a plot ending
at x and 8 : V — PM be a plot starting at x. We defineax 5 : U XV — PM as

(a x B) (€.€.1) = {amt) o
2

B2t —1) for
For each [n] € A, we define the geometric n-simplex as the topological space
Ageoln] ={0<t; <--- <t, <1} C R

Let v € PM and let t € [0,1]. We define y* € PM as v'(s) := (ts). Let p1 : PM — M the differentiable
map that sends v to y(1). Let J : Apgr (M) — Apg (M) be defined by J(w) := (—1)3°8(*)w. We define
a map scale : Ageo[n| x I — I by

scale((O <t <<t < 1),3) = (t18,...,tn$).
For any M € C*°, this map induces a morphism rest : AJ , X PM — (PM)"

rest((0§t1 <<t < 1),7) = (’ytl,...,’yt").

Let vq,...,v, be differential forms on PM of degree dy, ..., d,, and let m; : (PM)"™ — PM be the
projection onto the ith coordinate. Set v :=mjvy A+ AThv, € Afp (PM)"). We define

II.(v1,...,0,) = (—1)1/ rest™v,
Ageo[n]

where [ is defined by

3
L

(n—1)(n)

l:=) di(n—1i)+ 5

%

Il
o

Proposition 1.1.7. Let wy,...,w, be differential forms on M of degree dy, ..., d, and letp; : PM —
M be the projection defined by p1(v) = v(1). Then,

1. IT. (wyy...,wy) = LI (J(I.1. (wy, ... ywn—1)) Awy) .

2. Let wy, ..., w, be differential forms on PM of degree dy, ..., d,, then
dL1 (w,...,wy) = Y (=D)LL (Jws,..., Jwi_y,dw;,wisy,...w,)
i=1

+ Z(*l)zdll (le, ey Jwi_l, sz A Wi41, Wi42, . - wn)
i=1
— wg ALL (wo,...wy) +J (I (wy,... wp—1)) A wy.

Proof. The first assertion follows by construction. The second assertion follows from the Stokes’theorem
with respect to the integration [ An - An inductive proof of the second assertion is given in [12](see
geo

Proposition 1.5.2.). O



Definition 1.1.8. Let wy,...,w, be forms in Apgr (M) of degree |r;|, for i = 1,...,n. We define
/w1~-~wr = LI (pjwi,...,piwy)

Jwi - -w, is a form on PM with degree >.._,(—1+ r;). We call these forms iterated integrals.

The iterated integrals satisfy certain multiplication properties. Let ¥,, be the group of permutations
on {1,2,...,n}. Consider two finite strings of natural numbers 1 < iy < -+ <ip, 1 < j3 < --- < j, for
p,q > 0. We associate to these strings a permutation o € ¥, via

. 1<
o(l) = {zl if I <p,

Ji otherwise .

A permutation obtained in this way is called (p, ¢)-shuffle. We denote the set of (p, g)-shuffles via Sh(p, q).
Let a, 8 : U — PM be two plots such that «(€)(1) = £(£)(0) for any £ in U. We define

apf : U — { piecewise smooth paths on M}

as
t< 3,
B2t —1) forz<t<L

Proposition 1.1.9 ([12]). Let M be a differentiable space and let wy,...,w, be differential forms on
M.

1. Let o, 8 : U — PM be two plots such that a(&)(1) = B(£)(0) for any & in U. Assume that af is
a plot on PM, then

(/wl"'w">aﬁzg(/wl”'w">a(/“’i*l"'w">g'

2. We have the shuffle product formula
</w1wp> </wp+1...wp+q> _ i/wa(l)--%(n),
oc€Sh(p,q)

where the signs is given by the sign of o and the sign rule.

1.1.3 Homological pairs and Maurer-Cartan elements

We refer to Appendix A.1 for a short introduction to coalgebras. Let (C,d¢, A) be a differential graded
(conilpotent) coalgebra and (A,da, 1) be a differential graded algebra. We consider the graded vector
space Hom® (C, A) and we define a differential

of)=daof~(~D)VIf ode
and a product M (f, g) := p((a ® a) o A) (called convolution product).
Lemma 1.1.10. The (Hom® (C, A), 0, M>) is a differential graded algebra. Let

[—, =] := My(a,b) — (—=1)1*PI A1y (b, a).

Then, (Hom® (C, A),d,[—, —]) is a differential graded Lie algebra.
Proof. The proof is by direct calculation. See [39], Chapter 2. O
Definition 1.1.11. We call (Hom® (C, A), 9, Ms) the convolution algebra and (Hom® (C, A),d,[—, —])

the convolution Lie algebra.



Definition 1.1.12. Let (u,d,[—, —]) be a differential graded Lie algebra. An element a € u! is called
Maurer-Cartan element if

1
804—&—5[04,04] =0.

Let (Hom® (C, A),d,[—, —]) be as above. A Maurer-Cartan element in (Hom® (C, A), 9, [—, —]) is called
twisting cochain.

Let BA be the bar construction of A (see Appendix A.1.1).

Lemma 1.1.13. Let C, A be as above. There is a one to one correspondence between twisting cochains
and and morphism of differential graded coalgebras F : C' — BA.

Proof. For a proof, see theorem 2.26 of [39]. O

Definition 1.1.14. Let A be a differential graded algebra. For a j € NU {oo}, a differential graded
subalgebras B is a j-model for A if

1. the inclusion ¢ induces an isomorphism up to the j-th cohomology group and it is injective on the
7 + 1 cohomology group,

l

2. the inclusion ! : B! < A! preserves non-exact elements for 0 <1 < j + 1.

If j = oo we call B a model for A.

Let M be a connected smooth manifold such that its de Rham cohomology HY) (M) is finite dimen-
sional. Let A C Apr(M) be a differential graded subalgebra with finite type and connected cohomology
(i.e. H'(A) 2R and H*(A) is a finite type graded vector space). Consider a direct sum decomposition
of graded vector spaces

(1.2) A=W adM oM,

where W is a graded vector subspace of closed forms on M and M is a graded vector subspace containing
no exact forms excepts 0. Notice that W = H(W,0) = H(A,d). We fix a basis 1,wy,...,w, of
W = &,>0W?P and we denote by X1, Xo, ... the elements in (W[1])" dual to s~ (w1), s (ws), - -- € W[1].
The dual space (W4 [1])" is non-positively graded. In particular, the degree of each s™!(w;) is 1 — |w;].
We consider the free algebra (T'(W,[1])", 1) on (W4 [1])" and we denote by I its augmentation ideal.
Its powers I', I12,..., 1%, ... form a filtration I°. We refer to Appendix A.2 for standard notions about
filtrations. We denote by T (W[1])" the complete free algebra with respect to I°®. We consider the

complete tensor product ART (W[1])*. Its underlying vector space is the space of formal power series
connection with coefficients in A

Notice that AQT (W, [1])" is an associative algebra equipped with the product

(1.3) (WY) (vZ) = (wo)u(Y, Z).

This product preserves the filtration and hence it induces an associative product on A@f(WJr[l])*
We denote this product by My and the completion of y by 1. We define a Lie algebra structure on
ART (W [1])" by defining ]

(1.4) =, —] = Ma(a,b) — (=1)\“IP1 2y (b, )

on homogeneous elements.

Definition 1.1.15. A differential d : T (W [1])* — T (W4[1])" is a morphism of degree +1 that satisfies
the Leibniz-rule with respect to ji.



Let (T¢(Wy[1]),A) be the tensor coalgebra on W, [1] (see Appendix A.1). There is a canonical
isomorphism (T¢(W.[1]))" = T (W, [1])" (see Section A.2)

U T (W.[1])* — Hom (T¢ (W, [1]) k).

In particular, for each differential d, there exists a codifferential § on T (W,[1]) such that' d = §*. We
prefer to use 0* instead of d. We fix a differential 6* and we denote by O the differential

8+ ABT (Wo[1])* — ABT (W, [1])*

induced by d and 6%,

0 Z Wiy, ..., z'pXil o 'Xz'p = Z dwil,...,ipXil e 'Xi,,
p>0 p>0
(el w87 (X - X,)
p=>0
We have the following simple lemma.
Lemma 1.1.16. The graded vector space (A@)f (W), o, [, —]) is a differential graded Lie algebra

and the isomorphism U extends to an isomorphism of differential graded algebras
(1.5) (ABT (W 11)" 0,1, =) — (Hom* (T (W [1]),6), 4), 0, [, ~])..

Consider the decomposition (1.2), W, and the basis 1,ws,...w, as above. The element
(1.6) > wiX; € ART (W [1))"
i=1

is completely determined by the choice of that decomposition and it is independent by the choice of the
basis of W.

Definition 1.1.17. Let A C Apr(M) be a subalgebra and let W be defined as above. A homological

pair (C,8*) consists of a codifferential § of T¢(W,[1]) and a C € ART (W4[1])* such that C is a
Maurer-Cartan element.

Theorem 1.1.18 ([12]). Let M be as above. Assume that A is a model for Apr(M). For every direct
sum decomposition (1.2) of A, there exists a unique homological pair (C,6*),

C=Y wiXi+ Y wiXiX;+ -+ wi, i Xy, ... Xi + - € ABT (W, [1))"

such that
i) the term > w; X; of C is as given in 1.6,
ii) the coefficients wyj, ..., w;, . i,,... belong to M,
iii) 6*(1) c I2.
We call the pair (C,0*) the homological pair associated to the decomposition (1.2).

The proof in [12] is inductive. Assume C7 = > w;X; and 6] = 0 and set (Cz,d3), where 65(X;) =
> ¢ XX and Oz = C1 + 3 w;; X; X such that

1
(17) dCy + 6;02 + 5 [Cg, 02} = 0 modulo I3.

'Recall that 6* : Hom (T°¢ (W4 [1]),k) — Hom®*! (T¢ (W, [1]),k) is defining by §*f = (=1)I/1+1 f6.
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Chen in [12] showed that the above equation has a unique solution where c§ x € Rand w;; € M by using
some iterated integrals argument (a “geometrical argument”). This way Chen obtained a family of pairs
(C;,07) that satisfies the above relations modulo I**!. In particular (C,6*) is obtained by taking the
projective limit

Ci=lmC;, 6" =lmd;.

In the literature there are some “purely algebraic” proofs (where the solvability of (1.7) is guaranteed
without involving iterated integrals). A proof of Theorem 1.1.18 is contained in [32] (see the coalgebra
perturbation lemma 2.1,), in this case we can substitute A with any non negatively differential graded
algebra with connected and finite type cohomology. In particular, one can show that the algorithm in
the proof of Theorem 1.1.18 works as well for any subalgebra A of A7, R(M with connected and finite
type cohomology. In particular, given a differential graded subalgebra A of A7, R(M) with finite type and

connected cohomology, for a fixed vector space decomposition as in (1.2), the above algorithm produces
a pair (C,0*) that satisfies all the conditions of Theorem 1.1.18 with respect to (1.2). In analogy of
above, we call (C,0*) the homological pair associated to (1.2).

We change our point of view.

Corollary 1.1.19. Let M be as above. Let A C Apr(M) be a differential graded algebra with connected
and finite type cohomology endowed with a decomposition (1.2). For every direct sum decomposition (1.2)
of A, the following items are equivalent.

1. There ezists a homological pair (C,§*) associated to the given vector space decomposition,

2. There exist a codifferential 6 of T (W [1]) and a Maurer-Cartan element
a € Hom® ((T¢ (Wy[1]),d),A) such that
i) (6% (Xl) = wy,
i) a(Xy - Xp) =wiy.q, €M forp>1,
iii) The dual map * is a differential on T (W [1])* such that 6*(I) C I
Theorem 1.1.18 can be proved in terms of point 2 via algebraic methods by using the coalgebra
perturbation lemma 2.1* contained in [32]. As explained in [33], this methods is equivalent to the
homotopy transfer theorem for C..-algebras (see Section 2.1). Such a theorem gives a easier way to

compute explicitly a and § such that they depend only on the decomposition (1.2) (See for example
Corollary 2.3.13 in this thesis).

Remark 1.1.20. Let A C Apgr(M) be a model equipped with a decomposition as in (1.2). By the
construction of §* in the proof of Theorem 1.1.18, Chen observed that J; is completely determined by
the product and by the (higher) Massey products of H® (M). Set §5(X;) = > cj»kXin for some cék eR.
We denote by [w] the cohomology class of a closed form w on M. Consider a basis wy,...,w, of W,
then

Zc;sz = [w; A wy].

A similar results (but instead of the cup product, we have to use the Massey triple product) holds for
5.

We conclude this subsection with a technical proposition.
Definition 1.1.21. An homological pair (C,0*) is quadratic if 6*(X;) = ZcékXin for some cék eR.
Proposition 1.1.22 ([13]). Consider the vector space decomposition (1.2)
A=W oddM e M.
If AM @ M is a differential graded algebra ideal of A, the associated (C,0*) homological pair is quadratic.
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1.1.4 A geometric connection on a trivial bundle

Let M be as above. We show that a homological pair induces a flat connection over a trivial bundle
on M. Let A C Apr(M) be a differential graded algebra with connected and finite type cohomology
endowed with a decomposition (1.2) and let (C,4¢*) be a homological pair where ¢* is a differential on

T (W,[1])* and C € A (M) QL (W4 [1])*. We denote by L(W.[1]) C T (W,[1])* the free Lie algebra on
(W4 [1])" and by L(W,[1])* € T (W4[1])* the completion of the Lie algebra with respect to I*. Clearly
it is a filtration of Lie ideals where

I=LWy[1))*, I"=[1"""LW.[1])*] forn> 1.

Definition 1.1.23. Let A be as above equipped with a decomposition (1.2). Let (C,6*) be a homological
pair where §* is a differential on T'(W[1])". We call (C,6*) a reduced homological pair if

1. &I C I?,
2. 0* has a well-defined restriction §* : E(W+[1])* — i(W+[1])*,
3. C e A(M)BL(W,[1))".

Proposition 1.1.24 ([12]). Let A be as above endowed with a decomposition (1.2) and let (C,0*) be
the homological pair associated to the given decomposition. Then 6% has a well-defined restriction 6* :
LW, [1]))* = LW, [1]))* and C € A(M)®L (W,[1])*. In particular, the homological pair associated to
a decomposition (1.2) is reduced.

Definition 1.1.25. Let u be a Lie algebra. Consider the filtration given by Lie ideals I' := u, I'*! :=
[u, Ii}, u is said to be nilpotent if I°T1 = 0 for some s. Notice that I* C u is a Lie ideal. A Lie algebra

u is said to be pronilpotent if 4
ulim (u/I%).
i

and if (u/ I l) are finite dimensional for any .

In particular, E(W+[1])* is pronilpotent. We fix a reduced homological pair (C,d*). We denote by
C' for i =1,2,..., the element

contained in A/®L (WL[1])" such that C = 351 O
Definition 1.1.26. For a Lie algebra u we define the adjoint Ad : u — End (u) via Ad,(b) := [a, b].

We consider L (I/I/}r[l])>k equipped with the adjoint action. This induces a map
(1.8) Ad : T (WiN)" — End (T (Win)")

defined by
Ad(le tee Xip) = AdXi1 O---0 AdXip

In particular Adx, o---oAdx, defines a inner derivation on L (W}r[l])* In particular, d + C' may
be considered as a connection on the trivial bundle on M with fiber L (W}_[l])* Notice that in general
this connection is not flat, since
(¢, C]

5
Let R C L (W_Hl])* be the completion of the Lie ideal generated by 6*X; such that |X;| = 1. Analo-

gously, let R ¢ T (W}_[l])* be the completion of the ideal generated by ¢*X; such that |X;| = 1. The
map (1.8) induces a well-defined action

—5*C? =dct +

(1.9) Ad T (W)™ /R = Bad (T (WEL)/R).
We denote by Cy the image of C'! under the projection
ABL (W) - 48 (T(win)' /R).
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Corollary 1.1.27. d+ Cj is a flat connection on the trivial bundle on M with fiber L (Wi[l])* /R.

Since 6* preserves I* we have that L (Wi[l])* /R is pronilpotent.

Definition 1.1.28. We call Cy the degree zero geometric connection associated to (C,6*). If (C,d*) is
the homological pair associated to (1.2), we call Cy the degree zero geometric connection associated to
(1.2).

1.1.5 Transport and holonomy

Let M be as above. Let A C Apr(M) be a differential graded algebra with connected and finite type
cohomology endowed with a decomposition (1.2). Let (C,d§*) be a reduced homological pair. Let B
be a non-negatively graded differential graded algebra. Then by Lemma 1.1.10 the graded vector space
Hom*® (T (W,[1]), B) carries a differential graded algebra structure, where T (W,[1]) is considered
endowed with the codifferential 6. Moreover the isomorphism (1.5) holds as well and BRT (W [1])* is
a differential graded Lie algebra. Let f : Apr(M) — B be morphism of differential graded algebras.
Then R R
f&Id : ART (W, [1))* — BT (W, [1])*.

is a differential graded Lie algebras morphism. Let PM be the path space of M and let p; : PM — M
be the evaluation at 1. We define

C' = (PiRIA)C € Al (PM) QT (W [1])".

and
C" = ((rj®1d) C") -+ (mpBIA)C") € A (PM)") &T (W [1])".
We define

/cn = (—1)l/n (rest*®1d) C™.

geo

Definition 1.1.29. We define the transport of C as

T=1+ Z/cn € A5 (PM)RT (Wi1])*.

n>1
We can write
T = 1+ZTiXi+ZTinin +-~-+ZE1___Z»TXZ-1 X

By looking at the coefficients, we have

Ti:/wiy Ti’:/(wiwj+wji)a

Tijk = /(wiij;g + wjw + wwjg + wijk) .

We denote by 7% € A%, (PM) &T (W [1])* such that T = > iso T Let (C,6*) be as above. We define
C' as in the previous subsection. In particular 70 can be written as

T =1+ Z/(Cl)” € A% R (PM)&T (WL[])".

n>1

where C! defines a connection form on the trivial bundle on M with fiber L (Wi * (which is considered

equipped with the adjoint action). In particular, 7° defines a map from PM to T (W}r[l])* via the
evaluation map. Let v : [0,1] — M be a smooth path. For ¢ € [0,1] we denote by 7' the path defined
by vt(s) := v(st). Notice that v* defines a path on PM. We define

T(3(t)) = TS € A%y (0,1) BT (W)

11



Let C(t) be the pullback of C* along v : [0,1] — M. As noticed by Chen in [13], T((y(t)) is the unique
solution of

dX(t)=X({t)ANC(t), X(0)=1.
for X : [0,1] > T (W}r[l])* By the adjoint action T° defines a map from PM to Aut (E (W}r[l])*>

which corresponds to the holonomy of C. Let (C,§*) be as above. Let Cy be its associated degree zero
geometric connection. We define

To=1+3 / (Co)" € Ay (PM)E (T (W) /R).
n>1
The above discussion works as well for Cy and we have the following.
Lemma 1.1.30. The holonomy of d + Cy is given by Tj.

Since Cy defines a flat connection on M, by standard differential geometry Ty induces a multiplicative
map

O+ m(M,p) — (T (Wi [1)" /R, }1)

called monodromy representation or holonomy representation. In order to understand this map we need
to introduce a few notions related to complete Hopf algebras (we refer to [46] and [23]).

For a complete Hopf algebra H with product i, coproduct A and augmentation €, the set of Lie elements
P(H) are elements z in the kernel of € satisfying A(z) = 1®&z + 2®1. P(H) forms a Lie algebra where
the bracket is given by the anti-symmetrization of the product fi. We define the set G (H) C H as the
elements = such that A(f) = f&f. In particular, (G (H), i) is a group. The completeness allows us to
define a bijection

log : @(H) AE— @(H) : exp
which gives a correspondence between groups and algebras. In some cases we will denote exp(—) by e,
Let (C,0*) be as above. One can show that (f (Wi[l])* 7;7) is a completed graded Hopf algebra where

the coproduct is given by the shuffle coproduct A’ (see Appendix A.4). Let R C L (Wi[l])* and
R cT (W}r[l])* be as defined in the previous section. The quotient 7 (W,[1])* /R’ is again a Hopf
algebra and it is isomorphic to the complete universal enveloping algebra of L (W_Hl])* /R. The group

G (f (W}r[l])* /R') is given by the formal power series

le—i—Zaleﬁ—Za”XlX]—{—+Za“erzl XZT+

such that Z\’(f) = f®f. By the above discussion, this group corresponds to U := exp (u) C T (W [1])* /R’
where u =1L (W}r[l])* /R. The group structure in terms of u is given by the Baker-Campbell-Hausdorf
formula BCH(—,—) : u X u — u, i.e. the unique solution of

(1.10) exp BCH (z,y) = exp(x) exp(y).
We have the following
Proposition 1.1.31. The image of
60 : w(M.p) — (T (W, 1) /R 7)

is contained in U.
Proof. Tt is sufficient to consider the case where R = 0. This is contained in [29, Proposition 4.1]. O
Remark 1.1.32. The monodromy or holonomy representation

Oy : 7(M,p) > U

gives a complete characterization of Cj in terms of gauge theory. More precisely, this map corresponds
to a flat connection in a principal U-bundle on M. The action of U on u via the adjoint representation
induces a flat connection on M with fiber u which is gauge equivalent (see Subsection 2.4.1) to Cy (for
more details see for example the introduction of [14]).
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1.1.6 Transport and generalized holonomy

Let M be a connected smooth manifold with finite type cohomology. Let A C Apr(M) be a differential
graded algebra with connected and finite type cohomology endowed with a decomposition (1.2). Let W
be equipped with the basis 1,ws,...w, as above and let (C,0*) be its associated homological pair. We
denote by T its transport as defined in the previous section. We presents some of the main results of
Chen. The material of this subsection comes from [13] and the nice introduction of [14] due to Hain and
Tondeur. For a compact plot o on PM we define

(T,0) == (La) + > (T,a) Xi+ Y (Tijy0) X Xj+ -+ > (Tiy o) Xy o Xi 4.
in T (W [1])".
Lemma 1.1.33. Let o, 8 be two compact plots of PM such that o X 3 is well-defined. Then
(Thaxp):=p(T,a),(T,B)).

We denote by QM the loop space of M, i.e the set of differentiable maps v : [0,1] — M such that
v(0) = v(1). We have QM C PM, hence QM is a differentiable space. In particular, the inclusion
QM < PM is a smooth map.

Proposition 1.1.34. Let M, C' be as above.

1. On PM we have
dT = 5*T + M, ((p;@Id) C — (p;®1d) C,C) .

2. Let T|qm be the restriction of T at QM along the above inclusion, then

dT\om = 0"T|am.

Proof. This follows form the standard properties of iterated integrals and by the Maurer-Cartan equation.
For a proof see [13], Theorem 3.3.1. O

Let p € M. We denote by €2, M the based loop space and by (C(£2,M), 0) its singular simplicial chain
complex. An element of C,(2,M) is thus the abelian group generated by smooth maps o : Ageo[n] —
QM. An element ¢ € Cp,(Q,M) can be written as ¢ = ). n;q.

Corollary 1.1.35. Let (C(Q,M), ) be the simplicial complex of the loop space. The map © : (C(Q,M), D) —
(f(W+[1])* ,5*) defined by

O(c) := an (T|e,nrs i)

for ¢ =737, nja; is a chain map.

Proof. By Stokes’theorem we have O(c) = (T'|aar, Oc) = (dT |au, ¢) which is equal to (6*T'|qar, ¢) by the
theorem above. Then (0*T|qar, ¢) = 0* (T'|awm, ¢) by the definition of §*. O

The based loop space is an example of H-spaces. In particular, H® (Q,M) and H, (Q,M) have the
structure of a Hopf algebra (see [31] ). On the other hand T' (W [1])" D L(W,[1]) may be viewed as the
complete universal envelopping algebra of (W, [1]), hence a Hopf algebra. Since the ¢* is a codifferential
and preserves the filtration I°®, the cohomology H~* (f (W [1)* ,5*) is a Hopf algebra as well. For a
group G and a field k of characteristic 0, we denote by k [G] its group ring. It is a Hopf algebra where
the coproduct is given by A (g) := g ® g. Let J be the kernel of the augmentation map k [G] — k that
sends each element of G to 1. The powers of J (with respect to the multiplication) define a filtration

J*. Moreover the completion k [G]/\ is a complete Hopf algebra, i.e a complete vector space such that
the structure maps are continuous (see [23] for more details).

Theorem 1.1.36. Let M, A, C and 6* be as above.
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1. Assume that A is a model for Apr(M). The map © induces a morphism of Hopf algebras

O. : H, (C(QM),d) — H™* (f(W+[1])*,5*).

2. Assume that A is a model for Apr(M). The above morphism is an isomorphism if M is simply
connected.

3. Assume that A is a 1-model for Apr(M). Let R' C f(Wi[l])* be the completion of the ideal
generated by 0* X; such that | X;| = 1. If M is not simply connected, ©¢ satisfies Oq (Jl) c I’ for
any i and it induces a morphism of Hopf-algebras

0y : Rmi (M, p)] = Hy (C(QM),d) — H° (f(W+[1D* ,5*) =T (W) /R

which corresponds to the J-adic completion of R [ (M, p)] as a Hopf algebra.

Definition 1.1.37. A group H is said to be Malcev complete if it is isomorphic to the group like elements
of k [G}/\ for some group G. For a group G we call the Lie elements of k [G}/\ the Malcev Lie algebra.

The Malcev completion of a group consists of a Malcev complete group G and a group homomorphism
G — G which is universal, i.e for any Malcev complete group H, any group homomorphism G — H
factors uniquely trough G.

The Malcev completion can be constructed by taking the group like elements of k [G]/\. The con-
struction involves two functors. On one hand we start with a group G and we get a complete Hopf
algebra k [G]", on the other hand we start with a complete Hopf algebra and we get a group using G(—).
These two functors are adjoint (see [23]) and this induces the desired homomorphism G — G. Let M A,
C and 0* be as above. Assume that A is a 1-model for Apr(M). The next corollary characterizes the
monodromy representation of the flat connection r,.Cy induced by the homological pair (C, §*).

Corollary 1.1.38. Let Cy be as above. The monodromy representation of Proposition 1.1.31
Oy : m(M,p) = U
is the Malcev completion of w(M,p). In particular L (W}_[l])* /R is the Malcev Lie algebra of m (M, p).

There is a dual version of the above statements involving the cohomology of the loop space. Assume
that A C Apr(M) is a differential graded subalgebra which is connected, i.e. A° =R. We have a map

BA — ADR(PM)

given by

(1.11) s(wy) - s (wy) r—>/w1~~~wr.
For wy, ..., w, 1-forms the iterated integral [w; ---w, defines a function F' : PM — R. We say that F'
is a homotopy functional if F(y) = F(v') for any pair of homotopic paths.

Lemma 1.1.39 ([13]). Let wy,...,w, be 1-forms. Then [wy ---w, is a homotopy functional if and only
if s(wy) -+ 8y, is closed in BA.

"

For a p € M, consider the map
BA — ADR(Q;DM)

given by
(1.12) s(wy) - s (wy) r—)/w1~~wr.

Theorem 1.1.40 ([13]). Let A C Apr(M) be a connected differential graded subalgebra.

1. Assume that M is simply connected and A is a model. The map (1.12) restricted to Q. M induces
an Hopf algebra isomorphismin cohomology.
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2. Assume that A is a 1-model. If M is not simply connected and it has a finitely generated funda-
mental group, there is an isomorphism

elements s(wq)---s(w,) in 0 T
{ fements (uof)len;;;t'r)‘ H (BA)} = HomZ (Zﬂ'l(Max)/J +17R)

given by the map (1.12). Moreover the fact above is true even if we replace w1 (M, x) with a torsor
m(M;z,y).

It follows that iterated integrals are good objects to describe homotopy functionals.

Remark 1.1.41. A gauge-theoretic proof of the second point of the theorem above is contained in [28].

1.1.7 A summary

We give a picture of the properties of the Homological pairs. Let M be a connected smooth manifold
with finite type cohomology and p € M.

ACApr(M) 1—model equipped
with a vector space decomposition
A=W GdMeM
as in (1.2)

Theorem 1.1.18

C 1 1.1.19 . N}[]auéer—Calrta_n elﬁ_menlt o]z)

: . . orollary 1.1. in the Convolution Lie algebra

Associated homological pair .

(Comy TP (Hom* ((T*(W [1]),6),4),0,[—,~])
’ such that it satisfies the conditions

of point 2. of Corollary 1.1.19

Corollaries 1.1.27+1.1.38

Flat connection d+Cj on the trivial bundle where the fiber
is the (completed) Malcev Lie algebra of 71 (M,p).
and where the monodromy representation is the Malcev completion of 71 (M,p)

As noticed by Chen in [13], the above diagrams holds as well if M is a complex smooth manifold
and Apgr(M) is the differential graded algebra of smooth complex differential forms.

1.2 Extension on simplicial manifolds

In this section we give a summary of the main results of Chapter 2. We extend the Chen formalism on
simplicial manifolds. Smooth manifolds equipped with a smooth group action can be naturally turned
into simplicial manifolds. In the last subsection, we apply this formalism to this class of manifolds.

1.2.1 A de Rham functor on simplicial manifolds and C-algebras

We define a de Rham functor on simplicial manifolds. All the results are taken from [19] and [26]. Let
A be the simplex category, i.e the category where the objects are finite ordered sets

[n]:={0<1<2<3<---<n}

and the maps are order-preserving morphism. For each n we denote the coface maps by ¢, : [n] — [n+1],
i=0,1,...,n+1and by 5%, : [n+1] = [n], i =0,1,...,n the codegenerancy maps.
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A cosimplicial object in a category C is a functor X : A — C. We define X" := X([n]) and by abuse
of notation we denote X (dﬁl) by d* and X (sﬁl) by s* for all n and i. Dually, a simplicial object is a
functor X : A — C. We define X,, := X([n]) and by abuse of notation we denote X (df,) with d; and
X (sﬁl) by s;. A (complex or real) simplicial smooth manifold M, is a cosimplicial object in the category
(complex or real) manifolds. Equivalently it consist of a family {M,}, -, equipped with smooth maps

d; : Mpy1 — My, fori=1,...n+1
and '
sy, ¢ My — Mpyq, fori=1,...n

that satisfy some relations imposed by the functoriality. We give two examples. Let M be a smooth
manifold, then M gives an example of simplicial manifold M, by setting

M, =M d . s =1Id

n» n

for any n. We call such a simplicial manifold the trivial simplicial manifold associated to M.
Let G be a Lie group, and let M be a manifold equipped with a left smooth (or holomorphic) G-action.
We define the simplicial manifold MG as follows:

M,G =M x G™.
The face maps d* : M,G — M,,_1G for i =0,1,...n are

(1,92, -5 9n), if i =0,
d'(z, g1,y Gn) == (T, G155 GiGit1,-- -, Gn), 1 <i<n

(1'7917 ) 7gn71), if i =mn.
The degenerancy maps s’ : M,G — M, G are defined via

Si(x’glﬂ s 7gn) = (xvgh <3 9i5€,9i+1,5 - - - agn)
fori=1,...,n.
Definition 1.2.1. We call the simplicial manifold MG the action groupoid.

In this thesis we consider only discrete groups. We mainly work on the category of complex simplicial
manifolds. Let Diff¢ be the category of complex smooth manifolds. For M € Diff¢ we denote by Apr(M)
the de Rham differential graded algebra of smooth complex differential forms (see Subsection 2.3.1).
The functor Apgr(—) is contravariant, hence to any simplicial manifold M, it associates a cosimplicial
commutative differential graded algebra Apr(M,). We turn this object into a cochain complex. We
define the bigraded vector space A = &, ,AP? where AP9 := A% (M,). The alternating sum of the
maps (d;)* gives a differential

d 1 AP 5 APTLA
and the de Rham differential d induces

d - AP? Ap,qul.

For an element a € AP4, we define D(a) := da + (—1)Pda. In particular (A, D) is a chain complex.
We define Toty (Apr(M.)) C A as the sub vector space consisting of b € A such that its pullback
along the degenerancy maps s, vanishes for any n and i. One can show that (Toty (Apgr(M,)), D) is
a cochain complex as well. An element w in (Toty (Apr(M,)), D) consists of a family of differential
forms wy, ..., ws such that _
wj € Ap (M;)
vanishes along the pull back sé_l for any ¢ = 1,...,j — 1. This construction is functorial and we get a
functor
Mq — TOt;V (ADR(M.))

from simplicial manifolds to cochain complexes. This functor is the canonical? extension of the de Rham
functor into the category of simplicial manifolds.

2We use the word “canonical” because this functor can be interpretated (modulo some quasi isomorphisms) to the left
Kan extension of the ordinary de Rham functor along the Yoneda embedding for a suitable sites.
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Proposition 1.2.2 ([19]). Let M be a smooth manifold.

1. Let My be the associated trivial simplicial manifold. There is a canonical isomorphism (of differ-
ential graded algebras)
TOt;V (ADR(M.)) = ADR(M)

2. Assume that M is equipped with a smooth group action of a discrete group G. If it acts discretely
and properly discontinuosly, the inclusion Apr(M/G) — Toty (Apr(M.G)) induces a quasi-
isomorphism.

Remark 1.2.3. The above proposition is true also for smooth differential forms with logarithmic singu-
larities (see Subsection 2.3.1). Assume that M is a smooth complex manifold equipped with a normal
crossing divisor D. Then M — D is again a smooth complex manifold. We denote by

ADR(IOg(D)) - ADR(M — D)

the differential graded algebra of smooth differential forms with logarithmic singularities along D. The
cohomology Apgr(log(D)) corresponds to H*(M — D). Now assume that M is equipped with a smooth
group action of a group G that preserves D. Then (M — D), G is an action groupoid. If G is discrete,
we consider the action groupoid DeG, in particular D,,G is a normal crossing divisor of M, G for any n.
We denote by Apg(log(D)eG) the unital cosimplicial commutative differential graded algebra obtained
by applying the functor Apg(log(—)) on (M — D),. By taking the normalized complex we get a functor

(M — D), — Toty (log(D).G) .
One can show (see Proposition 2.3.10) that the inclusion
Toty (log(D)eG) < Toty (Apr((M —D),))

is a quasi-isomorphism.

Unfortunately, Toty (Apr(M.)) and Toty (log(D)«G) are differential graded algebras only in a weak
sense: they are C-algebras, i.e. a commutative version of A.-algebras. Next, we give an intuitive
definition. A detailed summary is given in Subsection 2.1.1, for more details see [39]. An A,.-algebra
consists of cochain complex (A, m;) equipped with a multiplication mg : A® A — A which is associative
only up to a family of homotopies

my @ A" A, n > 2

of degree 2 — n such that
1. my is a chain map,
2. mg measures the failure for msy to be associative,
3. my measures the failure for mg to satisfy the pentagon equation,
4. and so on.

A differential graded associative algebra gives an example of an A,-algebra, where m,, = 0, for n > 2.
We denote an Ao-algebra by (A, ms). The cohomology of (A4, ms,) is defined as

H*(A,m1).

One can show that my is associative on H®*(A, m1) and that the maps m, induce an A..-structure on
H* (A, miq ) .

A C.-algebra consists of an A,.-algebra where the maps m,, : A®" — A satisfy additional commutativity
relations. In particular, mo is a commutative (but not associative) bilinear map. A Cy-subalgebra B of
(A, m,) is a graded subvector space closed under the operations m,. B is quasi-isomorphic to (A, ms,)
if the inclusion induces a quasi-isomorphism. For 1 < j < oo we define j-models for Cy-algebras, in the
same way as we did for differential graded algebras (see Definition 1.1.14). The next theorem is a special
case of Theorem 17, in [26].
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Theorem 1.2.4 ([26]). The functors
M, — Toty (Apr(M,)), (M — D), — Toty (log(D)eG)

can be upgraded to functors from the category of smooth complex simplicial manifolds to the category of
Coo-algebras.

In this thesis, we consider Toty (Apr(M,)) equipped with me and we denote m; with D. In Section
2.2 we present a formula for the calculation of the higher products m,, between 1-forms.

Warning 1.2.5. In order to avoid repetitions, we use the following assumption. Let M be a smooth
complex manifold equipped with a normal crossing divisor D and equipped with a smooth group action
of a discrete group G that preserves D. Then all the statements for Toty (Apr((M — D), G)) are true
for Totyy Apr (log(D)eG) as well (unless specifically written.)

1.2.2 Convolution L..-algebras

Fix a simplicial manifold M,. Let A C (Toty (Apr(M,)),ms) be a Co-subalgebra. Assume that its
cohomology is connected and of finite type. We fix a vector space decomposition

A=W ODMoDM,

as in (1.2). Consider T¢(W,[1]) equipped with a codifferential . At this point, we consider the vector
space AT (W4 [1])*. By Lemma 1.1.16 we should expected that it carries an algebraic structure similar
to a Lie algebra and that this structure is induced by m,. In order to understand the next proposition
we need to introduce a new object. An Ly-algebra is a cochain complex (L,!;) equipped with a family
of maps I, : L®" — L of degree n — 2 such that

1. I3 is a chain map and it is asymmetric,
2. I3 measures the failure for I to satisfy the Jacobi identity,
3. and so on.

We may consider L..-algebra as differential graded Lie algebra where the Jacobi identity for the bracket
lo is relaxed up to a family of coherent homotopies I,,, with n > 3. A Maurer-Cartan element in an L,
algebra L is a o € L! such that

lk (Oz, N ,a)
ll(Oé) + Z T =0.
E>1
Notice that, in order that the equation above is well-defined we need the graded vector space underlying
L to be complete. The next proposition corresponds to Lemma 2.1.15 in this thesis.

Proposition A. The graded vector space
AST (W [1]))" = Hom® (T (W4 [1]),6),4),
carries the structure of an Log-algebra where 1,(f) = —Df — (—=1)/1C§ on homogeneous elements.

We denote such a structure by I’e and we call (Hom® ((T¢ (W [1]),0),A)) the convolution L -algebra.
We denote by I* the filtration on T (W, [1])* obtained by the powers of its augmentation ideal I. The
proposition above motivates the following.

Definition 1.2.6. Let A C (Toty (Apr(M,)),me) be a Cy-subalgebra and let W be a connected
graded vector space of finite type. A homological pair (C,¢*) consists of a formal power series

C = ZwiXi + Zwinin 4+ 4 Zwil.,_iTXil e XiT +--- € A@)T\ (W+[1])*
and a codifferential 6 of T (W, [1]) such that
e (C,...,C)
riey+ Y Gy
A homological pair is said to be reduced if it satisfies the conditions of Definition 1.1.23.
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The next Theorem is proved in this thesis, see Section 2.3.

Theorem B. Let A C (Toty (Apr(M,)),me) be a Cu- subalgebra. Assume that its cohomology is
connected and of finite type. We fix a vector space decomposition

(1.13) A=W & DM e M,
as in (1.2).
1. There exists a unique homological pair (C,§*) such that
i) the term > w; X; of C is as given in 1.6,
ii) the coefficients w;;, . .. s Wiy i,y -+~ belong to M,
iii) 0*(I) c I,
We call such a homological pair the homological pair assocaited to (1.13).

2. Let (C,8%) be as above. Then 6* has a well-defined restriction 6* : L(W,[1])* — L(W4[1])* and
C € A(M)RL(W,[1])" where the completion is taken with respect to the filtration I*® defined in
Section 1.1.4.

3. Let (C,6*) be as above. Let R C L (Wj_[l])* be the completion of the Lie ideal generated by 6*X;
such that | X;| = 1. The Loo-structure l'y restricted to ASL (W,[1])* is well-defined. Moreover it
induces an Loo-structure lo on A® (HAJ (Wi[l])*) /R such that the map ™ obtained by the concate-

nation
AB (L(mm)*) — AB (]L (Wm])*) — AB (]L (Wm])*) /R
preserves Maurer-Cartan elements.

Remark 1.2.7. In the same way as for Corollary 1.1.19 the homological pair (C,d*) associated to the
given vector space decomposition, corresponds to a codifferential 6 of T¢ (W, [1]) and a Maurer-Cartan
element o € Hom® (7 (W4[1]),d), A) such that

i) (6% (Xz) = Wy,
i) a(X;, - X,) = Wiy .., € M forp>1,
iii) 6*(1) c I*.

There is an Ao, version of Lemma 1.1.13. More precisely, consider the tensor coalgebra T¢(A[1]), then
me corresponds to a codifferential 4’ on it. One can show that « as defined above corresponds under
such an equivalence to a morphism of differential graded coalgebras F : (T¢(W4[1]),6) — (T°(A[1]),d")
such that

i) F (will]) = wi[1],
i) £y ((wi,[1]) - (w, [1])) = ws,.0, [1] for p > 1,

where Fp1 is as in Proposition A.1.6. Concretely: a homological pair is equivalent to a pair (F, d) as above
such that 6*(I) C I?. In this thesis we first construct such a pair via the homotopy transfer theorem
(see Theorem 2.1.26) and then we translate it in terms of homological pairs (see Theorem 2.1.40).

1.2.3 A geometric connection on M,

Given M, as above. Let A C (Toty (Apr(M,)) ,me) be a Cxo-subalgebra. Assume that its cohomology is
connected and of finite type. We fix a vector space decomposition as in (1.13) and a reduced homological
pair (C,6*). Furthermore, we set Cy := 7(C). In particular Cy € A'® (HAJ (W_Hl])*> /R. By definition
we have

Al _ AI,O @AO,I
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where A% C AL p(Mp) und A% C AY (M), Let 1 : A — @,50A%P be defined by

a ifaec AP
r(a) = : :
0 ifae A?P if g #0.

We denote r, := r@Id : A® (}i (WHI])*) /R — A%*® (IE (Wim)*) JR. Notice that A%* C A%, . (Mp)
is a differential graded Lie algebra. One can show that
(on’é (]ﬁ (Wim)*) IR, —d, |-, —])
is a differential graded Lie algebra, where the bracket are the one defined in 1.4.
Proposition C. Let A and Cy be as above.
1. The map r. sends Maurer-Cartan elements to Maurer-Cartan elements in the differential graded

Lie algebra ( A%*® L(win) R,—d,|—,—]). In particular
+

[T* COa T CO]
2

—d (r.Co) + =0

2. Consider the Lie algebra equipped with the adjoint action. Then d — r.Cy is a flat connection® on
the trivial bundle on My with fiber (}i (Wj_[l])*) /R.

3. Let MG be an action groupoid where G is discrete and it acts properly and discontinuosly on
M. Assume that the cohomology of M/G is connected, of finite type and that A is a 1-model
for Toty (Apr(MeG)). Let (C,5*) be the homological pair associated to (1.13). Then d — r.Cy

defines a flat connection on the trivial bundle on M with fiber (IE (Wi[l])*) /R. In particular
(H: (W}r[l])*) /R is isomorphic to the Malcev Lie algebra of m(M/G).

1.2.4 A comparison between the two approaches

Given M,G as above. Let A, B C (Toty (Apr(MeG)),mse) be 1-subalgebras such that B is a 1-model.
Assume that their cohomology is connected and of finite type. We fix a vector space decomposition as
in (1.13) on A and B via

A=WoeMedDM, B=W oM ®&DM.

Let (C,0*) be a reduced homological pair with respect to A and let (C’, §*) be its associated homological
pair with respect to B. By Proposition C, (C,6*) there is a finite dimensional Lie algebra u and flat
connection form r,Cy € A} ,(M)®u such that d — r.Cp is a flat connection on the trivial bundle on
M with fiber u. The same arguments works for (C’,§*) as well and we have a flat connection form
r.C'o € AbR(M)@)u’ such that d — r,C’y is a flat connection on the trivial bundle on M with fiber v’
which corresponds to Malcev Lie algebra of 71 (M). For any morphism of Lie algebras K* : v’ — u the
map
ke = IdRK* : Ahp(M)@u — AL (M)®u

sends Maurer-Cartan elements to Maurer-Cartan elements. We have that (Apg(M)&u, —d, [—, —]) is a
differential graded Lie algebra which is complete (with respect to I) if u is pronilpotent. Two Maurer-
Cartan elements «g, a; are said to be gauge equivalent if there exists a u € A%R(M)@Qu such that

1 — efdu

u . JAd,
e“(ap) = e (a) + v

(—du) =

See Subsection 2.4.1 for more details.

3The signs — appears because of point 1. If M = M is a constant simplicial manifold then 7. = Id and the flat
connection obtained by Chen’s theory is d — C. This flat connection coincide with the one constructed in Proposition C 3.
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Theorem D. 1. There exists a Lie algebra morphism K* : W — u such that k.r.C'y is gauge
equivalent to r.Co. If A is a 1-model and (C,6*) is the homological pair associated to the given
decomposition, then K* : u' — u is an isomorphism.

2. Assume that M = (N — D) where D is a normal crossing divisor which is preserved by the group
action G. If A, B C (Toty (Apr(log DeG)),ma), the gauge e* is in exp (A% 5 (M)@u).

Let B C Apr(M/G) be a model with a vector space decomposition as in (1.13). In particular the
elements in B are G-invariant. Then C’( defines a flat connection on the trivial bundle on M/G with
fiber u’. We recall the notion of factor of a automorphy from Subsection 2.4.2. A factor of automorphy
is a smooth function F' : G x M — End(u) such that the function g : M x u — M x u defined by

(p,v) = (gp, Fy(p)v)
defines a group action of G on M x u. In particular the quotient
(M xu) /G
is a vector bundle, where the sections are

s(gp) = Fy(p)s(p).

We denote by Er the vector bundle induced by the factor of automorphy F. The theorem and the
discussion above have the following consequence. Let B be as above. There exists a Lie algebra morphism
K* : u — u such that (k.C’p) is gauge equivalent to r.Cy as element in Apr(M)®u via a u €

~

AY (M) ®u.
Theorem E. Let A, B, K* be as above. The map F : G x M — End (u) given by
F(g,p) := e“P)—ulop)

defines a factor of automorphy such that d—r.Cy is a well-defined flat connection on M /G on the bundle
Er.

A flat connection V on a vector bundle F on a smooth manifold M induces a representation of
m1 (M, p) for any p € M called monodromy or holonomy representation of V at p. In Subsection 2.4.2,
we show that the monodromy representation of (d — r.Cy, Er) corresponds to K*0'g, where @' is the
monodromy representation of d—C”y. The gauge equivalence implies that the monodromy representation
at p of d — k.C'"q is conjugate to the monodormy representation of d — 7,.Cy at p via e“®) € U = exp(u).
If A, B are both 1-models and the two homological pair are both associated to the given decompositions,
the map K* is an isomorphism. In some cases, this map can be easily calculated. We assume that A
is a 1-model and that (C,d*) is the homological pair associated to the chosen decomposition for A. If
H?(M/G) = 0, we have

w=LOVE[), W =L [1).

The map K* can be constructed as follows. There are isomorphisms of vector spaces f and f’ given by
the concatenation of

W — H*(A,my) — H' (Tot% (Apr(M,G)),m1)

and
W' — H*(B,my) — H' (Toty (Apr(M.G)),m;).

Notice that f=1f’ : W — W’ defines an isomorphism of vector spaces.
Theorem F. Assume that B is a model and that (C’,8*) is the homological pair associated to the chosen

decomposition for B. The map K* : u' — u can be written as K* := Zfo K where K corresponds to
the map induced by f~1f'.
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1.2.5 A summary of Chapter 2

We give a summary of the results about the simplicial version of the notion of homological pair. This
is the simplicial manifolds version of the summary given in Section 1.1.7. Let M be a complex smooth
manifold and let M,G be an action groupoid where G is discrete and it acts properly and discontinuosly
on M. Furthermore, assume that the chomologly of M/G is connected and of finite type.

AC(Tot} (Apr(MeG)),me) 1—model equipped BCApr(M/G) model equipped
with a vector space decomposition with a vector space decomposition
A=W GIMSM B=W'@dM’'eM’
as in (1.2) as in (1.2)
Theorem B

. Maurer-Cartan element o
in the Convolution L., —algebra

(Hom® ((T°(W4[1]),6"),A4),l"s)
such that it satisfies the conditions
of Remark 1.2.7

Remark 1.2.7

Associated homological pair :
(C,6%) Subsection 1.1.7

Proposition C

Flat connection d—r,Cpy on M
on the trivial bundle where the fiber u
is the (completed )Malcev Lie algebra of 71 (M/G)

Theorem D
Flat connection dfr*C’O
I hism of Lie aleebr on the trivial bundle on M/G where the fiber u’
somorp H;(T _O , 1 algebras is the (completed )Malcev Lie algebra of 71 (M/G)
Fwou Theorem D and the monodromy representation ©’¢ corresponds to the
Malcev completion of 71 (M/G)
Theorem E

Factor of Automorphy F and flat connection d—r,Co on M/G
on a trivial bundle Er with fiber u
and the monodromy representation ©¢ corresponds to the
Malcev completion of 71 (M/G) such that ©¢
is conjugated to K*©'q

1.3 Applications: the universal KZ and KZB connection

The main application of theory developed in the previous subsection is about the comparison of two
connection forms called universal Knizhnik—-Zamolodchikov connection (KZ connection for short) and
universal Knizhnik—Zamolodchikov-Bernard connection (KZB connection for short). In the next two
subsections we introduce them briefly. The Knizhnik—Zamolodchikov equation (KZ equation) and
Knizhnik-Zamolodchikov-Bernard equations (KZB equation) are differential equations used in quan-
tum field theory (see [45], resp. [4] and [5]), they can be interpretated as connection form on a trivial
bundle. The universal KZ connection and the universal KZB connection (KZB connection) are universal
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version of these connection (see [18] and [11]).

1.3.1 The universal Knizhnik—Zamolodchikov connection

In this subsection we construct the KZ connection as a connection induced by a homological pair. For a
topological space X we define its configuration spaces as

Conf,, (X) :={(z1,...,2n) € X" : @; #; for i # j}

The topological space Conf,,(C — {0,1}) is a complex smooth manifold. Let Axz , be the unital differ-
ential graded subalgebra of Apg (Conf, (C—{0,1})) generated by w; 1, w; 0, and w; ; given by

dZi — de

7 J

for 1 <7 # j < n such that z_; := 1 and zg := 0. These differential forms satisfy the so called Arnold
relations

(1.14) WijWjk + Wriwij + wikwg = 0
for 4, j, k, distinct. The next result is proved in [2] (see [43] unless you don’t speak Russian).
Proposition 1.3.1. Akz,, is a model for Apr (Conf, (C —{0,1})).

Consider Az, equipped with the vector space decomposition Axz, = W & dM & M such that
W = Agz, and M = 0. The above proposition ensures that this is a decomposition as in (1.2). We
define the rational Lie algebra t, with generators 7; ; for —1 <4 # j <n with j > 0 or ¢ > 0 such that

(1.15) Ty =Tji, [Tij, T+ Tje] =0, [Ti5,Tia] =0
for i, j, k,l distinct. We call t,, the Kohno-Drinfeld Lie algebra.

Corollary 1.3.2. Consider Az equipped with the above decomposition. The degree zero geometric
connection assoctated to that decomposition is

WKZn 1= E wi; Tij

1<i<j<n
where the fiber is given by the Lie algebra t,,.

Proof. Since 0 = M @& dM, we can apply Proposition 1.1.22. The relation T;; = Tj; follows from
wi; = wj;. We use the methods of Remark 1.1.20. The relations (1.14) implies the second relation (1.15).
The third relations comes from the fact that there are no relations between forms w;;, wi; with distinct
indices. Since M = 0 we conclude that ZlSKan wi; T35 is a flat connection form. O

Remark 1.3.3. This connection can be constructed for Conf,, (C) as well and for more general supbspaces
of it (see [43]).

This subsection can be summarize by the following picture.

The (holomorphic) model Ak z, Chen theory
equipped with its
“canonical” vector space decomposition

The (holomorphic) KZ connection d—wk z,, on
Conf,, (C—{0,1})

1.3.2 The universal KZB connection

In this subsection we define the universal KZB connection as in [11]. They are a genus 1 version of
the universal KZ equation. Our main references are [11], [29] and [38]. In [11] the KZB connection is
defined on the module space of the punctured elliptic curve M ,. It is the universal version of the
Knizhnik—Zamolodchikov-Bernard equations (KZB equation) (see [4] and [5]). In this thesis we consider
its restriction on the configuration space of points of the punctured elliptic curve and we call it the KZB
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connection (dropping the word universal).
Let £ be the coordinate on C. Let 7 be a fixed element of the upper complex plane H. Consider the
action of Z2 on C given by

(I,m)é=E&+14+mm.

Furthermore, let Z+7Z be the lattice spanned by 1,7 and let £X = (C — {Z + 7Z}) /Z* be the punctured
elliptic curve. We fix a 7 € H and we denote £X by £*. Let 0 (&, 7) be the “two thirds of the Jacobi
triple formula”:

(1.16) 0({,7’):(]1/12(21/2—271/2>ﬁ(1—qZ ﬁ (1-¢’27")
j=1 j=1

where £ € C and 7 € H, z := exp(27i€), q := exp(2miT).

Definition 1.3.4. Let 6 (0,7)’ 9.0 (0, 7). The Kronecker function® is defined as

= 5

0(0,7)'0(&+n,7)
0(&m)0(n,7)

Let 7 be as above and let n > 0. Let ({1, ...&,) be the coordinates on C™. We define D C C” as

F (&)=

D:={(&,...&) + & —& € Z+ 7Z for some distinct 4,5 = 0,...n}
and a Z?"-action on C" via translation, i.e.

((llum1)7'~~7(numn»(gla"'é- ) :(51+l1+m17—7"'a£n+ln+mn7—)

Notice that D is preserved by the action of Z?". In particular the action is properly discontinuos and
there is a canonical isomorphism

(C*—D)/(Z*") = Conf, (£%).

The KZB connection is introduced in [11]. For n > 0, we define the algebra t; ,, as the free Lie algebra
with generators Xiq,...,X,,Y1,...,Y, and ¢; ; for 1 < i # j < n modulo

(1.17) tij =tij, [tigotie + k] =0, [tij t] =0
tij = [X%Yj]v [Xi’Xj] = [YMYJ] =0, XzaYz Z tij
Jli#i

(Xi,tjn]) = [V tie) =0,  [Xi+ X, tj] =[Yi + Y, tix] =0

for 4,7, k,1 distinct. The elements ), X; and ) . Y; are central in t1,n. We denote by t; ,, the quotient
of ¢, modulo

(1.18) Y Xi=> Y =0

We define D C C"*! as
D:={(&,...&) 1 & — & € Z+ 7Z for some distinet 4,5 = 1,...,n+ 1}.

We define an action of (C,+) on C"*! — D via 2(&1,...,&np1) == (&1 — 2,. .., &1 — 2). This induces
an action of & on Conf,1(&) via £ (&1,...,&ur1) == (&1 — &, ..., &1 — &'). We get a projection
m @ C"T1 =D — (C"™! — D) /C defined via 71 (&1, ..., &nv1) = &ny1 (1, - .., &) which induces 72
Conf,41(E) — Conf,11(£)/E. We fix a section hy : (C"*!'—D)/C — (C"™' —D) which sends
[€1,...,&n] to (&1,...,&,,0), this induces also a section hy : Conf,1(€)/E — Conf,41(E). There is
an isomorphism y; : C" — D — (C”H — 5) /C given by x1 (&1,-.-,&n) = [&1,---,&n,0]. Its inverse is

4There is a conflict of notation with respect to [57]. Our function F' is the one used in [9], [38],[11] and [29]. Let FZ be
the function in [57], then F(¢,n,7) = 2miFZ (27i€, 2min, 7).
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xfl (€1, &ny&nt1] = (&1 — &nt1s - -, & — Ent1)- In particular, such an isomorphism induces another
isomorphism y2 : Conf,(£*) — Conf,1(€)/E. For a formal variable o we define

KE 0v7) 1= Fl6am) — = = 3 0 (ot
E>1

the functions f*)(€) are holomorphic functions on (C — {Z +7Z}). For 0 < i,j < n + 1, we define
15 = 106 — ) and

: Z 15 A4 (X)) € (ApR(C™! = D) © 0°(1)) B 1.
We set
=X, + Z kij
17'51
and

n+1
wi= Y Kid € App(C"H —D) @ Q°(1) &t 041
i=1
We define the bundle P with fiber 1, on Conf,, (€) via the following equation (see [38], [11]): each
section f of P" satisfies

f& &G +0L &) = fl& &)

f& & +lm &) = exp(=2milY;) - f(&1,-- ,6n)
for any integer !, where ij cq = Ad’% (a) for a € t1 ,,. Notice that P; is trivial. Let the bundle P with
fiber 71, on Conf, 11 (£) as the fiber quotient of P™"*! via the relation (1.18). We denote by P" the
pullback of P™ along hy, and by @ € AbLp ((C"+1 — f) @%Lnﬂ the image of w via the quotient map

AL L (CTH = DY&H iy — AL (C" — D)y yq. Finally let wizpn € Al p(C? — D)®ty iy be the
element obtained by pulling back the coefficients of @ along hoxs. We consider the fiber equipped with
the adjoint action and define the KZB connection in the following way.

Definition 1.3.5 ([11]). The KZB connection is given by d — wxzp., on P .

In particular, it is a holomorphic connection with logarithmic singularities along D and for n = 1 it
reduces to a holomorphic flat connection on the punctured torus

d— WKZB,1 = d+ (Adx) o (F(g,Adx,T)) ¢} (Ady) df

with logarithmic singularities at the origin. This connection appears in [38] as well. In order to un-
derstand why the above connection can be considered as the elliptic version of the KZ connection, we
discuss its extension on Mj 2. Consider the upper half plane H equipped with the action of SL(2,Z), i.e

a b
(c d) defines the map

at +b
er+d
We denote by &, the elliptic curve (C — {Z7 + Z)} /Z%. The matrix above defines a map &, — SLL? via

§
et +d

E—
Let us consider the fiber bundle P — H where
P={¢7)|Tel, e C—-{Zr+7Z}}.
The moduli space of elliptic curves with two marked points is given by the quotient

M o= P/ (SL(2,Z) x Z?).

Notice that the Lie algebra ?1,2 is the free Lie algebra with generators X,Y. In [11] (see also [38]) it is
constructed a flat connection V4 3 € Apg (P) ® End ({1,2) such that
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1. V5 is holomorphic on P x End (%172),

2. there is a factor of automorphy F' : P x SL(2,7Z) x 72 — End (?172) such that Vo descends to a

flat connection form on M o with fiber End (?1,2),

3. the extension at M o has regular singularities,

4. the pullback of the connection at 7 € H is a flat connection on £X whose monodromy at a point

p € £X induces an isomorphism between the Malcev completion of 71 (£X,p) and the free Lie

algebra on two generators t; 5.

In [29], Corollary 14.4. the following proposition is proven.

Proposition 1.3.6. There is an unique connection on P x End <{1,2) (modulo a gauge u € exp(t1,2))
that satisfies the above four properties.
In particular the pullback of Vi along a 7 € H is wixzp,1. The KZ connection satisfies similar

properties, and this gives an additional justification for wxzp,1 to be the “elliptic version” of the KZ
connection on the punctured torus.

Remark 1.3.7. In [11] it is constructed a flat connection Vi, on Mj,. The above proposition is true
mutatis mutandis for V4, as well (see Remark 14.6 in [29]).

1.4 Applications

1.4.1 A comparison between KZ and KZB connection: punctured sphere
and punctured elliptic curve

We give a summary of the results of Chapter 3 and Chapter 4. Let £ be the coordinate on C and let 7
be a fixed element of the upper complex plane H. Then D = Z + 7Z is a normal crossing divisor on C
which is preserved by Z?. We consider the Cu-algebra Toty Apg (log(D)eZ?). We consider the KZB
connection on the punctured elliptic curve

d— WKzZB,1 = d—+ (Adm) o (F(g,Adx,T)) o (Ady) df,
it is a meromorphic connection with value in End (t11).

Theorem G. 1. There exists a holomorphic 1-model B C Toty Apg (log(D)eZ?) endowed with a
vector space decomposition
B=WoMeDM
as in (1.2) such that the flat connection r.Cy induced by its associated homological pair (C,6*) is
gen by wixzp1-

2. Given another 1-model B' C Toty Apr (log(D)eZ?) endowed with a vector space decomposition
BI:WIGBM/GBDMI

as in (1.2). Let r,C"q be the flat connection induced by its associated homological pair (C',6"). It
defines a flat connection on a bundle on £* where the fiber is the complete free Lie algebra in two
generators. There exists an isomorphism K* on the fiber as in Theorem F such that k.r,.C’q is
(smoothly) gauge equivalent to wizp1 as a connection on C — D on the trivial bundle with fiber
t171 .
Remark 1.4.1. In [9] it is constructed a model for the differential graded algebra Apr(E*). This model is
equipped with an obvious vector space decomposition and the degree zero geometric connection induced
here is gauge equivalent to wx zp 1. The above 1-model B is a holomorphic version of that model, more
precisely it is a holomorphic model with logarithmic singularities

(1.19) B C Al (log(D),) = A%, (10g(D) x (22)") = ] @b (10g(D)),
(z2)P
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where Qf, (log(D)) denotes the complex of holomorphic forms with logarithmic singularities along D.
Notice that it is not possible to find a holomorphic model with logarithmic singularities in Apgr(E™)
with logarithmic singularities. In particular d¢ is the only holomorphic generator of the cohomology
with logarithmic singularities. The above theorem shows that such a holomorphic 1-model exists in
Toty Apr (log(D).ZQ), but we have to deal with C.-algebras. Moreover, wgizp,1 is a holomorphic
connection on a holomorphic bundle that is smoothly trivial but not holomorphic trivial. Hence our
generalization of the Chen theory give original objects from the holomorphic point of view. The above
theorem tells us that the flat connections that are induced by some associated homological pairs on the
punctured torus are smoothly gauge equivalent modulo a computable automorphism K* of the fiber. In
fact k. can be compute as in Theorem F since H?(£*) = 0. Notice that the gauge is in general smooth
and not holomorphic.

Let us denote Z + 7Z with D,. The 1-model B is constructed by looking at the coefficents of the
Kroenecker function F'(£,7,7), in particular some elements of B depend on 7 (we follows the same
approach of [9]). Concretely we build a I-model for Toty Apr (log(D;)eZ?), for any 7 € H. Such
a dependence allows to construct a comparison between the KZ and the KZB connection by sending
7 — i0o. This idea was used by Hain in [29]. We denote by z the coordinate on C* and we define the
action of Z on C* via

(1.20) n-z:=q"z.
There is a morphism he : CoZ% — C}Z of action groupoids given by
hO (6) = 627ri£5 hl (Ea (ma ’fl)) = (627ri£5 n) )

which induces an isomorphism on the quotient. Let {qZ} C C*, the maps above give a morphism
((C. — {Z2 + TZQ}). 72 — ((C* — {qZ}). Z between action groupoids that induces an isomorphism on
the punctured elliptic curve. We obtain a map

(1.21) CiZ —C—{0,1}

by sending 7 to ico. We get a morphism
B = Axz1,

4

where Ak z 1 is the Arnold’s model generated by d? and Zd_zl for Apr(C —{0,1}). For n = 1 the KZ

connection can be written as

d— OJOZO — w121

on C — {0, 1} where fiber corresponds to the free Lie algebra % with generators Zg, Z1. In particular

Nim wrzp,1 = (1d2Q*) (woZo + w1 Z1),

where Q* : —>?1,2 is given by
B’ dz Y Y
Zo +— | =— Zy— — |2miX, —| .
0 Z z darix <2ﬂ'i> roa [ e 27ri]

1.4.2 A comparison between KZ and KZB connection: the configuration
space of points of the punctured elliptic curve

The aim of the Chapter 4 is to extend the results of Chapter 3 to the configuration spaces of points of
the punctured elliptic curve. We define D, C C" as

D, :={(&,...&) : & — & € Z+ 7Z for some distinct 4,5 =0,...n}
and a Z>"-action on C" via translation, i.e.
((ll,ml),...,(n,mn))(&, f ) = (§1+l1+m17,...,§n+ln+mn7).
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Notice that D, is preserved by the action of Z2™. There is a canonical isomorphism
(C* - D,)/(Z*") = Conf, (&)
since the action is free and properly discontinuous. We denote the action groupoid by
(C" —D,), (2*),

it is a simplicial manifold equipped with a simplicial normal crossing divisor. In [9], it is constructed
a smooth model A,, for the differential graded algebra Apgr (Conf,, (£X)) for any 7 € H. We construct
a vector space decomposition on A, as in (1.2) and we computed the flat connection form Cj induced
by its associated homological pair. Let (1) be the differential graded algebra of polynomial differential
forms on [0,1]. For any 7 € H, we construct a Co-algebra B’,, C Toty (ADR (1og DT,ZQ")) ® Q(1) such
that B’y = B. More precisely, B’,, induces a family B, (u) C Toty (ADR (log DT,Z%)) of C.-algebras
for u € [0,1] such that B’ (1) = A,, and B’,(0) is holomorphic (see (1.19)). We conjecture that B’,, is a
1-model for any 7 € H. In order to skip this problem we work into a quotient B,, := B’,,/Jpr for some
ideal Jpr. We fix a7 € H. The Cy algebra B, is not proper a 1-model (we call it 1-eztension of A,,). We
construct a vector space decomposition as in (1.2) on B,, which induces a vector space decomposition and
we calculate its associated homological pair (C,§*). We associate to (C,6*) a family of flat connections
r.C"o(u) € Apg (C" — D,) @ty ,, 11 parametrize by u such that r.C’o(1) = Cy and 7,C"¢(0) corresponds
to KZB connection. These facts hold for any 7 € H. We use B,,(0) to give a comparison between the
KZ and KZB connection on the configuration spaces at 7 — i0co. More precisely, we shows that the map
(1.21) induces a map
Bn(o) - AKZ7’I’L

of C-algebras. This fact allows us to construct a Lie algebra morphism between the Kohno-Drinfeld
Lie algebra t,, and t; ,,1 which is the n-dimensional version of the map @ presented above.

1.5 Drinfeld Associators , Elliptic Associators and motivation

We spend some words about the role of the KZ connection and Drinfeld associators in mathematics. We
begin with the KZ Drinfeld associator. For n = 1 the KZ connection reduces to

d+woZo + w121,

where the fiber is the free Lie algebra on the generators Zo, Z; and w; = -2 for i; € {0,1}. We fix a base

point g, for a smooth path v : [0,1] = C —{0,1} connecting zy with ’Z:_lz,ithe parallel transport of this
connection T' can be considered as a multivalued function f;,(x1) := T'(y) with values in C((Zy, Z1)).

We consider the function

T : [0,1] = C{(Zy, Z1))

where 7! (u) = y(tu) for t € [0,1]. The function T'(y*) can be written as a formal power series where the
coeflicients are iterated integrals
g(t) := / Wi+ Wi,
,Yt

for i; € {0,1}. Assume that zo = 0, the functions g : [0,1] — C is not well-defined. However, since
the w;, are smooth forms with logarithmic singularities, the above expression can be regularized via a
logarithmic expansion argument (see for example [10]). This idea is used in [15]. In particular, for any

path starting from 0 to x; € C—{0,1}, we can regularize g(t) into a function g(¢). Such a regularization,
depends on the choice of the path and on the value of 4(0).

Remark 1.5.1. A sufficient conditions for the existence of that regularization is that the the singularities
of the above differential forms are logarithmic. Given a discrete set D C C, let Apgr (log(D)) be the
differential graded algebra of smooth differential forms with logarithmic singularities along D. Given a
path v such that v(0,1] C C — D and set s := (0) € D. Any expression

o= [ o
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such that as,...,a, € Apg (log(D)) can be regularized as a function Reg f,yt ay---a, on {s}U(C— D).
Assume that y(1) = s’ € D and v(0,1) C C — D. Then we can split our path in two 1 (t) := 7(2t) and
12(0) == 7(55L). Set

R / Regf’y{ ap - Qp, t= 1/2
eg a1 Qp =
; L (Reg [y a1+ an —Reg [, ryoor-an) . ¢ 1/2

where 5 ' (u) = 72(1 —u). In order for the above expression to make sense we have to specify the initial
velocity for v5 ' as well.

Let v be the path form 0 to 1 with initial velocity 1. Let T;.(7?) be the regularized holonomy of the
KZ connection with respect to the paths with initial velocity 1. We set

(I)KZ(ZO, Zl) = TT(’}/).

The above formal power series is called KZ-Drinfeld associator. Let us considerk ((Zy, Z1)) equipped
with its Hopf algebra structure (it is the complete universal envelopping algebra on the complete free
Lie algebra on two generators).

Definition 1.5.2. Let k be a filed of charachteristic zero. A Drinfeld associator is a pair (u, ®(Zo, Z1))
with ¢ € k* and group-like element ®(Zy, Z1) € k ({(Zy, Z1)) such that

(1.22) ®(Zo, Z1) = ®(Z1, Zp) "
(1.23) 1=e2%>®(Zy, 21)e2 208( 21, Zoo)e2 D1 8(Z oo, Z1)
(1.24) D(Th12, Tog + Toa)P(Th3 + Tog, Taa) = ®(Tos, T34)P(T12 + T3, Toa + T34)P(T12, To3)

where for the second equation we assume Z; + Zy+ Z, = 0 and the third equation has to be understood
in the complete universal enveloping algebra of the Lie subalgebra ?ﬁl Ct generated by T;; for 0 <
i,7 < 4. Let GRT; be the set of solutions of the above tree equations providing p = 0. We define the
Grothenideck-Teichmiiller group as GRT := k* x GRT}, where the action of k* on GRT is given by
A (I)(Zo, Zl) = @()\Zo, )\Zl)

In particular, (1,®xz(Zo,Z1)) is a Drinfeld associator over k. Drinfeld’s original motivation to
define such associator was to construct quasi-Hopf algebras, i.e. a generalization of the notion of coal-
gebras obtained by weakening the coassociativity of the coproduct. The name “associator” comes from
that those facts. In particular, the Drinfeld associator is used for the construction of the quantum
enveloping algebra. The Drinfeld associator allows to prove that the group GRT is isomorphic to a
more complicated group GT, called the pro-unipotent Grothenideck-Teichmiller group. This group has
a pro-finite cousin called the pro-finite Grothenideck-Teichmiller group. It is proved that there is an
injection between Gal (@/ Q) and the pro-finite Grothenideck-Teichmtiller group and it is conjectured
that this injection is an isomorphism. Another application of Drinfeld associators occurs in Lie theory
(see [1]), in particular they give a solution of the Kashivara-Vergne conjecture which is essentially the
possibility to construct anautomorphism ¢ on the free Lie algebra on two generators that trivializes
the Baker-Campbell-Hausdorff formula, i.e. ¢ (BCH(Zy,Z1)) = Zo + Z1 such that ¢ satisfying other
suitable conditions. The consequence of such a trivialization is one of the few theorems that hold for any
Lie algebra. It is conjectured that there is a one to one correspondence between solutions and Drinfeld
associators. Drinfeld associators are also related with number theory. Consider ®xz(Zy, Z1). One can
write

Crz(Zo,Z1) = Y (v

veC(Zo,Z1)
where ¢ : Q{((Zy, Z1)) — R is the unique function such that:
1. forv=Zy"1.. 2,287 Z; is defined as
) 1" 1
€)= Lin, o (= S S
1 T

0<ky <<k,




2. ¢((v)=0forv=2y=21,n>0and ¢ (¢ (v,w)) =(v){(w), where ' (v, w) is the shuffle product.

The numbers defined at point 1. are called multiple zeta values. In particular, it is possible to write
D7 (Xo,X1) as a formal series of Lie elements where the coefficents are Multiple Zeta values (this fact
was noticed by Kontsevich). The multiple zeta values are crucial in number theory and in the theory
of Motives (see [7] and [53]). They are related with quantum field theory, since they appear as value of
some Feynman path integrals (see [8]).

The elliptic version of the associators is constructed in [22], they are essentially the reguralized
monodromy of the KZB equation constructed along a path connecting the two singularities. As for the
genus zero case, the elliptic story is an active field of research. For the elliptic aspect of Grothendieck-
Teichmiiller theory see [48]. See also [30] for a Motivic approach to elliptic zeta values. In particular,
notice that an extension of the notion of KZ connection on higher genus curves implies® a possible
extension on the notion of higher genus Drinfeld associators. The Chen’s theory developed in this thesis
reduces the problem of the construction of the KZB connection to the construction of a holomorphic
1-model with logarithmic singularities. This is in perfect analogy with the genus 0 case by using the
Arnold’s relations and ordinary Chen’s theory.

50f course there will be a lot of work to do, see for example [22].
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Chapter 2

Chen theory on simplicial manifolds

In this chapter we extend the notion of homological pair to simplicial manifolds. The differential graded
vector space of differential forms on a simplicial manifold carries a Co-structure. In the first section we
extend the notion of convolution algebra to C.-algebras. This section is purely algebraic. In Section
2.2 we study the aforementioned Co.-structure and we give some formulas. In Section 2.3 we construct
homological pairs on simplicial manifolds by applying the results of the previous sections. The geometric
application are presented in Section 2.4.

2.1 A, Cy-structures and homological pairs

In this section we present a proof of the existence of associated homological pair (Theorem 1.1.18) in
terms of the homotopy transfer theorem (see [33]). This point of view is essential for the construction of
a geometric connection on simplicial manifolds. This section is purely algebraic and there is no geometry
involved. In this settings, a connection is merely a Maurer-Cartan element. In the final part we study how
the homotopy transfer theorem imposes a “ homotopy equivalence” between Maurer-Cartan elements
(see in particular Proposition 2.1.50).

2.1.1 A, Cyx, Lo-structures

We introduce As, Coo, Loo-structures. Our reference is [39]. For a graded vector space V', let T (V[1])
be the (graded) tensor coalgebra on shift of V. Let NTS(V) C T°(V[1]) be the subspace of non-
trivial shuffles, i.e the vector space generated by p'(a,b) such that p’ is the graded shuffle product and
a,b¢ k C T (V[1).

Definition 2.1.1. Let V* be a graded vector space. An A, -algebra structure on V*® is a coderivation
§ : T¢(V[1]) — T¢(V[1]) of degree +1 such that 62 = 0. A Cu-algebra structure on V* is an A.-
structure such that 6(NT'S(V[1])) = 0.

Each coderivation is uniquely determined by the maps of degree 1
8o A[L®" s Te (A[L]) —2 T (A[1]) 220 A1)

For n > 0 we define maps m,, : A®™ — A of degree 2 — n via

RN (5)®n N On st
Aen W A Al A

The condition 62 = 0 for the maps m,, : A®™ — A implies m? = 0 and the relations

(2.1) > (=1)Pmy 0 (Id%F @ mg @ 1d°7) = Omy, n > 0.
ptgtr=n

k=p+1+r
k,g>1
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Conversely, starting from maps me := {mn}nzo that satisfy the above relations, we get a sequence of
maps 6, : A[1]®" — A[1], for n > 0 defined via

(=)
oo : (A" A®n Tmy A 2, Al
In particular we have m? = 0. These maps can be viewed as the restriction of a coderivation &, which is
a differential by (2.1). We denote an Ao~ ( Coo- ) algebra (T (V[1]),0) by (A®,m,) as well.

Definition 2.1.2. An A.-algebra (A, m,) is said to be unital if there exists a mi-closed element 1 of
degree zero such that ma(1,a) =1 =mg(a,1) and mg(ay ..., 1,...,a5) =0 for k > 3. (A, m,) is said to
be connected if A° =kl and A is a non-negatively graded vector space. Let A®, B® be two Aso-algebras.
A morphism between A -algebras is a morphism of differential graded coalgebras

F . (T°(A[1]),A,64) = (T°(B[1]),A,0B) .
Each morphism is completely determined by the degree zero maps, i.e.

prog|

F, : A[1]®" —— T<(A[1)) -2 7¢(B]1])) —% B[1], n>o0.

and Fy(1) :== F(1) = 1. F is said to be a morphism of Coo-algebras if A and B are Coo-algebras and
F,(NTS(V[1])nV[1]®") = 0.
We denote by fe := {fn},cn the family of maps of degree 1 —n given by

proB[I]oF” —1

Bl1] = B.

S®n
(s)

fn @ A®R A[1]®n
Let m” be the degree 2 — n maps obtained from &4, and let mZ be the ones from 6. The condition
F o, =0poF implies the following equations fym{* = m® f; and

Y ORI @ my @ 1d)

pFq+r=n
k=p+1+r

(2.2) - > (=1°*mf (fi, ® +® fi,) = 0fn, n>1,

k>2,i14+ip=n

where s = (k—1) (i1 — 1)+ (k—2) (i — 1)+ - 4+2 (ig—2 — 1)+ (ix—1 — 1). In particular f; is an ordinary
cochain map. A family of maps f, satisfying condition (2.2) induces also a morphism of A.,-algebras
F o2 (T (A[l]), A, 64) = (T¢(B[1]), A, 0p).

Remark 2.1.3. We will adopt the following notation. We will use small dotted letters (e.g. fo) to denote
morphisms of Ay, Cu-algebras. On the other hand, we will use capital letters (e.g. F) to denote
morphism of A, Cy-algebras as morphism of quasi-free coalgebras.

Definition 2.1.4. A morphism between A, ( C )-algebras is a quasi-isomorphism if the cochain map
fi o (A,mf) = (B,m?)

is a quasi-isomorphism. A morphism between A, ( C ) -algebras F' : T°(A[l]) — T°(B[1]) is an
isomorphism if f; is an isomorphism. A morphism f, is called strict if f,, = 0 for n > 1.

Each isomorphism of A.-algebras has a unique inverse (for an explicit construction, see [39], section
10.4.1). Let F : Tc<(A[l]) — T¢(B[1l]) be a quasi-isomorphism. There exists a quasi-isomorphism
G : T¢(BJ[1]) = T¢ (A[1]) such that [f1]~! = [g1] in cohomology (see [39], section 10.4.3).

We denote by (1) the free commutative graded algebra generated by 1, tg, ¢1 of degree zero and by dty,
dtq of degree 1 such that
to+t1 =1, dto + dt; = 0.

We put a differential d on Q(1) by d1 = 0 and d(t;) := dt;, for j = 0,1 such that (1) is a differential free
commutative graded algebra. Equivalently, we may define (1) as the commutative free graded algebra
generated by 1,¢ of degree 0 and dt in degree 1. The differential here is given by d(1) := 0,d(t) := dt.
The two presentations are isomorphic via the map t — t;. We denote by i; : Q(1) — k the dg algebra
map sending t; to 1 and dt; to 0 for j =0, 1.
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Lemma 2.1.5. Let f, : (A,mf‘) — (B,m?) be a morphism of Ax-algebras and g : Q1) — Q(1) be a
morphism of differential graded algebras.

1. (Q(l) ® A,m?(1)®A) is an Aoc-algebra via

m2(1)®A(P1 ®ar,...,ppn @ap) =% (p1--pn) ® mﬁ(a1,®,an)7

where the sign £ follows by the signs rule. In particular i; ® Id : Q(1) ® A — A is a well-defined
strict Aso-morphism.

2. The map (g ® f)e : (Q(l) ® A,m?(l)®A) — (Q(l) ® B7m?(1)®3> defined by

(g®f)n(p1 ®a1a"'7pn ®an) = :l:g (pl pn) ®fn(al7~-'7an)7

where the signs x follows by the signs rule, is a morphism of As-algebras. If g = id we have

(t; ®Id) (Id ® f)e = fo (i; ® Id) for j =0,1.
Proof. Straightforward calculation. O

Definition 2.1.6. Let f,,g9¢ : A — B be As-morphisms (resp. Coo-morphism). A homotopy between
fo and ge is an A (resp. Coo) map He : A — Q(1) ® B such that

(lo @ Id) He = fo, (i1 ® Id) He = g,

two morphisms are homotopy equivalent if there exists a finite sequence of homotopy maps connecting
them.

By Lemma 2.1.5 we have the following. Let f,, ge : A — B be Ao-morphisms. Let H, : A — Q(1)®B
be a homotopy between f, and g, let p} : Ay — A and p2 : B — Ay be As-maps. Then Hq(Id®p?)e
is a homotopy between fop? and gep? and (Id ® p')eH, is a homotopy between pl fo and plge.

Proposition 2.1.7. Let Py be As or Coy. Then any Poo-quasi-isomorphism fo @ A — B has a Peo-
homotopical inverse, i.e. there exists a Poo-map ge : B — A such that ge o fo = Ida and fe o ge = Idp.

Proof. This is Theorem 3.6 of [54]. The P, objects enjoy this property because they are fibrant-cofibrant
objects in a certain model category structure where (1) ® (—) is a functorial cylinder object. O

Definition 2.1.8. Let (A,mf) and (B,m.B) be two non-negatively graded A..-algebras. A 1-A.-
algebra morphism consists in a graded coalgebra maps

F @ (T°(A[1]) = @icr (T°(B[1)))

such that (FF® F) A = AF and F§4 = 6BF. Note that F corresponds to a family degree n — 1 maps
fn @ @icnt1 (A®")" — A — B that satisfies (2.2) on @<, (A®")" for any n > 0. We denote the
1 — A, -morphism F by f, : (Am’,“) — (B, m?). If the two algebras are 1 — C, then F' is said to be

1 — C if it vanishes on non-trivial shuffles of total degree smaller than 2.

Notice that a 1-As-morphism f, : (4,m') = (4, m") induces a graded map F : (T° (A" —
T<(BJ[1]) such that (F ® F) A = AF and such that its restriction F : (T (A[1]))° — T°(B[1]) commutes
with the differentials. A 1-A,, (resp. Cs )-morphism is said to be a 1-Ay, (resp. Cs) -isomorphism if f;
is an isomorphism. A 1-A (resp. Cs)-morphism is said to be a 1-A (resp. Cw) -quasi-isomorphism if
f1 induces an isomorphism H!'(A) — H!(B) and an injection H?(A) < H?(B). A strict 1-A,-morphism
is a 1-A-morphism f, such that f, =0 for n > 1.

Definition 2.1.9. Let fo,90 : A — B be 1-A,-morphisms. A homotopy between f, and ge is a 1-Ay
map He : A — Q(1) ® B such that

(i()®1d)Ho:an (i1®Id).Ho:go-

Two morphisms are homotopy equivalent if there exists a finite sequence of homotopy maps connecting
them.
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Notice that the composition of 1-A,.-morphisms is again a 1-A,.-morphism and the same is true for
1-Coo-morphisms. In particular A, Co-maps give examples of 1-A, C-maps (when restricted to
Aip).

We conclude this subsection by defining Loo-structures. Let S(V) be the symmetric algebra, then we
denote by S¢(V) the graded coalgebra given by the graded vector space S(V') and the concatenation
coproduct A, i.e. S¢(V) is the cocommutative cofree conilpotent coalgebra generated by V.

Definition 2.1.10. An L -structure on a graded vector space V' is a coderivation § : S°(V[1]) —
S¢(V[1]) of degree +1 such that 62 = 0.

As for the A, case, the above definition is equivalent to family of maps I, : V®* — V of degree
2 —n. These maps are skew symmetric and satisfy the relations

3 S s ()@, (1,0 Id®<p—1>)” — l,,

p+q=n+1,p,q>16-1€Sh~1(p,q)

for n > 1. The morphisms, quasi-isomorphisms and isomorphisms between L..-algebras are defined in
the same way, as for the A, case.

Given an associative algebra A, then it carries a Lie algebra structure where the bracket is obtained by
anti-symmetrizing the product. The same is true between Ao, and L..-algebras.

Theorem 2.1.11. Let (V,m,) be an A -algebra. The anti-symmetrized map 1, : V — V, given by
I = Z sgn(o)m?,
oESy
define an Lo -algebra structure on V.
Definition 2.1.12. Given a L.-algebra g with structure maps I,.

1. An L, -ideal I C g is a subgraded vector space such that ly(aq,...,a;) € I if one of the a; lies in
I (in particular (g/I,ls) is an Lo-algebra).

2. An L-algebra is said to be filtered if it is equipped with a filtration F'® of L..-ideals such that for
a; € F™i(g), we have Iy (a1, ...,a;) € FT 10k (g),

3. A filtered Lo.-algebra is said to be complete if g = lim; g/F*(g) as a graded vector space.

4. A Maurer-Cartan element in a complete Lo.-algebra g is a o € g' such that

8(04)+§2M:0.

k
k>2
We denote by MC(g) the set of Maurer-Cartan elements!.

5. Let g be a complete L.,-algebra. Then Q(l)@g is again a complete L..,-algebra. An homo-
topy between two Maurer-Cartan elements g,y € MC(g) is a Maurer-Cartan element «(t) €
MC(Q(1)®g) such that a(0) = ap and a(1) = a;. Two Maurer-Cartan elements are said to be
homotopy equivalent or homotopic if they are connected by a finite sequence of homotopies.

Definition 2.1.13. Let P, be A, or Cs. We denote by Po, — ALG the category of bounded below
P.-algebras. We denote by (P, — ALG); the category whose objects are P -algebras and the arrows
are 1-Po-morphisms between them. We denote by (Lo, — ALG)p be the category whose objects are
Lo-algebras and the arrows are defined as follows: an arrow g — ¢ is a set map f : MC(g) — MC(g).
We denote by (Pos — ALG>); and (Po — ALG~¢), the two full subcategories whose objects are non-
negatively graded Po.-algebras and positively graded P..-algebras respectively.

INotice that the above sum is well-defined in g since it is complete.
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Remark 2.1.14. There are several sign conventions to define A.,, Cs, Loo-algebras and the related
objects. We use the convention of [39], but for example in [42], the sign (—1)PT9" in (2.1) and in (2.2)
is replaced with (—1)9%T9*P_ In particular, the signs in the above definitions are unique up the action
of the infinity group (Z2)®. This means that: let m, be an A,-algebra as in (2.1) and let m’s be
an A.-algebra with respect to different convention. There exists a (e1,...,€;,...) € (Z2)™ such that
mi; =m’; and for ¢ > 1

m; = (—1)€’7m'i, m’i = (—l)élmi.

The same rule works for morphism as well.

2.1.2 Convolution L,-algebras

Let C be a coalgebra and let A be a differential graded algebra. The space of morphisms between graded
vector spaces Hom® (C, A) is equipped with a differential graded Lie algebra structure called convolution
algebra (see [39], chapter 1).

Let (V, mY) , (A,mf‘) be A, .-algebras and assume they are both bounded below. Let § be the codif-
ferential of T¢(V[1]) and 64 be the codifferential on T¢(A[1]). Consider A® as a graded cochain vector
space equipped with m3! as differential. We have a differential graded vector space of morphisms between
graded vector spaces

Hom® (T¢(V[1]), A) .

If m#! = 0 for n > 2, there is a one to one correspondence between coalgebras morphism F : T¢(V[1]) —
T°(A[1]) and twisting cochains. For general A..-structure, there is a similar property. For each F, we
associate a graded map o € Hom' (T¢(V[1]), A) defined as

Proj 4y s~ 1

(2.3) Te(V[1]) —£= T<(A[1)) A1) A.
with a(1) = 0. The condition F o 8|y jjen = 64 o F|yjen reads
(ozocsv)v[l]@n = Z (=D md (o, .., i) 0 AFTL

k>1,i1+...ipg=n

where i, := aly;)e; and AF is the iterated coproduct in the tensor coalgebra T¢(V[1]). It is an easy
exercise to show that
my = (—=1)kFmg - A% 5 A

is again an A..-structure on A. We conclude

(2.4) aod=— ka o AFTL,

k>1

The above equation can be interpreted as the A..-version of the twisting cochain condition. For n > 1,
we define the maps M, : (Hom® (T¢(V[1]), A))*" — Hom® (T*(V[1]), A) via

Mn(f17--~7fn) = m (f17~--afn) OAn_l,

the map M; : Hom® (T¢(V[l]),A) — Hom® (T¢(V[1]),A) as Mi(f) := m{(f) and the map 0
Hom® (T°(V[1]), A) — Hom® (T¢(V[1]), A) as

o(f) =i f— (=) fos.

We define Ly}« (A) be the set of morphisms Hom®(7(V[1]), A) whose kernel contains the set of non-
trivial shuffles NT'S(V[1]) (see Section A.2).

Lemma 2.1.15. Let V, A as above.

1. (Ms,Hom® (T<(V[1]), A)) is an A-algebra,
2. (8, {My},,5o , Hom® (T°(V[1]), A)) is an A -algebra,
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3. We denote by I, the maps on Hom® (T(V'[1]), A)®" induced by the anti-symmetrization of the maps
(3, {Mn}n22> via Theorem 2.1.11 and by le the maps induced by the anti-symmetrization of the

maps (0, My, M3,...). Assume that éy'(a,b) = 0 for any non-trivial shuffle p'(a,b) € T¢(V]1])
and that the product m4 is graded commutative (but not necessarily associative). Then we have
two Loo-subalgebras

(le; Lvy-(4)) € (I, Hom® (T°(V[1]), A)), (e, Ly (A)) C (Lo, Hom® (T(V[1]), 4)).

For the proof see the appendix, Section A.2.1.
Definition 2.1.16. Let (V, mY) , (A,mf‘) be A..-algebras.

1. We call (9,{M,}, ., Hom® (T°(V[1]), A)) the convolution A-algebra
associated to (V, mY) , (A, mf‘)

2. We call

Conv ((V, mY) , (A,mf‘)) :

the convolution L. -algebra associated to (V, mY) , (A, mf‘).

(I's, Hom® (T*(V[1]), A))

3. Let (V, mY) , (A, mf‘) be C-algebras. We call
Conv, (V,mY), (4,md)) := (e, Lypp-(A)) C (I, Hom® (T°(V[1]), A))
the reduced convolution L.o-algebra associated to (V, mY) , (A, mf‘).

The next proposition is a consequence of the discussion due at the beginning of this subsection.

Proposition 2.1.17. Let (V, mY) , (A, mf‘) be Aso-algebras (resp. Coo-algebra). There exists a one to
one correspondence between

1. Ay (resp. Cx )-morphisms f, : (V, mY) — (A,mf‘).

2. Morphisms of differential graded quasi-free coalgebras F : T¢(V[1]) — T°(A[l]) (resp. such that
F(NTS(VI1])) =0).

3. Maurer-Cartan elements o € Conv ((V, mY) , (A,mf)) (resp. Conv, ((V, mY) , (A, mf‘))) such
that a(1) = 0.

Let V[1]° be the degree 0 part of V[1], we consider Hom®(T¢(V[1]°), A) € Hom®(T¢(V[1]), A)
as the graded vector subspace of morphisms with support in T¢(V[1]°). We define L[\)/[1]* (A) =
Lyp- (A) N Hom® (T<(V[1]°), A) and we denote L(‘)/[l]* (k) by L(‘)/[I]*' The restriction of the dual §* :
Hom® ((T<(V[1]))" @ T°(V[1]°), A) — Hom®(T¢(V[1]°), A) vanishes on Hom®(T¢(V[1]°), A) if V[1] is a
non-negatively graded vector space (equivalently, if V' is positively graded).

Corollary 2.1.18. Let (M,,Hom® (T¢(V[1]),A)) be as above. Assume that V is a positively graded
vector space.

1. (M,,Hom® (T%(V[1]°),A)) is an Au-algebra,

2. Let fi,..., fn € Hom® (T%(V[1]°), A) and assume that there is a g with 6*g = f; for some i, then
M, (f1,-- -, fn) € Im(6*) for n > 1. In particular

(M, Hom® (T°(V[1]°), A) /Im(5*))
is an Aso-algebra.

3. Consider Hom® (T¢(V[1]°), A) /Im(6*) equipped with the Log-structure lo induced by the maps M,
via Theorem 2.1.11. Assume that 6’ (a,b) = 0 for any non-trivial shuffle /' (a,b) € T(V[1]°) and
that the product ms' is graded commutative. The subgraded vector space L(‘)/[l}* (A) /Tm(6*) equipped
with le s a Loo-subalgebra of

(I, Hom® (T°(V[1]%), A) /Im(5")) .
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For the proof see the Appendix, Section A.2.1.
Definition 2.1.19. Let (V, m, ) (A my ) be A.-algebras. Assume that V' is positively graded.

1. We call
Convg ((V, mY) , (A,mf)) = (l., Hom*® (Tc(V[l]O)7 A) /Im(é*))

the degree zero convolution L.-algebra associated to (V, mY) , (A,mf‘).

2. Let (V, m.) (A my ) be C'-algebras. We call
Conv,o ((VimY), (A;md)) :== (le, Ly )+ (4)/Im(5%)) C (la, Hom® (T°(V[1]%), A) /Im(5*))
the degree zero reduced convolution L -algebra associated to (V, mY) , (A,mf).

Proposition 2.1.20. Let (V, Mg ) (A m ) be Aso-algebras, (resp. Coo-algebras) where V' is a positively
graded vector space. There exists a one to one correspondence between

1. 1-Aw (resp. Cx )-morphisms fo : (V, m‘./) — (A,mf‘),

2. Graded maps F : (T¢ (A[1]))" — T¢(B[1]) such that (F ® F)A = AF and such that its restriction
F o (T°(AQ))° = T(V[1]) commutes with the differentials (resp. such that F(NTS(V[1])° &
NTS(VI))Y) = 0).

3. Maurer-Cartan elements o € Convg ((V, m.) (A m )) (resp. in Conv, g ((V, mY) , (A,mf‘)))
such that a(1) = 0.

Let (V,mY),(A,mg), and (W,ml}) be A-algebras. Let go : (W,ml) — (V,m)) be an A-
morphism. The by Proposition 2.1.17 it corresponds to a morphsim G : T¢(W]1l]) — T¢(V[1]) of
differential graded coalgebras. Then G induces a map (bye pre-composition)

g* : Conv ((V, mY) , (A,mf)) — Conv ((VV, mYV) , (A,mf)) )

Assume that V, W are positively graded. In the same way, for a 1-A,,-map f, : (W, ml/V) — (V, mY)
we have a well-defined map

f*: Convg ((V, mY) , (A, mf)) — Convg ((VV, ml/V) , (A,m‘:l)) .
Consider 7 := p o r where
(2.5) r : Hom® (T°(V[1]), A) — Hom* (T°(V[1]°), A)

is the restriction map and p : Hom® (7¢(V[1]°), A) — Hom® (T*(V[1]"), A) /Im(6*) is the quotient map.
Assume that V, W are positively graded vector spaces. The map 7 gives two maps

(2.6) Conv ((V7 mY) , (A,mf)) — Convg ((V7 mY) , (A,m‘:‘)) ,
Conv,. ((V, mY) , (A, mf‘)) — Conv,.g ((V, mY) , (Amf‘)) .
Proposition 2.1.21. Let g,, fo as above.
1. 7 is a strict morphism of Lo -algebras.

2. The map ( A))
) A’ m.

g* : Conv ((V, mY) , (A,mf‘)) — Conv ((W me )
( ‘.4), ( ) and ge are Cy,

is a strict morphism of Loo-algebras. Assume that (V, mY)
then
g* : Conv, ((V, mY) , (A,mf‘)) — Conv,. ((VV7 m‘,/v) , (A,mf‘))

is a strict morphism of Lso-algebras.
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3. Assume that V., W are positively graded vector spaces. The map
f* : Convg ((V, mY) , (A, mf‘)) — Convg ((VK mfv) , (A,mfl))

is a strict morphism of Loo-algebras. Assume that (V, mY) , (A,mf‘), (VV, ml’v) and fo are Cy-
algebras, then

£+ Convy ((V, mY) , (A, mf‘)) — Conv, g ((VV, ml}v) , (A, mf‘))
18 a strict morphism of Lo -algebras.
4. Since go is a 1-Aso-morphism. We have g*m = mg*.
In particular all the maps listed above send Maurer-Cartan elements to Maurer-Cartan elements.
Proof. Direct verification. O

Let (B,mf) be a an A-structure. Let go : A — B be an Ax-morphism. Then g, induces a
morphism of graded vector spaces from Hom® (T¢(V[1]), A) to Hom® (T¢(V[1]), B) in the following way.
Let @ € Hom® (T(V'[1]), A), this corresponds to a morphism of differential graded coalgebras

G T (V[1]) = T (A[1]).
On the other hand g, corresponds to a morphism of differential graded coalgebras
G : (T°(A[L]),A,64) = (T°(B[1]), A, 65).

We consider the composition G o G'. It is again a morphism of differential graded coalgebras and
corresponds to a Maurer-Cartan element g, («) € Hom® (T¢(V[1]), B), explicitly it is given by

g« (@) lypjen = Zigz ( Z alypen ®"'®a|V[1]®il>
=1 i1+...1=n

where the signs are a consequence of the Koszul convention. In particular if g, is strict we have g.(a) =
goa. Assume that V is a positively graded vector spaces. In the same way, for a 1-A,.-map fo : A — B
we have a well-defined map

¢ Convo (VimY), (4,m2)) — Convy ((V,mY) , (B,mE)).
Proposition 2.1.22. Let go and f. be as above.
1. The map
. MC (Conv ((V.mY) . (Amf))) = MC (Conv (V). (B.mE))
is well-defined. Assume that all the data are Co, then
g MC (Conv, (Vi) (A mf))) - MC (Conv, ((V.mY) . (B.mE)))
is well-defined.
2. Assume that V is positively graded. The map
f. + MC (Convo ((VimY) . (Ami))) - MC (Convo (Vim?) . (B.m2)))
is well-defined. Assume that all the data are Co, then
fu MG (Conveg (Vi) (A md))) = MC (Conveg ((V.ml) . (B.mE))
is well-defined.

3. Since go is a 1-Aso-morphism. We have g.m = Tgs,.
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Proof. Direct verification. O
The propositions above and corollaries can be summarized as follows.

Theorem 2.1.23. We have four functors

Conv : (Ao — ALG)?? x (A — ALG) = (Loo — ALG), .

Conv, : (Cs — ALG)? x (Cx — ALG) — (Lo — ALG),,,

Convy : (Ase — ALG>0)} X (Ase — ALG); = (Loo — ALG)p7 and
Conv, : (Coo — ALGs0)" X (Coo — ALG), = (Loo — ALG),, .

We want to express convolution L,-algebras in terms of formal power series. Let V' be of finite type.
In Appendix A.2 we define two filtrations I* and G* on T ((V[1])") such that for a graded vector space
W there exists a canonical isomorphism (see (A.8)) of completed graded vector spaces

U Hom (T (V[1]), W) — T (V[1]))*) @W

where T ((V[1])*) is the completion of T ((V[1])*) with respect to the two aforementioned filtrations. In
particular I® and G* induce a filtration on the Lie algebra of primitive elements of 7" ((V[1])*) as well
(viewed as a Hopf algebra), since this is precisely the free graded Lie algebra L ((V[1])*) on (V[1])*, we
can show that W restricts to an isomorphism

U Lyp- (W) = L((V[1)") @w.

For the proof see Lemma A.2.5. We define I* (see the appendix A.2 for a definition of G*). Consider the
augmentation ideal I of the free algebra T'(V). Hence the powers of I define a filtration I* on T¢(V).
We define Z* as the graded vector subspace of morphisms in Hom® (7¢(V[1])®", W) such that f|; = 0.
For each n > 0, we consider Hom® (T¢(V[1]), A)®" equipped with the tensor product filtration Z®" (see
the appendix, Section A.2). If the dual §* : Hom® (T¢(V[1]),k) — Hom® (T¢(V[1]),k) preserves the
filtration Z then

(Hom® (T¢(V[1]),A),ls,Z°)
is a complete filtered L.-algebra and the maps in (2.6) are strict morphisms between completed filtered
Loo-algebras. For V of finite type, we denote the restricted differential by 6% : T ((V[l]o ® V[l]l)*) —

T ((V[l]o)*). Let p,r and 7 as above and let L(V') be the graded free Lie algebra on V.

Corollary 2.1.24. Let (V, mY) , (A, mf‘) be Ao-algebras, both assumed to be bounded below and
that V is of finite type. The isomorphism V induces the following isomorphism between complete
graded vector spaces.

1. Conv ((V,mY), (A,md)) = 48 (T(V[1))")).
2. If (V, mY) , (A,mf‘) are Cs we have Conv, ((V, mY) , (A,m‘.q)) ~ AR (HAA((V[”)*»

3. Assume that (A,mZ) is unital and V positively graded. Let (Im (5})) C f((V[l]O)*) be the ideal
generated by Im (6) (with respect to the concatenation product), then

Convy ((V,mY), (A, mid)) = 48 (T((V[1))/ (1m (57)))

4. If mY is O then Im (67) C ]Ij((V[l]o)*). If m& is Cs we have
Convyo ((Vomd), (A,m)) = A8 (L(VIY) )/ (Im (5)))

where (Im (87)) is the Lie ideal generated by Im (0)%). Moreover if §* preserves the filtration Z°®, the
Lo-algebras are complete.
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5. Let C € Conv ((V, mY) , (A, mf‘)) (resp. Conv,. ((V, mY) , (A, mf‘))) be a Maurer-Cartan element.
Then Cy := m(C) is a Maurer-Cartan element in the Log-algebra Convg ((V,mY), (A,m{)) (resp.
Conv, ((V, mY) , (A,mf‘)).

Proof. The first isomorphism is a special case of ¥, where W = A. We prove the second. We consider
T ((V[1])") equipped with the filtrations I* (i.e. the augmentation ideal filtration) and G*®. In particular
G* induces a trivial filtration on T ((V[l]o)*) C T((V[1])"), i.e. the completion of T ((V[I]O)*) -
T ((V[1])") with respect to I® and G* corresponds to the completion of T ((V[I]O)*) with respect to
the I* and the morphism ¥ (with W = A) implies an isomorphsim

W Hom (T (V) , 4) » T (V) ") @4,

where Z above is mapped to the filtration induced by I in T ((V[l}o)*). The vector space of degree zero
elements in Im (6*) is isomorphic via ¥ to

~

Im (67) @A.
Since (A, m,) is unital, let k1 C A°. Then
(0, M2, Hom®(T°(V[1]),k1) C Hom®*(T*(V[1]), A))

is a sub differential graded algebra (compare with Lemma A.2.5), hence
Im (55) ¢ T ((Vu]o)*) C ABT ((vmo)*) .

If V is O, by Lemma A.2.4 we have Im (5*) C (lo,ﬂi ((V[l}o)*)). If m& is Coo by Lemma A.2.4 we
have the fourth point. The last point is immediate. O

Let (V, mY) positively graded and of finite type, let (A,mf‘) be a unital A..-algebras and let
a’, o' € Conv ((V, m‘./) , (A,mf‘)) be Maurer-Cartan elements. By Proposition 2.1.17, there are two
Aso-morphisms f0, fl : (V, mY) — (A,mf‘) associated to them.

Proposition 2.1.25. 1. let a®, ! € Conv ((V, mY) , (A, mf)) be Maurer-Cartan elements.
Let O, f1 - (V, mY) — (A,mf) be the two corresponding Aeo-map. Then if they are homotopic,
so are o, al.

2. Let (V, mY) be a finite type positively graded A -algebra.
Let o, a' € Conv ((V, mY) , (A,m;“)) be Maurer-Cartan elements. Let fO, fl - (V, mY) —

(A, mf) be the two corresponding As-map. Then if the latter are 1-homotopic, so are o, a'.

3. Let (As — ALGy,y,) be the full subcategory of unital A -algebras, let fo, go € (Aso — ALGyy) with
source (Amf‘), Assume that they are homotopic, then f.«a is homotopic to g.a for any Maurer-
Cartan o € Conv ((V, mY) , (A,mf‘)).

4. Let (V, mY) be a finite type positively graded As-algebra. Let (Ao — ALGy,y), be the full subcate-
gory of unital A -algebras, let fo, go € (Ao — ALGyp) with source (A, mf). Assume that they are
1-homotopic, then f.« is homotopic to g.« for any Maurer-Cartan o € Convy ((V, m‘,/) , (A, m;“)).

Proof. We prove the first assertion. Let H, be a homotopy between the two maps. We apply (2.1.17) to
H,. This gives a Maurer-Cartan element

a(t) € Conv ((V, my), (Q(l) ® A7m?(1)®A)) >~ (1)® Conv ((v,m)), (A,mfl)) ,
where the last isomorphism is given by ¥ (see Lemma A.2.5). On the left hand side we have the desired
homotopy between o and o' the sense of definition (2.1.12). The other assertion follows similarly by

using the map ¥ as well and point 2 of Lemma 2.1.5. O
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2.1.3 Transferring A, C.-structures

The construction of the associated homological pair is a special case of the homotopy transfer theorem
(Theorem 2.1.26 below). This theorem appears in [35]. We recall a more general version contained in
[42] (see also [17]). In the first part of this subsection we use the sign convention of [42] (see remark
(2.1.14)) where the sign (—1)P"" in (2.1) and in (2.2) is replaced with (—1)%*9t?. Consider the following
situation: let (V*,dy), (W*®,dw) be two cochain differential graded vector spaces. Assume that there
are two cochain maps

(2.7) [ (Vedy) = W*dw) : g

such that gf is homotopic to Idy via a cochain homotopy h.

Theorem 2.1.26. Let
fo(Vedy) == (W*dw) : g

as above and assume that (V*, dy) is equipped with an As-algebra structures mY , such that my = dy .

There exist

1. an A-algebra structures m¥ on W*, such that m) = dyy;

2. an Aso-morphism ge : (VV, ml’V) — (V, mY), such that g1 = g;

Explicit formulas for the maps above are contained in [42]. The formulas for g, and mY’ are the
same as in [35] (without explicit signs) and are given by a finite summation over some set of trees. The
strategy is first to build a family of degree 2 — n maps

Pn VO SV,
for n > 1 called the p-kernels and second to define the maps mY, g, via
my = fopnog®, gn:=hopy,og®"

Explicit formulas for the maps above are contained in [42] and a similar approach (for more general
operads is contained in [17]).

Theorem 2.1.27 ([26], [17]). The output formulas of Theorem 2.1.26 are Co if so0 is V.
Remark 2.1.28. Consider Theorem 2.1.26. In [42] it is proved the following. There exist
1. an A,,-morphism f, : (V, mY) — (W, ml/V), such that f; = f;

2. an As-homotopy he between gf and Idy, such that h; = h, where he is a chain homotopy in the
sense of [42] (i.e. with respect to a different cylinder object),

morevoer these map are explicitly constructed. For more details about the cylinder object used in [42]
see Remark 1.11 in [49]. In the recent paper [17], a map f, is constructed for any Koszul operad assuming
that the diagram (2.7) satisfies (C2), (C4) and (C6) (see below) In particular it holds f, o §o = idy. It
is constructed a candidate for the homotopy he as well. The approach used in this paper is very closed
to the one in [42] but much more general.

Remark 2.1.29. The output maps m,, g are not unique in general. There may be more solutions.
However, when we refer to Theorem 2.1.26 we consider the maps m!, g, as the used for Theorem 2.1.27
and explained below.

Definition 2.1.30. An oriented planar rooted tree T' is a connected oriented planar graph that contains
no loops, such that the orientation goes toward one marked external vertex (the root). Let V(T') be the
set of vertices, E(T') the set of (oriented) edges.

Given an edge e, between two vertices vy, vo, if the orientation goes from v; to vy we call v the source
and vo the target of e, respectively. A edge e is internal if its source is the target of another edge. A non
internal edge is called leaf. The root is the only one vertex which is not the source of any other edges.
The arity of a vertex is the number of incoming edges.
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We denote by P the set of finite oriented planar rooted trees where the arity of each internal vertex
is > 2. We denote by P, the trees in P with exactly n leaves and with 7312 the set oriented planar rooted
trees where the arity of each internal vertex is less then or equal to I. Now fix a diagram of the type
(2.7). Each tree can be decorated as follows: we associate to each internal edges the map h and to each
internal vertex of arity & the map mkV. Figure 2.1 is an example of decorated tree 7" where the root is
the lower vertex.

Figure 2.1: T" decorated

The three above gives a map P : V& = V via Pp = mg o (m;‘; ® Id); hence to each tree T' € P,
we associate a linear map Py : V®" — V as above. To each trees we can associated a values 6(T) as
follows. For a vertex v in T with arity k, consider the edges ey, ..., eg. For each e; let n; be the numbers
of all the paths that connect the root of T with a leaf, passing trough e;. Define 07 (v) := 6(ny,...,ng),
and 0(T) := >, 0r(v), where the sum is taken over the internal edges.

Proposition 2.1.31. For each n > 2, the p-kernel (with respect to the convention of [42]) are
Dp = Z (-1 Py
TEPn

This is Proposition 6. in [42].

Remark 2.1.32. In order to get a formula with respect to different convention we do as follows: assume

the same situation as in Theorem 2.1.26 where mY is an A..-algebra defined with respect to different
sign conventions. Then (see remark (2.1.14)) there exists a (ea, ..., €,...) € (Z3)™ such that m} :=m}
and

m = (=1)my,

is an A-algebra with respect to the convention above. Let P, be the p-kernels with respect to m}/ ,
1%

hence p,, := (,1)671]3” are the p-kernels with respect to m

In order to have simpler formulas we consider some conditions on the diagram
(C1) (2.7) is a homotopy retract, i.e g is a quasi-isomorphism,
(C2) fog=1lw,
(C3) g is injective,
(C4) dw =0, and
(C5) (V,mY) is a differential graded algebra (m), = 0 for n > 3).
Notice that a diagram of the type (2.7) that satisfies (C2) automatically satisfies (C1) and (C3).

Lemma 2.1.33. Let (V*,d,) be a cochain graded vector space. Assume that there is a decomposition
(2.8) VeE=WeadM oM,

where W = @,>oWP =2 H® (V) is a graded vector subspace of closed elements, and M is a graded vector
subspace containing no exact elements except 0. There exist maps f, g, h and a diagram of the type (2.7),
that satisfies (C1), ..., (C4). Moreover the maps satisfy the side conditions
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(C6) foh=0,hog=0and hoh=0

Proof. Let W be a graded vector isomorphic to the cohomology of V*. We consider H® as a differential
graded vector space, with the zero differential. Note that the inclusion g : (W*,0) — (V,dy) is a
quasi-isomorphism. We define f : W & dM & M — W to be the projection on the first coordinate. Let
h: WedMeM— W e dM d M defined by

h(ai,dag,as) := h(0,0,as2).

It is a degree —1 map between graded vector spaces. A short calculation show that h defines a homotopy
between f o g and 1y and fulfills the conditions. O

Definition 2.1.34. We call the decomposition (2.8) Hodge type decomposition.
The inverse of the lemma above is also true.

Lemma 2.1.35. Let V*,d, be a cochain complex. Assume that there is a diagram of the type (2.7) that
satisfies (C2), (C4) and (C6). There is a Hodge type decomposition

VeE=WodMao M.
Proof. This follows by setting M :=Im(h), W := Im(g). O

Definition 2.1.36. Given a diagram of the type (2.7) that satisfies (C2), (C4) and (C6). We call the
Hodge type decomposition above obtained by Lemma 2.1.35 the Hodge type decomposition associated to
the diagram.

Remark 2.1.37. A proof of Theorem 2.1.26 under the condition (C6), is contained in [32] (see the coalgebra
perturbation lemma 2.1,).

Lemma 2.1.38. Let (V,dy) be a chain complex. There exists a diagram of the type (2.7) that satisfies
conditions (C1)-(C4) and (C6).

Proof. Let B"™ := {w € V"™ | there exists w’ € V"~! such that dw’ = w}. Let H* be a graded vector
space isomorphic the cohomology of V*. We consider H® as a differential graded vector space, with the
zero differential equipped with an inclusion (H*®,0) < (V,dy) which is a quasi-isomorphism. We have a
short exact sequence

2.9 0 — s B"@oHr — s yn 4 gl 4,
(2.9)

Since we are working on a field k, for each n > 0, there exists a (non-canonical) split Ppy1 @ B"TL v,
Equivalently dh,,+1 = Idgn+: implies

V" = H" & Im(hnyq) ® B".

Let v € V, using the decomposition above we write v = (v, v2,v3). We define the cochain homotopy
h" 2 V™ — V"l via % := 0 and for n > 0 as

B () := h" (01, v2, 03)) = (o,hn+1(v3),o)

we define f : H" © Im(h, 1) ® B® — H™ as the projection on the first coordinates and g : H™ —
H™ ® Im(h,,4+1) @ B™ as the obvious inclusion. An easy calculation shows that this diagram is of the
type (2.7) that satisfies conditions (C1)-(C4) and (C6). O

The proof of the next is contained in [37].

Lemma 2.1.39. Consider a diagram of the type (2.7), that satisfies (C2). There exists a cochain
homotopy between gf and 1y such that the diagram satisfies (C6).
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2.1.4 Homotopy transfer theorem and L.-convolution algebra

From now W* will be always a non-negatively graded vector space. Let mY be an A,-structure on W*°.
For n > 1, let my* be the maps given by the composition

w
m
1me < IV®H n ”7+.

they are well-defined since mrvlv are maps of degree 2 —n and (W3, me* ) is an Aoo-algebra. Assume that

W —0. Let g. : (W,m"W) — (V,m") a morphism of A..-algebras. We denote by g the restriction of
ge tO (W}r, my ) Then gt : (W, m"+) = (V,m") is a well-defined morphism of A, -algebras.

Theorem 2.1.40. 1. Let (A my ) be a non-negatively graded As.-algebra. Fix a diagram
(2.10) A i) S (Wedw) : g
and a homotopy h that satisfies (C2), (C4) and (C6) and let
(2.11) A=WedMae M,

be the associated Hodge type decomposition. There exists a unique pair (mYV+7a) where my +

Axo-structure on W, and « is a Maurer-Cartan elements in

s an

Conv(<W+,m. ) (A my ))
such that

(a) my™* =
(b) alw+pn) =g, and
(C) a\(W+[1])®n, C M fOT’ n Z 2.

2. If A is Cy then m‘./V+ is Cso and o € Conv,. ((W+,m. ) (A mg ))

Proof. We construct a pair (m)’, gs) by using the p-kernel (see Proposition 2.1.31) and the maps in
(2.10). By construction we have

i) an Au-algebra structure (m}”, my,...) on W*, such that m}" = 0 by condition (C4);
ii) an A,-morphism go : (W,m¥) — (4,m"), such that g; = g.
We define o as Maurer-Cartan element in

Conv((W+,m. ) (Am ))

associated to the morphism g} . It fulfills the conditions 2 and 3. We prove the uniqueness of (mYV, a).
Wy

Assume that (e, ') is another pa1r satlsfymg the conditions above. We have m; = 0 = m; © and
g7 = gf. Assume that m; = m!, ¢/t = = g;" for i <n. We have By (2.2) we have
+ ~ ~ +
gimy —my gt = g'Tmn, —mi' gy € A
Let wy,...,w, € W, then by (2.11) we have
+ .
grml (wi,. .., wn) = ¢, (w1, ... w,)
- +
my g (wy,. .. wn) =V gl (wy,. .., w,)
By point 2 we conclude mY (wy, ..., w,) = m, (wy,...,w,) and by point 3 g} (wy,...,w,) = g’: (wy,...
The last statement follows from Theorem 2.1.27. O
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Remark 2.1.41. The uniqueness implies that ( 7a) is independent of the choice of maps (ml’v, g.)
that satisfy condition (1) and (3) in Theorem 2.1.26. Moreover, quasi-isomorphic A..-algebras (Amf‘)
give isomorphic differential graded coalgebras (&;f,, TW[1]).

Corollary 2.1.42. Convg ((W+,m. ) (A mj )) is a complete Lo,-algebra with respect to the filtra-
tion I® (see Section A.2).

Proof. Let &}, be the codifferential of the quasi-free coalgebra T (W, [1]) corresponding to me*. The
underlying vector space of

Convg ((W+,m. ) (Am ))

is a quotient of the complete vector space A*®T ((Wl[l])*) by the image of (6{/‘{,)* Condition a)

corresponds to (proy,+ &yy,) [+ = 0. Since (d};,)" satisfies the Leibniz rule, this condition implies that
(6;})*1’ C Z**! and hence the statement. O

Note that if A is associative (condition (C5)), then (T (A[1]),A,d4) is the Bar construction BA of
(A,mf‘). This gives an algebraic proof of the existence of the associated homological pair if A is the
differential graded algebra of smooth differential forms on some smooth manifold M (see [12]).

Definition 2.1.43. We call the pair ((6{,’{,)* ,a) the (generalized) homological pair with respect to the
decomposition (2.11). Notice that if W is of finite type, then « can be written as a formal power series
C on T (W, [1]*) with coefficients in A.

Definition 2.1.44. Let (Asx — ALG>0.4ec) be the category where the objects are non-negatively graded
Aso-algebras ((A, ms), W, M) equipped with a Hodge type decomposition and the maps are morphism
of A-algebras. We define

Conv ((A,me), W, M) := Conv ((W+,m. ) (A,m] ))

We call the o € Conv ((A,m,), W, M) above, as obtained from Theorem 2.1.40, the Maurer-Cartan
elements associated to (W, M). Analogously we define

Conv,. ((A,me) , W, M) := Conv, ((W+,m. ) (A,m ))
We call the above a € Conv,. ((A,m,), W, M), as obtained from Theorem 2.1.40, the Maurer-Cartan
elements associated to (W, M). Let (Ao — ALG>0,4ec); be the category where the objects are non-

negatively graded A.o-algebras ((A,ms),W, M) equipped with a Hodge type decomposition and the
maps are 1-morphism of A, -algebras. We define

Conv ((A,ms) , W, M) := Conv ((W+7m. ) (A,m; ))

We call the ao € Convg ((A,ms), W, M) above, as obtained from Theorem 2.1.40, the Maurer-Cartan
elements associated to (W, M). Analogously we define

Conv, o ((A4,me), W, M) := Conv, o ((W+,m. ) (A,m; ))

We call the o € Conv, o ((4, ms), W, M) above, as obtained from Theorem 2.1.40 the Maurer-Cartan
elements associated to (W, M).

2.1.5 Homotopies between homological pairs

Let (A,mf‘) , (B,m?) and (VV7 m;“) be Cy.-algebras. Let a € Conv, ((VV, mY) , (A, m?)) be a Maurer-
Cartan element and consider a diagram of the type (2.7)

fr (Bt dp) == (W, dw) : ¢
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where m¥ = dg. By using Theorem 2.1.26 and Proposition 2.1.7, we turn the situation above into a
diagram of Cy,-algebras

(2.12) fle 1 (B*,mp) &——= W', mu") : ¢',

where f’, is a homotopical inverse ¢',, i.e. there exist a homotopy He between (¢'f’), and the identity.
Notice that in general f'; # f’. Let go be the morphism corresponding to . Let ps : A — B be a
Cso-morphism. We have the following diagram of C-algebras

(A,md) —2— (B,mf)

q

(W.m) (W', md").
We set g := f'4 © Pe © Go-
Proposition 2.1.45. Consider the diagram in (Lo — ALG),

Conv, (W, m¥), (4,m)) Conv, (W', m¥"), (B,m¥)) .

\ lq*

Conv, ((W,mJ), (B,ml))

Let o be the Maurer-Cartan element corresponding to g'y. Then py () and g* (o) are homotopic.

Proof. p.(a) and ¢* (o) are the Maurer-Cartan elements corresponding to pe © g and g’y o f/, 0 pe © go,
respectively. These two morphisms are homotopic via He o (Id ® (pe © fe)),, Where (Id ® (pe © fa)), is
the tensor product of morphisms defined in Lemma 2.1.5.

Remark 2.1.46. We have p, (o) = ¢* () if ¢’y o f'y = Id. This situation is rare in general. For example if
our diagram satisfies condition (C2), ¢’y o f'y = Id is equivalent to f'; = g’l_l. This implies that (B, m, )
is formal i.e.

[f1] + B— H(B,m{)

is a strict isomorphism of C-algebras.

2.1.6 1-model for C -algebras and uniqueness

Let (A, mf‘) be equipped with a Hodge type decomposition (W, M). By Proposition 2.1.22, we know
that
7 = Conv ((A,me), W, M) — Convg ((A, ms), W, M)

is a strict morphism of L,-algebra and hence preserves Maurer-Cartan elements.

Definition 2.1.47. Let (A,mf) be an As-algebra (resp. Cuc-algebra). An A,-sub algebra (B,m{)
is an A.-algebra such that the inclusion is a strict morphism ¢ : B <— A of A.-algebras (resp. Coo-
algebras). Hence m& = m?Z. Let 1 < j < co. An A.-sub algebras B is a j-model for (A,mf‘) if

1. 4 induces an isomorphism up to the j-th cohomology group and is injective on the j+1 cohomology
group.
2. the inclusion ¢ : B! «— Al preserves non-exact elements for 0 <[ < j+ 1.

If j = oo we call B a model for (4, m{').

Proposition 2.1.48. Let (A,mf‘) be equipped with a Hodge type decomposition (W, M). Leti : B — A
be a 1-model of A equipped with a decomposition (W', M’) such that W' C W and M’ C M. Let
a € Conv ((A,me), W, M), o € Conv ((B,ms), W' , M’) be the Maurer-Cartan elements associated to
the decomposition (W, M) and (W', M'). Then n(a) = i.w(c’). If (A,mg') is Cso, the statement is true
for Conv,. ((A,me), W, M) as well.

46



Proof. By definition we have Wt = W’". ! We show that the two mduced C’ -structures ml/VJr and me +
coincide on W'. We have m}/V =0= m‘fv *. Assume that myVJr =m, W' for i < n on W'. We have

m11/V+mW’+ _ Z (_1)p+qrm?/'+ <1®p ®mgV'+ ® 1®r)

(3

ptgtr=n
k=p+1+r
k,g>1

— Z (—l)p'“"mZV* (1®p ® mg‘/* ® 1®r)
ptgt+r=n

k=p+1+r
k,q>1

Wiy
=my Tl
Wy
Hence my, |(W1)®n = mn |(W1 @n, since W contains no exact form except zero. Let ¢g’, be the mor-

phism corresponding to i, 7(a’) and let g be the morphism corresponding to 7(«), we have m‘l%r nlwien =
m¥V+gn|W1®n. The codomain of ¢',,|yy19n, gnlyren is MY, then ¢, |yien = gnlpyion. O

Lemma 2.1.49. Let B be a 1-model for a connected Cy-algebra (A,mf‘). Assume that B is equipped
with a Hodge type decomposition

B=WoMedM.

1. There exists a model ic : C < A such that ig (B) C ic (C) C A is equipped with a Hodge type
decompositions (We, M) such that
(a) W, =W i=0,1 and W2 C W}
(b) M* C M, fori=0,1,2

2. Let C be as above. There exists a Hodge type decomposition (W4, M 4) on A such that

(a) Wi =W, i >0
(b) ML C MYy fori> 0.

In particular there exists a cochain map pc : C — A and a cochain homotopy such that pcic = Ido
and mh + hm$ =ic opc — Idc. Moreover, the homotopy h satisfies (C6).

Proof. Since the inclusion B «— A preserves non-exact elements, we have M? as a vector subspace of A
doesn’t contains closed forms for ¢ = 0,1,2 except 0. We prove 1. by setting C' = A, then, thanks to
Lemma 2.1.38, the Hodge type decomposition extends to an Hodge type decomposition for A as well.
This proves 2. automatically. The last part is similar to 2.1.33. O

We study the relationship between homological pairs and the choice of 1-models. Let (A mi ) be
a Cy-algebra. Let Bj, B be two l1-models for A equipped with distinct Hodge type decomposmons
(W;, M;) for j =1,2. Let C' C A be a model for A that contains By, By . By the lemma above, we can
construct two models it : By — C,i? : By — C and there are maps i/,p’ and h? satisfying (C2) and
(C6) for j =1,2. For j = 0,1, by Lemma 2.1.33, the Hodge type decomposition in B; corresponds to a
diagram of the type (2.7)

D (W;,0) == (B;.d) : [/,
where the homotopy is denoted by h’. It is easy to see that the diagram
gl (W;,0) == (C.d) = fIp’,

equipped with the homotopy h(j) := i/h/p’ + h7 is a diagram that satisfies (C2), (C4) and (C6). By
using Theorem 2.1.26 and Proposition 2.1.7, we turn the two diagrams above in terms of Cy-algebras.

(0), = (Wymd?) == (Bjyma) = (), (i7g7), = (Wj,md?) &= (Cyma) : (Fp)),
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such that (fip7), (ijgj). and Id¢ are homotopic, and (fj).gz is homotopic to Idp, for any j =1,2. On
the other hand, the uniqueness property in Theorem 2.1.40 implies that (ij g ). = (gj ).. Consider the
diagram
(f1ph),
(Wr,m") —————= (C\ma)

(ilgl).
(f%p?),

ke
(WvaIQ/Vz)
where k, := (f2p?), (i'g"),.
Proposition 2.1.50. 1. For j = 1,2 let o; be the Maurer-Cartan elements corresponding to gz .

Then il (ay) is homotopic to k* (ca). Moreover, ko is an isomorphism.

2. Let B C A be a Coo-subalgebra. Consider a Cog-morphism
g : (W,m.) — (B,m.)

Let C C A be a model such that B C C and By C C. Point 1. is true if we replace g* with §.

Proof. We prove point 1. Proposition 2.1.7, there exists a homotopy H, between (i2g2). (f?p?), and

Ide. Then ’
(©%9%) ke = (°9°), (f?p?), (i'9"),

is homotopic to (i*g!), via (i'g'), H,. Notice that ky = p?i* : Wy — W5 is a quasi-isomorphism. Since

m‘l/v’ =0 for j = 1,2, it is an isomorphism. We prove point 2. Since the above proof does not involve
f1, it carry over this general situation. O

Remark 2.1.51. An explicit formula for (f7), and (f/p7), is constructed in [17], theorem 5. There is an
explicit candidate for the homotopy H used in the above proof as well.

2.2 Cosimplicial commutative algebras

We give a very short introduction about the Dupont contraction and the results of [26]. We introduce a
Coo-structure that corresponds to the natural algebraic structure on the differential forms of a smooth
complex simplicial manifold (see Theorem (2.2.6)). This Co-structure is in general hard to calculate. In
the last we use a result of [26] to present an almost complete formula on degree 1-elements (see Theorems
2.2.7 and 2.2.9).

In this section we work on a field k of charactersitic zero. We denote by sSet the category of simplicial
sets and by A : A — sSet the Yoneda embedding.

For each [n] € A we define the n-gemetric simplex

Ageoln) :=={(to,t1,...,tn) ER" [to+t1 +--- + 1, = 1}.
For each [n] € A,i=0,...,n+ 1 we define the smooth maps d' : Ageo[n] = Ageo[n + 1]
d' (to,t1, .. tn) = (tostry .o ti1,0,t5, ... ty)
and s' 1 Ageo[n+ 1] = Ageoln],i =0,...,n via
s (to, by ey tngr) = (tostty oottt Ftint, ooy tng1).

In particular, Afe],, is a cosimplicial topological space. For each [n] let Q°(n) be the symmetric graded
algebra (over k) generated in degree 0 by the variables to,...,¢, and in degree 1 by dto,...,dt, such
that

tod - +tn =1, dtg+---+dt, =0.
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We equip Q(n) with a differential d : Q°(n) — Q**1(n) via d (t;) := dt;. Q(n) is the differential graded
algebra of polynomial differential forms on A[n]ge,. It follows that Q(e) is a simplicial commutative
differential graded algebra, where the face maps d; are obtained via the pullback along d’, and the
codegenerancy maps are obtained via the pullback along s°.

For a set X we denote by k (X) the module generated by X and by X* the module Homg.; (X, k).
Thus for a simplicial set X, we denote by k (X,) the simplicial module k (X), :=k (X,,) and by X¥ the

cosimplicial module (X¥) := X}. Both of these constructions are functorials and (—)* : sSet — cMod
is contravariant.

Let A be the simplex category and let A : A — sSet be the Yoneda embedding. Then Ale] is
a cosimplicial object in the category of simplicial sets and Cq := (A[o])]k is a simplicial cosimplicial
module. We get that NC, is a simplicial differential graded module. Explicitly, for a fixed n we have

k (Homge, (A[n];,k» ,if p<n,

0, if p>n

(NC,)P = {

where A[n]f is the set of inclusions [p] < [n]. A cosimplicial differential graded module is a cosimplicial
object in the category dgMod of differential graded modules. Explicitly, we denote this objects by A®-*®
where the first slot denote the cosimplicial degree and the second slot denotes the differential degree. It
defines a functor A** : A — dgMod and we get a bifunctor NCy @ A®® : AP x A — dgMod. We
consider the coend

[nleA
/ NC,, ® A™* € dgMod.

An element v of degree k in f[n]EA NC, ® A™* is a sequence v := (v, )nen Where v, € (NC,, ® A”")k
such that for any map 6 : [n] — [m] in A we have
(1®0)w, = (0, 1) wp,
where 6% := A**(0), and 0, := NC,(0). Since
(NCp ® AV = @py gk NCP @ A™4

we say that v has bidegree (p, q) if v has degree p+ ¢ and each v, € NCE ® B™1 for each n. Let (V,dy)
and (W, d,,) be two cochain complexes, (V ® W)* is again a cochain complexes where the differential is

dyvew (V@ w) :=dy(v) @ w+ (—=1)Pv ® dy (w)
for v ®@w € VP ® W4. The differential on f[n]eA NC,, @ A™* is defined via
(dv),, == dv,
where d is the induced differential on (NC,, ® A™*)®. Consider the differential graded module (called
Thom-Whitney normalization, see [26])

[nleA
Totrw (A) == / Qn) @ A™* € dgMod.

Explicitly, an element v € Totry (4)* is a collection v = (v,,) of v, € (n) ® A™*)* such that for any
map 6 : [n] — [m] in A we have
1®60.) v, = (0@ 1) v,

where 0, := A**(6), and 6* := Q(n)(d). Since
() © A™*)* = Bpr gt () @ A™,

we say that v has bidegree (p, ¢) if v has degree p+ ¢ and each v,, is contained in Q?[n]® A™%. We denote
by Totrw (A)P? the set of elements of bidegree (p,q). If A** is a cosimplicial unital differential graded
commutative algebra, then (Totrw (A),de 4, de poly) is a differential graded commutative algebra as well
where the multiplication and the differential are

(VAW)y = (V) A (W)p, (dv)y :=d(vy).
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2.2.1 The Dupont retraction

[nleA

We give a short summary of the results of [26], where a Co-structure is induced on [ NC, ® A™*

(and hence on Toty (A4)) from Totry (A) via the homotopy transfer theorem.

Theorem 2.2.1 ([25],[20]). Let Q(e), NCo be the two simplicial differential graded modules defined
above. We denote the differential of Q(e) by de pory. There is a diagram between simplicial graded
modules

(2.13) Ee : NCy &= Qo) : |,

and a simplicial homotopy operator s : Q(e) — Q°*~1(e) between (E. f.) and the identity, i.e., S¢ 15 G
map between simplicial differential graded modules such that for each n > 0

dn,polysn + Sndn,poly = En / —Id.

n

In particular, the diagram

(2.14) Ee : NCy &= Qo) : [,

together with the simplicial homotopy se satisfies the properties (C1), (C2), (C3) and (C6).

Proof. The first statement is originally contained in [20]. The second part of the theorem is proved in
[25]. O

See Section A.4 for more details about the above maps. Let m[.n] be the C,-algebra structure induced
on the differential graded modules NC,, by the above diagram. Let A®* be a cosimplicial commutative
algebra. The differential graded algebra Q(n)® A™* is commutative as well. For any n, m > 0, we denote
the Co-structure induced along the diagram

(2.15) E,®Id : NCh@A™® = Q(n) ® A™* : [ ®Id

by me’"". This structure depends only on m™ . Let wi,...,w; € NC, @ A™* be such that w; = f; ® a;
fori=1,...,l. Then

(2.16) mP™ (wy, .. wy) = (=) Zi<s Millaslp (Y@ (g A Aay).
The above structure defines a well-defined C.-structure me on f [nlea NC, ® A™*.The maps m, can

be obtained in another way. We apply the coend functor to the simplicial diagram (2.15). Since So, F,
f. are all simplicial maps, they induce degree zero maps E, [ between the coends

[n]Jea [nleA
/ : TOtTW (A) — / NCn X 14”’.7 E / NCn ® A — TOtTW (A)

and a degree -1 map
S : TOtTW (A) — TOtTW (A) .

In particular,
(2.17) E: [MEANC, @ At < Totrw (A) : [

together with the homotopy s is a diagram of type (2.7) that satisfies the properties (C1), (C2), (C3)

and (C6). This gives a unital C algebra structure on f[n]EA NC,, ® A™* induced from Totry (A)
along the diagram (2.17). In particular, this structure coincides with m,. Notice that the construction

of f (mEA Ny C, ® A™* gives a functor form the category of cosimplicial unital non-negatively graded
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commutative differential graded algebra (cdgA for short) toward the category of cochain complexes. We
have a correspondence

[nleA
(2.18) A% / NC, @ A" m. | .

For a field k of characteristic zero we denote by (Coo — Alg)kvstr the category of C.-algebras on k and
strict morphisms.

Theorem 2.2.2. The correspondence (2.18) gives a functor cdgA — (Coo — Alg)y .-

Proof. Let f : A*®* — B** be a morphism.The correspondence (2.18) is a functor toward the category
of chain complexes. We denote its image with f;. Since f is a differential graded algebra map on each
degree, the same argument of Lemma 2.1.5 shows that f; induces a strict morphism. O

We give an explicit formula for me. Fix a n and a p < n. Notice that each inclusion [p] < [n] is
equivalent to an ordered string 0 < 49 < ¢; < --- < i, < n contained in {0,1,...,n}. For each string
0 <ip <i; <---<ip <n, we denote the associated inclusion by oy, 4, : [p] = [n], and we define the
maps Aig,...i, : A[n]; — k, via

) ) L 1if Oig,...ip — (ba

Aoy (9) = {O. otherwhise

Let vi,...,v, € f[n]eA NC, ® A™* be elements of bidegree (p;,q;). Then my, (v1,...,v,) is an element
of bidegree (>, pi +2—n,>_¢;). Let [ := >, pi+2—n, then Lemma A.3.1 implies that m,, (vi,...,v,)
is completely determined by m., ((v1),,...,(vn);),- We write (vi), = Xo,...p, ® a; € NCPI @ AP for
all the i. We denote by I the subsets {io,...,i,} € {0,...,l}, for I = {ig,...,ip} we define |I| := p and
we write A7 instead of Xg,... ,. Each I corresponds to an inclusion in A; we denote by o7 : [p] — [I] the
map induced by I. We have

mp (’U17 cee 7Un)l = miil ((Ul)l Y ('Un)l)l

=mi' D An@(on), a0 Y A, @ (o), an

[T1]|=p1 [In|=pn

> (—1)2i<s Pl (O © ((on), a1 A=< A(or,) an)
[T1|=p1ses| In|=pn

(2.19)

In particular, the above formula implies that if vy, ..., v, were all of degree 1, then m,, (v1,...,v,) would
only depend on

e the restriction of m[.Q} on the elements of degree 1, if all the v; are of bidegree (1,0);

° m[.o], if all the v; are of bidegree (0,1);

. m[.l] in the other cases.

Lemma 2.2.3. Consider A%® equipped with its differential graded algebra structure. There is a canonical
inclusion i : A%® < Toty (A) which is a strict Cw-algebra map.

Proof. The map i is clearly a cochain map. The structure m[.o] is trivial, and by setting { = 0 in (2.19)
we obtain that ¢ is strict. O

The mi" is given in [26]. We first set a convenient basis for NC;. Notice that the maps E,, are
all injective. This allows us to interpret NC; as a submodule of Q°(1). Recall that Q°*(1) is the free
differential graded commutative algebra generated by the degree-zero variables ¢, t; modulo the relations

to+t1 =1, dto+dt, =0.
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NCY is a two-dimensional vector space generated by A\g and A\; and NC{ is one-dimensional generated

by Ao,1. We have

(220) E1 ()\0) = to, E1 ()\1) = tl, E1 (/\071) = todtl — tldto.

Let t := tg, hence t; = 1 —t. Then 2°(1) may be considered as the free differential graded commutative
algebra generated by t in degree zero and N is the subgraded module generated by 1, ¢, dt. In particular

1 is the unit of the C,.-structure.

Proposition 2.2.4 ([26]). The structure m) on NCy is defined as follows:
1. mit) =1,
2. ml (dt® ¢, dt®n =) = (=) ()mlL (¢ dt, . de),
3. mgﬂ_l(t, dt,...,dt) = %dt, where B,, are the second Bernoulli numbers,

and all remaining products vanishes.

2]

It remains to find a formula for ms,"| (Ney)®" For n > 2 we are not aware of an explicit formula.
2

Proposition 2.2.5. Consider NC3 equipped with m[.z]. We have
1
m (Aor, Aoz) = m5 (Aot, Aiz) = my (Aozs Arz) = 6)\012-

Proof. By explicit calculation. The details are given in Appendix A.4.

O

Consider A** as above. We denote by N(A)** its bigraded bidifferential module (see Appendix A.3
for a definition) and by Toty (A) € dgMod its associated total complex. It is well known that there is
a natural isomorphism ¢ : Toty (A) — [ MEA NC, @ A™* of differential graded modules (see Lemma
A.3.1 for a proof). With an abuse of notation we denote again by m, the Cy-structure induced on

Toty (A) via the isomorphism 1. We have the following.
Theorem 2.2.6. The association
(2.21) A** — (Totyn (A),ms)

is part of a functor cdgA — (Coo — Alg)

k,str-

We give an explicit formula for m, in Toty (A) for elements of degree 0,1. We denote by D A% -

A**tLe the differential given by the alternating sum of coface maps, in particular d = d° — d* on A%*.

Theorem 2.2.7. Let | > 2.

1. Letay,...,a; € Totjlv (A) and let b; € AYC, ¢; € A%L be such that a; = b; +c¢; for everyi=1,...

Then

l
-1\ Bi— ~ ~
my (al,...,al):Z(—l)l_1<i_1)(l_lll)!bl"'bi"'blaci+ml (617...,Cn)~

2. Let x € A%0. Then

(1 —1\ B_ ~
my (a1, ..o, Qim1, T, Qig 1y .-, Q1) = (—1)Z(i_1>(l_l11)'b1~-bl (8:5),

and if we replace some a; by an element in A%, the above expression vanishes.
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Proof. For two subsets B,C C {1,...,l} such that BUC = {1,...,l}, we denote by m; (bp,cc) the
expression my (y1,...,y;) such that y; = b; for ¢ € B and y; = ¢; for ¢ € B. In particular, we have
|my (b, cc)| = (|B] +2 —1,|C|). Tt follows that |B| > — 2 and hence |C| < 2. We have

mi(ay,...,a) = my (bg, cc)
B

= > mlse)t Y, mlbsce)t Y mi(bscc).

|Bl=1—2,]c|=2 |B=1—1,/c|=1 |B|=L,]C|=0

The first summand vanishes by (2.19). We conclude
!
(2.22) my(ag,. . ar) = my(by,. .o cirenyb) +my (b, b))
i=1

We calculate explicitly my (by,...,b;,c1) € Tot?\, (4). We work in f[n]eA NC,, ® A™* and we use the
isomorphism ¢ (see Appendix A.3). In particular, for ¢ € Tot%" (A) we have a (0,1) element 1(b) €
IMEA NC,, ® A*™. Its projection at NC9 ® At ¢ NC? @ Ab* is

Ao ®ag(c) + M @07 (¢).

Let d°, d' be the coface maps of A. By definition, oy corresponds to the coface map d* and o corresponds
to the coface map d°. Hence we can write NCt ® AV® as t ® d'c+ (1 —t) ® d°c (see (2.20)). Similarly,
an element b of bidegree (0,1) can be written as —dt ® b € NC} @ A9, We have

m (D)1, ..., d(b)i—1, d(e)), = my (—dt @by, ..., —dt @ b1, t@d e + (1 —t) @ dc;)
= (D', (... dt,t) @by by (e — dc)

B_ -
= (-1)f (i - f)!dt@ (b -bi1) Oy € NC @ AV

where by - --b;_1 has to be understood as a multiplication inside A»°. The above expression defines an
element of bidegree (1,1) inside f[n]eA NC, @ A*™. By applying ¢! we get

-1 Bi—1

(l — 1)'51 . ~-bl,18~q.

mp (bl, .. .,blfl,cl) = (—1)

On the other hand, thanks to point 2 in Proposition 2.2.4, we have

1 (l1—=1\ B- =
my (bl,...7bi,1,Ci,bi+1,...,bl):(—1)l 1(@_1)(1111)|b1b1861

By (2.22), we have

l

-1\ B_ ~ =

(2.23) mi(ag, ... q) =Y (~1)1 (Z } 1) 0 i f),bl cobi e bder +my (b, .., br)
i=1 :

Now let € A%?. Then, the above computations give

ml(al,...,ai_l,x,ai+1,...,al):ml(bl,...,bi_l,x,bi+1,...,bl)
. -1\ Bj_ =
o qNI=1/ qy\l—i—1 -1
=(0TEY (z’—l)(l—l)!bl bl(‘%)
_ JU—1\ B ~
(2.24) —(-1) (i_ 1) i (833).
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The following corollary follows directly from the previous proof.
Corollary 2.2.8. Let n > 2 and and let ay, . .., a, € Toty (A). We have
My (a1,...,a,) = dy +do + ds,
where di € Tot?\}2 (A), dy € Tot}\’,1 (A) and d3 Tot?\’,2 (A). Then dy =0, d3 = my (by,...,bs).

Theorem 2.2.9. Let ay,as € Totly (A) and let b; € Toty" (A), ¢; € TotN' (A) such that a; = b; +¢; for
i=1,2. Then

mo (a1, az) = mg (¢1,c2) + ma (b1, c2) + ma (c1, b2) + ma (b1,b2),
where
1. ma(cy,c2) = caco € A%2,
2. my (b1, c2) = —%blécg + b1d%cs,
3. ma (br,ba) = & (= (d%y (dlby + d2bs)) + (dlby (d%by — d2bs)) + (d2by (@%b + d'bs))) .
Let 2,y € Totl (A). Then, ma(ci,z) = c1z € Tot' (A) , ma(z,y) = zy € A%, and my (by,x) =
—1b192 + b1d°2 € Toty’ (A).

Proof. The second and the last terms of ms(ay,as) can be calculated by a computation similar to the
proof above. We have

myt (P(b)1,9(c)2); = my" (—dt @byt @ d'cy + (1 — ) @ d’cy)
—mb (dt, £) @ byey +mb! (dt, 1) © (—b1d°c,)
+mb (dt, 1) @ (b1d°c,)
=dt® (BlbléCQ — b1d062> s
and thus mg (b1, o) = —B1b19cs + bid%cs. Tt remains to add mo (b1, b)) where By = % The expression

for ma (b1, z) can be computed in the same way. Recall that NC5 is the graded vector space generated
by Ag, A1, A2 in degree 0, A12, Ag2, Ag1 in degree 1 and Ag12 in degree 2. In particular, for b € Tot}\’,0 (A4)

we have a (1,0) element ¢(b) € f[n}EA NC,, ® A*™. Its projection at NC§ ® A%* is
A2 ®@d° (D) + Aoz @ d* (b) + Ao1 @ d? (b) .
Then, by Proposition 2.2.5 we have

m3? (9 (br) 9 (b2))y =
=m5? (M2 ®d° (b1) + Aoz ® d" (b1) + A1 ® d® (b1) , M2 ® d° (b2) + Aoz @ d* (b2) + Ao1 @ d (b)),

1
= Ao @ (= (%1 (d'b2 + d?b3)) + (d'by (A — d?b2)) + (d®b1 (d%by + d'b2))) .

Then

ma (br,b2) = = (= (d%b1 (d"ba + d®bs)) + (d'b1 (d°b2 — d®b)) + (d?by (dbs + d'b))) .

1
6

2.3 Geometric connections

We put the Cyo-structure of Section 2.2 on the cosimplicial module of differential forms on a simplicial
manifold M,. We use the results of section 2.1 to compute associated homological pairs on a simplicial
manifold. We show that this connection induces a flat connection form on My (Corollary 2.3.19). Let G
be a discrete group acting properly and discontinuosly via diffeomorphisms on M. We study associated
homological pair on the action groupoid MG and its relation with the “ordinary” associated homological
pair on M/G and we show that they are gauge equivalent modulo an endomorphism of the fiber (see
Theorem 2.4.9). We use this relation to construct a flat connection on M/G.
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2.3.1 Simplicial De Rham theory

We recall some basic notions about simplicial manifolds. Our main reference is [19] and [20]. Let Diff¢
be the category of smooth manifolds over C. We denote with dgA the category of complex commutative
non-negatively graded differential graded algebra.

Definition 2.3.1. A simplicial manifold M, is a simplicial object in Diffc.

Each smooth complex manifold M can be viewed as a constant simplicial manifold M,, where M, :=
M and all the degenerancies and faces maps are equal to the identity.
Let Apr : Diffc¢ — C — dg>Comm be the smooth complex De Rham functor, i.e., Apr (M) is the
differential graded algebra of smooth complex valued differential forms on M. This is the total complex
associated to a bicomplex A%% (M), where a differential forms w of type (p, ¢) is an element in A%tg(M )
such for any given holomorphic coordinates z = (z1,...,2,) : C* — M, it can be written as

Zfdz;/\dﬁ:Zf(zl,...zn)dzil/\~-~/\dzz',,/\dzle---Adzjq

where f is a smooth function over C". We denote with A%% (M) the set of differential forms of type
(p,q). The differential d : A% (M) — A% (M) is is given by d = 9 + 9. Apg is contravariant
and Apgr (M,) is a cosimplicial complex commutative differential graded algebra. As explained in the
previous section, Totrw (Apr (M,)) is a differential graded commutative algebra over C. We obtain a
contravariant functor

Totrw (ADR (—)) : Difféop — dgA

A smooth map between simplicial manifolds f, : M, — N, induces a morphism of differential graded
algebras via (f*(w)), = fu(w,). If M, is a constant simplicial manifold then Totrw (Apgr (M,)) is
naturally isomorphic to Apr(M,). Given a simplicial manifold M,, consider the cosimplicial complex
commutative differential graded algebra Apg (M,). By Theorem 2.2.6, we have a functor

Toty (Apgr (=) : Diff®”" — (O — Alg)c -

There is a De Rham theorem for simplicial manifolds. This is very useful because it allows us to determine
the cohomology of Toty (Apgr (M,)). Let Top be the category of topological spaces. Let Ty € Top®” be
a simplicial topological space. Let A, be the subcategory of A with the same objects but only injective
maps. By restriction, we have a functor T, : AP — Top.

Definition 2.3.2. The fat realization of simplicial topological space T, is the coend

[n]€A+
[|Te || ::/ T, X Ageo[n].

The geometric realization of T, is the topological space

[nleA
|Te| ::/ T, X Ageo[n].

Remark 2.3.3. The natural quotient map ||Te|| — |Ts| is not a weak equivalence in general. However,
if the simplicial topological space is “good” (see the appendix of [52]), then it is a weak equivalence. In
particular for a simplicial manifold M,, this is true when its degeneracy s’ maps are embeddings. We
call this class of simplicial manifolds good simplicial manifolds.

For a topological space T' we denote by C4(T) its singular chain complex and by C*(T) its singular
cochain complex. In particular C, (=) extends to a functor from simplicial topological spaces to simpli-
cial chain complexes; on the other hand C*® (since is contravariant) extends to a contravariant functor
from simplicial topological spaces to cosimplicial cochain complexes. We associate to each simplicial
topological space T, the bicomplex C'**(T,) as follows

Cri(Te) = CP(Ty),
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where the differential &' : CP(T,) — CPT1(T,) is the ordinary differential on C*(7T}). The faces maps
d; : Ty41 — T, induce maps
(di)" = C*(Ty) = C*(Tgu),

for i =0,...,q. We define §" : CP(T,) — CPTY(T,) as 8" := > ! (—1)"(d;)". We denote by d the total
differential and by (C*(T,),d) the total complex.

Proposition 2.3.4 ([19], Proposition 5.15). Let Ty be a topological space, then
H* (||T.[,R) = H* (Totn (C300m(Te)) 5 6)

smooth

For a smooth manifold M, we denote by Ce¢(M)smooth its smooth singular chain complex, i.e.,
Cp(M)smootn is the free module generated by the smooth maps o : A[p|ge, — M. The inclusions

Co(M)smooth — Ce(M), C*(M)smooth = C.(M)

are quasi-isomorphisms. The integration map
[ 5 M) = i (00)

defined by [(w)(o) = [, ) ¢ w induces a multiplicative quasi-isomorphism between Hp, (M) and

H*(M) := H* (C*(M)), where H*(M) is equipped with the cup product. We can generalize such a
theorem in simplicial settings as follows. The map f can be extended to a map between bigraded vector
spaces

/ : A%R(MQ) - Cfmooth<Mq)7
and the Stokes’theorem implies that [ is a cochain map. For a double complex (A**,d,d’), we define a

new double complex ((E{)™®,dy,d'1), where (E{')"" = H? (4%4,d), dy = d and d'y =0,

Lemma 2.3.5 ([19], Lemma 1.19). Let f : A®*® — B** be a morphism of double complex. Assume
that AP = BP% = 0 if p or q are negative and that f : E{* — EP is an isomorphism between chain
complezes. Then f induces an isomorphism in the cohomology of the total complez.

An application of the above lemma shows that

/ : Totn (Apr (Ma)) — Toty Cpp0tn (M),
is a quasi-isomorphism. Combining the above lemma with the results of Section 2.2 we have a de Rham
theorem for simplicial manifolds.

Proposition 2.3.6. Let M, be a simplicial manifold, we have a sequence of multiplicative isomorphisms:
H* (Totrw (Apr (M,))) = H* (Toty (Apr (M,))) = H* (|[M.]|,C).

This is Theorem 6.10 of [19]. We introduce the complex of smooth logarithmic differential forms. Let
M be a complex manifold.

Definition 2.3.7. A normal crossing divisor D C M is given by U; D;, where each D; is a non-singular
divisor (a codimension 1 object) and for each p € D;; N--- N D;, there exist local coordinates z =
(#1,...,2n) : C" = U C M near p such that U N D;, N---N D, is given by the equation [[{_, z;, = 0.

A differential form w in A} R(log (D)) is a smooth complex valued differential form on M — D whose
extension on M admits some singularites along D of degree 1. More precisely it can be viewed as a non
smooth complex differential form on M such that

1. for any given holomorphic coordinates z = (z1,...,2,) : C* = U C M such that UND =0, w
can be written as an ordinary smooth complex valued differential forms

> f(a, e zn)dzi, A Adzip AdZ A A dZjg

where f is a smooth function over U.
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2. For any given holomorphic coordinates z = (z1,...,2,) : C* = U C M near p € D, such that
UND; N---ND; is given by the equation [[{_, z; = 0; w can be written as

dz; dz;
Zw‘]/\ JL Ao A L
Zj1 24,

for j; € {1,...,p} and where wy is a smooth complex valued differential forms on U.

The graded vector spce A%, r(log (D)) equipped with the differential d and wedge product A is a com-
mutative differential graded algebra. Its cohomology gives the cohomology of M — D.

Proposition 2.3.8 ([16]). The inclusion M — D — M induces a map
Apr(log (D)) = Apr(M — D)
which is a quasi-isomorphism of differential graded algebras.

Definition 2.3.9. Let Diff p;, be the category of complex manifolds equipped with a normal crossing
divisors, i.e the objects are pairs (M, D) where D is a normal crossing divisor of M and the maps are
holomorphic maps f : (M, D) — (N,D’) such that

(o) co.

A simplicial complex manifold M, with a simplicial normal crossing divisor D, is a simplicial objects in
Diff pyy.

So given a simplicial complex manifold with divisor (M,, D, ), then (M — D), defines by (M — D), =
M, —D,, is again a simplicial complex manifolds. Let (M,, D,) be a simplicial complex manifold with sim-
plicial normal crossing divisor. Then Apgr (M — D),) and Apg (log (D.)) are cosimplicial commutative
dg algebras.

Proposition 2.3.10. The inclusion (M — D), — M, induces a map between chain complezes
Totn (Apr(log (Ds))) — Totn (Apr (M —D),))
which is a quasi-isomorphism.
Proof. This is a direct consequence of Proposition (2.3.8) and Lemma (2.3.5). O

We conclude this section with a standard example of simplicial manifold. Let G be a Lie group, and
let M be a manifold equipped with a left smooth (or holomorphic) G action. We define the simplicial
manifold M,G as follows:

M, G =M xG",

The face maps d* : M, G — M,_1G for i =0,1,...n are

(1,92, .., gn), if i =0,
d'(z,g1,. ..y gn) = (Ty g1y s GiGit1y -y gn), 1 <i<n

(T, 9155 Gn-1), if i =mn.
The degenerancy maps s° : M,G — M, ,1G are defined via
S, g1y s Gn) = (T, 01,y Gir €, it 1y -+ > Gn)
fori=1,...,n.
Definition 2.3.11. We call the simplicial manifold MG the action groupoid.

In particular the geometric realization of M,G is weakly equivalent to the Borel construction
EG Xa M

and if the action of G is free, the projection 7 : FG xg M — M/G is a homotopy equivalence.
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2.3.2 (Geometric connections

Let M, be a real or complex simplicial manifold with connected cohomology. Then Apgr(M,) is a
cosimplicial unital commutative differential graded algebra. By Theorem 2.2.6 Toty (Apr(M,)) is an
unital C.-algebras. We denote its structure with me, where m; = D. Here D is the differential on
Toty (Apr(M,)) defined on elements of bidegree (p, q) by

D(a) = da + (—1)Pda,
where 9 is differential obtained by the alternating sum of the pullback of the cofaces maps of the simplicial
manifold. We denote the unit by 1. It corresponds to the constant function at 1 inside A% ,(My).

Definition 2.3.12. Let A C (Toty (Apr(M.)),me) be a Coo-subalgebra and let W be a positively
graded vector space of finite type. A reduced homological pair (C,6*) consists of a codifferential § of
T¢ (W[1]) and a C € ART (W, [1])* such that C is a Maurer-Cartan element in the reduced convolution

L.-algebra (A@f (W [1)* ,l’.) and &* preserves the filtration Z.

Assume that the cohomology of (Totx (Apr(M,)),me) is of finite type. For any Hodge type decom-
position (W, M), let

(225) Wiyeooy Wiy

be a basis of W,. Let Xi,...X,,... be the basis of (W[1])" dual to s (w1),...s(wy,), - € Wi[l]. We
write Theorem 2.1.40 in terms of formal power series.

Corollary 2.3.13. Assume that the cohomology of (Totn (Apr(Ms)),me) is of finite type. Let B C
Toty (Apr(M,)) be a 1-model. For any Hodge type decomposition (W, M) of (B, ms) the associated
homological pair ((6{;)* ,C) consists in a codifferential (5{; so0 that prow, ((5;{,) lw, 1] = 0 and a Maurer-
Cartan element

C € Conv, ((B,ms), W, M)

that can be written uniquely as a formal power series
C=Y wiXi+ Y wyXX;+ -+ wi i, Xy ... X; +--+ € BRL((WL[1])").
such that the coefficients wij, ..., wi, . i,,... belong to M forp > 1. In particular ((5{,’{,)* ,C) is a reduced
homological pair.
Let M, and (W, M) be as above. Consider the strict Lo,-algebra morphism
7 : Conv, ((B,ms), W, M) — Conv, o ((B,ms), W, M)
defined in Proposition 2.1.22.

Definition 2.3.14. We call Cy := 7(C) the degree zero geometric connection of M, associated to the
decomposition (W, M) of B.

In order to find a degree zero geometric connection of M, for a certain model B, we may start with
a simpler 1-model B’ C B equipped with a Hodge decomposition compatible with the one given in B.
Then Proposition 2.1.48 ensures that we have the same degree zero geometric connection. Let M, be as
above. For j = 1,2, let B; be Coo-subalgebras of Toty (Apr(M.)) equipped with a Hodge decomposition

B =W, ®M; @ dM,;.
We assume that Bj is a model and that Bs has a connected and finite type cohomology. We denote

by (C’j, 5‘4,‘Vj> the homological pairs obtained and by C’? the degree zero geometric connection. Hence

Proposition 2.1.50 implies the following.

Corollary 2.3.15. Let ko be as defined in Section 2.1.6. The pushforward along ke inherits a strict
morphism of Ls.-algebras

k* : Conv, o ((B1,me), W1, M1) = Conv, o ((B2,me) , Wa, M3)
such that k* (C}) is homotopic to C§.
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Here k* (C(}) is the precomposition of C} with the the dual of the differential graded coalgebras map
(2.26) K . T° ((W2)+ [1]) - T° ((W1)+ [1])

induced by k,. Its dual gives

(2.27) KT ((Wh), 1) /RE - T (W), 1]) /RS,

In particular, K* is (by construction) a morphism of complete Hopf algebras. In some cases, the map
above depends only by Wi and W,. For j = 1,2, we denote by i/ : W; — Toty (Apr(M,.)) the
inclusion and by p/ : Toty (Apr(M,)) — W; the projection associated to the chosen decomposition.
By construction,

[iY][p?] : H'(Wy,0) — H' (Wy,0)
is an isomorphism.

Corollary 2.3.16. Let M, By, Bz be as above. Then ko = [i'][p?] is strict and
ZK* LT (), 1) /RE T (W), ) /R4
where K is the map induced by (the dual of) [i'][p?].

2.3.3 Restriction to ordinary flat connections on M,

Consider M,, B and (W, M) as in corollary 2.3.13. Consider the projection
r: B— B%! C Apr (Mo)

that sends all the forms of type (p,q) to 0 if p # 0 and preserves the forms of type (0, ).
Consider Apgr (M) equipped with its differential graded algebra structure. Then

Conv, ((W+,m. ) (ADR(MO)))

is a differential graded Lie algebra. In particular, it is a ordinary convolution Lie algebra (compare with
[39]).

Proposition 2.3.17. Let M,, B and (W, M) as above. The pushforward along r induces two maps
r, : Conv, ((B,ms), W, M) — Conv, ((W+,m. ) (Apr (MO)))

and
7 : Conv,.o ((B,ms), W, M) — Conv, o ((W+7m- ) (Apr (MO))>

such that

Conv, ((Toty (Apr(M,)),me), W, M) = Conv, ((W+,m. ) (Apr (Mo)))

| rf

Convg ((Tot (Apr(Ma)) .ma) , W, M) —= Convyg (W, mi"™ ), (Apr (o)) ))

commute as diagram of differential graded vector space and vy € (Loo — ALG)p,
Proof. Let I'g be the Lo, structure on Conv,. ((Toty (Apr(M,)),me), W, M). Since

rdy=r, (5W+ + D) = (5W+ + D) T
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we get that r, is a cochain map and induces a well-defined cochain map r, between the degree zero
convolution Lyo-algebras. It remains to prove that r, preserves Maurer-Cartan elements. By Corollary
2.2.8, we have

rmp(ay, ..., an) = my(ray,...,ray,)

forn>1and ay,...,a, € B'. Let
C € Conv,.o (Totw (Apr(Ma)) ;me) , W, M)

be a Maurer-Cartan element, let
C' € (AL p(My)) BL ((W}r[l])*) . resp. C € (AYp(M,)) BL ((W}r[l])*)

be such that 3
c=C"+C.

In particular, r,C = C’ and

S S

k>1

_ (67«*0 .S I (r*c,]%'. . ,r*c)>

k>1

la (1.C, T*C))

= (87“*0 + 5

i.e., r.C is a Maurer-Cartan element in the convolution Lie algebra Conv,. o ((W+, mYV+> ,(Apr (MO))> .
O

Remark 2.3.18. Let M, = MG for some smooth manifold M and discrete group G. The morphism of
simplicial manifold M, {e} — M,G given by the inclusion gives gives the map

(228) r : Toty (ADR (M.G)) — Apr (M)

which is a strict morphism of C,-algebras.

Corollary 2.3.19. Let Ry C L ((W_,l_[l])*) be the Lie ideal generated by §* (}i ((W_il_ [1])*)> Then
1. Conv, ((W+,mYV+) (Apr (MO))) - (z.,ADR(MO)@B (}i ((W}r[l])*> /Ro)) .

In particular,
lh=—d, la=[--], lL,=0, forn>2,

where [—, —] is the obvious Lie bracket on A% (Mo)® (E ((WHH)*) /RO). In particular
App(M0)® (T (WA1)") /R ), L ((WL1])) /R
are complete Lie algebras and L ((Wj_[l])*> /Ry is pronilpotent.

2. 1.Cy is a Maurer-Cartan element in Conv, ((W+,mfv+> ,(Apr (MO))> .

~

Proof. The lie algebras A%, p(Mo)® (]ﬂ ((Wi [1]) *> /Ro) L ((Wi [1]) *) /Ro are complete because 7
preserves the filtration given by the power of the augmented ideal I in LL ((Wj_ [1]) *) , hence L ((Wi [1]) *) /Ro

can be written as a projective limit of finite dimensional nilpotent Lie algebras.
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For a Lie algebra u we define the action ad : u — End (u) via ad, (w) := [v,w]. By Section 2.1.2, the
(]E ((W}_[l])*) /R()) is a Lie algebra. We call such a Lie algebra the fiber Lie algebra of the simplicial

manifold M,, this Lie algebra corresponds in some cases to the Malcev Lie algebra of the geometric
realization of M,.

Proposition 2.3.20. Let M, N, be simplicial manifolds with finite type connected cohomology. Assume
that there is a map fo : No — M, that induces a quasi-isomorphism in cohomology.

1. The fiber Lie algebra of M, is isomorphic to the fiber Lie algebra of N,.

2. Let G be a discrete group acting properly and discontinuously on a smooth manifold M. In this case
the quotient M /G is again a smooth manifold. Consider the action groupoid M G. Assume that
the cohomology of M/G is of finite type. The fiber Lie algebra of M.G is the Malcev Lie algebra
of m1 (M/G) (see Definition 1.1.87).

In particular the fiber Lie algebra is independent (up to isomorphism) by the choice of Hodge type de-
composition (W, W)).

Proof. We prove 1. We fix a Hodge type decomposition (W, M) of Toty (Apr (M,)) and a Hodge
decomposition (W', M’) of Toty (Apr (N)). In particular the inclusion

f* : Toty (Apr (Ne)) — Totny (Apr (M.))

is a quasi-isomorphism and a strict C'oo-map. We get a diagram

Toty (Apr (M.)) L) Totn (ADR (NO))

(W,ml) (W', m!).

of Cy -quasi isomorphism. In particular the map (g’if), is an isomorphism. It follows that the two fiber
Lie algebras are isomorphic. We prove 2. We set Ny = M(G and M, is the constant simplicial manifold
M/G. We replace f by the inclusion

i ADR (M/G) — Tot (ADR(M.G))

In particular the fiber Lie algebra of M,G is the fiber Lie algebra of M/G. We use Theorem 1.1.36, the
the fiber Lie algebra is ( the completion of) the Malcev Lie algebra of m (M/G). O

The next theorem follows from point 2. of the previous corollary.

Theorem 2.3.21. Consider the adjoint action ad of L ((W_}_[l])*) /Ro on itself. Then d — r.Cy is a
flat connection on the trivial bundle over My with fiber L ((Wj_[l])*> /Ro.

Remark 2.3.22. For the construction of (C,¢*) we have to choose a basis of W (see (2.25)). However
(C,6*) is independent by the choice of that basis. Conversely r.Cy depends by this choice. This is
because in the first case we consider C' as a map (a twisting cochain) and in the second case r.Cp is
a formal power series. The dependence of the degree zero connection from the basis of W is given as
follows: let {w;},.; and {w;};.; be two basis of W and let d — r,Cy and d — 7.Cy be the two resulting
degree zero geometric connections with fiber Lie algebra u and it respectively. There is an aoutomorphism
of W that sends {w;},.; to {w;},.; which induces a Lie algebra automorphism ¢ : u + u. The image
of r,.Cy via 6 corresponds to r,.Cp.

2.3.4 1-Extensions

Let G be a discrete group acting properly and discontinuously on a smooth manifold M. Consider
the action groupoid M,G and assume that the cohomology of M/G is of finite type. Recall the map
r defined at Remark 2.3.18. By abuse of notation, we denote again with me the Cy-structure on
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Toty (Apr(MeG)) @ Q(1). Let J C (Toty (Apr(MeG)) ® 2(1),me) be a Coo-ideal, i.e for any k& > 1
we have
mk(bl,...,bk) eJ

if some b; € J. Then (Toty (Apr(M«G) ® (1)) /J,ms) is a Coo-algebra as well and the projection
Toty (Apr(M.G) @ Q(1)) — Toty (Apr(M.G) @ Q(1)) /J

is a strict Cxo-morphism. Assume that (r ® Id) (J) = 0, then we have a well-defined strict Coo-map
r®1Id : Toty (Apr(MeG)) @ Q(1)/J = Apr(M) ® Q(1).

Let Id®i1 : Toty (Apr(Me.G)) ® Q(1) — Toty (Apr(M.G)). We assume that (Id ® i1) J = 0.

Definition 2.3.23. Let J be a Cu-ideal as above such that (r ® Id) (J) = 0= (Id®1i1)J. Let A be
a 1-model for Toty (Apr(M.G)). A Cu-algebra (B,m¥) is a 1-extension for A if there exist strict
Coo-morphisms f : B — Toty (Apr(MeG)) ® Q(1)/J and g : B — A such that

1. g induces an isomorphism in H? for i = 0,1 and is injective for i = 2,

2. the diagram

fdeh Apr(M) & Q(1)
\ T[d@)zl /
r®Id
TOtN ADR M G )/J

is commutative. A compatible Hodge type decomposition for B is a Hodge type decomposition (W, M)
such that (g(W), g(M)) is a Hodge type decomposition for A.

Let (B my ) be a l-extension for A, let (W, M) be a compatible Hodge type decomposition for B.
Then we have a strict morphism of L..-algebras

Conv, o ((B,m%), W, M) LN Conv, o ((W+,m. ) (Toty (Apr(M.G)) @ Q(1)/J, m.))

Let C’g € Conv,. g ((B mg ) W, /\/l) be the canonical Maurer-Cartan element associated to (W, M).

Definition 2.3.24. We call Cy := f,C’g the degree zero geometric connection associated to the Hodge
type decomposition (W, M).

Since the map
(r @ 1d). : Convy (Wi ,md™ ), (Totn (Apr(MaG)) @ Q(1)/T,ma)) = Convpg ((We,md™ ), Apr(M) @ Q(1))
preserves Maurer-Cartan elements, the commutativity of the above diagram implies that
(Id®iy), (reId), f.C'0 = (Id®1i1), f«C'o = g.C"o
where ¢.C"¢ is the canonical Maurer-Cartan element corresponding to (g(W), g(M)). In fact (r ® Id), C’y
defines a homotopy between Maurer-Cartan elements.
2.4 Connections and bundles

Let M be a complex smooth manifold. Let M,G be an action groupoid where G is discrete and it acts
properly and discontinuosly on M. Assume that the chomology of M/G is connected and of finite type.
The results of the previous section allow the construction of a flat connection 7*Cy on M where the fiber
is the Malcev completion of 71 (M/G). In the next section, we show that r*Cj induces a flat connection
on M/G as well.
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2.4.1 Gauge equivalences

Let u be a pronilpotent Lie algebra, i.e., the projective limit of finite dimensional Lie algebras

u = @(u/[i) ,

(3

where the filtration I® is defined via
I°=u, I':=[I'"""y] fori>1.

Lemma 2.4.1. Let u be a pronilpotent graded Lie algebra concentrated in degree 0 and let (A,d,\) be a
non-negatively graded differential graded algebra.

1. The vector space A®u is a differential graded Lie algebra where the differential is given by the
tensor product and the brackets are defined via

[a®v,b@w]:==x(aAb)® [v,w],
where the signs follow from the signs rule.

2. The Lie algebra A°@u is complete with respect to the filtration induced by I.

3. Let Q(1) be the differential graded algebra of polynomials forms on the interval [0,1]. Consider
the differential graded Lie algebra Q(l)@ (A@u) obtained as in point 1. Then, there is a canonical
isomorphism

Q1) (ABu) = (2(1) ® A) Bu.

Proof. We refer to the Appendix A.2 for general facts about filtered vector spaces. The first statement
is straightforward. The second follows from

I' (ABu) = ABI (u)
for every i > 0. Analogously, point 3 follows from
I' (1) @ A) Bu) = (Q(1) ® A) &I (u).
O

Let h be a pronilpotent differential graded Lie algebra. The pronilpotency guarantees that the
(complete) universal enveloping algebra U (ho) is a complete Hopf algebra and its group-like elements
can be visualized as H := exp (E)O). Moreover there is group action of H on MC(h) given by

1— eAdh

R\ . oAds
e'(a) == e () + Ad,

(du)

where h € h°. Assume that b is concentrated in degree zero and that it is equipped with the trivial
differential. Let A be a positively graded differential graded commutative algebra. We consider the
complete differential graded algebra A®H. The universal enveloping algebra of b is equipped with the
filtration induced by I°®. In particular H is complete with respect to such a filtration. The map exp can
be extended to a map

Id®exp : A°®h — A®H c A°®U (1°)
By abuse of notation we denote the above map again by exp. The completed tensor product gives to

A'QU (f)o) the structure of an associative algebra. The image of Id® exp is again a group where the

inverse of e" is given by e~* for a u € A°®p. This group acts on the set of Maurer-Cartan elements

MC (A°®H) as above, i.e.

1 — eAdu
Ad,

We call this action the gauge-action and the above group the gauge group.

Adu( (du).

e'(a) :=e ) +
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Definition 2.4.2. Two Maurer-Cartan elements aq, aq are said to be gauge equivalent in AQb if there
is a u in A%®h such that e*(ag) = as.

There is another equivalence relation between Maurer-Cartan elements.

Definition 2.4.3. A homotopy between two Maurer-Cartan elements ag, 1 € MC(h) is a Maurer-
Cartan element a(t) € MC ((2(1) ® A) ®h) such that a(0) = ag and a(1) = ;. Two Maurer-Cartan
elements are said to be homotopy equivalent if they are connected by a finite sequence of homotopies.

Proposition 2.4.4. Let A®b be as above. Two Maurer-Cartan elements are gauge equivalent if and
only if they are homotopy equivalent.

Proof. We have that A®H is a complete Lie algebra with respect to I*. The result follows from [56,
Section 2.3]. O

Remark 2.4.5. The gauge action has a geometrical interpretation. Let V' be a finite dimensional vector
space concentrated in degree zero and let f(V) be the complete free algebra with respect to the filtration
given by the power of its augmentation ideal I. Let M be a smooth manifold. Then ADR(M)@@(V) is
a differential graded algebra where the product is given as in (1.3) and the differential is the one induced
by the tensor product (we tacitly assume that T (V) is equipped with the zero differential). We consider
two cases.

1. Let L(V) be the complete free Lie algebra on V, (note that it is pronilpotent). Then
(ApR(DEL(V), ~d, [, —])

is a complete differential graded Lie algebra. We consider ]IAA(V) equipped with the adjoint action.
A Maurer-Cartan elements « gives a flat connection

d—«

on the trivial bundle E on M with fiber L(V) (equipped with the adjoint action). Let h €
Apr(M)RL(V) be a degree zero element, then e” can be considered as an element of Apz(M)RT (V)
and it defines a bundle map. We have the following

e"(d—a)e " =d+e" (de™) +e" (—a)e "
=d+e" (de ) - eAdu ()
1 — eAdu

_ _ JAd,
=d+ AdL (du) —e (@),

where the second equality is a standard result about representation of Lie algebras, and the third
equality is proved for examples in [47] (see Section 3.4).

2. The same reasoning can be repeated replacing L(V) with a quotient h = L(V)/R, where R is a
complete Lie ideal of L(V').

2.4.2 Factors of automorphy

We show how to construct a flat connection on the quotient. We use the same point of view of [29]. Let
X be a set and G a group acting on it from the left. Let V be a module. A factor of automorphy is a
map F : G x X — Aut(V) such that g : X xV — X x V defined by (z,v) — (g9z, Fy(z)v) gives a
group action of G on X x V. This is equivalent to

Fgn(x)(v) = Fy(hx)Fp(z).

Let M be a smooth manifold equipped with a smooth properly discontinuous action of a discrete group
G (from the left). Let V be a vector space and let F : G x M — Aut(V) be a factor of automorphy.
Then F induces a G-action on M x V. In particular, the quotient

(M xV)/G
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is a vector bundle where the sections satisfy

s(gx) = Fy(x)s(x).
We denote by Er the vector bundle induced by the factor of automorphy F'.

Proposition 2.4.6. Let M be a smooth manifold equipped with a smooth properly discontinuous action
of a group G. Let V be a complete vector space and let F : G x M — Aut(V) be a factor of automorphy.
Let o € AL p(M)@End(V) be a 1-form with vaules in End(V).

1. The connection d + « is a well-defined connection on Ep if
d—g'a=Fy(d—a)F;!
for any g € G.

2. Let T(v) be the parallel transport along a smooth path v : [0,1] — M with respect to a. Assume
that o is well-defined on Ep, Then

T(g7) = Fy(7(0)T () Fy((1)) "

Proof. The first statement is proved in [29], Proposition 5.1. The second statement is Proposition 5.7. O

Let M, G be as above. We fix a pronilpotent Lie algebra u concentrated in degree zero as in Remark
2.4.5 and we set U = exp(u). Let a € A} p(M)® End(u) be a well-defined connection form on Er, where
Er is a bundle over M with respect to some factor of automorphy F' : G x M — End (u). We fix a
p € M and we denote its class in M/G by p. By covering space theory, this choice induces a group
homomorphism

p M (M/Gaﬁ) — Ga

which is constructed via the homotopy lifting property. For a path starting at p, we denote its (unique)
lift starting at p with c¢,. In particular, ¢, (1) = p(y)p. Given two loops 71, v starting at p on M /G, we
have ¢y,.y, = ¢y, - (p(71)72) (see [29], lemma 5.8).

Proposition 2.4.7. Let U = exp(u) and let p be as above. The holonomy of o on M induces a group
homomorphism
@0 : Wl(M/G,ﬁ)*)U

given by Oq () := T(cy)F,y)(p), where T is the parallel transport with respect to o on M.
Proof. See Proposition 5.9 in [29]. O
We call the above group homomorphism the holonomy representation of a on M/G.

Proposition 2.4.8. Let M, G be as above. We fiz a pronilpotent Lie algebra u concentrated in degree
zero as in Remark 2.4.5. Let ' be a Maurer-Cartan elements in Apr(M)®u such that it defines a
well-defined flat connection on the bundle Ep: with fiber u and factor of automorphy

F'y(p) = Id.

Let a be a Maurer-Cartan element in ADR(M)®u. Assume that it is gauge equivalent to « via some
he A% R(M)&u. Then « is a well-defined connection form on the bundle Er, where F is given by

F,

W (D) == e—hgp) oh(p)

Proof. Fy(p) is clearly a factor of automorphy. We have

e~ 9" heh (d+ «) e hed™h — o=9"h (d+a') eI M
=e 9 (d+ g*a) et "

=d+ g a.
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Notice that there is canonical bundle map Fr» — Ep defined by
() > (p, eA=riom Ay,

Consider the action groupoid MG and assume that the cohomology of M /G is connected and of finite
type. Let A, B C (Toty (Apr(MeG)),me) be Co-sub algebras. We assume that B is a 1-model and
that the cohomology of A is connected and of finite type. We fix a Hodge type decomposition on A and
B via

A=WaeMeDM, B=W oM & DM,

respectively. Let (C, §*) be a reduced homological pair with respect to A and let (C’, §*) be the associated
homological pair with respect to the decomposition given in B. By the results of the previous section,
(C,6*) induces a flat connection form 7*Cy € A}, ,(M)@u such that d —r*Cy is a flat connection on the
trivial bundle on M with fiber u. Repeating the same reasoning for (C’,6*) and we have a flat connection
form 7*C"y € AL p(M)&w such that d —r*C’ is a flat connection on the trivial bundle on M with fiber
Lie algebra u’. Moreover, 1’ corresponds to the Malcev Lie algebra of 71 (M/G).

Theorem 2.4.9. Consider r.C’y,7.Co as above.

1. There exists a morphism of Lie algebras K* : W — u such that
rk*C',r.Co € Apr(M)®u
are gauge equivalent.

2. Assume that M = (N — D), where D is a normal crossing divisors that is preserved by the group
action G. If A, B C (Toty (Apr(log DeG)) ,ma) the gauge h is in exp (A% 5 (M)&u).

Proof. By Corollary 2.3.15, there exists a morphism of Lie algebras K* : u’ — u such that r,k*C’g, r,.Cy
are homotopy equivalent as Maurer-Cartan elements in the L..-algebra Tot% (Apr(MeG)) ®u. The
homotopy is given by a Maurer-Cartan element C”¢ in (2(1) ® Tot% (Apr(M.G))) @u. Similarly to
Proposition 2.3.17, 7,C"¢ is a Maurer-Cartan element in (Q(1) ® Apr(M)) @u. In particular, it defines
a homotopy between r.k*C’g and r,Cy. Since W is of finite type, u is pronilpotent. Then we can apply
Proposition 2.4.4, and the results follow. O

The above theorem and the explanation given in the previous section imply the following.

Corollary 2.4.10. Assume that B C Apr(M/G) is a 1-model with a Hodge type decomposition. Then
C'y defines a flat connection on the trivial bundle on M/G with fiber u, and there is a Lie algebra
morphism K* : u' — u and a factor of automorphy F : G x M — End (u) such that d — r.Cy is a
well-defined flat connection on M/G on the bundle Ep.

Proof. We have k*C'q is G-invariant since C’g is G-invariant. The proof follows from Proposition 2.4.8.
O

Let k*C’y, Cy be as in Corollary 2.4.10. We calculate its holonomy representations. We first relate
the holonomy representation of k*C’q with C’y. We denote by T', T” and T¥ the parallel transport of
r+Co, C'g and k*C’g on M respectively.

Lemma 2.4.11. 1. Consider a smooth path v : [0,1] — M. Then
T%(y) = K" (T'(v))

2. Letp € M and let OF : m (M/G,p) — T ((((W)+ [1])0)*) /Ro be the monodromy representation
of the flat connection d — k*C'q. Then for any loop v on M we have

~ 0 *
Of (v) c U =exp() < 7 (W), 1)) ) /R'
and OK () = K*©'o(7), where ©’y is the holonomy representation of d — C'y.
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Proof. We prove 1. The parallel transport of d — k*C’y is given by iterated integral via the formula given
in Lemma 1.1.30. The map K* : u’ — u is the restriction of a multiplication preserving map

~

K (1)) ) /R = T ()2 1)°) ) /Ro.

Let o : {0} — PM be the plot with image ~, then

8() =1+ [k Clo);

n>1

= 1+Z/K* (rCo)n

n>1

= K* 1+Z/(T*C’/0)Z

n>1

— K" (T'(7)).

We prove 2. The argument of [29, Proposition 4.1] carry over this situation and we have OF (v) C U,
the second part follows by point 1. O

We consider k*C"g and 7,Cj. Since they are gauge equivalent as elements in Apg(M)®u by a gauge
h, we have
T(y) = e MOONTE (4)eh(v(1)

for a path v : [0,1] - M. We fix a p € M and we denote its class in M/G by p. We denote with p its
induce group homomorphism
p: m(M/G,p)— G.

We have already defined a formula for the holonomy representation (see Proposition 2.4.7).

Lemma 2.4.12. Fiz a p € M. The monodromy representation
ok . m (M/G,p) = U
of d— k*C'q is coniugate to the monodromy representation of d — r,.Cq via e™®).

Proof. Let v be a loop based at p and let ¢, be its unique lift starting at p. We denote with ©¢ the
holonomy representation of d — Cy. Then

©'o(7) = T (c,)e PP h(®)
— e~ Mer () Cy)eh(CW(1))e_h(p(’Y)P)eh(p)
= G*h(p)T(Cv)eh(p)
— e_h(p)Qo(’y)eh(p),
O

Corollary 2.4.13. Let A, B be as above. Assume that A is a 1-model and that (C,6*) is the homolog-
ical pair associated to the given vector space decomposition. The holonomy representation of d — r,.Cy
corresponds to the Malcev completion of 1 (M/G,p).

Proof. If A is a 1-model, the map K* is an isomorphism. The result follows. O

2.4.3 Some observations about the formality of = (M/G)

Let u be a pronilpotent Lie algebra concentrated in degree zero. We denote its associated graded
(with respect to the filtration I*) by gr(u) = ®;>0l" I'™! and the completed associated graded by
gt (u) = @0l I't1. Notice that they are both filtered by the grading.
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Definition 2.4.14 ([11]). The Lie algebra u is said to be formal if there is an isomorphism of filtered
Lie algebra g — gr (g) whose associated graded is the identity. The group U = exp(u) is formal if so is
u. A group G is formal if so is its Malcev completion.

In particular, if there exists a positively graded Lie algebra t and an isomorphism of filtered Lie
algebra u — %, then u is formal and the map induced via its associated graded is an isomorhism of graded
Lie algebra gr (u) — t. Let M be a complex smooth manifold. Let MG be an action groupoid where
G is discrete that acts properly and discontinuously on M. Assume that the cohomology of M/G is
connected and of finite type. Let A C (Toty (Apr(MeG)),me) be a 1-model. We fix a Hodge type
decomposition on A via

A=W oMo DM.

Let (C,d*) be the associated homological pair with respect to the above decomposition. Let Ry C
L ((W_Hl]f) be as above. We consider L ((Wi[l})yF) equipped with the filtration I®. We set

L (Wi)) = (Pan (i) /2 cn(win)”).
We say that Ry is graded if
1oL ((W30)") € L((WiA])), ie. Ro is the completion of the Lie ideal R in L ((W[1])")
generated by §*IL ((Wﬁp])*), and
2. R=@;50L (WL1)") NR.

Proposition 2.4.15. Let p € M and let p € M/G be its class. Assume that Ry is graded, then 7 (M,p)
is formal.

Proof. By Corollary 2.4.13 we know that the holonomy representation induces an isomorphism between
the (completed) Malcev Lie algebra and u := L. ((Wi[l})*) /Ro. Since Ry is graded, by point 1. we can

consider u as the completion of I ((Wi[l])*) /R with respect to the induced filtration. Moreover

L ((Wim)*) IR=B._, (]Lj ((Wim)*) + R) /R,

and hence u is isomorphic as a filtered Lie algebra to the completion of a positively graded Lie algebra.
It follows that u is formal. Hence so is 7 (M/G, D). O
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Chapter 3

The universal KZB connection on
the punctured elliptic curve

We construct a family of 1-models for the differential graded algebra of smooth differential forms on
punctured elliptic curves. The family is parametrized by the holomorphic structure 7 in the complex
upper half plane and is a holomorphic C., version of the smooth models given in [9]. We apply the
theory developed in the previous section to build a flat connection d — c.- that happens to be equal to
the universal KZB connection on the punctured elliptic curve (see [11], [38] and [29]). A comparison
between KZB and KZ connection is contained in [29], by sending 7 to ico. We describe this comparison
in terms of pushforwards and pullbacks of Maurer-Cartan elements (see Section 3.3). In the last section
we present another holomorphic connection gauge equivalent to the KZB connection on the punctured
elliptic curve.

3.1 The complex punctured elliptic curve

Let 7 be a fixed element of the upper half plane H := {z € C : J(z) > 0}. Let Z 4+ 7Z be the lattice
spanned by 1, 7. Let £ be the coordinate on C. We define the action of Z? on C via translations by

(m,n)(§) =&+ m+7n.

In particular, the action is holomorphic. Moreover Z + 7Z is a normal crossing divisor of C and it is
preserved by the action of Z2. Hence the action groupoid C,Z? is a simplicial manifold equipped with a
simplicial normal crossing divisor (Z + 7Z), Z* (see Subsection 2.3.1). Since the action of Z? is free and
properly discontinuos we have

H* (Toty (Apr ((C—{Z +7Z}),Z%))) = H* (£*,C).

Let v : Z% — C be the group homomorphism defined by v(m,n) = n2mi. Then d¢ and v are closed
forms in Tot (ADR (((C —A{Z +7Z}), Z2)). They are of type (0,1) resp. (1,0) and they generate the
cohomology. We construct a 1-model for Toty (Apr ((C — {Z + 7Z}), Z?)).

We fix a family of holomorphic functions f() : C — {Z 4 7Z} — C indexed by i € N such that

n =) (€) (= 2mil)d
(31) O =1 e = [0, [ =Y IO

j=0 I

for all {,n € Z. We denote the total differential of Toty (Apr ((C — {Z + 7Z}), Z?)) by D. In particular
for an element a of bidegree (p, q) we have

D(a) = dga + (—1)Pda,

where J¢ is differential obtained by the alternating sum of the pullback of the cofaces maps of the action
groupoid.
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Lemma 3.1.1. Let f : C—{Z +1Z} — C be a family of holomorphic functions indexed by N that
satisfy (3.1). Then they are linearly independent.

Proof. Assume that there is a non trivial relation ), ; A f () = 0. Let p be the maximal integer of T
such that A, # 0. Notice that f®) : C—{Z + rZ} — C are elements of Totx (Apgr (C — {Z + 7Z), Z?))
of bidegree (0,0). Let V' be the complex vector space generated by {f(i)}ieN' Then each f*) defines a
map I f@ : 72 -V via

~ 0D (©)(~2rin)

§=0
Set x :=n, then >, ; \Oc f® can be seen as a polynomial p(z) in variable z and coefficients in V' of
the form
p(x) = Z hz?

where h® € V. In particular h? = \,f(O)(=27i)? = X\,(—27i)P. Since D ier Nilaf® = 0 we get that
p(z) = 0 for any « € N. This implies that A? = 0 and then A, = 0. O

For i € N, we set ¢ := f()d¢ then
¢\ € Toty (Apr ((C—{Z +72}), Z?))
are linearly indipendent elements of bidegree (0,1). Note that d¢™ = 0 since they are holomorphic

1-forms. We consider Toty (Apg ((C —{Z + 7Z}), Z*)) equipped with the unital Coo-structure mq
induced by Theorem 2.2.1.

Lemma 3.1.2. 1. D (=¢™) =31 mypa(y,...,7,0%7Y), for anyn,

2. ml-&—l(,y@ia (b(k)v ’Y®l+1_i) = (_1)l (i)ml-‘rl (¢(k)’ BEREE a’}/)}

3. Let B* C Toty (Apr ((C—{Z+1Z}), Z?)) be Coo-sub algebra generated by
()
L, {(b }ieN :

(me, B*) C (ma, Totn (Apr ((C—{Z+1Z}), Z7)))

Then

is a 1-model.

Proof. We use the same notation as in theorems (2.2.7) and (2.2.9). Since the elements m; 1 (7, ce Y gb(p*l))
are of bidegree (1,1) we have to prove the statement in the C-algebra

(mLY,NCt @ A%y ((C— {Z +7Z}), Z2)) .

Fix a (m,n) € Z%

1 IfL > 1,
mi41 (% e ’%ﬁb(p_l))l (m,n)
=iy (~dt @ amn),.. —dt @ y(m,n),t @ 607 4 (1= 1)@ ((m,n) - 9#70))
=mpll, (dt,....dt.t) @ (—y(m,n)) 6@ D —mll) (at,....dt,t) @ ((m,n)) - o*D
(3.2) - dte % pi:l HP=1=9) (iTQﬂin)i+l

i>1
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2. Ifl =1,
M (% ¢(p—1>) (m, n)
= my" (~dt@y(m.n),t@ 6" + (1= 0)® ((m.n)-677V))
=l (d1,1) @ (—(m,n)) 67D + mf (d1,1) © (~(m.m)) ((m,n) - 6
—mb(dt, ) @ (—v(m,n)) ((m,n) : ¢(p—1))

pP—1-19) (—27Tin)i+1
7!

p—l1
(3.3) =dt® | (1-B1)) + (—2min) ¢V

i>1
On the other hand we have
p i . \d
¢P=0) (—27in
(3.4) (D (—¢<P>))1 (m,n) =3 (dt) ® #
i>1

We prove that (3.2) 4+ (3.3) = (3.4) by comparing the coefficients. For p = 1,2 the two expressions agree.
For n > 2 (3.2) 4 (3.3) = (3.4) is equivalent to

i—1
1-B ZZBj 1 1

(-1l = (i) —ar

The first Bernoulli numbers B'; satisfy 372 Bj—,,’ = —'=. Since B; = B'j for j # 1 and By = 3 = —B/'y,
the condition above is equivalent to

t
(1—1_et>(ef—1)=et—1—t

This proves the first statement. The second statement follows from Proposition 2.2.4. We prove point 3.
Let i : B — Toty (Apgr ((C— {Z+ 7Z}), Z?)) be the inclusion. We have to show that the induced map
[i] in cohomology is an isomorphism between elements of degree 1 and an is injective for the elements
of degree 2. Assume that there is an element >, ; A\;¢(*) such that 3°,.; \; D¢ = 0, we assume that
0 ¢ I. Let p be the maximal integer of I such that A, # 0. Let V be the complex vector space generated
by {d)(i)}ieN‘ Then each ¢(9) defines a map Do) : Z? — V via

L b= () (—2min)d
(m,n) = (D) (m,m) = 3 20

|
=0 It

Set 2 = n, hence 3., \iD¢(® can be written as a polynomial p(z) with coefficients in V of the forms

p(x) = Z hex®

i€l

where h® € V. In particular the monomial that multiplies ¢*~1 is z, i.e we get

At =X,V 4 h
where h lies in the subvector space of V generated by ¢, ..., ¢®=2). Since Yicr X Do) = 0 we get
p(z) = 0 for any z € N. By Lemma 3.1.1 implies that h! = 0 and hence A\, = 0. This shows that the

vector space of closed forms in B! is generated by ¢" and +.
The second condition is equivalent to show that H?(B) vanishes. Suppose that there is a closed element

= i/\i,jmi (% o ,%d)(”) :
i
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for ¢ > 1 and j > 0. By part 1. we can assume that Az ; = 0. Moreover since m; (’y,...,’y,¢(o)) =0
for i > 2 we conclude that j > 0. We define fUUl := 37" \; ;m; (7,...,7,¢). Let p be the maximal
integer such that A;, # 0 for some ¢ and let [ be the maximal integer such that A;, # 0. The element
Dmy (v,...,7,8P) is of type (2,1), then for ((m,n), (m/,n’)) € Z* x Z? we have

Biii < b= (—9min)itit
(Dmy (v, ...y, ¢P)) ((m,n), (m',n')) = 0 _l 11)' Z (m,n) - $'» Z|( 2min')
Ti>1 :
B, <~ o) (,2m~(n+n/))i+171
=P i
B = ¢@®9) (=2min) Tt
i (=1 ; i!

Then Df defines a map Df : Z2 x Z2 — V via
((m,n), (m’,n")) = (Df) ((m,n)(m’,n)).
Now set © = n, y =n’, then Df can be written as a polynomial p(x,y) with coefficients in V of form
pla,y) =Y h*Pay".
The monomials that multiply ¢~ are

)\l,pBlfl (—27Ti)l
(1—1)!

where r(z,y) is a polynomial containing monomials of total degree smaller than {. We conclude that

(@' = (z+ )" +9") +r(z,y)
)‘lmBl—l(_Qm)l (p—1) 1,1-1 _ )‘l,pBl—l(_Qm)l (p—1) /
[ Ve T T I

where h,h/ € W. Since p(x,y) vanishes on Z? x Z? we conclude that h%® = 0 for any a,b. We get
relations

hl—l,l _

)\l7pBl_1(—27Ti)l (p—1) o )\lmBl_l(—Qﬂ'i)l
i—nr o7 =0 =

which implies \;, = 0. Hence the only closed form in B? is

AMa (77 ¢(0))

and the second cohomology group of (B, m;) vanishes. O

oV 4 h=0

The proof of Lemma 2.1.38, Lemma 2.1.35 and the proposition above imply the following.

Corollary 3.1.3. Let (B, m,) be as above. There exists a Hodge decomposition
(3.5) B=W*@&DMaeM
such that
1. Wt is generated by ¢(© and v, M is generated by & fori >0, and (D./\/l)0 =0,

2. W2 =0, M2 is generated by my (qﬁ(i), Yy ,’y) fori>0,1>2, and (D./\/l)2 is generated by D (qﬁ(i))
fori>1.

Notice that the model B is completely determined by the choiche of holomorphic functions f(
C—{Z + 7Z} — C that satisfy (3.1). The above facts are true for any 7 € H as well. Hence a consequence
of Lemma 3.1.2 and Corollary 3.1.3 we have the following.
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Corollary 3.1.4. For any T € H there exists a holomorphic model B for Totyx (Apr ((C — {Z + 7Z}), Z?))
equipped with a Hodge type decomposition.

We fix a 7 and a family of holomorphic functions f*) : C — {Z + 7Z} — C that satisfy (3.1). We
consider (B, ms) equipped with the Hodge type decomposition above. We calculate the degree zero
geometric connection of the action groupoid (C — {Z + 7Z}), Z* associated to the decomposition (3.5).
We apply Lemma 2.1.33 to the decomposition (3.5) and get chain maps f,¢g and a chain homotopy h.
Let p, = ZTepn(fl)G(T)PT be the p-kernel of Proposition 2.1.31. There is a Cuo-structure m}’ on W
given by

mMp ::fopnog@ma n>1

and a Cuo-quasi-isomorphism g, : W®" — W is given by
9n ::hopnog®n7 n>1.

The corresponding L., Maurer-Cartan element o € Conv ((B,m,), W, M) is given by

S—l ®n
O (W[l])®n(*>) wen 2, B,

Since H?(B, D) = 0, the Coo-structure m)¥ vanishes on W!.

Lemma 3.1.5. Let go be the above quasi-isomorphism. Let v;,,...,v; € {’y, ¢(0)} forl=1,... n.

1. gn (V1,...,0,) =0 if (v1,...,v,) is not of the following form: there exists exactly one j such that
v = #O) and vy =, for s # j.

2. gn (07,0, 7) = 0.

Proof. For each n > 2, the p-kernels are

TEPn
Since m; is Coo we have my(y,...,7) = 0 for [ > 1. Consider m;(w;,,...,w;) such that w; €
{’y,gf)(o),gﬁ(l), . } Assume that there exists exactly ji,...J, where [ > r > 1 such that w;, = o)
for i = 1,...,r for some k > 0. Since this expression depends only by m[.l] (see Proposition 2.2.4) we
have my(wi,, ..., w;,) = 0. We assume r = [, then our expression depends only by mEO], which vanishes if

[ > 2. For |l = 2 we get ma(wj,, w;,) which vanishes for dimensional reasons. Let T € P,, be an oriented
planar tree and consider the induced map Pr. Lemma 3.1.2 and the decomposition (3.5) imply

k
(36)  h(ma(y,0")) =h <m1 (69) = >0 misa (- ,v,eb(’“l))) = o®
=2

l

and
h<ml(777’77¢(k)7’7777)>:0 [ >2

for any k > 1. This proves point 1. The only binary tree T such that h o Pr o g®" (gb(o),'y, e ,'y) #0
is the one in Figure 3.1. Here we have my = 0 for & > 2 even. A direct calculation shows h o pr o

9% (00,7, 7) = 0. O

We consider W equipped with the basis —v, —¢(®) (see Remark 2.3.22). We consider (wt [1])* as
the vector space generated by the degree zero elements Xy, X1, where X7, and resp. Xy denote the
dual of —s5¢® and of —sy in W[1] respectively. Let m, 7, p be as in (2.5). Since W? = 0, we have
Ro = 0 and the fiber Lie algebra of the punctured elliptic curve is the free Lie algebra on two generators,
7(a) € Hom' (T(W4[1]), B) can be written as a formal power series

Co € BRL (X0, X1).
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Figure 3.1: Three with non-trivial induced map

Hence Cp is the degree zero geometric connection associated to the decomposition (3.5). Let L C

~

L (Xo, X1) be the complete vector subspace spanned by X and by all the Lie monomials P (see [40],
chapter 5) such that its associated monomial is

(3.7) Mon(P) = X% ® Xy ® X&"

for some s, > 0. In particular X, and the set of Lie monomials of the forms [[X7, Xo],...,Xo] form a
basis of L. Let Ad%, (X1) := X; and Ads (X4) == [Xo, Adl)’(_ol(Xl)} for p > 0. We conclude

Co = —7Xo = ) (=1)"¢ [[X1, Xo] ..., Xo]

p=>0

=—7Xo— > _ oW Ad% (X1)

p=>0

Theorem 3.1.6. Consider a family of holomorphic functions f& : C — {Z+71Z} — C indexed by
1 € N that satisfy (3.1). Let (B, ms) be the 1-model constructed in Lemma 3.1.2 and equipped with the
decomposition (W, M) as in (3.5). We consider W equipped with the basis —, ¢(%).

1. The degree zero geometric connection is given by

Co=—7Xo— > _¢¥ Ad% (X1)
p>0

2. Let (A,mq) be a 1-model equipped with an Hodge type decomposition (W', M). Let C'y be the
associated degree zero geometric connection. Let (B',ms) be the 1-model constructed in Lemma
3.1.2 and equipped with the decomposition (3.5). Let C'g be the associated degree zero geometric
connection. There exist a Lie algebra isomorphism

* - * T 1 *
K L(win)) > L ((wrin))
We denote by k*C'q the precomposition of C'y with K. Then r.k*C'y is gauge equivalent to r.Cy.

Proof. Point 1. is proved above. We first prove point 3. Since the second cohomology group of A and B
vanishes, we can use the second part of Corollary 2.3.16 and this conclude the proof. O

The above theorem tells us that the degree zero geometric connection on the punctured torus is
independent by the choice of the model and by the choiche of the Hodge type decomposition (modulo
gauge equivalence and automorphisms of the fiber Lie algebra). Notice that the same argument works
for punctured Riemann surfaces as well.
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Remark 3.1.7. Note that all the statements above are true even by assuming that f9(z) is a Z2-invariant
holomorphic function (an elliptic function with pole in 0). In this case we can construct a new model in
the same spirit as above. We construct ¢(*) by

¢ = ma (1, f°(2)), >0

This gives a family of 1-forms ¢() indexed by i € N that satisfies the relation (3.4). Hence (é(i),ﬂy)
generates a new holomorphic model.

3.2 A smooth gauge equivalent connection

Consider a family of holomorphic functions f*) : C —{Z + 7Z} — C indexed by i € N that satisfy (3.1).
Let (B, ms) be the 1-model constructed in Lemma 3.1.2 and equipped with the decomposition (3.5) and
let C' be its associated Maurer-Cartan element. By Theorem 2.3.21, we know that

r*Co =Y ¢™ Ad% (X1)

p2>0

is a flat connection form on C — {Z + 7Z} on the trivial bundle with fiber L (X0, X1), where the Lie
algebra is considered to be equipped with the adjoint action.

T (X, X1) = End (L (X0, X)) .

We define the factor of automorphy F : Z? x C — {Z + 7Z} — via F((n,m), &) = exp(—2mimXy). We
denote by P the bundle Er = (C — {Z + 7Z}) x L (Xy, X1) /Z? where the Z? action is induced by F,
ie.

(n,m)(&,v) = (£ + n+ m7,exp(—2mimXo)v) .

The section of P satisfies:
(3.8) s(€+1) =s(8), s(E+11)=exp(—2milXp) - s(§)

where X{ - a:= Ad%, (a) for a € L (X0, X1). The conditions (3.1) implies that

(3.9) > P e+ DAL (X1) = > ¢P () Ad% (X1),
p=>0 p>0
(3.10) > P (E+Ir)AdR (X1) = exp(—2miXo)- Y oW (&) Ad% (X1)

p=>0 p>0
forl € Z.
Lemma 3.2.1. We consider L (Xo, X1) acting on itself via the adjoint action ad.

1. Thenr*Co € AL, ((C {(Z+72})® (Xo,Xl) defines a flat connection form on the trivial bundle
((C — {Z + TZ}) X ]L (Xo,Xl).

2.d—3 50 P®) Ad% (X1) is a holomorphic flat connection on the bundle P.
Proof. Tt follows from the construction. O

Notice that the factor of automorphy is holomorphic. The bundle P is holomorphically non-trivial on
the torus and trivial on the punctured torus. We conclude this section by introducing a smooth version
of our model. We denote by £ = s 4+ 77 the coordinates on the punctured elliptic curve. We define the
smooth differential forms w® € AL (£X) via

Zw(k) k. (exp (2mira)) qu(k) k

k>0 k>0
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where « is a formal variable. Let v := 27idr. It is easy see that the forms above satisfiy the following
relations:

D™ = dw® =y Aw*=D WO = g¢

Let B C (Apr(£)),D,N) be the differential graded algebra generated by 1, v and the w® for i > 0.
Notice that B depends by the choice of functions f*) : C —{Z 4 7Z} — C indexed by i € N that satisfy
(3.1).

Proposition 3.2.2. Let B C Apg (£X) as above.
1. B is a model for Apr (EX).
2. There exists a Hodge decomposition
(3.11) B=W®&DMoeM
such that
(a) W' is generated by w®) and v, M is generated by w® fori >0, and (DM)O =0,
(b) W2 =0, M" is generated by wDv fori>0,, and (D/\;l)l is generated by D (w(i)) fori>1.

Proof. The point 1 is proved in [9]. In [9], it is proved that w(®, w® ... v are linearly independent
and that w@v, WMy, .. are linearly independent. This proves the second point. O

We consider (Wl[l])* as the vector space generated by the degree zero elements Xy, X1, where X1,

and resp. X denote the dual of —sw(® and resp. of sv. By using the same calculation of the previous
section, we have the following.

Proposition 3.2.3. Consider a family of holomorphic functions f@ . C—{Z+1Z} — C indexed by
i € N that satisfy (3.1) and let B equipped with the decomposition (3.11). The degree zero geometric
connection s given by

Co=vXo— Y w® Ad% (X))

p=>0

In particular, d — Cy is a smooth flat connection on the trivial bundle £X x L (XO,Xl)

Proposition 3.2.4. Consider a family of holomorphic functions f@ . C—{Z + 72} — C indexed byi €
N that satisfy (3.1) and let B and B as above equipped with their aforementioned Hodge decompositions.
The two connection forms r.Cy and Cy are gauge equivalent via

27Ti’l“X0 S TOtN (ADR (((C — {Z + TZ}). Z2)> @H/L (Xo,Xl) .

Proof. The results follows by a direct calculation. O

3.3 Kronecker function and KZ connection

We show that the KZB connection can be constructed as degree zero geometric connection. In the second
part of this section we study some results of Section 12 of [29], where a link between universal KZ and
KZB connection is given by considering the restriction of the connection to the first order Tate curve.
We give an interpretation of such a result in terms of C-algebras over Q(2mi).

Let 0 (¢,7) denote the “two thirds of the Jacobi triple formula” (see Definition 1.16). Let 6 (0,7) :=
8%9 (0, 7). The Kronecker function is defined as

0(0,7)/ 0 (& +n,7)

FEnm = =g vomn

Proposition 3.3.1.
i) F is a meromorphic function with simple pole at (§,7m,7) where £ € Z+ 7Z andn € Z + 7Z,
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it) It satisfies the quasi-periodicity

(3.12) FE+Lnr)=F(En7), FE+7,m,7)=exp(=2min)F(n,7).
Proof. See [57], Theorem 3. O

In [57], there is a Fourier expansion for F'

(3.13) F (&, n,7) = i (coth(mi€) + coth(mwin)) + 4w Z Zsm (27T (%f + dn)) q"

n=1

We fix a 7 € H and consider F restricted at 7. We consider 7 as a formal variable and we define the
function g(9, i > 0 as the coefficients of

F(&nm)=>_g"n"

>0

In particular the functions ¢(*) are meromorphic. Formula (3.13) give a way to describe the functions
¢ explicitly. First notice that

1 t 1 ad BQm me1

m= O

Hence

. . . . 277“7 - B2m . \2
h h = - 2 m
min (coth(mi&) 4 coth(win)) = min + e ] + mgzo (Qm)!( win)™,

by the de Moivre formula

4 i Zsin (271' (%5 + dn)) q"

n=1 d|n
o0 [e's) . l o0
_ . 2mi € (27T2d77) __—2mil¢ 27rzdr] n
~oam Y3 (e (Ol e (55 C2RAL) )
n=1 d|n 1=0 1=0
Hence
g?© =1,
9(1)(5):71'1'—1- o2 15 27”22 e2miGE o 2md§)q
n=1 nl|d
) N rin Conin (2mi)' B,
gV (¢ Zldl (62 18 4 (—1)le? de) q"+T, for I > 1.
n=1 \ n|d

In particular, for any 7, ¢(°) = 1 and ¢(!) is a meromorphic function with simple poles at & € Z+ 77 and
g for i > 1 is holomorphic (see [57]). The quasi-periodicity of F' implies that the functions { g(i)}ieN
satisfies (3.1). Recall that (see Definition 1.3.5) that KZB connection is a flat connection form

dpr — WKZB,n

defined on P". We analyze the case n = 1 (compare with [38]). In particular wxzp 1 is a flat connection
form on £X on the bundle P =P (see (3.8))

WKZB,1 = — Z g(p) (§)d§ Adg(o (Xl)

p=>0
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Theorem 3.3.2. We fixr a 7 € H and we consider the functions {g(i)}ieN. Let (B, ms) be the 1-model
constructed in Lemma 3.1.2 and equipped with the decomposition (W, M) as in (3.5). We consider W
equipped with the basis —y and —d§.

1. (B,ms) C Toty (Apr (log ((Z + 7Z), Z%)))
2. Let Cy be the associated degree zero geometric connection, we have

*
7"Co = WKk zB,1-

Proof. Let (B, m,) be the 1-model constructed in Lemma 3.1.2 and equipped with the decomposition
(3.5). We prove 1. The forms ¢ (£)d¢ are holomorphic for i # 1 and g™ (£)d¢ is a form with a
logarithmic singularity. By (2.19) we have the statement. The proof of point 2 follows by Theorem
3.1.6. 0

For different 7 we get different connection forms. We denote the universal KZB-connection on the
punctured elliptic curve £ by Wi, p . As noticed by Hain in [29], lim, 0 wk 7 ; 18 equal to wi 71
modulo a certain endomorphism @* of complete Lie algebra. We use the argument of Subsection (2.1.5)
to show that Q* is induced by a strict C'so-morphism p,.

We denote by z the coordinate on C*. We define the action of Z on C* via

(3.14) n-z=q"z.
There is a morphism he : CoZ? — C:Z of action groupoids
ho(é) = e2ﬂi£v hy (ga (ma TL)) = (627Ti£7 n)

which induces an isomorphism on the quotient. We have {qZ} C C* and the maps above give a morphism
((C. — {Z2 + TZQ}). 72 — ((C* — {qZ}). Z between action groupoids that induce an isomorphism on the
punctured elliptic curve. The quasi-periodicity of F' allows us to rewrite the functions as functions on
((C* — {qZ}). Then

g0 =1,

g(l)(z):ﬂ_l_;'_izl (2771)532()[(2% —Z_Tﬂ) q"a

y—
n=1 n|d

0 @2ri) [ L n R R N M
(3.15) g\ (z) =— I Z Zld (zd +(—1)'z ) q" | + I for I > 1.
’ n=1 \ n|d ’

Lemma 3.3.3. The functions g for1 > 0 can be written as power series on q where the coefficients are
rational function on C with poles on 0,1 of the form z—;, where p; are polynomials over the field Q(2mi)
fori=1,2.

Civen a subfield Q C k € C, let D C C* be a normal crossing divisor. We denote by Ratf(C", D)
the algebra of rational functions Z—; with poles along D such that pq, ps are polynomials over the field k.

We denote by Ratg (C™, D) the differential graded k-subalgebra of differential forms generated by forms
of type fdry, with f € Rat)(C", D). In particular Ratf(C", D) ® C C A% (C" — D).

We consider the differential graded Q(27i)-algebra Ratgy . (C, {0,1}) and we consider ¢ as a formal
variable of degree zero. The functions g()(z), i > 0, as defined in (3.15), are elements of Rat(%(zm) (C,{0,1})((q))
and we denote it by g(Y. We have a differential graded algebra of formal Laurent series

(. A Ratdans) (C.0,1}) (@)

We extend the action of Z defined in (3.14) extend to a map

pc : (dv A, Rat([‘;)g(Qﬂi) ((Ca {Oa 1}) ((Q))> - HR‘a’t(.@(Qﬂi) ((Ca {07 1}) ((Q)) :
Z
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Since [T, Rty ore)(C. {0, 13) (2)) = Map (2, Ratf o, (€, {0,1}) ((4))) we define o via

p(q) (n):=q, p°(d2)(n):=q"dz, p° <i> (n) := q7
and Z ( |
C 1 n) = ?io q"z) n>0
’ (z—l)( ): { < (L) <.
Let

i+ Ratfan (C.{0,1}) ((¢) = [ ] Ratri)(C, {0, 1}) ((a))
Z

be the map sending a — (0, a). Hence (p©, i) are the two cofaces map of a 1-truncated cosimplicial unital
differential graded algebra. The conerve gives rise to a cosimplicial unital differential commutative graded
algebra A®®, where

A9 = T] Ratdansy (€. 0, 13) (@) = Map (2, Ratars) (€, {0,1) (0)))
ZI,

The differential graded Q(274)-module Tot v (A®>*) carries a unital Cyo-structure me (see Theorem 2.2.2).
We set D :=m;. Let v € AM? be the group homomorphism v : (Z,+) — (C, +) defined by y(n) := 2min.

We define J
. ~dz
9(2) — g(l)i

for any ¢ > 0. Hence Q(O), 7 are again closed elements in Toty (A**). Let B C Toty (A®**®) be the sub
C-algebra generated by
Ly e}
1 9 €N

Since all the calculations done for B in the previous section are independent from the choice of 7 € H,
we get that mutatis mutandis some of the results of Lemma 3.1.2 work in formal power series context.

In particular there is a strict C,o-map -
f? . B®C— B.

Proposition 3.3.4. Let (me, B) C (me, Toty (A**)) be as above.
1. D (_Q(H)) = Z?:l mlJrl(lv s 717?([)—0)’ for any n.
2. (me,B) C (me, Totx (A**)) is a rational sub Cu-algebra over Q(2mi) where

H'(B, D) = (Q(2ri))*, and H*(B, D) = 0.

3. We have

B! C Ratlony (C.{0.1) [, B € Map ((Z, Rathary(C. {0.1}) [lg))

4. There exists a Q(2mi)-vector space decomposition
(3.16) B=W*&DMaeM
which is a Hodge decomposition where
(a) W1 is generated by —Q(O) and —, M is generated by Q(i) fori>0, and (D./\/l)1 =0,
(b) and W? =0, M? is generated by m (l’ e @”) fori>0,1>2, and (D./\/l)1 is generated
by D (é(i)) fori>1.

We denote the homological pair associated to the decomposition above by (Cgy, (5W)*).
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5. We define (Wl[l])* as the vector space generated by Yy, Yr, where Y1, and Yy resp. denote the

dual of —SQ(O) and of —sv respectively. The degree zero connection associated to the decomposition
(3.16) is

(Ceu)y = —Yo — ZQ(I)) Ady, (V1)
p=>0

Let F be denote the Kronecker function considered as a formal power series in q. We have

r (Cen)y = — Y 6% Ady, (Y1) = —ady, F (&, ady,) (Y1)dé
p=>0

In particular (fB)* ™ (CEu)y = WKzB,1-

Proof. Since the functions defined in (3.15) satisfy (3.1), the proof of Lemma 3.1.2 carries over the
situation above. This proves 1, 2 and 4. The statement 3 and 5 follow from (3.15) and (3.13) respectively.
O

We consider Ratdyo.)(C, {0,1}) ((g)) as the trivial cosimplicial module. Notice that there is a mor-
phism of cosimplicial differential graded modules

i+ A% = Ratgan) (C,{0,1}) ()

given as follows: for f € Ab™, i(f) := f(0,...,0) € Ratgg,;)(C,{0,1})((¢g)). It induces a strict
morphism of C-algebras

io : TOtN (A.’.) — Rat((.}(%ri) ((C’ {0’ 1}) ((q))

In particular, i(B) is the commutative differential graded sub algebra of Ratgo,;)(C, {0, 1}) [[g]] generated

by
L {Q(i)}ieN '

Note that i(B™) = 0 for n > 2. Let I, be the completion of the augmentation ideal of Ratgy 2. (C, {0, 1}) [[4]],
let 7 Ratdyaq (C, {0,1}) [[q]] = Ratgyar;)(C, {0,1}) be the quotient with respect to I,.

Lemma 3.3.5. The map
pli=m"0i 1 B — Ratd.(C,{0,1})
is a strict Cno-algebra morphism such that p'(vy) =0 and

dz

2miz’

PoWy=2 4 4T 0=

(2mi)' "' B, dz
2z z2(z—1)’ — il

p/(¢(0)) ~ forl>1.

We consider the complex variety C — {0, 1}. The cohomology is generated by the holomorphic forms
dz dz

)

z z—1

Let A be the unital differential graded algebra over Q(27i) generated by 1, %, del. The inclusion
A < H* (A) give a quasi-isomorphism, where the latter is considered as a differential graded algebra
with vanishing differential. Hence A is a formal differential graded algebra. In particular, there is a
canonical Hodge space decomposition for A given by (4,0), where A! is considered to equipped with the

dz _dz
z 7 z—1"

basis

The homological pair (Ck z, (5W/) ) associated to the decomposition above is

dz d
Cxz = "Zy+ -2
z z—1

Zo, W' =0

where Z := (s (dzz))* and 77 := (s (;Z)) . The Maurer-Cartan element C'xz correspond to the strict

Cso-isomorphism g&% : A — W', In particular there is a differential graded algebra map

A A®C — Az,
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such that ( f A) ., Ckz = wkz1, where Az is the complex differential graded algebra defined in Section
1.3.1. We apply the argument of Subsection 2.1.5. We have a diagram of C,-algebras

B— " 4

g.T Jf.K z

(W', mW) (W/o

w'’

7))

We define ¢ := X% o p’ 0 go, where g, is the Coo-morphism that corresponds to the Maurer-Cartan
element Cgy; of Proposition 3.3.4. We get the following diagram (Lo, — ALG)p

Conv ((W mYV) , (B,m?)) A Conv ((VV, ml’v) , (A,m?)) e Conv ((W’,O) , (A,mf‘)) .

Since A is formal, the discussion done in Subsection 2.1.5 implies that (p’)*(Cgy;) = ¢«(Ckz). Consider
the differential graded coalgebra morphsim @ : T°¢ (W'[1]) — T (W[1]) that correspond to g,. Consider
the dual Q* restricted to the degree-zero elements. We are working with C,-algebras, then we can apply
Corollary 2.1.22. This shows that Q* is a complete morphism of Q(27i)-Lie algebras

Q" : L(W'[1)) —» L (W)

which is an inclusion since both of the Lie algebras are free. On the other hand

W) (Con) = i+ (5 + ) o =30 G B g

2miz 2z
I>1

dz Y1 dz dz By dz Y;
- en (L0 iV il Ril
z 2mi (+2z z— 1) [ o9 } +Z 2 darivy <27ri>

dz I 1 Bidz , Y1
=— 2miYy, — | — Y =L AdL L, (=2
{m 0 m’] 2o e \ o

=¢.(Ckz) = (1d®Q") Ck z.
Hence Q* is given by

> !
1 dZ 1 Y] . Yl
Zor= =) T Aoy, (27r> L [2””0’ %}
=0

which is the map found by Hain in [29] (see Section 18).

Proposition 3.3.6. 1. The map p induces a Lie algebra morphism Q* : E(W’[l]) - L (W)
which induces a differential graded Lie algebra map

= (Id2Q*) : (A)®L(W'[1]) — AL (W'1])
for any differential graded algebra A’.
2. Let 7 € H we denote the universal KZB-connection with Cgy . We have

Tgm Wizp1 = (1d®Q)wkz1

Proof. Point 1. is proved above. The second part follows from

. *
hm WKZB 1= hm (fB) CEll
T—100 T—>100

= (f5)" v .Cru
= (fB)* ¢:Ckz
= (f*) .Ckz
= gxWKZ1-

where the third equality is a consequence of lim,_, ;00 ¢ = 0. O
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3.4 A rational Maurer-Cartan element

Let 7 be a fixed element of H := {z € C : $(z) > 0}. We have considered the punctured elliptic £*
curve as the quotient (C — {Z + 7Z}) /Z?. Equivalently it can be written as the solution set El g of

v =x(x—1)(z —N\)

on P? minus the point at infinity. We set

1 T 1+7
e1 =g 5,7’ ,egzzp(§,7),and63::p 5 T

. . x
The isomorphism between €T7alg

_ p(faT) — €1 _ @/(577—) —

and £ is given by
x

where j is the elliptic j-function. The two regular algebraic differential forms

dv - adu
vy
are well-defined and they generate the cohomology of Séalg. Their pullback gives two holomorphic
1-forms ) )
Aew—ex)hag, Z2ETI =21y
(e2 —e€1)2

We denote by A = C ® Cd¢ @ Cp(&, 7)d€ the unital differential graded sub algebra generated by d¢ and
p(&,7)dE. We equipped this differential graded algebra with the obvious Hodge decomposition (W', 0),

where W’ = A. We consider W'' equipped with the basis 2(eq — 61)%df, %df. Let L(W'[1])
be the free Lie algebra with degree zero generator 77 and 75. The degree zero geometric connection

associated to A is given by

C9 = 2(es — e1)2dETy + Wdfﬂ € AQL(W'L[1))
€2 —€1)2

We denote the Weierstrass zeta function by ¢ (¢, 7). It satisfies

0
87£< (5,7') = _@(577—%
Cernn = centam m=c(5r).

C(§+T,T) = C(fa7)+2n27 772:4(777—)7

NN

We have

(2mT — 21p)

D (C (ga T) - 27715) =P (57 T) d{ — 2771d$ + 7y o

=p (& 7)d§ —2mds +

since 27 — 212 = 2mi. Let (B, m,) be the 1-model constructed in Lemma 3.1.2 and equipped with the
decomposition (W, M) as in (3.5). We consider W equipped with the basis —y and —d¢. Since

A,B C Toty (Apr (C—{Z+1Z}),Z%),

we have
[d¢] = 2(62_16& {2(62 - 61)%d§}
_ —(e2 —e))? [2p(£,7) — 24 2m — e 1
bl = 2 [ p(eg—el)% ] 2(67;—61)% [2(62761) ]

82



in H' (Toty (Apr (C—{Z+7Z}),7?), D). Consider the Lie algebra morphism K7 : L ((Wﬂ[l])*) —
L (W1[1])*) induced by

1 2nm —e e —e 3
Yo + m 11Y1’ T1'—>(2 1)

TO = — 1
2(627(’31)§ 2(62 761)5 2

Notice that Cg composed with K* becomes equal to

deYy + (2m — p (€,7)dE) Y1 € Abp (C— {Z + 72}) L (WL[1)*).

By Corollary 2.3.16 we have the following.

Proposition 3.4.1. There exists an isomorphism of Lie algebras K* = K} + Y .-, K} such that d —
K*C’g =d—d&Yy— (2m —p (&, 7)dE) Y1 — Y o0, K;‘Cg is gauge equivalent to d — wkzp 1.
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Chapter 4

The universal KZB connection on
the configuration space of points of
the punctured elliptic curve

4.1 A connection on the configuration spaces of the punctured
torus

For a topological space X we define its configuration spaces as
Conf, (X) = {(z1,...,2,) € X" 1 x; # x; for i # j}

In [9] it is constructed a differential graded algebra A, which is a model for the differential graded
algebra of complex smooth differential forms on Conf,, (£), moreover such a model can be constructed
for any 7 € H and it gives a family of differential graded algebra parametrized by 7 € H. In this
chapter we construct a l-extension B, for A, equipped with a compatible Hodge type decomposition
and we calculate its degree zero geometric connection Cy (see 2.3.4). We show that r.Cy corresponds
to family of smooth connections (parametrized by [0,1]) gauge equivalent to the KZB connection (see
Definition 1.3.5). In the last subsection we investigate the relation between the KZB connection and
the KZ connection. In particular we construct a Lie algebra morphism between the fibers of the two
connections and we give an n-dimensional version of Proposition 3.3.6.

4.1.1 Kronecker function
Let 7 be a fixed element of the upper complex plane H. Let Z + 7Z be the lattice spanned by 1, 7.
Let (&1,...&,) be the coordinates on C™. We define & := 0 and for ¢« = 1,...,n we define r;, s; via
& = s; +71r;. We define D C C" as

D:={(&,...&) : & — & € Z+ 7Z for some distinct 4,5 =0,...n}
We define a Z?"-action on C™ via translation, i.e.

((lh,m1) .oy (Lpymp)) (&1, -2 &) = (G + i +mar, .. &y + 1y + myT)
Notice that D is preserved by the action of Z2". There is a canonical isomorphism
(C*—D) /(Z*") = Conf, (£))

since the action is free and properly discontinuous. We denote the action groupoid by

(Cn - D)o (ZQn) )
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it is a simplicial manifold equipped with a simplicial normal crossing divisor (see Section 2.3). Its de
Rham complex A}, 5((C™ — D), (Z*")) is a cosimplicial commutative (non-negatively graded) differential
graded algebra. By the simplicial de Rham theorem and the discussion above we have

H* (Toty (Apr (C* — D), (Z*"))) = H* ((C"* - D)/ (z*"),C) = H* (Conf, (£)),C).

The normalized total complex of a cosimplicial commutative algebras carries a natural C's-structure m,
given by Theorem 2.2.6 .

Proposition 4.1.1. Let F(§,n,7) be the Kronecher function (see Definition 1.5.4), where n is a formal
variable, F(&,m,T) satisfies the Fay’s identity, i.e.

F(&,m,7)F(&,m2,7) = F (§&,m +n2,7) F (& — &2,m2,7)
(41) +F(€2a7]1+7]277)F(£1752377177_)'

Proof. Tt follows from standard properties of theta series. O

We define the 1-forms gbz(-? fork>01t,75=0,1,...,n as follows. Let o be a formal variable, then

Z d)g?ak =aF (& — &, o, 1)d(& — &)

k>0

Thanks to the Fourier expansion 3.13

o\ = de; — de;,

1 . 2m i —2mi % (& —¢; n
gbl(,’j) = T +m 27TZ ZZd( 2 d(fl gj - 2 d(& EJ))q d(é-l_é.j)u

n=1 n|d

I+1 oo
W _ (27” 1 (2wt (6i—;) 1 —omin(ei—e)) | o B ¢
bij=— ;1 §|dd (e d PV (=1)e d g ) q +2m' d(&—¢5), fori>1.

ie. gzbgl; are holomorphic 1-forms for [ # 1 and for [ = 1 the are meromorphic with a pole of order
1 along the hyperplane & = ;. Let Q(1) be the differential graded algebra of polynomials forms on
the 1 dimensional simplex with coordinate 0 < u < 1. We define a parametrized 1-form €, (§, o) :=
exp(2miura)F(&, o, 7)d§ on C — {Z + Z7}. For 0 <i < j < n, we define the w(u)gkj) €ALL(C"—-D)®
Q1) as

(4.2) Qu (& —&oa) =D wu)F a1,

k>0
Notice that they are smooth for any 0 < w < 1 and they are holomorphic for v = 0, in particular
w(O)(Z) = (255 J) for any i, j distinct. Thanks to the discussion above we get that they are u-valued smooth
forms on C™ with logarithmic singularities along D. The quasi-periodicity of F' implies that the pullback
of the action of Z2" is

k

2 -1l =)
(4.3) w@) ) €+ 1+t by Tma) = Y w(w) ) miu p),( i)
p=0 '
The Fay identity gives the following quadratic relations between the w(u) Ek;)
Qu (& - fl,OZ) A Qu (gj - Elaﬂ) + Qu (gz - fmﬂ) A Qu (gz - flaO‘ + ﬂ)

(44) —|—Qu(§j—fl,a—kﬂ)/\Qu({i—Ej,oz):O.

For distinct indices we have

a b 1 a+ b — 1 —m b—1—
w(u)” Yw(u );’-71 + w(u)(a) ( )+ Z < a1 >w(u)§T)w(u)§aI+ ™

m=0
“fa+b-—1—k atb—1—k 2
+ Z( b1 )w<u>§l+ Jw(w)) =0
k=0
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The function F(&, o, 7) satisfies F(§, «,7) = —F(—&, —a, 7). This implies

k k
(45) w(u){) + (~1)fw) = 0.
On the other hand we have

0 0 0
(4.6) w(u)) = w(u)ly —ww).

For i =0,...n we define the group homomorphism
Y(w)i © 22" = (ApR (C" = D) @ Q°(1),+)

via y(u)o := 0 and for j # 0 via y(u); ((l1,m1) ..., (ln,my)) = 2mim; ® (1 — u). We define y(u); ; :=
Y(u); —y(u)j. For i =0,...,n we define v(u); € AL, (C" — D) ® Q°(1) via v(u)o := 0 and v(u); :=
2midr; @ w for i # 0. We set v(u);; := v(u); — v(u);. Finally, for ¢ = 0,...,n we define f(u); €
A% R (C" —D)®Q(1) via B(u)o := 0 and B(u); := 2mir; ® du for i # 0. We set 8(u); ; :== B(u); — B(u);.
We denote by d the differential of Apg (C" — D) ® Q°(1).

Lemma 4.1.2. We have the following relations: d (v(u);; + 5(u); ;) = dw(u)z(?]) =0for0<i<j<n.
For k > 0 we have " (1)
dw(u)i,j = (r(u)i; + B(U)M)w(u)” .

Proof. 1t follows by d€2,, (& — &;, @) = (v(u); jo + B(u); jo) Ly (& — &5, ). O

For a module A over a ring k and a group G, we denote by Map (G, A) the k module of maps from
G to A. An action of G on A is a morphism of module p¢ : A — Map (G, A) such that p°(a)(e) = a
for any a where e is the identity, and p°(a)(gh) = p°(p°(a)(g)) (h), for any g,h € G and nay a. The
tensor product of two actions of G on modules A and B is naturally an action of G on A @ B. We
call the trivial action the action given by p°(a)(g) = a for any g € G. The action of Z*"* on C" — D
induces an action on Apg (C™ — D) We consider the differential graded algebra Apr (C™ — D). We
put the trivial Z?"-action on Q(1). We denote the resulting action by p¢ : Apgr (C" — D) @ Q1) —
Map (Z?", Apr (C" — D) ® Q(1)).

Lemma 4.1.3. Let g = ((ly,m1) ..., (ln,my)), 9 = ('1,m'1) ..., ('n,m'y)) € Z*". For0<i<j<
n we have

P (v(1)ij(g))(9) = v(w)ij(g), p°(w(u)ij) (9) = v(u)iy,
p¢ (B(w)iz) (9) = —dy(w)ij(g9) + B(u)i; and

k p
o (00 ) = St » L

Moreover the action preserves the differential and the wedge product, i.e. p°(da)(g) = d(p°(a)(g)),
p°(ab)(g) = (p°(a)(9)) (p°(b)(9)) for any a,b € Apr (C" — D) @ (1) and g € Z°".

Proof. The first two and the last identities are immediate. The third one follows from the shifting
property of F. O

4.1.2 The l-extension B,

We define the C.-algebras A,,, B,,, A’,, and B’,,. They are rational C.-algebras, but we consider them
as Cwo-algebras over C. In [9], a model A,, for the configuration space of points of the punctured elliptic
curve is constructed. We extend the ideas of [9] for C.-algebras.

Definition 4.1.4. Let A, be the complex unital commutative graded algebra generated by the degree
1 symbols w(1){", v(1);, for k> 04,7 = 0,1,...,n modulo the relations (4.4), (4.5), (4.6). We define a

differential d via dw(l)g?j) =dv(1); =0 and
k k—
dw(1){2) = (v(1); = (1)) w()

for k& > 0.
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Notice that the elements w(l)z(-’kj), v(1);, for k> 04,5 =0,1,...,n denote elements in Apg (C" — D)

as well (see previous section). There is an obvious map ¢! : A, — Apg (C" — D) defined by

e (w)E)) =@, w6 @) = v,
for any 1, 7, k.
Theorem 4.1.5 ([9]). The map ¢! : A, — Apgr (C"* — D) is an inclusion and a quasi-isomorphism.
We define a parametrized version of A,,.
Definition 4.1.6. Let A’,, be the complex unital commutative graded algebra generates by

1. the degree 0 symbol 4(u) and,

2. the degree 1 symbols w(u)ikj), v(u);, B(u); for k >04,7=0,1,...,n

modulo the relations (4.4), (4.5), (4.6) and such that
Bw)iB(u); =0, v(u)o = pB(u) =0

We denote S(u);; = B(u); — f(u); and v(u);; = v(u); — v(u);. We define a differential d via the
relations of Lemma 4.1.2. This makes A’,, a differential graded commutative algebra.

The notation of the generators is justified by the following fact.

Proposition 4.1.7. The differential graded algebra map ¥ : A’,, — Apr(C" —D) ® Q(1) sending

(k)

w(u); 7 v(u)i; and B(u);; to the 1-forms represented by these symbols and Y(u) to 2mi @ (1 — u) s

imjective.

Proof. We use some results of Section 4. of [9]. We consider the obvious map of commutative differential
graded algebra ¥ : A’,, —» Apg (C" — D) ® Q(1). In particular [9, Lemma 15] works as well and the
same argument of [9, Corollary 16] implies that ¥ is injective. O

Let A’,, as above. For i = 0,...n we define the group homomorphism ~(u); : Z?" — A, via
v(u)o := 0 and for j # 0 via y(u); ((ll,ml) o (L, my)) == m;(u). We define y(u); ; = vy(u); —v(u),.

Lemma 4.1.8. We define a map p¢ : A’,, — Map (ZQ",A’n) via the relations of Lemma 4.1.3, i.e
P (Y(w))(g) :=A(w), p°(v(u)ij) (9) :==v(w)iz P (Bw)is) (9) = —d(v(w)i;(9)) + Bu)i;

and

o (w®) () = 3w » C1 s

p=0 P!

1. p¢is a (Z*™)-action.
2. We have dp®(a)(g) = p°(da)(g) and p°(ab)(g) = p°(a)(g)p°(b)(g) for any a,b € A',.
3. W respects the Z>"-action.
Proof. The proof is a direct verification. O

The (co)nerve of the action defines a cosimplicial commutative differential graded algebra, we denote
it by A**. Concretely AP® is the differential graded algebra Map ((ZQ")p ,A n) The conormalization
N(A)** is a bidifferential bigraded module where the second differential dz2» is induced by the action.
By Theorem 2.2.6, the differential graded module Toty(A) carries a natural Cuo-structure m’y. We
define m,, := (=1)"m’,,. It is a C-structure on Toty(A).

Definition 4.1.9. We denote by (B’,,, m,) the rational C-subalgebra of Toty(A) generated by

k
'E’j)7 a(u)ij =y(u)ij —v(u)i; — Bu)iy,

w(u)

fork>0,4,7=0,1,...,n
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Proposition 4.1.10. Consider the differential graded algebra A,. There is a strict Coo-morphism
p' : B',, = A, defined via

k k
(4.7) P (w@fl)) =wl, pat)iy) = vy

forany0<i<j<nandk > 0.

Proof. We construct p' in a functorial way. First we consider the map q : A’, — A,, defined via
k
q (w(”)g,j) =w), pl(viy) =viy, a(Biy) =0

and p*(Y(u)) = 0 for any 0 < i < j < nand k > 0. Then ¢ can be extended to a differential graded algebra
map. Now consider A,, equipped with the trivial Z?" action. The map q is Z>" equivariant and it can be
extended to a map between differential graded cosimplicial algebras ¢ : Map (ZQ", A’ n) — Map (ZQ", An).
Then ¢ induces a map of C,-algebras

(Toty (2%, A',) ,m/s) — (Totn (Z°", Ay,) ,m’s)

Moreover this map is strict. The normalized total complex of Map (ZQ”, An) is A,, and its Cyo-structure
corresponds to the ordinary differential graded algebra structure of A,. In conclusion we have a strict
Coo-map

q: (TotN (Z2"7A’n) ,m.) = (An,d,A)

Then we set p* := q|p/, - O
Proposition 4.1.11. Let (B, me) as above.

1. The restriction of ma on A’,, coincides with the wedge product.

2. Let xq,...,21 € {w(u)z(kj), a(u);

kzO,i,j:O,l,...,n}.

a) If there exists at least one xs such that T, = w(u &) for some i, 4, k, we have
1,] ’]7 )
my(x1,...,2;) =0

forl>2 andl even.
(b) Letl > 2 odd. If there exist more than one xs such that x5 = w(u)gkj) for some 1,3, k, then

my(x1,...,2;) =0.
(c) Letl > 2 odd. If there exist exactly one x5 such that x5 = w(u)gkj) for some i,j,k, then

k k
e (@i @@ w@), ) = m (Wi V@i w(@),)

and my (a(u)il,jl,...,a(u)ilfl,jlfl,w(u)glk’)jo (g) € A'" is given by

5 w(u) P (< (u)i g (9))
p!

/Y(u)ihjl (g) B "7(“‘)%—1,]1—1 (g)
p=0

for g € Z*™. Moreover

0
me (@i oo @iy iy w(w)), ) = 0.

(k)

The myt1(w(u); /s Wiy jis- - o(u),;) are invariant under the permutation of the a(u)

(k)

2,97

l
(1 )mesa Sl

)
terms and myp1(@(w)iy g, - - (Wi, g, w(W); 7, (Wi gy - a(W)i,j,) is given by
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3. Letl> 2, thenmy (a(w)iy jy,- .- a(w)i,_y ji_yr ()i ;) (9) can is a form of degree 2 with (2,0)-part
equal 0, (1,1)-part equal to

l
- Z ( ) Jirs (9) - dy(u)s, j, (g) -+ y(w)i, 5, (9) € A

for g € Z* and (2,0)-part equal to
my (Y(Wiy gy Y (Wi ) (91, 92)
for g1, g2 € Z°".
4. D( ) ) S (=D ml+1(a(u)i,j,...7a(u)i,j,w(u)ngl)), for any n.

Proof. The first three points are a consequence of Theorems 2.2.9 and Theorem 2.2.7. The proof of the
last point follows from the proof of Lemma 3.1.2. O

By Proposition 4.1.7, for each k£ > 0, we have an inclusion
U, : Map ((Z%)’“ ,A’;) — Map ((ZQ")’“ (Apr (C" —D)® 9(1))') .
Since ¥ preserves the Z?"-action, the above map is simplicial and we get an inclusion
U, : Toty (A) = Toty (Apr ((C" = D), (Z°"))) @ Q(1).

We define H via the commutative diagram

TOtN *> TOtN ADR D). (Z2n))) ® Q(].)

In particular H is injective.

Theorem 4.1.12. Consider H : B',, — Toty (Apr ((C* — D), (Z*"))) @ Q(1). Let W C B',, be the
graded vector space generated by

1. 1 in degree zero,
2. w(u )500)} a(u)io fori=1,...,n in degree 1,
3.

and

)

(i < G.g)1 = ma(w(w)l), alu);) — ma(w(u)y, alu);) — me(w(w)', a(u);
(1) 0)
w) w(w)Y),

(i < 4, 7)2 = ma(w(w)!) w(w)\) — ma(w(w)!y, ww)\) — ma(w(w)
for1<i<j<mn and by

(i<j<k):= mg(w(u)g’l.),a(u)k) + mg(w(u)g}k),a(u)j) + mg(w(u),(cl), alu);)
)

—ma(w(u)f, a(u)e) = ma(w(u){}, alu)r) — ma(w(w)l), alu);)
—ma(w(u)fQ, a(u);) — ma(w(w), a(w)) — ma(w(u)), a(u):),
and
(i < j < k)2 i= ma(w(u)f) w(w) i) + ma(w(u)y, ww) () + ma(w(u)i), wu)ly)
—ma(w(u) (o, wu)fy) — ma(w(w){, w(w) ) = ma(w(u) ), w(w){)
—ma(w(u){ ), w(u)D) — ma(w(w)(, w(w)§) —ma(w(u)), ww)}y),

for1 <1< j<k<nin degree 2.
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Then H : W — Toty (Apgr ((C" — D), (Z*"))) ® Q(1) is an inclusion which is a quasi-isomorphism in
degrees 0,1,2.

Proof. See Subsection 4.2.2. O
Definition 4.1.13. We denote by J C B’,, the C.-ideal generated by all the 2-forms
my (O‘(u)il,jw s 70‘(“)2’1—1’]1—1 ) O‘(u)ihjz)
for [ > 2. We denote by B,, := B’,,/J the quotient C.-algebra.
Remark 4.1.14. By a computer assisted proof we have calculated that
my (7(u)i17j1 Yoo afY(u)iz,jl) =0

for k = 3,4. We conjecture that is true for any k. A consequence is that J C B’,, doesn’t contain any
closed forms and hence that B’,, is a 1-model.

We denote by Jpg the image of J via the map H. The map H induces a Co-strict morphism
H : B, — Toty (Apr ((C" — D), (Z*"))) ® Q(1)/Jpr.
For 0 < s <1 we denote by
ev® : Toty Apr (((C" -D), (22")) ® (1) = Toty Apgr (((C” -D), (ZQ”))
the evaluation map; it is a strict morphism of C-algebras. Let Js pr := ev® (Jpr).

Theorem 4.1.15. The diagram

A, L Apg (C" —D)
B, ——— (Toty Apr ((C* - D), (2*")) @ Q1)) /Ipr

commutes. Moreover By, is a 1-extension for A,.

Proof. See Subsection 4.2.2. O

4.1.3 The degree zero geometric connection

Theorem 4.1.16. There exists a compatible Hodge type decomposition of By,

(4.8) B, =WaeModM
such that!
1. Wt is the vector space generated w(u)l(-?o), a(u)io fori=1,...,n.

2. M is the vector space generated w(u)z(-?, i,j=1,...,n and k > 0.

3. W2 is the vector space generated for 1 <i < j <n by

ma(w(u)ly, a(u);), ma(w(u)y, w);), ma(alu),alu),)

and
(Z <jaj)1a (Z <jaj)27
and for 1 <i<j<k<nby

(t<j<k), (i<j<k)a.

1Note that we make a small abuse of notation here, we consider these elements as elements in By,.
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4. M? is the vector space generated for 1 <i < j<mn

ma (w(u)§€)7w(u)$ll> . Lk>1,

ma (w(u)gkg,w(u)gog) . k>1,

ma (w(u)glj)aw(u)zoé) , k<iork<j,
(ww? ww')

RANVE

ma(w(@)®), (o), k> Likr#]
mg(w(u)g’lj), a(u)ro), T<iorr<j,
ma(w()), a(u)0), k> 1<,
ma(w(u)ly, a(u)jo), k>1,
mis (w(u), a(u)i, i, aw)ig), 1> 1k > 0.
Proof. See subsection 4.2.1. 0

We calculate the degree zero geometric connection associated to the decomposition (4.8) in the sense
of Definition 2.3.24. Let X1,..., X,,,Y1,...,Y, be the basis of (W}_[l])* dual to

st (fw(u)goa) o, st <7w(u)£%) st (—a(u)1,0),-. -, st (—a(u)no) € Wj—[l]

On the other hand we denote by
1. X; ; for i < j the element dual to s_lmg(—w(u)g?o), —w(u);0);

2. Y; ; for i < j the element dual to s~ ma(—a(u);, —a(u););
3. U ; for i < j the element dual to 8_17712(—111(11)5?0)7 —a(u)j);
4. Ty j; for i < j the element dual to —s~*(i < j, j)1,

5. Z; ;. for i < j the element dual to —s~!(i < 4,7)2,

6. T; jk for i < j < k the element dual to —s™ (i < j < k)1,

7. Zijx for i < j <k the element dual to —s™'(i < j < k).

These elements forms a basis of (W[l]l)* The homotopy transfer theorem (see [35] and [42]) gives a
Coo-structure m¥¥ on W and a morphism of C-algebras go : W — B,,. In order to calculate the degree
zero geometric connection we need to know the maps

|14 w
my ‘(W1)®k7 Ik \(W1)®k

for k > 0. Let g : W — B, be the inclusion and f : B, — W the projection. We define a map
h : Bt — B! as follows: let b € B, then the decomposition (4.8) implies that b can be written in a
unique way as b = by + by + Dbs, then

h(b) := b3 € M.

Following [42] (see Theorem 2.1.26) the maps are given by
my = foprog®, gr:=hopyog®t.

where p;, : B®¥ — B, is a family of linear maps of degree 2 — k. In Subsection 4.2.3 we give a formula
for

Dk Og®k|(W1)®k
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for any k£ > 0. Hence mY | (wiyss corresponds to a map ¢ : (T W)t — ¢ (Wi[]). We are
interested to 6* We use the formulas in Subsection 4.2.3 and we have
(4.9) X=X, X5], Y =[VY], "X =[X, Y] - [X;, Y]

Ty =— X, Yi].Ys +Yj], 0725, = [X; + Xi, [Vi, X;]],

6* i,j,k =2 [YkH [}/:HX,]H ) 6*Zi,j,kr =2 [Xk7 [}/Za XJH )

In the same way g,ZV|(W1)®k corresponds to a map in Hom" (TC (W3i[1]), Bn) which can be written as

Cy = —Zw(u)g?o)Xi—a Y — Z (k) Ol [[X, Y], -1, Y]
% i,k>1
= Y U (w@ - 0@ XY Y]
j<ik>1
= > OF (w@) X ] Y
i<ik>1

This is the degree zero geometric connection associated to the decomposition (4.8) in the sense of Defi-
nition 2.3.24. Let Ry C L ((W+[1]0)*> be the completion of the Lie ideal generated by

0" X;5,0%Y; 5,07 X, 5,07 T;.5.5,0"Z; 55,0 T j 1y 0" Zi j e
We denote (ﬂ <(W_H1])*) /Ro) with u. We denote the L.-algebra
Conv,. o ((B my ) W, ./\/l)
with B,®u and for any unital non-negatively graded Cy-algebra (A,m,) we denote the L.-algebra

Conv,. g ((W.,.,m. ) (A, m.))

with A®u.

Theorem 4.1.17. The degree zero geometric connection associated to the decomposition (4.8) is given
by

Co = =Y w)9X; —au)¥; - > wu)y Ad{Y (X,)
i i,k>1
k k k k
- > (v +w@i) —ww) Adl) (X))
j<ik>1

Proof. The relation (4.9) implies
k k
(4.10) AdP (X;) = (1)1 Ad (X3)
in u. O
For 0 < s <1, we set
C(s)o := (evsH), (Co) € (Toty Apr ((C" — D), (2°")) /Is,pr) ®Bu

We denote by w(s)(k) v(s);,; and 7; j(s) resp. the elements ev® (w; j(u)®)), ev® (V(u)(k)) and ev® (y(u); ;)

2,7 2,3
resp. for some s € [0,1]. Hence C(s)g is given by
Cls) == Dowls)igXi —als)i¥i = 3 w(s)ly Ady (Xy)
i ik>1
k k k
= > (w6 el - we)l) A (x)
j<ik>1

Notice that «a(s); = v(s); — v(s);.
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Theorem 4.1.18. Consider u equipped with the action ad. For each 0 < s <1,
r+Co(s) € Apr (C" — D) ®u is given by

rCo(s) =— S w(s)§Xi+v(s)Y; — Y wls)l) Ad (X;)
[ i,k>1
k k k k
= > (w6 )l - we))) Al (x;).
j<ik>1

It is a flat connection on C™ —D on the trivial bundle with fiber u. In particular, for s = 0 the connection
is holomorphic. Moreover r.Cy is a gauge- equivalence between r,.Co(1) and r.Co(0), where the gauge is
given by 3", 2mir;Y; € A% (C" — D) u.

Proof. The flatness follows from Proposition 2.3.17. In particular the map (revsH) preserves Maurer-
Cartan elements. O

4.1.4 The KZB connection

In [11] a meromorphic flat connection wg zp , on the configuration space of the punctured elliptic curve

with value in a bundle P is constructed (see Section 1.3.2). We show that 7.Cy(0) corresponds to
WrzZBn We will use the same notation of [11]. For n > 0, we define the algebra t; ,, as the free Lie
algebra with generators Xi,...,X,,Y1,...,Y, and ¢; ; for 1 <4 # j < n modulo

(411) tij = tij, [tijytik + tjk} =0, [tijatkl] =0
tz] = [Xm)/]]a [szXj] = D/“Y—]] = 0; XMY; Z th
Jli#i

[(Xi,tjn) = Y. tie) =0, [Xi+ X, tj] =Y+ Y, tix] =0

for 4, j, k, 1 distinct.
Remark 4.1.19. Notice that the the relations [t;;, t;x + t;1] = 0, and [t;;, tx] = 0 follow from [z;,¢;] =
[Y;, tix] = 0,[x; + zj,tj5]) = [Vi + Y5, ti] = 0 and the Jacobi identity.

The elements Zl X; and ZZ Y; are central in t; ,,. We denote by flﬁn the quotient of t; , modulo

(4.12) Y Xi=>Y=0

Proposition 4.1.20. The lie algebra t1,41 admits the following presentation: the generators are
Xi,..., X, and Y1,...,Y, and the relations are

(4.13) [Xi’X ] [YZ’YJ} 0, [XZ’YJ] [Xj’yi] =0,i1<y
[X;, Y], Yi + V)] = [X; + X, [Vi, X;]] = 0,0 < j

Proof. Let L, be the free Lie algebra on with generators Xi,. .., X,,Y1,...,Y, and tijfor1<i#j<n
modulo relations

(4.14) =T

for i, j, k, 1 distinct. We first show that the map h : L, — § n+1 defined by h(X i) = Xi, h(Y;) =Y; is an

isomorphism of Lie algebras. The map is clearly well-defined. We define an inverse via h™ ( X;) = X;,
h=U(Y;) :=Y; for i < n+1 and with h~'(X,11) = *Zz VX B (Vo) o= —3" Y. In order
to prove that h~! is well-defined, we have to check that 2! sends the relations (4.11) and (4.12) into
(4.14). This is immediate if we consider distinct index i, j, k, [ smaller that n+ 1. It is also immediate to
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show that h=1(t;; — ti;) = h=1(ti; — tij) = ([ Xy, X;]) = h~1([Y3,Y;]) = 0 if one of the index is equal
to n+ 1. On the other hand, consider the cubic relation [X, 11, Jk] = 0. We have

W (s, te]) o= l—i)@’{jkl

=1
i#5,k

Similarly, we have A= ([X;, t(ny1)s]) = 2™ (Yng1, tin]) = A ([Yiu tagayr]) = 0. We have

ﬁfl([i(nﬂ)*'j(jvt(nﬂ)j}) = _ZXi+Xj7

G
= 2[R n]e [ [n]] 5 55 o
2'7&3’;&:,1#1 i7

since the first summand is zero and by (4.14) we have [X [XJ,YJH = [X {X“Y]”, i.e the second

summand is zero as well. The same arguments work for the rest of the cubic relations. This shows that
h is an isomorphism of Lie algebras. We define the map h' : #1411 — Ly via h'(X;) = X;, M(Y;) = Y;
for i =1,...,n. The Jacobi identity and the relations [X;, X;] = [¥;,Y;] = 0 for ¢ # j allow us to extend

the relatlon (4 13) for unordered indices. This shows that A/ is an isomorphism and so is hh/. O
Let 7 € H be as above. We define D C C™*!
D:={(&,...&) & — & € Z+ 7Z for some distinct 4,5 = 1,...,n+ 1}.

We define an action of (C,+) on C*"*' — D via 2(&1,...,&n41) == (&1 — 2,. .., &1 — 2). This induces
an action of & on Conf,+1(&) via £ (&1,...,&ny1) == (&1 — &, ..., &nr1 — &'). We get a projection
m : C"Hl—D - ((C”Jrl - D) /C defined via m1(&1,...,&p41) = &nsa (&1, -+ -, &) which induces m :
Conf,41(€) — Conf,y1(£)/E. We fix a section h; : (C"*' —D)/C — (C"*' — D) which sends
[€1,---,&n] tO (&1,...,&n,0), this induces also a section hy : Conf,;+1(£)/E — Conf,41(€). There is
an isomorphism x; : C" — D — (C"™' — D) /C given by x1 (&1,...,&n) = [&1, ..., &, 0]. Its inverse is
xfl (&1, &n, £n+1] = (& — &ut1y- -, &n — &ug1)- In particular such an isomorphism induces another
isomorphism ya : Conf,(£*) — Conf,4+1(£)/E. We define smooth functions on (C — {Z + 7Z}) x [0, 1]

fu )( ) via w(u )( ) = f(u)(k)cl(zZ — z;). We fix an integer n. For 0 <4,j < n+ 1, we define

1,J 2]
Z P AdP (X;) € (AhR(C™H — D) © 0°(1)) Bl
We define
K(u); = —X; + Z k(w)i
i
and

n+1
=" K(u)idé € App(C" —D) @ Q°(1) &t 1

For 0 < s < 1 we define the bundle P? with fiber /{1,71 on Conf, (£) via the following equation (see [38],
[11]): each section f of PI satisfies

f(glv""£j+l7"'7£n):f(£17"'a£n)
&y &+ lm e &) = exp(=2mil (1 —5)Yj) - f(&1, -5 &n)
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for any integer [, where yf ca = Ade (a) for a 6?1,,1. For 0 < s <1 we define the connection form
@(s) € AbR(C"! — DY&y nps

as the evaluation of w(u) at s. For 0 < s < 1 we define the bundle P? with fiber ?l,n on Conf, (£) as

S

the fiber quotient of P7 via the relation (4.14). We denote by P. the pullback of P along hys and
by & (s) € Abp (C" — D) &ty 41 the image of w(s) via the quotient map Ak, (C" — D)Bty iy —
Al R (C* — D)&Y ,,41. Consider the linear map

(hax2)™ © Apr(C"™ = D)® i1 — App(C" — D)®H i1

We define -

E( ) (thQ ’£~U + Z Y S ADR((C 'D)®t17n+1,
in particular, @(0) = Wk zB,n-
Theorem 4.1.21. Let r.Cy(s) be the connection obtained in Theorem 4.1.18. We have

w(s) = r.Co(s)

in AL (C™ — D)@it\l,nH. In particular, for each 0 < s < 1, r.Cy(s) defines a flat connection form on
the bundle fzﬂ and r.Co(0) = wxzp,n on Conf, ().
Proof. We first show the equality. Since X, 41 = —X3 — -+ — X,,, we have

n

(haxa)" @ (s) = Y K(s)idg;

<.
—

|

—Xi+ ) k(s)y | dé

i=1 j#i
Z X*Zf 5’2+1Ad§§)(%)d€i
=1 k>1
+ Y )™ AdP (X))de — f(s)E) L A (X))
J, k>1
=30 -x =Y Fs) Ad (X de;
=1 k>1

+ > () de A (X;) + f(s)) de; Al (X3)

)
— f(s))1de AAY (X5) — £ ()1, de; Ad (X)),

We have i " i . . .
— () 1dg; A (X)) = F(s)) A (X)) = —w(s)§) AdSE (X5)

and
F()0 dg A (X)) + £(5))de; AdP () = (=£(9) e + £(s) (1) dg; ) AdfP) (x,).

and we conclude

(haxa)" @(s) = = Y w(s)lgXs = > w(s)ly) AdlY (x3)
i ik>1
k k k
- Y (w6 + )l - ws)d) Ad (x;)
j<ik>1
The flatness follows from Theorem 4.1.18. O
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It follows that the gauge equivalence given in Theorem 4.1.17 has to be understand as a gauge-
n+1) on Conf, (£*). Combining this with Proposition 2.4.15, we have that

S
the fundamental group of Conf, (£*) is formal. This fact was originally proved in [6]. In [11], this is
proved in a more explicit way, by studying the holonomy of the KZB connection (see Section 2 in loc.
cit.). By using Proposition 2.4.15, we give a kind of automatic proof by using the Chen’s nature of the
KZB connection.

equivalence between (5(8), P

4.1.5 KZB and KZ connection

In [29] it is shown that the KZB connection on the punctured elliptic curve can be turned into the KZ
connection by taking the restriction of the universal KZB to the first order Tate curve by sending 7
to ico. In the previous chapter (see Proposition 3.3.6), we give an interpretation of that in terms of
Cso-morphism. In this section we prove the same facts for wx zp ,, as well: lim,_,;s w;{ZB’n is equal to

Wik zn modulo a morphism of Lie algebra Q* : &@Q(Qm’) — %1,n+1 @Q@m’) of complete Lie algebra.
Moreover we use the argument of Subsection (2.1.5) to show that @Q* is induced by a strict Co-morphism

Do
Let 7 € H be fixed as above. We set g := exp(2miT). We define the action of Z" on (C*)" via

(4.15) (m1,...,mp) - (21, 2n) == (@™ 21, ..., ¢ 2n)

where (z1,...,2,) are coordinate on (C*)". We set 29 := 1. We define a map e : C* — (C*)" via
e(&1,..., &) = (exp(2mi&y),. .., exp(2mi&,)). This map extend ot a simplicial map e, : CRZZ* —
(C*)J Z™ between the two action groupoid

eo (&1y.--,&n) = (exp(2mi&y), . .., exp(2mi&y,)),
e1 ((&1,--,&n), ((Li,m1) ooy (In, mn))) = (exp(2mi&y), . . ., exp(2mi&, ), (M1, ..., My))

and it induces an isomorphism on the quotient. Let D C C™ be the divisor defined above. Then e(D) is
the normal crossing divisor

{(21,.. . 2n) | 2 # ¢z for 0 <i<j<n}cC(C)".

It is clearly preserved by the action of Z™ and hence the restriction gives rise to a morphism of simplicial
manifolds with simplicial normal crossing divisor

ee : (C"=D),Z*" = ((C*)" — (D)), Z*"
By (3.13) and we have

1 dz; 1 dz

6\

A )
27m Zi 2w z;

(1)7 1 . 27T’LZJ

n=1 n|d

1+1 o0 n -_n
o 1 (2m) . zi\ ¢ AN n . Bi dz; dz;
4.1 = [ d —H (2 L &
(4.16) ¢; T o Z Z +(=1) 2§ ¢t 271 Zi %

n=1 n\d

for [ > 1, where B; are the Bernoulli numbers.

Lemma 4.1.22. Let Dy, D1, Dy C C™ be defined as follows: Dy is the set of points (z1,...,2n) such
that z; = 0 for some i; Dy is the set of points (z1,...,2n) such that zi = 1 for some i; Dy is the set of
points (z1,...,2,) such that z; = z; for some © # j. The forms (b for 1 > 0 can be written as power
series on q where the coefficients are 1-forms of the form fdz; for some 1, where f is rational function
on C" of the form gl , where p; are polynomials over the field Q(2mi) for j =1,2. Moreover f has only
poles of order 1 located in the normal crossing divisor D := Dy U Dy U Dy C (C"
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Given a subfield Q C k C C, consider a normal crossing divisor D’ € C", we denote by Rat_(C", D’)
the algebra of rational functions 5—; with poles along D such that p, ps are polynomials over the field k.
We denote by Ratg (C™, D’) the differential graded k- subalgebra of differential forms generated by forms
of type fdxy, with f € Rat)(C", D). In particular Rat$(C",D’) @ C C A% ,(C" — D).

We consider the differential graded algebra Rat@(%i)((cn,g) and we now assume that ¢ is a formal

variable of degree zero. In particular, notice that the function d)l(»?, 0<i,j>mn, k>0, as defined in
(4.16), are elements of Ratb@m) (C™, D) ((q)). We have a differential graded algebra (over Q(2i)) of
formal Laurent series

(. Rathans (€7, D) (@) -
We extend the action of Z" defined in (4.15) extend to an action p° : Ratg.)(C",D)((q) —
Map (27, Rat§ar) (C", D) ((4)) ) via

—my;

. (1
pf(q) (may,...omp) i=q, p°(dz;) (m,...,my) = q¢™dz;, p° () (mi,...,my) = a

i Zi

and

( 1 > ( | Yo (@z) >0
¢ M,y M) 1= ,,L 1
P zi—1 ! " Yoso qu (ﬁ) n <0

The nerve gives rise to a cosimplicial unital commutative differential graded algebra A®®, where AP9 :=
Map ((Z”)p 7Ra’c(‘é(zm) (C", D) ((q))) For 0 < 7,5 < n, we denote by %, € AL0 the group homomor-
phism v(0), ; : Z2" — C defined in the previous section. We denote by g,j € A%! the 1-forms in (4.16)

considered as formal power series in g. By Theorem 2.2.6, Toty (A) carries a Coo-structure m,. Let B’
be the Cx-subalgebra of Toty(A) generated by

@?Quﬂwkzaaj:QL”wn

Let J C B’ be the C4 ideal generated by all the two forms

my (11'1,J'17 e ’lihjz)

for | > 2. We denote by B,, := B’,,/J the quotient C-algebra. Notice that a consequence of the
conjecture in Remark 4.1.14 were that B, is a 1-model.

Proposition 4.1.23. Let A’,, C B’,, as in Definition 4.1.6.
1. There is a strict morphism of complex differential graded algebras
¢ 1 evoH(A'n) = Ratdan) (C", D) ((9)) ® C
which preserves the action p©,
2. ¢ induces a strict morphism of Cx-algebras
¢ evgH(B',) =+ B, ®C
such that ¢ (J1,pr) C J, and
3. @ induces a strict morphism of Cs-algebras

Y evoH(B/n)/Jl,DR - B, ®C.

Proof. Point 1 follows by (4.16). Point 2 and 3 are straightforward. O

Corollary 4.1.24. Proposition 4.1.11 holds mutatis mutandis for B’
g(_?, Y(u); ; with % and setting B(u); ; = v(u); ; = 0.

n’

i.e by replacing w(u)gkj) with
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Proof. Notice that B’ is a formal version of the image of evgH (B’;,), in particular the proof of Propo-
sition 4.1.11 is independent by the choice of 7. We get that the statements hold for B’, as well. O

Corollary 4.1.25. Consider the vector space decomposition of Theorem 4.1.16. The element

G == 0% - oY= 3 ol Ady) (X)
i i,k>1
_ 3 (¢<k> +o® _ ¢<k>) AdY (x,)
250 " Loi o Ly it
j<ik>1 ! ’ !

is a Maurer-Cartan element in the L-algebra Conv, ¢ ((W+, mfv+) ,(Br, m.)).

Proof. Consider the vector space decomposition of Theorem 4.1.16 and the degree zero geometric con-
nection Cy of Theorem 4.1.17. The map ¢ induces a strict morphism of L..-algebras

(pevoH), : Bn®i€1’n+1 — (B, ®C) @it\l,nJrl
that preserves Maurer-Cartan elements. In particular Cy = (pevoH), Co. O
The quotient map Z™ — {e} induce a map between cosimplicial graded module
i** : A%* = Ratg o) (C, D) ()
where the latter carries a trivial cosimplicial structure. This induces a morphism of C.-structure
i : Toty(A) — Ratgyan (C*, D) ((9))

where the latter is a unital commutative differential graded algebra. In particular we have i(B’,) C
Ratdoq (C*, D) [[¢]] and i(J) = 0. Let J, be the completion of the augmentation ideal of Ratgys,;) (C™, D) [[g]]-
We have a differential graded algebra map 7 : Ratfya.; (C™, D) [[q]] = Ratfyaq,) (C™, D) given by the
quotient. Hence we get a strict morphism of C,.-algebras

p=moi : B, = Ratd. (C",D)

such that
1 dz; 1 dz;
Vo 0y Ldu_ 1 du
p (lm) ’ p (?w) o0mi z;  2mi oz
1 zj dz;  dz; — @) B (dz dz;
Wy _ [ = J t %<5 My . —\entt) Pl %< Qe
p(gi,j) = (2 + 7 — Zj) < . 2 ) , p(?@j) - Il P 2 forl >1

Recall the complex differential graded algebra Ak, defined in Section 1.3.1. Let A Kkzn De the unital
differential commutative graded algebra over Q(2mi) generated by the degree 1 closed forms w; 1, w; o,
and w; j for 1 < i < j < n. Consider A, equipped with the Hodge type decomposition Ay, =
W & dM & M such that W = Ay, , and M = 0. The degree zero geometric connection associated to
that decomposition is given by

Wiz =, wiyTy,

1<i<j<n

where wy 7, € Agz , @ t,. Moreover there is a differential graded algebra inclusion
fA : AKZ,n RC— AKZ,n
such that fA (gKZ’n) = wkzn. We have a diagram of C,-algebras

B, — Az, ®Q(27i)

] |1

W, W,
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where g, is the C-algebra morphism corresponding to the Maurer-Cartan element C(0)g of Corollary
4.1.25. Hence go := p o ge is a morphism of C-algebras. This corresponds to a morphism of differential
graded coalgebras

The restriction of its dual gives a Lie algebra morphism
Q" : 6,0Q(27i) — 1 1 ®Q(2mi)
We calculate Q* via the method of Subsection 2.1.5. We have q.(wx z,) = p* (Cy) since the connection

is quadratic, where ¢.(Wxzn) = D —1<izj<nwi; Q" (T; ;). Moreover
>0

P (Co) = Dop(60) Xi-p(v,)vi- D p(e)) Adl (x))

i ik>1

S p (0% + el - o) A (x)

§<ik>1
 Be (0 X; ~ Xi| dz
Zk Aq) _ |2miy;, 2L
k! 2mi¥s \ oy g 27| z; — 1

dZi
- Z <_ 7o

i

Hence Q* : t, ® Q(2mi) —>i17n+1<§>@(27ri) is given by

=B X; .
@ (T == LKL @ )= -3 peadty (52). @ (1) = WX
J =0 :

for1 <4,5 <n.

Theorem 4.1.26. Let B,,, B, as above.

1. The map p induces a Lie algebra morphism Q : t, ® Q(2mi) — :’L\l,n+1<§>(@(2m) which induces a
differential graded Lie algebra map

qx = (Id®Q*) : AKZJL ®’£n — AKZ,n@){l,n-&-l
2. For a fited n > 0 and 7 € H. We denote the KZB connection with

Wikzpn € Apr (C" —D) ®{1,n+1~

We have
hm WKgzB.n = 4« (UJKZ,TL)
T—100
Proof. The first part is proved above. The second part follows as the proof of Proposition 3.3.6. O

4.2 Proofs and calculations

4.2.1 Proof of Theorem 4.1.16

The commutative differential graded algebra ), is the the free differential commutative graded algebra
generated by elements of degree 1

wj,v;, for j=1,...,n, wy for 0 <45 < n.
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modulo the following relations

(417) Wi = 0,
(418) W5 — Wy = 0,
(4.19) w; ANv; = 0,
(420) Wi A Wy — Wiy A w; = O,
(4.21) wij Ao —wi Avg =0,
(422) Wi A Wi+ Wi Awgg +wig ANwyg = 0.

The differential is given by
dw; ; = w; ANvj +wj Av;,  dw; = dv; =0.

Lemma 4.2.1. There exists a vector space decomposition
(4.23) Vo =W"as M" & dM"
as in (4.8) such that

1. W' C Y, is the vector space generated by w;,v; forji=1,...,n.

2. W"? C Y, is the vector space generated by

Wi AVj, Wi NV, Wi AWy, Wi ANwg,  v; Ay,
for1<i<j<mn, and

Wij N\ Vg + Wik ANV + Wi A v;

Wi N Wk + Wik A W5 + Wi A Ww;

forl<i<j<k<n.
3. M"' C Y, is the vector space generated by wij for j,i=1,...,n.
4. M"* C Y, is the vector space generated by

Wij A\ Wy, for any i < j, k <,
w;j A g, for any i < j, k < j,
wi; A wg, for any i < j, k < j,

Proof. We define W' and M”" as in point 1. and 3. resp. It is immediate to see that all the elements
listed at point 2. are closed and not exact and their cohomology classes are linearly independent. It
remains to prove that M’ ’2, as defined above, contains no closed forms except zero. In this proof we will
call the relations (4.17) — (4.19) trivial relations. For i = 0 we set v; := 0, and any letter 4, j, k,[ is an
integer between 0 and n.

We define the vector spaces Vi, V5 and V3 as follows.

e V) is the vector space generated by w;; A wy, for any 7 < 7, k < ;
e V5 is the vector space generated by w;; A vk, for any i < j, k < j;
e V3 is the vector space generated by w;; A wy, for any ¢ < j, k < j;

Note that
VieVod Vs = M"

and
dV, NdVs = {0} for r # s.
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Let a be a closed element of W of degree 2. We write

a= Z A(i<)s(k<t) Wij Wk + Z B(i<g);(k<g)Wig N\ Uk + Z Qi<g);(k<j) Wij N Wk
(i<g);(k<1) (1<7);(k<j) (i<g);(k<3j)

=ai =a2 i=as

where a; € V; for any ¢ and we have da = 0 if and only if da; = das = daz = 0. We start with a;. We
define four vector subspaces

e V C Vj is the vector space generated by the w;jAwy, for any i < j, k < [; such that |{i, j} N {k,1}| =
0,

e Vi C Vj is the vector space generated by the w;; Awy, for any i < j, k < l;such that [{i,j} N {k, I} =
1

° V’(lJ is the vector space generated by the w; A vj A wpy,v; A wj A wy for any ¢ < j, k < [; such that
‘{iv.]} N {k’ l}| =0,

° V’} is the vector space generated by the w; A v; A wgy, v; Awj Awyy, for any ¢ < j, k < [; such that
{i, 5} Nk, 1} =1

We have V2 NV} = {0} and dV{ c V"% for i = 0,1. Notice that there is no relation involving the
clements of V’J. On the other hand the only relations involving elements of V'{ are (4.20) and (4.21).
They are between elements of V'}. Hence V'9N V'] = {0} and dV° NdV;' = {0}. We write a1 = a! +a?,
with aj € V{ for ¢ = 0,1. Then da; = 0 if and only if da} = 0 for ¢ = 0,1. We have two cases.

1. We can write af = i gk, 1Wi,j A wyg. Since there is no relations involving

i<j, k<l,j<k
vy Awj A wig, w; Awj A wyy, for any ¢ < j, k <;
inside V'Y, we get da) = 0 if each \; jp; = 0.

2. For a k < j < I we define Vlk’j’l as the vector space generated by wy; A Wiy, wr; A wjg, Wiy A wyi.
We have V! = @k<j<lV1k’7 ! since the only relation involving elements of V;' is (4.22). We define
V'53b  y11as the vector space generated by

wsl /\ USQ /\ w83847 vsl /\ w32 /\ w83847

where (s1 < s2;83 < s4) € {(k < j);(k<),(k<j);(G<l),(k<l);(j <)} The only non -trivial
relations in this subspace are (4.20) and (4.21) and they imply

/1 1k,3,1
Vi = ®r<j<tV'

We can write a; as

aj= ) ()‘%k<j>:,<k<l)wkj AWkt + Ay Whi A Wit + Xy, Wet A wﬂ) :
k<j<l

In particular since dV;""' ¢ V'§7! we have da! = 0 if and only if
d (A%k<j>;<k<z>wkj AWkt + N <y s A @it + Nty <y Wt A “’jl) =0.

= —)\2

The equation above corresponds to )\%kq);(kd) = )\?kd);( (k<1); (<)’

Hence

jeny A Gz eany

a% = Z >\(k<j);(k<l) (wk.j AN wgp — Wi N wjp + wig A wﬂ)
k<j<l

ie. aj =0 by (4.22).
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Now assume that das = 0. We define V; IR - V2 for any ¢ < j < k as the vector space generated by
Wik N\ Vj, Wik N\ ;.

Then V5 = @< kV; 7'k since there are no non -trivial relations involving the elements of V5. We define
V', as the vector space generated by

wi NV N Vg, Wi A vy A Vg, Wi A vy A vj.

for any ¢ < j < k. Hence
i,5,k
Vg =®icjcxV'y’

where V' ;j * s the vector space generated by the terms above for a fixed ¢ < j < k. We can write

_ 1 _ _ 2 ) )
az = § Nicj<kWik N Vj + A Wik A Vi
1<j<k

and since dVQi’j’k - V’;’j’k we have that das = 0 if and only if

d (>‘21<j<kwik Avj + )‘22<j<kwjk A “i) =0,

for any i < j < k. This implies A\_,_;, = 0= A, _;, i.e az = 0.
The proof for agz is analogous to the one for as. O

There is a quasi-isomorphism f : A,, — ), defined via f(v; ;) :=v; —v; for 0 <4,j <n and

wy —w; for0<4,j<n, k=0
f(wl(,kj)):: W 5 for1 <i,j<n, k=1
0 otherwise .
(see [9]).
Proposition 4.2.2. There exists a Hodge type vector space decomposition of A,
A=W oM @dM
such that W'* = f (W”Z) and M'" = f (M’”) fori=20,1,2.
The proof of the proposition above follows by the following lemmas.

Lemma 4.2.3. Consider W'* C Al for i = 1,2 as above. The vector space W' c Al contains only
closed not exact elements fori=1,2.

Proof. The map f above defines an isomorphism between W'* C Al and W e Al for i = 1,2. Since
it is a quasi-isomorphism, then results follow. O

Lemma 4.2.4. Let V be the vector subspace of closed elements in ker(f).

1. Let V'' = 0 and V'* C ker(f) be the vector space generated by the elements w(u)gg) A w(u),(gl),

0 <i,j5,k,l <n such that ¢ or p > 1 and elements of the form w(u)glo) /\w(u)gl), 0<ik,l<n.
Then we have
ker(f)2=VZa V"

2. We have V! = 0 and V? is the vector space generated by ((v(u);j + B(u)ij)) A w(u)gkj) for 0 <
0,7 <m, k>1and (v(u)io+ B(u)io) A w(u)glo) for 0 <i <n. and ker(f)? Nker(d) = V.

Proof. Point 1 is immediate. Let a € ker(f)? Nker(d). If a € W’ then this is a contradiction with the
fact that f is a quasi-isomorphism. Hence a is exact. Now assume that a € V’. We have dAL NV’ = 0,
then a = 0 by the definition of d. O
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We can conclude the proof of Proposition 4.2.2. From the map f : A, — ), we have
A2 = )2 & ker f2
o W”Q ® (M//2 @V/) ® (d (Mul) @V) )

The isomorphism above give the desired decomposition.
Consider the strict Coo-morphism p' : B’,, — A, defined in (4.7). We have immediately the following
lemma.

Lemma 4.2.5. The map p* : W — W' is an isomorphism in degree 0,1, 2.

Recall Proposition 4.1.10. Since p!(I) = 0 we have a well-defined strict morphism of Cy.-algebras

p' : B, — A,. The vector space decomposition (4.8)

(4.24) B,=W&Me DM

satisfies W’ = p' (W), M’ = p!(M) in degree 0,1 and 2.
We are ready for the proof of Theorem 4.1.16.

Proof. Notice that p! : BY — A? is an isomorphism for ¢ = 0,1. For i = 2 we have
B2~ A2 g (kerp1)2
~ e (M’2 @ (kerp1)2) @ (d (M’l))

By Lemma 4.2.6 below we have that this is a Hodge type decomposition. O

4.2.2 Proof of Theorem 4.1.12 and Theorem 4.1.15

We have a commutative diagrams of C'w-algebras.

A, w—1> Totn Apr ((C™ — D), (2*™))

2 -

B, ————— (Toty Apr ((C" - D), (2*")) ® Q(1))

Proof. ( of Theorem 4.1.12 ) Consider the diagram above restricted at W. The map p' : W — A, is
an isomorphism in degree 0, 1 and 2. In [9], it is proved that ¢! is a quasi-isomorphism, since ev,, is a
quasi-isomorphism as well, we conclude that H|y is a quasi-isomorphism in degree 0, 1 and 2. O

Lemma 4.2.6. Consider p' : B, — A,. The graded vector space Ker (pl) C B, doesn’t contain any
closed form in dimension 1 and 2. In particular p' induces an isomorphism in the cohomology H* for
1=0,1,2.

Proof. Let a € Ker (p1)2 such that Da = 0. We can write a as

k
a= > Armu(d) v gy (W),
1>2,I€S

Note that a is a form of bidegree (1,1). The element Jz2na defines a map
82271,@ : ZQn — A/,,“

in particular if Da = 0 then Jzzna = 0. Let V; ; C A/,ll be the vector space generated by

(4.25) Aw) w(u), 3(w)® (v(w)s; + Blu)ig) ww)),  kors >0,

2,37
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By the definition we have Dc (Z*") C ®; ;V;; We denote by (0z2na); ; the projection of dz2na on V; ;.
Using the same method of Lemma 3.1.2, (0z2na); ; induces a polynomial P in variables z1, ...,z, with
coefficients in V; ;. Moreover since | > 2 the polynomial is not linear. Assume Jz2na = 0 then the zero
set of P contains Z2". It follows that all the coefficients of P are 0. This implies that the coefficients
vanishes as well, in particular there are non -trivial linear relations between the generators (4.25) which
are not contained in (4.1.6), hence a contradiction.

Consider the Hodge type decompositions defined in the subsection above for A’,, and B,, resp. . Notice
that (pl)l : W'* — W' is an isomorphism of graded vector space for i = 1, 2. Together with the property
above, we conclude that it is an isomorphism in the cohomology groups H*, for i = 1, 2. O

Proof. ( of Theorem 4.1.15 ) By the lemma above we have that p' is a quasi-isomorphism. On the other
hand it is immediate to see that I; pr = 0. The statement follows from Theorem 4.1.5. O

4.2.3 Calculation of the p-kernels

We consider B,, equipped with the C-structure me defined in the previous section. The Hodge type
decomposition (4.8) induces a homotopy retract diagram between chain complexes

(4.26) f:(By,D) &—/—= (W*,0) : g

where f is the projection on W and g is the inclusion. We define a map h : BS — B2~ ! as follows.
Let a € B?, the decomposition (4.8) allows us to write a = (a1, az, Das), where a; € W*, as € M*
and a3 € M*~L, then h(ay,as, Dag) = (0,as,0). In particular gf is homotopic to Idp, via the cochain
homotopy h. Notice that

(4.27) fog=Idg, foh=0 hog=0 hoh=0

We calculate the p-kernel using Proposition 2.1.31. We adopt the following notation: for v € V3 & V4
and wy € V7 we say that v =w; & V5 if v = w; + w for some w € V5.

Proposition 4.2.7. For m = 2 the p-kernels are as follows.

ma(w(u)\y, a(u);0), i<
1 © 0)=<{D w(u)(l) i=7
. p2(w(u)i,o7a(u)J70) = 3,0 | i
D (w(w)y) —w(@)y —w(w)i) e M2, i<
o [mele@i ey, i<
2. pa(w(u)ly, ww)%y) = {0, i—
—ma(w(w) Yy, ww)y), i<

o [mee@E e, i<
3. pa(w(w)fg, wlw)y) = {0, i=j
—ma(w(w)fp, w(w)Q), i<
Proof. Tt follows from py = mgy and the decomposition(4.8). O
Proposition 4.2.8. Let i, j, k be distinct. For m = 3 the p-kernels are as follows.

(j<i<k),®eM? j<i<k
M2, otherwise

memﬁamwmﬂwmw{

(k<i<j),eM? k<i<j
M2, otherwise

2prM%Mmm@wnm{

—(<i<k),®M? j<i<k
3. pg(a(u)j707w(u)g?o),a(u)k’o) =q—(k<i<j),®dM? k<i<j
M2, otherwise
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—(k<i<jy®M? k<i<j
4 pa(a(u)ro, w)), a(u)j0) = - (j <i<k), @M2 j<i<k
M2, otherwise

(j<i<k),®eM? j<i<k
M2, otherwise

(k<i<j),®eM? k<i<j
M2, otherwise

6. ps(a(u)j0, a(w)ro, w(u)y) = {

—(k<j<i)y®M? j<i<k
M2, otherwise

—(k<i<jly®M? j<i<k
M2, otherwise

(k<i<j)y®M? k<i<j
(k<j<i)y®@M? k<j<i
M2, otherwise

k<i<jl,®M? k<i<j
k<j<i)y®@M? k<j<i
M2 otherwise

10. p3(w(u)

—(k<j<i)y®&M? j<i<k

0
1. pa(a(who, wlu)fg, w()ie) = o hermise

o2

Q

—

S—

>

o

—~

=
= <
=R
S~—

—

(0) (0) —(]<J<7;<j)2@./\/127 j<j<k
12. 3 (Y 5 N s . — .
pd( (u)k,o w(u)w w(u)] ) {M{ 0 "

Proof. Explicitly, the formula for ps3 is given by
p3 =ma ((h® Id) o (ma ® Id)) — mg (Id® h) o (Id ® m2)) + m3

and by Proposition 4.1.11 the term mg vanishes. The results follows by a direct calculation applying the
decomposition (4.8). O

The arguments of the proof above works also for the next two propositions.
Proposition 4.2.9. Let i,j be distinct. For m = 3 the p-kernels are as follows.
G <))y + D (w@) - w@) ) o M2, j<i
0
1. ps(w(u)(y, a(u)j0, a(w);0) = 3 D (w(u) ) & M2, j=i
M2, otherwise
—2(j < i,i), — 2D (w(u)fg - w(u);i?) SM?, j<i
0
2. pa(a(w)so, w(w) g, a(w)io) = § -2 (w(w))) & M2, j=i
M2, otherwise
(j < i,4), +D(w(u)§?g w(u )<2>) DM, j<i
3. pa(a(u);o,a(w);0,ww)9) ={ D (w( )(2)> & M2, j=i

M2, otherwise
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Let v, 7 be distinct, then
1. p3(w(u)ly, au)io, alu) ;o) € M2

(< ii)y+ D (wwid) e M?, j<i

2. ps(w(w)\y, alu); o0, a(u)io) =
0 ! M2, otherwise

y N (2) 2 . .
—(J<i i) —D(wu),g)eM=* j<i
3. P3(Oé(u)i7o,w(u);oo),a(u)jﬁ) = ( )1 ( (u) ,0) .

M2, otherwise

—(j<i,i), — D (ww)@) oM, j<i
1l () ha(uwsy) = {9 <00 =D (w01F) Jei
M2, otherwise

5. pa(a(u)io, au)jo, w(u);
! -0 M2, otherwise

6. pa(a(u) 0, au)ig, w(u)\y) € M2

Proposition 4.2.10. For m = 3 the p-kernels are as follows.

(i <j iy @M, i<j
1. © © i,0) = ¢ ’
ps(w(u); o, w(u); g, a(u)io) M2, otherwise

o 0 2(0< s @M, i<
2. pg(w(u);g, a(u)i,va(“)%) = {M2 ’ otherwise

—(i<jj)g M i<y

0 0
3pmmmmmw%mmnb={M2 i

(0))_{(i<j7]')2€9/\427 i<j

M2, otherwise

(i <jjly®@M? i<
M2, otherwise

| <G f)g @M, i<
7 ©) auw)sonw(w)®) = § & <9k
pa(w(@)]g, ety i) =4 o I

8. ps(a(w)io, w(u)\y, w(w)'y) € M?

0) 0) —(1<jj)y®@M?, i<
9. a(u)io,w(u): g, w(u), ) = .
ps3(a(u)io, w( )J,o ( ),0) {Mg’ otherwise
Proposition 4.2.11. Let k > 2

(“D* (w() —w@l) e M2, j<i

(0)
1. pk+1(w(u) ,a(u) -_’0,...,&(’&) -»0) =
i,0 J J M2, otherwise

k

(—Dkw(w)t) & M2, j <

0
2. prr(w(u), o(u) 0, a(u)io, - .. au)io) = {MQ, otherwise

k
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—1D)*w(u (.k)EBMQ, j <@
3. prr1(w()\y, a(u)io, ..., a(uw)io) = {( Jrw(u)ig J

M2, otherwise
k
4. Let
XT1y-eey Thyl € {w(u)g’oj),a(u)m for i,5=0,1,..., n}
such that (z1,%2,...,Tkt1) s not a permutation of either (w(u)l(-g]),a(u)jp, ca(u))o)

either (w(u)goo), a(w)jo,a(w)io,...,a(uw)o) or (w(u)g%), a(w)io,...,a(u)io). Then

2
Pra1(T1, T2, .., Tpy1) € M.

Proof. Since my 1 ((B}l)®k+1)

C M? for k > 2, we conclude that pT(w(u)Z(.?O)7 a(w);os---,a(w);o) =0
if T is not binary. The condition (4.27) implies that the only tree such that

pr(w(u)\y, a(u);o,. .., alu);o) # 0

is the one in Figure 4.1. A direct calculation by using the decomposition (4.8) gives the desired result.

Figure 4.1: The three with non-trivial induced map.

The same argument works in the other cases as well. O
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Appendix A

Appendix

A.1 Coalgebras

Definition A.1.1. A coassociative coalgebra is a graded vector space C over a field k equipped with a
degree zero linear map A : C' — C x C such that

c—2% scoeC

s [

cCec 22 cocecC

commutes. A morphism of coalgebras f : C — C' is a map that preserves the comultipliciation, i.e
f®foA=N(f).

The iterated coproduct A™ : C®" — C si defined via A? := 1, Al .= A and A" = (A®1® - ®
1) o A"~ L. The coassociativity implies that

A"=(191®...13A@1---@1)oc A" 1.

Let k consider as the 1 dimensional vector space. Then (k, A) is an associative coalgebra, where A(1) :=
1®1.

Definition A.1.2. A counital coassociative coalgebra is a coassociative coalgebra (C, A) together with
a degree zero linear map € : C' — k (hence a coalgebra map) such that

e

Cokq— CaC -5 ke

R

commutes. Observe that this diagram is the dual of the ordinary diagram for the unity. A morphism of
unital coalgebras f : C'— C’ is a map that preserves the comultipliciation, and the counity. We denote
the category of counital coassociative coalgebra by CoAlg,. A counital coassociative coalgebra is said
to be coaugmented if there is a coalgebra morphism u : k — C, called coaugmentation. An element
x € C is called primitive if A(z) =1z +z® 1.

The existence of a coaugmentation implies € o u = 1, and then by splitting lemma we have a direct

sum of vectorspaces B
C=Caok,

where C := kere. This is actually a direct sum of coalgebras. Define A : C®C — C as
Alx):=A@)-1r—-—1®1,

then (é, Z) is a coassociative coalgebra. We denote the category of counitary coaugmented coalgebra
by CoAlg{"™. Since the counit has to be unique, we get that C' is a non-unital coassociative coalgebra.
We denote by CoAlgnon unital the category of non unital associative coalgebras.
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augm

Proposition A.1.3. The construction C — C defines a functor from CoAlg’ — CoAlgnon unital
which is an equivalence of categories.

Proof. The inverse of the above functor is builded as follows. Let (C,A) be a non unital coassociative
coalgebra. Set C' := C @ k. Define A’ : C' — ' ® C’ linearly as

oy A1), ifz=X-1,
Al = {A’(z) =Al) =A@ +1Qz+z®1.

We define € : C @k — k as the projection, and v : k — C’. It si easy show that (C,e,u) is a
coassociative counital coalgebra, moreover the above construction is functorial and gives the inverse of
the above functor. O

In order to define the universal objects in the category of coassociative coalgebra, we need to add
some restrictions.

Definition A.1.4. Let C = C @ k be a coaugmented coalgebra. The coradical filtration is defined as
FyC :=Kkl, and for r > 1

FTC::]kIEB{xeé\Kn(x):O, foranyan}

A counital coalgebra C' is said to be conilpotent (or connected) if it is coaugmented and C' = J,~, F-C.

Definition A.1.5. We define the (counital) quasi-free coalgebra or tensor coalgebra on a graded vector
space V as
T¢(V) =k Vo V2. ..

where the coproduct A : T¢(V) — T¢(V) @ T¢(V) is given by the deconcatenation
p
Avivg - - vp) 1= Z V1V - U @ Vig1Vig2 - Up
i=0

and A(1) := 1® 1. The counit is the projection T¢(V) — k and the coaugmentation is the inclusion
k — T¢(V). The coradical filtration is F,.T¢(V) := @®,<,V®", thus T¢(V) is conilpotent. The reduced
quasi-free coassociative coalgebra of V' or reduced tensor coalgebra on V is

C

T(V)=VeVv®g...
where the coproduct A : T¢(V) — T¢(V) ® T¢(V) is given by the deconcatenation

p—1
A(v1v2 s ’Up) = E VIV - V; K Vi+1Vi42 "+ Up.
=1

Consider two graded vector space V and W. For each degree zero linear map F' : TC(V) — TC(W),
we denote by F)", m,n =1,2,3, ... the sets of maps

o ven <o TYV) I TO(w) 22 wem

where the first map is the inclusion, and the last is the projection. The following proposition and the
corollary are is extremely useful.
Proposition A.1.6. A linear map F : TC(V) — TC(W) is a morphsim of graded tensor coalgebras
(Ao F=(F®F)oA) if and only if, for all m > 2,

o 0, if n <m,

" Sy tom=nFp @ - @ F,  ifn>m.

In particular, the set of all (counital coaugmented) coalgebra morphisms Hom (T¢(V), T(W)) , which
corresponds to Hom (TC(V),T(W)) by Proposition A.1.3, can be identified with the wvector space of

degree zero maps
Hom®(T°(V), W) = [ Hom® (VE",W).

n>1
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Definition A.1.7. Let C be a coassociative conilpotent coalgebra. A coderivation is a linear map
d : C'— C such that

Aod=(d®1)ocA+(1®d)o A

If C is counital, then d(1) = 0. A differential coassociative graded coalgebra is a coassociative graded
coalgebra equipped with a coderivation.

The above proposition depends by the equation Ao F = (F ® F) o A. There is a similar story for
the coderivations. Fix a graded vector space V. For a linear map D : T C(V) — TC(V), we denote by
D m,n=1,2,3,... the sets of maps

Dm o ven L Ty 2 T W) TS yem
where the first map is the inclusion, and the last is the projection.

Proposition A.1.8. A linear map D : TC(V) — TC(V) is a coderivation of graded tensor coalgebras
(AoD=(D®1)oA+(1®D)oA) if and only if, for all m > 2,

DM — 0, ifn <m,
"o e d® @Dy @ 1AM ifn > m.

In particular, there is a one to one correspondence between the graded vector space of coderivations on
T(V) and the graded vector space

Hom (T*(V),V) = [ Hom® (V®",V)
n>1
A.1.1 Bar Construction

We define the bar construction for a differential graded algebra A. Our definition is different from the
one of [13]. Consider the graded tensor coalgebra BA := T¢(A[l]). Each element of A[1]® can be
visualized as a (sa; ® saz ® -+ ® sa,), where s is cosnidered as a formal variable of degree —1. We
define dy : (A[1))®" — (A[1])®" " of degree +1 via

da(sa) =0
forn =1, and for n > 1
n—1
d2 (Sal KRR San) — Z(_1)271+|a1|+...|ai|a’1 R ® 1 (aiyai-‘rl) R ® an,

i=1

where d3 = 0 follows from the associativity of . The differential d; is induced by the differentials of A.
More precisely di : (A[1])®" — (A[1])®" is given by

di (sa1 ® -+ - ® say,) :Z(sal®-~-®ds,4(—)®---®san)
i=1
We have di o dy + do o d; = 0. The Bar construction of A is the total complex
(A1) BA,d; + ds,

it is a conilpotent coalgebras. The above construction is functorial and thus defines a functor. Such a
functor has a left adjoint 2 called cobar construction. See [39] section 2.2 for more details.
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A.2 Filtered and Complete graded vector spaces

The goal of this subsection is to introduce some basic knowledge about completion of graded vector spaces
and to prove Lemma A.2.5, which is fundamental in Section 2.1. We work on a field k of charachteristic
Z€ro.

Definition A.2.1. A filtered vector space (V, F'®) is a vector space equipped with a filtration
V=F'V)2F'(V)2F*(V)D...

of graded subspaces F'(V) C V. A degree [ morphism of filtered vector space is a morphism f
(V,F*) = (W,G*) of vector spaces such that f (F*(V)) € G* (V) and f(V*) € Wit!. We denote the
category of filtered graded vector spaces by fgVect.

A filtration makes V' a topological graded vector space where {F*(V)} is a local basis of neighborhood
at 0. A filtration preserving degree | morphism between filtered graded vector spaces f : (V,F*®) —
(W, G*) is a continuous map between topological vector spaces such that f(V?) C Wit!. The topology
induced by the filtration is Hausdorff if and only if (), F* (V) = 0.

Given two filtered graded vector spaces (V,F®),(W,G®), the tensor product induces a canonical
filtration (F ® G)* given by
(A.2) (F&G) (VOW) im GppyesFP(V) & GI(W)

where FP(V) ® G4(W) is the ordinary graded tensor product. In particular, the tensor product of
graded vector space ® together with the induced filtration above defines a symmetric monoidal structure
on fgVect.

Given a graded vector space W, we define the trivial filtration as
W, ifi=0,
0, otherwise

FY (W) := {

We consider the ground field k equipped with the trivial filtration. It is the unit of the above symmetric
monoidal structure.

Lemma A.2.2. Let (V,F*) be a filtered graded vector space.
1. Letq; : V — V/F* (V) be the projection. There exists a sequence of subsets A; CV, A; = {U;'}jeJi
0= Ay CA CAyC ...
such that
(a) ker(g;) N A; =0,
(b) g (A;) is a basis of V/F(V).
2. Assuming (\;> Fi(V) =0, the set A= Uiso Ai is a basis of V and for any j € N
A\ 4;
is a basis of FI(V).

Proof. 1. The first part is proved by induction. For i = 0 we set Ag = 0. Hence we assume that
the statements holds for i — 1. From the projection p;_; : V/F{(V) — V/F"=1(V). we get a

decomposition
V/F=Y(V)e FY(V)/FY(V) = V/F (V).

Choose then a basis B; of F*=1(V)/F{(V) and set A; := A;_1 U B;.

2. Let V' be the vector space generated by A. Then W := V/V’ satisfies V =V' @& W. Let w € W,
then the condition ‘ A
V/IFI(V)e F/(V)=V

implies w € F*(V) for each i. The rest of the assertion follows directly.
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Remark A.2.3. A consequence of the above lemma is that we can consider V/F*(V) as the vector space
generated by A;, and F'(V)/F*1(V) as the subspace of V generated by A;11 \ A;.

We denote the free algebra on a graded vector space V' by (T'(V'), u), where p is the concatenation
product. It is of finite type only in two cases: either if V'* is of finite type and bounded below with k > 0
or if V'* is of finite type and and bounded above with k£ < 0, unfortunately we are interested to the case
k = 0. We fix a finite type bounded below at k graded vector space V. We define two filtrations. Let
€ : T(V) — k be the augmentation map, let I := ker(e) be the augmentation ideal. The sequence given
by the power of I

I=T(V)cIcI*c

is a filtration I* on T'(V)). We define the filtration F* on V as F' (V*) := @554V, Let {vﬁ}ieJ be

0}
U U k—H

i>0 jEJ(k+i)

a basis of V!, hence

is a basis of V. We denote such a basis by {vi};c ;) ;- An element of T(V) can be written in unique
way as a non commutative polynomial

§ § )\21 ..... zpvzl : 'vipv

P20 (i1,...,ip)

such that only finitely many \;, . ;, are different from 0. The elements f € I' (T(V)) € T(V) can be

written in unique way as
N
E g iy Viy Vi
PZi (ilwwfip)

such that only finitely many A;, ... ;, are different from 0. Following the notation of Lemma A.2.2, a basis

Al of T(V))/I" is the set of monomials v;, - - - v;, such that p < i. The tensor algebra T (V/F7 (V))) may be
considered as the graded algebra of non commutative polynomial k <{vi}i€J(l))l<j>, where {vi};c ;)<
is a basis of V¥ @ ... VF=1 For each j > 0, G/ (T(V)) C T(V) is the subspace generated by

Z Z )\n, LipUip " ipek<{vi}i€J(l),l20>7

20 (i1,...,

such that for each v;, ---v;, there exists a v;, € V*, s > j + k. In particular
GH(T(V)&T (V/F7(V)) =T(V).

Following the notation of Lemma A.2.2, a basis A§ of T(V)/GI (T(V)) =T (V/F7 (V)) is given by the
monomials v;, - -+ v;, such that each v;, € V¥ @ ... VF~1 Let

H; ;= (T(V)/T'(T(V))) /G (T(V)),

we identify H; ; as the subspace of T'(V) generated by A; ; := AjG \ Al. They form a diagram where all
the maps are inclusion and two objects H,p, H.q are connected by a map H,, — H.q4 if @ < b and
¢ < d, in particular colim; ; H; ; = T(V).
For V bounded above at k, we define the filtrations (I*, F'*, G*) in a similar way: I*® is given by the power
of the augmentation ideal, the filtration F'* on V is given by F! (V*) := ®j<k— V7 and the filtration G*
on T'(V) is defined such that

G (T(V)eT (V/F7(V)) =T(V).

Again we define H, ; := ( ( )/TH(T(V))) /GI(T(V)) and we identify H;; as the subspace of T(V)
generated by A, j := AF\ A

Let V be a bounded below at k graded vector space endowed with a basis {Ui}iel(l),lzo as above and W
be a graded vector space equipped with the trivial filtration. We consider the tensor product of filtration

I'WeTV)) =WeI(T(V)), GWeTV)) :=WeG (T(V)).
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Then W T(V) =W @k <{vi}i61(l) l>0>. In particular each element can be written in unique way as

N M
(A.3) Z Z Z Wiy ... ip @ Viy * " Vi,

p>0G>0vi; v, EAp 4

for some N, M. Let W&k <<{vi}i€J(l),l20>> be the completion of W ® T(V') with respect to I*. It
is the graded vector space of formal power series of the form (A.3) with N = co. On the other hand,
let W&ck <{Ui}ieJ(l),120> be the completion of W @ T'(V') with respect to G*, it is the formal graded
vector space of formal power series (A.3) with M = co. We denote by Z¢& the filtration obtained by
the completion of I*® with respect to G* on W®Gk<{vi}ieJ(l),l20>‘ We denote by G} the filtration

obtained by the completion of G* with respect to I°® on W®Ik<{vi}i€J(l),l20>‘ The completion of
W&ck <{”i}z‘eJ(z),lzo> with respect to Z¢ coincides with the completion of W&k <{Ui}iej(l),lzo> with
respect to G7. We denote the obtained vector space by wWaT (V), it is the vector space of formal power

series
o0 o0
g E E Wiy, ip @ Vig * " Vg,

p>l >0 vy v, €EAp 4

We denote the induced filtrations on the completion by Z and resp. G. The same arguments are true for
bounded above graded vector spaces as well.

Let ¥, be the group of permutations on {1,2,...,n}. Consider two finite strings of natural numbers
1<t < <y, 1 < gy < -+ < jg for p,g > 0. We associate a permutation o € ¥,44 via

. 1<
o(l) = {zl, ifl<p

Ji otherwise

A permutation obtained in this way is called (p, q)-shuffle. We denote the set of (p, ¢)-shuffles by Sh(p, q).
We define the sfuffles coproduct A" : T¢(V) = T¢(V) @ T*(V) via

(A4) A'(vy - v) = > £ 8igN(0) Vs (1) Vo(p) @ Vo (pi1) " * Vo (ptq)
p+q=n,0ESh(p,q)

where the signs + are given by the signs rule. This makes (T°(V'), u, A’) a bialgebra. The dual statement
is true as well. The product ' : T¢(V) @ T*(V) — T¢(V) given via

(A.5) W (o1 vy @ Vpi1 - Vgp) = Z +8ign(0)gvs-1(1) ** Vo—1(p) Vo1 (g+p)
o€Sh(p,q)

makes (T¢(V), u/, A) a bialgebra. Let NT'S(V) C T°(V) be the graded subspace of non trivial shuffles,
it is generated by u’(a,b) where a,b € T(V), a,b ¢ k. We get a (non exact) sequence

(A.6) T(V) @ T¢(V) —E—s TE(V) —Ps TE(V)/NTS(V*),

where p is the projection. In particular, T¢(V)/NTS(V*®) is the universal enveloping coalgebra of the
free co Liealgebra L¢(V). We denote T¢(V)/NTS(V*®) by U° (L¢(V)).

The graded dual of a graded vector space V*® is given by (V*)* := Hom® (V, k). Given a filtered vector
space (V, F'), we denote by F, the dual filtration where F* Hom (V, k) is the set of graded morphism such
that f|piyy = 0. If U is finite dimensional we have

(A.7) U*®V = Hom® (U, V).

Let V' be a graded vector space bounded below at k equipped with a basis {vi};c () ;¢ as above and
W be a graded vector space equipped with the trivial filtration. We define two filtrations Z and G on
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Hom?* (T(V),
Hom?® (T(V),

W) as follows: Z¢ (Hom® (T'(V),W)) € Hom® (T(V),W) (resp. G' (Hom® (T'(V),W)) C
W)) is the subspace of map f : T(V) — W such that
flT(V)/Ii = 0, (resp. f|T(V)/Gi = 0)

We consider V* equipped with the filtration F'* and T'(V*) equipped with the filtration I* and G*. We
define H;; := (T(V*)/GI(T(V))) /I'. If the H, ; are finite, the vector space H};, C T(V*) is actually
the dual (as a finite graded vector space) of H; ;. The dual of the inclusion H, ‘—> H_ 4 is precisely the
projection map

sa = (T(V*)/GUT (V) I — Hyy = (T(V*)/GT (V) /T°

Assume that V is of finite type. For a graded vector space W, let ¥, ; ;OW — Hom® (H; ;, W)
be the obvious isomorphism. Since Hom(—, W) commutes with the cohmlt the limit of the ¥, ; give an
isomorphism

(A.8) U : Hom (T¢(V[1]), W) — T ((V[1])*) &W.

such that Hom®(7'(V'), W) is isomorphic as a bifiltered vector space to the completion of T'(V*) @ W with
respect to I® and G*®. In a similar way there is an isomorphism of bifiltered completed graded vector
space

(A.9) ® : Hom*(T°(V) @ T°(V),k) — T(V)RT(V*).

Moreover, since the maps u, A, ' and A’ are all degree zero filtration preserving morphisms with respect
to I and G, we have the following result.

Lemma A.2.4. Let V be a bounded below or bounded above graded vector space. Then
p* (U (L5(V)))" € Hom*(T*(V), k)

is the graded vector space of morphisms in I' that vanish on non-trivial shuffles. Assume that V is of
finite type, there is a commutative diagram where the vertical arrows are isomorphisms.

(w)"

p* (U (L8(V))" —— Hom®(T*(V),k) ——— Hom®(T*(V) @ T*(V), k)
J» O J
P (f(v*)) L TV ——B S T(VHET(VY)

where P (f(V’)) = {x | N(z) = 1d* @z + x@ld*}.

Proof. The commutativity of the first square is straightforward and follows by the construction of ¥ and
®. For the first square we need only to show that W is well-defined. Let f € p* (U¢ (L¢(V)))*. Then for
v, w & k we have ()" W(f) (v & w) = W(f) (i (v @ w)) = 0. Analogously ()" ¥() (1@ w) = V(f) (w)
and (/)" (f) (w@1) = ¥(f) (w), thus AW(f) = (/)" U(f) = 1d"®U(f) + ¥(f)@Id". O

We denote p* (U¢ (L¢(V)))" by Ly-.
Lemma A.2.5. Let V as above.

1. (Hom®*(T¢(V),k),(A)") is an associative graded algebra. The filtration T is a filtration of ideals
with respect to (A)”*

2. Let [f,g] == A*(f,g9) = (=1)(|fllg])A"(g, f). Then (Hom®*(T*(V),k),[—,~]) is a Lie algebra and
(Ly«,[—,—]) is a sub Lie algebra. We denote by I and G the restrictions of the two filtrations on
(Ly+«,[—,=]). Then T is a filtration of Lie ideals with respect to [—, —].
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3. Assume that V is of finite type. Then Ly~ is isomorphic to the completion of the free Lie algebra

L(V) on V with respect to the filtration I and G. In particular each element of Ly« can be written
as as a formal power series of Lie monomials

co 0o
E E E )\7;17.“71‘1’ [”ii" [Ul';,..., |:’Ui;71,1}7;;:| 7:| :| ,

p>1g>0v;, v, EAp 4
Proof. 1. The map

Hom® (T¢(V), k) ® Hom® (T¢(V),k) —i— Hom®*(T¢(V) ® T(V), k) ~2L5 Hom®(T*(V),k)

is an associative product.

2. Clearly [f,g] :== A*(f,g) — (—=1)U/Nl9D A*(g, f) satisfies the Jacobi identity. Since (T¢(V), A, i) is
a bialgebra

(87 (190 = (1)W1 A9, 1)) i (@ @20)

:(f®g (—1 (If\lg\)g@,f)Aou

~(reg-()Whge ) (o) (Idere I AsAaob)
)

= (f®g (=1)Wllshg & f (1®u (a®b) + (— 1)‘“"b‘b®a+a®b+u’(a®b)®1)
=0
and hence [p* Hom®(T¢(V), k), p* Hom®*(7T¢(V),k)] C p* Hom®(T¢(V),k). The proof that Z is a

filtration of Lie ideals follows immediately.

—

3. See [46] for a proof that P(T'(V)) = L(V). The above statement follows by showing L(V*) =

lim; ; IL(H} ;) and by the previous lemma.

A.2.1 Proof of Lemma 2.1.15 and corollary (2.1.18)
We start with the proof of Lemma 2.1.15.
Proof. Clearly 92 =0 and M? = 0. The relations (2.1) for n > 1 are equivalent to

(A.10) > V)P myp g 0 (Id¥P @ my ® Id®T) = D o my,
p+q+r=n
p+1+r>1,q>1
where D om,, :=mjom, +(—1)""1m, o (Z?:_ll 1d® @ m; ® Id®"’1’i>. Chose homegeneous elements
fi,--+, fn. The expression (A.10) in our case is

Z (,1)P+qTMp+1+T ° (Id®p ® Mq ® Id®7“) (fl QR ® fn) =

ptq+r=n
p+1+r>1,g>1

Z (- 1)p+qr ~;‘+ 1+4r ((Id®p ® M, ®Id®r) o(fi®--- ®fn)) o APt —

ptgtr=n
p+14+r>1,g>1

L Z (— 1)p+qr~ p+1+r (fl '®fp®(Th?(fp+1,...,fp+q)oAq_1)®fp+q+1®...®fn)oAp+r:

p+gtr=n
p+1+r>1,g>1

+ Z (0P (L@ @ [ @ (forts s fprg) @ forqr1 ® - @ fn) 0 A1 =

ptqt+r=n
p+1+r>1,g>1

Z (— 1)P+qr~p+ 1ir ([d® QM ®Id®r)0(f1®~'-®fn)OAn_l.

ptgtr=n
p+14+r>1,g>1
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Set m1 = 0, we have

n—1
(a oM, + (=1)""'M, o <Z Id®" ® 0 ® Id®"1i>> (fr@-® f).

=1

The first summand is

_mlm (fl .®fn)OAn71 ( )|M n(f1®®fn) \Jrl (fl '®fn)OAn7106,

the second is

n—1
(_1)n+1Mn ° (Z Id@i R0® Id@n—l—i) (fl Q- ® fn) —
=1

n—1

(71)n+1+\f1\+.~-+|fp\ Z M,, <f1 @R f® (mfpr + (—1)|fp+1|+1fp+1 o 5) ® fr2a® - ® fn) =

i=1

n—1
D" gt (1d%P @ mf @ 1d®" P71 (L@ ® fo) 0 A"

n—1
(—)rHAE R RA (S @ @ fo) 0 <21d®p®5®ld®’“> o A" =

=1
1)ntt Z i (1d®P @ mit @ Id®" P 1) (& ® fp) o A" 14

( )n+\f1\+ +|fn (fl . ®fn) o A" 1o

A

Since Mg is an Aso-structure

S (Pt (AP @ mt @ 1dP) o (f1 @+ @ fn) o A" =

ptqtr=n
p+1+r>1,q>1

n—1

A @ @ fa) 0 AT (1) S it (17 @ @ 157 Y) (fi @+ @ fu) 0 AT

i=1

This shows that (9, Mo, M3,...) is an Ay -structure. The second summand is canceled by the second
summand of the first summand and this shows that (M,) is an As-structure. We prove the third
statement. As proved in Lemma A.2.5, For n = 1,2, we have that [, and I/, are well-defined on
p* (Hom® (T(V[1])/NTS(V),A)). Let n > 2, and fi,..., fn € Lyp-(A) be homogeneous elements.
Let p/(a,b) be a non trivial shuffle in 7¢(V[1]) ® T¢(V[1]). For any n we have

M (f1 @ @ fo) o A" Loy (a,b) =

:mﬁ(h@...@fn)(Zl@...1®a®1...1®b®1...®1
i#j

1)\a\|b|Zl®...1®b®1...1®a®1...®1>
i#]
=0
since f;(1) = 0 for each 1. O
Proof of corollary (2.1.18)
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Proof. The first claim is immediate. We prove the second statement. Let fi, ..., f, € Hom® (T¢(V[1]°), A)
and assume that there is a g with 6*g = f; for some i. Then

g (fi - ®8'g®- ® fn) o A" =
Zﬁl,’:}(f1"'®g®'~'®fn)O(Id@"'@é@”'@[d)OAnil

=mf(f1--~®g®-~-®fn)o(Zld®-~-®5®-~-®1d> o A
i=1

since ¢* f; = 0 for any ¢. Then

M (fi@g@-® fu)o (Zld®~--®5®---®1d>om—1:
i=1

:mfz(fl...®g®...®fn)oAn7105
=5 omp (fi @9 ® fn) 0 A",

The third assertion is straightforward. O

A.3 Conormalized graded module

The goal of this subsection is to construct an isomorphism ¢ : Toty (4) — [ (eA ny C, ® A™*® be-
tween differential modules. Fix a field k of charactersitic zero. Let B® be a cosimplicial module. The
conormalized graded module N(B)® is a (cochain) graded modules defined as follows,

BY, ifp=0,
" oKer(si_, : B> — BP™'),  otherwise.

N(B)? .= {

where s for i = 0,...p — 1 are the codegenerancy maps. The differential 9 : N(B)? — N(B)PT! is
given by the alternating sum of the coface maps

p
0="> (-1)d"
=0

In particular N°® is a functor from the category of cosimplicial modules cMod toward the category of
(cochain) differential graded modules dgM od.

A cosimplicial differential graded module is a cosimplicial objects in A** € dgM od where the first slot
denotes the cosimplicial degree and the second slot denotes the differential degree. It can be visualized
as a sequence of cosimplicial modules

AQ,O d A.’l d A.’Q d

If we apply the functor N we turn the cosimplicial structure of each terms into a differential graded
structures

N (A%0)" Ly N (A1) L N (4%2)" —s

moreover since each cosimplicial maps commutes with the differentials, we get a bicomplex (N(A),d, 9),
where N(A)P? := N(AP*)9. We define Toty (A) € dgMod as the total complex associated to the

bicomplex above. Explicitly an element a € Tot (N (A))’c is a collection
(ag,...,ax) € AFO@ AV @ AOF

such that each a; is contained in the kernel of some codegenrancy map. The following is well-known.
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Lemma A.3.1. Let A*® be a cosimplicial differential graded module.
1. Let v be an elements of bidegree (p,q). Then each v, € NC? @ A™? is equal to zero for p > n.
2. NC? is a one dimensional module.
3. An element v with bidegree (p,q) is completely determined by
vp € NCJ @ AP,
4. There is an isomorphism between differential modules v : Totyn (A) — f[n]EA NC, ® A™* such

that for v with bidegree (p,q) we have

b(b), = b € NCP @ AP

Proof. The first two points are immediate. Fix a n and a p < n. Notice that each inclusion [p] < [n]

is equivalent to an ordered string 0 < ip < i; < --- < i, < n contained in {0,1,...,n}. For each string
0 <ip < i; <--- <ip <n we denote the associated inclusion by ¢,,..;, : [p] < [n], and we define the
maps ..., A[n];‘ — k, via

1 lf O—io,..‘ip = (b,
0, otherwhise

Aio,...,ip (¢) = {

Clearly {)\io,..‘ip is a basis of NC?. It turns out that v, can be written as

}0§i0<ii<---<ip§n

vy = § : /\io,...,ip ® bio,m,ip
TN

for some b"» € B™4. Let v, € NCE ® AP4. Since NC? is one dimensional we write v, = Ao,..., ® b,

for some b € AP*4. We shows that b’>i» is completely determined by b. Fix a 0 < iy < i; < --- < i, < .
Then the above relations read as follows

(1 ® Ui*o,...z'p) vp = (0ig,..i, @ 1) Up.

In particular the map oy, 4,, : NC§ — NCP is the linear map that sends A, 4, to Ao p and Aj, .
to 0 for (jo, ... Jjp) # (io,...%p). Then

A0,...p ® 05, 4, (0) = (1 ® Ufo,.i.ip) Up = (Tig, iy, @ 1) Up = Ao p @ D07
Since each degree k elements can be written uniquely as a sum of elements of bidegree (p, ¢) with p+q¢ = k

we get a natural isomorphism ¢ : Toty (A4) — [ mea N C, ® A™* of differential graded modules. [J

A.4 The C,-structure on the 2 dimensional simplex

We first write down the formulas for (2.14). This diagram originally defined in [20] is intensively studied
in [25]. We define two maps between simplicial differential graded module (see [20])

E, : NC; &= Q°%(e) : |,

1. Fix a [n] € A. For each p < n we define [ : QP(n) — NCP via

/ (W) (010...0) = / )
n Ageolp]
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i.e, we pulled back w along the smooth inclusion oy, i, : Alplgeo — Aln]geo and we integrate
along the geometric standard p-simplex. [ : Q°(n) — NC, is indeed a map between graded
modules. The Stokes’theorem implies

@)@ ,) = i(—w‘ [ ).

ie fn : Q%(n) — NC, is a map between differential graded modules. Moreover, the above
construction is compatible with the simplicial structure, i.e f. : Q°(e) —» NC7 is a map between
simplicial differential graded modules.

2. We define the quasi inverse of f.. We fix a [n] € A. For each string 0 << ip <41 < --- <1ip <n
we define the Whitney elementary form wy,, ... ;, € QP(n) via

p
wl‘()’.__,ip = k' Z(*l)jtij dtio VAN dtl7 JANEERIA dtip
7=0

We define E,, : NC? — QP(n) via
En()\) = Z A(O—i(]uv“:ip)wi()wuyip

0<ip<---<ip<n

The above map defines a map between differential graded modules F,, : NC,, < Q°®(n). Since the
construction is compatible with the simplicial maps we get a map between simplicial differential
graded modules E, : NC7 — °(e). Moreover since

a1! ce an!
Oty Adt, =
/A[n]geo ! n O " (a1 +...a, +n)!

an easy computation demonstrates that

(/) o B = Idnes.

It remains to construct an explicit simplicial homotopy between FE, o ( f.) and Idge(,). We recall the
construction of [20] (see also [25]). Fix an, for 0 < i < n we define the map ¢; : [0,1] x Ageo[n] = Ageo[n]
via

b; (u,to, - ,tn) = (to + (1 — u)5io, oot + (1 — U)(Sin)

Let 7 : [0,1] X Ageo[n] — Ageoln] be the projection at the second coordinate and let m, : Q°(n) — Q*~*(n)
be the integration along the fiber. We define h, : Q®(n) — Q*~1(n) via

hy (w) := s © ¢ (w)
We define s,, : Q2P(n) — QP~1(n) as follows:
p—1
Spw = Z Z Wig..i; A& .. R (w)
j=00<ig<-<i;<n
We start with the proof of Proposition 2.2.5.

Proof. Recall that Q°(2) is the free differential graded commutative algebra generated by the degree zero
variables tg, t; and t modulo the relations

to+t1+to =1, dtg+dty +dty = 0.

On the other hand NCY is the vector space generated by \g, A1 and Ao, NCs is generated by o1, Aoz
and 1o, and NC? is the one dimensional vector space generated by Ago12. We have
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1. E2 ()\0) :t07 E2 ()\1) :tl, and E2 ()\2) :tg.
2. E2 ()\01) = todtl — tldtm E2 ()\02) = todtg — tgdtm and E2 ()\12) = tldtz — tgdtl.
3. By (No12) = 2todtydts — 2ty dtodty + 2tadtodt.

We prove a). For degree reason we have ma(Ao1, Ao2) = Ho1 /02A012. By the homotopy transfer theorem
we have

Ho1/02 = </A[2] E3 (Mo1) B2 ()\02)>

= / to(todtydty — tydtodty + todtodtl)
Af2)

Ho2/12 = (/A[Q] E3 (Mo1) E (>\12)>

= / to (tgdtodtl — t1dtodts + todtldtg)
Af2]

1

6
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