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1 Introduction

This thesis is a continuation of a talk on model categories I gave in a seminar
in Homotopical and Higher Algebra held by prof. D. Calaque in the autumn
semester 2012.
Model categories are an important tool in the study of homotopy theory. They
were first introduced in 1967 by D. Quillen in his book [6]. The importance of
the existence of a Quillen equivalence between two categories C and D is the fact
that it induces an equivalence of categories between the homotopy categories
HoC and HoD, permitting us to study the homotopy theory in C through the
homotopy theory in D, and vice versa. In our particular case, the objective
is to prove that we can study the homotopy of the “complicated” category of
topological spaces (Top) through the homotopy theory of the category SSet
of simplicial sets, which is of a more combinatorial nature. Namely, the goal
of this thesis is to give an exhaustive proof of the existence of a Quillen equiv-
alence between Top and SSet, starting from scratch and requiring only basic
knowledge of category theory and algebraic topology.
In section 1 we introduce the basic tools to treat the subject (lifting properties,
the small object argument, model categories, cofibrantly generated model cat-
egories, Quillen adjunctions and Quillen equivalences). In sections 2 and 3 we
describe the model structure on Top and SSet respectively. Finally in section
4 we prove the existance of a Quillen equivalence between the two categories.
Throughout this thesis , we will mainly follow the approach of [3], sometimes
using some elements from [4] when deemed useful.
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2 Cofibrantly generated model categories and
Quillen equivalences

2.1 Model categories

2.1.1 Preliminary notions and notation

Definition 2.1. Let C be a category. An object X of C is said to be a retract
of an object Y if there are arrows such that the following diagram commutes:

X Y

X

An arrow f in C is the retract of an arrow g if it is the retract of g in the
category of arrows of C .

Definition 2.2. Let a and b be two morphisms in a category C. We say that a
has left lifting property with respect to b, and that b has right lifting property with
respect to a, if for every commuting square as below, there is a dashed arrow
(called a diagonal filler) making the following diagram commutes:

a b

We denote this by a t b. The dashed arrow is often called a diagonal filler of
the square.
Let S, T be two subsets of the arrows of C. We say that S has the left lifting
property with respect to T , and that T has the right lifting property with respect
to S, if for every a ∈ S, b ∈ T we have a t b. In this case we write S t T . If
S is any subset of the arrows of C, we define the following two other subsets of
the arrows of C:

St = {b|s t b, ∀s ∈ S}
tS = {a|a t s, ∀s ∈ S}

Notice that a map f ∈ C (X,Y) with f t f is necessarily an isomorphism.
Indeed there must be an arrow g such that the following diagram commutes:

X X

Y Y

f f
g
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Then g is obviously the inverse of f .
We introduce now some concepts which will be of great importance in the

treatment of cofibrantly generated model categories.

Definition 2.3. Let C be a category with all small colimits (i.e. colimits indexed
by a small category) and let λ be a limit ordinal. A λ-sequence is a colimit-
preserving functor X : λ→ C. We usually represent the functor as

X0 → X1 → X2 → . . .→ Xβ → . . .

where Xβ = X(β), and the arrows are unique. We refer to the map X0 →
colimβ<λXβ as the composition of the λ-sequence. If D is a collection of ar-
rows in C and every map Xβ → Xβ+1 is in D, then the composition X0 →
colimβ<λXβ is called a transfinite composition of arrows in D.
D is called closed under transfinite compositions if every transfinite composition
of arrows in D is again in D.

Definition 2.4. Let γ be a cardinal, α a limit ordinal. We say that α is γ-
filtered if from A ⊆ α and |A| < γ follows supA < α.

Definition 2.5. Let C be a category closed under small colimits, D a collection
of arrows in C , A an object of C and κ a cardinal. We say that A is κ-small
relative to D if for every κ-filtered ordinal λ and every λ-sequence X : λ → C
such that the arrow Xβ → Xβ+1 is in D every time β < λ, the canonical map
of sets

colimβ<λC (A,Xβ)→ C (A, colimβ<λXβ)

is an isomorphism. A is said to be small with respect to D if there is a cardinal
κ such that A is κ-small relative to D. A is small if it is small with respect to
all of C.

This works as follows: Recall that colimβ<λC (A,Xβ) =
⊔
β<λ C (A,Xβ)/ ∼,

where two maps f1 : A → Xβ1
and f2 : A → Xβ2

are equivalent if there is a
third map fγ : A→ Xγ with γ ≤ βi making the following diagram commute:

Xβ1

A Xγ

Xβ2

f1

fγ

f2

Thus every element of the colimit is the equivalence [fβ ] class of some map
fβ ∈ C (A,Xβ). The canonical map colimβ<λC (A,Xβ) → C (A, colimβ<λXβ)
sends [fβ ] to the composite

A
fβ−→ Xβ −→ colimβ<λXβ
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It can be checked that this map is well defined. Surjectivity of this map means
that for any map f : A→ colimβ<λXβ there is some β < γ such that f factors
through Xβ . Injectivity implies that this factorization is unique, in the sense
that if f factors both through f1 : A→ Xβ1

and f2 : A→ Xβ2
, where β1 < β2,

then f2 is given by the composition A
f1−→ Xβ1

→ Xβ2
.

Example 2.6. All sets are small in the category Sets. Indeed let A be a set,
λ be an |A|-filtered ordinal and X : λ → Sets be a λ-sequence. Take a map
f : A→ colimβ<λXβ. We show it factors through some Xα with α < λ. Indeed
for a ∈ A define g(a) to be an ordinal such that f(a) is in the image of Xg(a),
and let S = {g(a)|a ∈ A}. Then since λ is |A|-filtered, supS = γ < λ, and f
factors through Xγ (since f(A) is completely contained in the image of Xγ).

Now let f1 : A→ Xγ1 and f2 : A→ Xγ2 be two different factorizations of f .
Then for every a ∈ A there must be an ordinal g(a) ≥ max(γ1, γ2) such that the
images of f1(a) and f2(a) are equal in Xg(a). Since λ is |A|-filtered, we obtain
that γ = supa∈A g(a) < λ, and that f1 and f2 become equal in Xγ .

Example 2.7. Not every topological space is small.Let λ be any limit ordinal,
then we can construct the following topological spaces:

• A = {0, 1} with the indiscrete topology.

• Y = λ ∪ {λ} with topology τY = {{λ ≥ β > α} : α < λ} ∪ {∅}.

• For α < λ, let Xα = (Y × {0, 1})/ ∼, where {0, 1} is endowed with the
discrete topology and ∼ identifies (x, 0) and (x, 1) whenever x < α.

Then the obvious maps Xα → Xα+1 give us a λ-sequence. The colimit of the
sequence is the topological space

X = colimα<λXα
∼= (Y × {0}) ∪ {(λ, 1)}

A subset of X is open if, and only if it is of the form

U = {(β, 0) : λ ≥ β > α} ∪ {(λ, 1)}

for some α < λ. Thus we have a continuous map f : A → X given by f(i) =
(λ, i) which does not factor continuously through any of the Xα, where the points
(λ, 0) and (λ, 1) can be separated.

2.1.2 Weak factorization systems and the small object argument

Definition 2.8. Let C be a category. A weak factorization system in C is a pair
of classes of arrows (A,B) satisfying:

i. Every arrow f of C can be written as f = b ◦ a for some a ∈ A and some
b ∈ B.

ii. At = B and tB = A.
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A weak factorization system is said to be functorial if there are two functors
γ and δ on the category of arrows of C such that the factorization is given by
f = δ(f) ◦ γ(f).

Definition 2.9. Let C be a category containing all its small colimits, and let I
be a set of arrows in C . A relative I-cell complex is a transfinite composition
of pushouts of elements of I. The collection of all relative I-cell complexes is
denoted by I-cell.

Worded more explicitly, f : A → B is a relative I-cell complex if there is a
λ-sequence X : λ→ C such that every map Xβ → Xβ+1 is the pushout of some
map gβ in I, i.e. we have a pushout diagram:

Xβ

Xβ+1

gβ

with X0 = A and Xλ = B.
The result we present now allows us to construct a functorial factorization

of all arrows in a category in an easy and effective way. Such a factorization
will later be used to construct a weak factorization system.

Proposition 2.10. Let C be a cocomplete category, I a set of arrows of C with
domains small relative to I-cell. Then there exist two functors γ and δ on the
category of arrows of C such that γ(f) ∈ I−cell, δ(f) ∈ It and f = δ(f) ◦ γ(f)
for every arrow f in C.

In order to prove this result, we will start a map fX → Y in C and decompose
it as

X E1

Y

f
p1

where p1 is in I−cell. We will iterate this decomposition (using pushouts and
transfinite induction) in order to obtain a decomposition f = p̄ ◦ u, where u
is a transfinite composition of elements of I−cell, and thus is still in the set.
Finally, we will show that p̄ is in It. Functoriality will be given by the fact that
our argument can be made functorial in every step. The proof in full detail is
the following.

Proof. Choose a cardinal κ such that the domain of every arrow in I is κ-small
relative to all of C (notice that such a κ exists because C is a set of arrows) and
a κ-filtered ordinal α. Take f : X → Y any arrow in C . We define E0 = X,
p0 = f . Given Ei and pi, we define Ei+1 and pi+1 as follows.
Let S index the set of commutative squares of the form
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A Ei

B Y

u pi

We construct Ei+1 as the pushout of the coproduct of the Bs, s ∈ S, and Ei
over the coproduct of the As, that is:⊔

s∈S A Ei

⊔
s∈S B Ei+1

⊔
s∈S u

Then we take as pi+1 the map from Ei+1 to Y induced by the universal property
of the pushout: ⊔

s∈S A Ei

⊔
s∈S B Ei+1

Y

⊔
s∈S u pi

p
i+

1

Given j a limit ordinal and Ei, pi for every i < j, we define Ej = colimi<jEi
and pj as the map induced by all the pi using the universal property of the
colimit Ej .
Let Ē = colimi<αEi and p̄ the map induced by the pi (again by universal prop-
erty of the colimit). The map u : X → Ē given as the transfinite composition
of the maps Ei → Ei+1 is in I−cell, since the latter is closed under transfinite
compositions.

We are left to show that p̄ ∈ It. Let c : A→ B be in I and let the following
diagram commute.

A Ē

B Y

a

c p̄

b

Since A is κ-small, the map a factorizes as
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A Ei

Ē

B Y

ai

a

c

p̄

b

By construction of Ei+1, this commuting square (rectangle) gives us the follow-
ing commuting diagram.

A Ei

B Ei+1

ai

c

bi+1

We can use this arrow bi+1 to construct the sought diagonal filler as follows:

A Ē

Ei+1

B Y

a

c p̄

b i+
1

b

This shows that p̄ ∈ It.
Note that the factorization is functorial in every step, since the association

of the set S to the map pi is functorial, and thus all the process can be made
functorial.

As we preannounced, from this we can get a weak factorization system.
In the proof we use a result which will be proved later, i.e. the fact that
I−cell ⊆ t(It) (lemma 2.23).

Theorem 2.11. (The small object argument) Let C be a cocomplete category,
I a set of arrows of C with domains small relative to I-cell. Then (I−cof, It)
is a (functorial) weak factorization system.

Proof. By proposition 2.10, we have a functorial factorization of every arrow in
C in elements of I−cell ⊆ t(It) (by lemma 2.23). Then (t(It), It) is a weak
factorization system, since it satisfies the required lifting properties.
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The full power of this statement will become apparent when we will apply
it to cofibrantly generated model categories.

2.1.3 Model structure on a category

We can now give the definition of a model category.

Definition 2.12. Let M be a category which is complete and cocomplete. A
model structure on M is a triple of classes of maps (C,F,W ) called respectively
cofibrations, fibrations and weak equivalences satisfying:

i. Two-out-of-three property: Let X,Y, Z ∈M, f, g, h morphisms inM such
that the following diagram commutes:

X Y

Z

g

h f

If two of f, g, h are weak equivalences, then so is the third.

ii. (C ∩W,F ) and (C,F ∩W ) are weak factorization systems.

The elements of C ∩ W and F ∩ W are called trivial cofibrations and trivial
fibrations respectively, M together with its model structure is called a model
category. When we have a given model category (M, C, F,W ), we will often
abuse of notation and call it M.

To simplify the reading of the diagrams, we will often use // // for fibra-
tions, // // for cofibrations and put a little ∼ on weak equivalences.

The reader familiar with the subject of model categories might have noticed
that this definition of model structure seems to differ a bit from the one usually
given. In fact our definition is slightly weaker than the one given in [3] (we don’t
necessarily have a functorial factorization of maps, even though we will see that
will be the case for cofibrantly generated model categories), and it is perfectly
equivalent to the one given in [1], as can be easily checked using the following
three lemmas.

Lemma 2.13. C, F , C ∩W and F ∩W are closed under retracts.

Proof. Let c ∈ C, a be a retraction of c, i.e. there are arrows such that the
following diagram commutes.
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a c a

We prove that a is a cofibration by showing that it has the left lifting property
with respect to all trivial fibrations. Indeed, let f ∈ F ∩W , and assume there
are two arrows such that the following diagram commutes:

a f

Then since a is a retraction of c and c has left lifting property with respect to
every trivial fibration, we obtain the following commutative diagram:

a c a f

x

The composition of x with the dashed arrow is then the desired lifting for a. The
proof for fibrations is dual to this one, and for trivial cofibrations and fibrations
we can proceed in a similar way.

Remark 2.14. In fact, the proof works exactly the same way for the following
statement:
Let C be a category, A and B two classes of maps in C . Assume A t B. Then
both A and B are closed under retracts.

Lemma 2.15. The class W of weak equivalences of a model category is closed
under retracts.

Proof. Let w ∈W and r be a retract of w, i.e. we have a commutative diagram
as follows.
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A X A

B Y B

r w

∼

r

b

We factorize r = f ◦ c, where c ∈ C ∩W and f ∈ F . We get the following
diagram.

A X A

E E

B Y B

c

∼
w

∼

c

∼

f f

b

Taking the pushout of E and X (whose existence is guaranteed by the cocom-
pleteness of M) we obtain the element E ∪A X. The universal property of the
pushout gives us the two dashed arrows in the following diagrams.

A X

E E ∪A X

B Y

c

∼

i

a

f p

∼

w

A X A

E E ∪A X Ea

c

∼

i c

∼

with w = p ◦ i. We see that i is in fact a retraction of c, and thus a trivial
cofibration (by lemma 2.13). By the 2-out-of-3 property, p ∈W . We are left to
show that f is a weak equivalence, then we can conclude that r = f ◦ c is in W
using the 2-out-of-3 property one more time.
We start with the lower part of the last diagram:
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E E ∪A X E

B Y B

a

b

f p

∼

f

We factorize p = q ◦ j, with j : E ∪AX → Z a trivial cofibration and q : Z → Y
a fibration. This permits us to write the following commutative diagram:

E ∪A X E

Z Y B

j

∼

f
d

q
∼

b

where the diagonal filler is obtained by the fact that (C ∩ W,F ) is a weak
factorization system. We use it to write down this diagram, showing that f is
a retract of q:

E E ∪A X Z E

B Y B

a

f

j
∼ d

q

∼

f

b

By lemma 2.13, f ∈ (F ∩W ) and in particular, f ∈ W . This concludes the
proof.

Lemma 2.16. Let C be any category, A and B two classes of maps in C.
Suppose that every map f in C can be factored as f = b ◦ a with a ∈ A and
b ∈ B, that A and B are closed under retracts and that A t B. Then At = B
and tB = A. In particular (A,B) is a weak factorization system in C.

Proof. We already have B ⊂ At and A ⊂ tB since A t B. So let f ∈ tB. We
will show that f ∈ A. By assumption, we can factorize f = b◦a with a ∈ A and
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b ∈ B. The lifting property then gives us the diagonal arrow c in the following
diagram.

a

f b
c

This permits us to write down a diagram showing that f is in fact a retraction
of a.

a f a

b c

Since A is closed under retracts, f ∈ A. A similar argument shows that B =
At.

2.2 Cofibrantly generated model categories

We introduce now a particular type of model category which has some useful
advantages, for example an increased simplicity to prove the axioms for a model
structure and to check if a functor is Quillen. The categories in which we are
interested - topological spaces and simplicial sets - are in fact categories of this
type.

Let C be any category, I a class of maps in C . In the literature (e.g. [3,
p. 30]), we often find the notation I-inj for the class It and I-proj for tI. We
will not adopt such convention for those classes of arrows, but we will use I-
cof for t(It) as is usually done, since we find this denomination helpful in the
reading.

Motivation for fibrantly and cofibrantly generated model categories comes
from the fact that in some examples fibrations are defined as F = Jt for some
set of arrows J (for example Serre fibrations and Kan fibrations are defined this
way, as we will see). This gives the hope of being able to reconstruct the whole
model structure starting from the class of weak equivalences and some sets of
arrows to retrieve the whole classes of fibrations and cofibrations using lifting
properties.

Before going on with a formal definition of cofibrantly generated model cat-
egories, we give a couple of results which will be useful later.

Lemma 2.17. (The Retract Argument) Let C be a category, f an arrow in C.
Assume we have a factorization f = p ◦ i and that f has the left lifting property
relative to p. Then f is a retract of i.
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Remark 2.18. The dual statement is: if f has the right lifting property relative
to i, then f is a retract of p.

Proof. We have the following commutative square, with the lift r induced by
the left lifting property of f relative to p.

A B

C C

i

f pr

Then the retraction diagram for f is the following:

A A A

C B C

f i f

r p

Lemma 2.19. Let I be a set of maps in a cocomplete category C. such that the
domains of the maps in I are small relative to I-cell. Then every map in I-cof
is the retract of some map in I-cell with the same domain.

Proof. Let f ∈ I−cof. Then by theorem 2.11, we have a factorization f = p ◦ i,
where i ∈ I−cell and p ∈ It. But f ∈ I−cof, so f t It. Then lemma 2.17 tells
us that f is a retract of i, concluding the proof.

Definition 2.20. Let (M, C, F,W ) be a model category. We callM cofibrantly
generated if there are two sets of maps I ⊆ C and J ⊆ C ∩W such that:

i. The domains of the maps in I, J are small with respect to I-cell and J-cell
respectively.

ii. The class of fibrations is F = Jt and the class of trivial fibrations is
F ∩W = It.

Then I is called the set of generating cofibrations, J the set of generating trivial
cofibrations.

Remark 2.21. If a category is cofibrantly generated, then it follows directly
from the small object argument (theorem 2.11) that the weak factorization
systems (C,F ∩W ) and (C ∩W,F ) are functorial.

Remark 2.22. There is an analogous (dual, in fact) notion of fibrantly generated
model category.
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Given the two generating sets, we can reconstruct the sets of cofibrations
and trivial cofibrations. Those are given by I-cof and J-cof respectively. Indeed,
C = t(F ∩W ) = t(It) = I−cof, and similarly for C ∩W .

We present now a result which help us to identify cofibrantly generated
model structures on categories.

Lemma 2.23. Let C be a cocomplete category, I a class of arrows in C . Then
I−cell ⊆ I−cof.

Proof. It is enough to show that I−cof is closed under pushouts and transfinite
compositions.
Pushouts: Let i ∈ I−cof, x a pushout of i, that is: we have a pushout diagram
as follows.

A X

B Y

i x

We show that x is in I−cof by proving it has the left lifting property with
respect to every map in It. Let j ∈ It be such that we have a commuting
square as follows.

X C

Y D

a

x j

We want to construct a diagonal filler. Left lifting property of i with respect to
j gives us the diagonal filler d in the next diagram (given by the dashed arrow).

A X C

B Y D

i

a

x j

We use d and the universal property of the pushout to construct the required
diagonal filler for the previous diagram:
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A X

B Y

C

i x

a

d

Transfinite compositions: Let c be a transfinite composition of a λ-sequence
X : λ→ C in I-cof. We prove that c is again an element of I-cof by transfinite
induction. It is obvious that the composition of two elements of I-cof is again in
I-cof. Let α ≤ λ be a limit ordinal and assume that the composition of arrows
up to α (excluded) is always in I-cof. Then, if we have a commutative square
as follows:

X0 A

X1

X2

...

Xα B

c0

c ∈ It

c1

c2

where the dashed arrows exist by induction hypothesis. Then since Xα is a
colimit, a diagonal filler is induced by universal property.

Theorem 2.24. Let C be a category which is complete and cocomplete. Let
W be a subcategory of C , I and J two sets of maps in C . The following are
equivalent:

i. There is a cofibrantly generated model structure on C with I as generating
cofibrations, J as generating trivial cofibrations and W as weak equiva-
lences.

ii. The following conditions are satisfied:

a) W satisfies the 2-out-of-3 property and is closed under retracts
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b) the domains of the maps in I, J are small relative to I-cell and J-cell
respectively

c) J−cell ⊆ (I−cof ∩W )

d) It ⊆ (Jt ∩W )

e) either (I−cof ∩W ) ⊆ J−cof or (Jt ∩W ) ⊆ It

Proof. Assume (i.) is true. Then by definition of model structure, W satisfies
the 2-out-of-3 property. By lemma 2.15, W is also closed under retracts. The
domains of the maps in I and J are small by definition of cofibrantly generated
model category. By lemma 2.23, J−cell ⊆ J−cof = I−cof ∩ W . Again by
definition of cofibrantly generated model category, It = Jt ∩W .

Now assume the conditions of (ii.) hold. We define the fibrations by F = Jt

and the cofibrations by C = I−cof. Then a proof very similar to the one
for lemma 2.13 gives us closeness under retracts for F and C. Closeness under
retracts of W implies then that C∩W and F ∩W are also closed under retracts.
By hypothesis, every map in It is a trivial fibration. Since every map in J-cell
is a trivial cofibration, and every map in J-cof is a retract of a map in J-cell
(by lemma 2.19), every map in J-cell is a trivial cofibration. By the small
object argument (theorem 2.11), (I−cof, It) and (J−cof, Jt) are (functorial)
weak factorization systems. By definition of C and F , and by lemma 2.23,
(C,F ∩ W ) and (C ∩ W,F ) factorize every arrow in C. We show they form
weak factorization systems. In order to do this we only have to prove the lifting
properties.

We notice that the two last conditions are equivalent (this is why we require
only one).
Claim: (I−cof ∩W ) ⊆ J−cof ⇔ (Jt ∩W ) ⊆ It
Proof: Assume (Jt ∩W ) ⊆ It, let i ∈ I−cof ∩W . By what we have proven
earlier, we can factorize i = j ◦ p with p ∈ J−cell ⊆ (I−cof ∩W ) and j ∈ Jt

(here we used the first version of the small object argument, proposition 2.10).
By 2-out-of-3 property of W , j ∈ Jt ∩W ⊆ It. Thus we get the diagonal filler
in the following diagram.

p

i jd

Then we see that i is a retract of j (the retraction diagram is given by the
obvious arrows), and thus a map in J−cof (the proof of this last fact is exactly
the same as for lemma 2.13).

An almost equal proof applies for the other direction. Assume (I−cof∩W ) ⊆
J−cof and let j ∈ Jt ∩W , then we can factorize j = i ◦ p, where i ∈ It and
p ∈ I−cof ∩W ⊆ J−cof. We have the diagram:
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p jd

i

And again we can conclude by a retraction argument. �
Now assume (I−cof∩W ) ⊆ J−cof. This means that every trivial cofibration

is in J−cof = t(Jt) and has the left lifting property relative to the class of
fibrations Jt. Let f be a fibration, then we can factorize f = i ◦ p, where
i ∈ I−cell ⊆ I−cof (by lemma 2.23) and p ∈ It ⊆ (I−cof∩W ) (by assumption).
By the 2-out-of-3 property, i is also a weak equivalence, and thus a trivial
cofibration. By the first part of the proof of the lifting property, i t F . By
lemma 2.17, f is a retract of p, and so f ∈ It (by remark 2.14). Notice that this
implies that f has the right lifting property relative to all maps in I−cof = C.
This proves that (C ∩W,F ) is a weak factorization system.

The proof for (C,F ∩W ) is done in a similar way assuming (Jt ∩W ) ⊆
It.

2.3 The homotopy category HoC
As already mentioned, the reason behind model categories is the study of ho-
motopy categories, that is, we take a category C with some set of arrows W , and
we want to study C up to identification given by arrows in W . A good example
is the study of homotopy theory in algebraic topology (the set of arrows W will
be given by the weak homotopy equivalences WTop, which we will define in the
section dedicated to topological spaces).

Definition 2.25. Let C be a category, W a subcategory of C. The homotopy
category C[W−1] = HoC is the localization of C in W . It is determined by the
following universal property: let Ho : C → HoC be the localization functor, and
let F : C → D be a functor in a category D such that the image of every arrow in
W is invertible. Then there is a functor (indicated by the dashed arrow) making
the following diagram commute:

C HoC

D

Ho

F

Said in other words, we take the category C and add (formal) inverses to every
arrow in W and complete the so obtained object with all possible compositions,
in order to have a (meta)category again.

For general categories, HoC (X,Y) is not necessarily a set for X,Y ∈ C, thus
in general HoC is not a category. However, this is true in case C is a model
category, whence their importance.
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Definition 2.26. Let C be a model category, X an object in C. Denote by 0
the initial object of C, by 1 its final object. X is said to be fibrant if the unique
map X → 1 is a fibration. It is said to be cofibrant if the map 0 → X is a
cofibration.
A fibrant replacement is a functor P : C → C which assigns to every object
X ∈ C a fibrant objet P (X), together with a natural transformation id ⇒ P
that is a weak equivalence at every object.
In the case of a cofibrantly generated model category, P (X) can be found by
factoring the unique morphism X → 1 into a trivial cofibration and a fibration:

X P (X)

1

∼

Similarly, a cofibrant replacement Q : C → C is a functor assigning (through
an analogue process) to every X ∈ C a cofibrant object Q(X) together with a
natural transformation Q⇒ id that is a weak equivalence at every object.

Remark 2.27. In a cofibrantly generated model category, the fibrant and cofi-
brant replacements are easily seen to be functors since the factorization systems
(C,F ∩W ) and (C ∩W,F ) are functorial.

The importance of the fibrant and cofibrant replacements is due to the fact
that they are used to prove that the class HoM (X,Y) is actually a set. More
precisely we have a bijection:

HoM (X,Y) ∼=M (Q(X),P(Y))/ ∼

where the equivalence relation ∼ is the homotopy equivalence relation de-
fined from the axioms of the model category (see [3, p. 13] for details). This
is true for any choice of fibrant and cofibrant replacements. In particular, this
shows that the homotopy category of a model category is really a category with
small hom-sets.

In [3, p. 13], we find the following result, which we state as a lemma (without
giving a proof here) in order to refer to it later:

Lemma 2.28. LetM be a model category. Then a map f is a weak equivalence
in M if, and only if it is an isomorphism in the homotopy category HoM.

2.4 Quillen adjunctions

Definition 2.29. Let C and D be two categories. An adjunction between C
and D (from C to D) is a triple (L,R, ϕ) where L : C → D and R : D → C
are functors and ϕ assigns to every couple of objects X ∈ C, Y ∈ D a bijection
ϕX,Y : D (L(X),Y)

∼→ C (X,R(Y)) which is natural in both X and Y . L is called
a left adjoint, R a right adjoint.
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The following general result about adjunction will be useful in the treatment
of simplicial sets.

Lemma 2.30. Let (L,R, ϕ) be an adjunction from C to D, A a class of maps
in C and B a class of maps in D. Then:

i. R(L(A)t) ⊆ At

ii. L(A−cof) ⊆ L(A)−cof

iii. L(tR(B)) ⊆ tB

iv. R((tB)t) ⊆ t(R(B))t

Proof. For (i.), let g ∈ L(A)t and f ∈ A. Then g has the right lifting property
relative to L(f). By adjointness, R(g) has the right lifting property relative to
f , and so R(g) ∈ At.

For (ii.), let f ∈ A−cof and g ∈ L(A)t. Then by (i.), R(g) ∈ At, and thus
f has the left lifting property relative to R(g). By adjointness, L(f) has the left
lifting property relative to g, and thus L(f) ∈ L(A)−cof.

(iii.) and (iv.) are dual statements to (i.) and (ii.).

Definition 2.31. Let M and N be model categories. A functor L : M → N
is a left Quillen functor if it is a left adjoint and it preserves cofibrations and
trivial cofibrations.
A functor R : N → M is a right Quillen functor if it is a right adjoint ad it
preserves fibrations and trivial fibrations.

Definition 2.32. A Quillen adjunction between two model categoriesM and N
(from M to N ) is an adjunction (L,R, ϕ) from M to N with L a left Quillen
functor and R a right Quillen functor.

Given a Quillen adjunction (L,R, ϕ), we will usually denote the unit X →
RL(X) by η and the counit LR(X)→ X by ε. The unit is obtained as the right
adjoint of the identity map idL(X) : L(X) → L(X), similarly the counit is the
left adjoint of the identity map of R(X).

In fact, it is enough that one of the two functors be Quillen to have a Quillen
adjunction, as the following lemma shows.

Lemma 2.33. Let M and N be two model categories, (L,R, ϕ) an adjunction
between them. The following are equivalent:

i. R is a right Quillen functor.

ii. L is a left Quillen functor.

iii. (L,R, ϕ) is a Quillen adjunction.

20



Proof. We show that (i.) implies (ii.). Assume (L,R, ϕ) is an adjunction and R
is a right Quillen functor. Then L is a left adjoint and we only have to prove that
it preserves cofibrations and trivial cofibrations. Remember that C = t(F ∩W )
and C ∩W = tF .
Let f be a cofibration inM , p a trivial fibration in N . Then since R is Quillen,
for every commuting square there is a diagonal arrow a such that:

X R(Z)

Y R(W )

k

f R(p)

∼a

l

By naturality of ϕ we have than the following commuting diagram:

L(X) Z

L(Y ) W

ϕ−1(k)

L(f) p

∼

ϕ
−1 (a

)

ϕ−1(l)

Thus L(f) has the left lifting property with respect to every trivial cofibration,
and thus it is a fibration in N . The proof of the fact the L preserves trivial
cofibrations is done similarly.
Dually we obtain that (ii.) implies (i.). Thus if we have that one of the adjoints
is Quillen, so is the other and thus the adjunction is Quillen (by definition).
Conversely, if the adjunction is Quillen, both of the functors are Quillen.

Thank to this result, it is possible to express any Quillen adjunction by its
left Quillen functor alone.

As we have mentioned before, if we have a cofibrantly generated model
category it is much easier to show that an adjunction is Quillen. The next
lemma shows how.

Proposition 2.34. Let M and N be model categories, assume that M is cofi-
brantly generated by a set of generating fibrations I and a set of generating
trivial cofibrations J . Let (L,R, ϕ) : M→ N be an adjunction. The following
are equivalent:

i. (L,R, ϕ) is a Quillen adjunction.

ii. For every i ∈ I and for every j ∈ J , L(i) is a cofibration and L(j) is a
trivial cofibration.
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Proof. (ii.) follows from (i.) by definition of Quillen functors.
Now assume (ii.) holds. We show that L is a left Quillen functor. This will

be enough by what we proved in the last lemma. Let IC , ID denote the sets
generating cofibrations in C and D respectively. By lemma 2.30, L(IC−cof) ⊆
L(IC)−cof. But by assumption we know that L(IC) ⊆ ID−cof, and thus that
L(IC)−cof ⊆ ID−cof. So L(IC−cof) ⊆ L(IC)−cof ⊆ ID−cof, or, said in words,
L preserves cofibrations. A similar argument shows that L preserves trivial
cofibrations.

Quillen adjunctions between model categories induce adjunctions in the ho-
motopy categories. More precisely, if we have an adjunction between two model
categories M and N :

M N
L

R

then it induces an adjunction (called the derived adjunction) between the ho-
motopy categories as follows:

HoM HoN
LQ

RP

A proof that this is really an adjunction can be found in [3, p. 18].

Remark 2.35. Let X ∈ HoC be a cofibrant object, then the unit at X is given
by the composition

X
η−→ RL(X)

R(i)−→ RPL(X)

where η is the unit of the original adjunction, and i is the fibrant replacement
of L(X). Notice that i is a weak equivalence. For general X ∈ HoC, the unit is
given by

X
∼←− Q(X) −→ RPLQ(X)

where the leftmost arrow is the cofibrant replacement of X. Note that since it
is a weak equivalence it is invertible in the homotopy category. The counit is
constructed in a similar way.

The functors in the new adjunction are called the derived functors of L and
R (see for example [3, p. 16] for more on derived functors). We will see that if
the Quillen adjunction is a Quillen equivalence, then the adjunction induced on
the homotopy categories is in fact an equivalence of categories.

2.5 Quillen equivalences

Definition 2.36. Let M and N be model categories A Quillen equivalence
between M and N is a Quillen adjunction (L,R, ϕ) from M to N such that for
every cofibrant X ∈ M and every fibrant Y ∈ N , a map f : L(X) → Y is a
weak equivalence in M if and only if ϕ(f) : X → R(Y ) is a weak equivalence in
N .
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Definition 2.37. Let C and D be two categories. An equivalence of categories
between C and D is composed by two functors F : C → D and G : D → C and
two natural isomorphisms ε : FG⇒ idD and η : idC ⇒ GF .

Having an equivalence between two categories means that they are “essen-
tially the same”. The importance of Quillen equivalences comes from the fact
that even if it isn’t an equivalence of categories on its own, the derived adjunc-
tion is an equivalence of categories. More precisely:

Proposition 2.38. Let (L,R, ϕ) :M→N be a Quillen adjunction. Then the
following are equivalent:

i. (L,R, ϕ) is a Quillen equivalence.

ii. The composite map

X
η−→ RL(X)

R(i)−→ RPL(X)

is a weak equivalence for every cofibrant X, and the composite

LQR(X)
L(p)−→ LR(X)

ε−→ X

is a weak equivalence for every fibrant X.

Those are the maps contructed in remark 2.35 and represent unit and
counit in the homotopy category.

iii. (LQ,RP, ϕ̃) : HoM → HoN is an equivalence of categories (for some
choice of ϕ̃).

Proof. We will prove that i. is equivalent to ii., and that ii. is equivalent to iii..
i.⇒ ii.: Assume (L,R, ϕ) is a Quillen equivalence. Recall that the map L(X)→
PL(X) is a weak equivalence, L(X) is cofibrant (since L is a left Quillen functor)
and PL(X) is fibrant. Thus the adjoint map X → RPL(X) is also a weak
equivalence, because the adjunction is a Quillen equivalence. The derivation for
the second map is dual.
ii.⇒ i.: Assume ii. holds, let X ∈ M be cofibrant and Y ∈ N be fibrant,
and f : L(X) → Y be a weak equivalence in N . Then ϕ(f) is given by the
composition

X
η−→ RL(X)

R(f)−→ R(Y )

We have the following commutative diagram:

X RL(X) R(Y )

X RPL(X) RP (Y )

η R(f)

R(pL(X)) R(pY )

∼
RP (f)
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where pY denotes the arrow Y → P (Y ) obtained when applying the fibrant
replacement, and pL(X) is obtained in the same way. Those two maps are trivial
cofibrations by construction. The map X → RPL(X) is a weak equivalence by
assumption. Since f is a weak equivalence, so is P (f), as the following diagram
indicates:

L(X) Y

PL(X) P (Y )

1 1

f

C ∩W 3

∼ ∈ C ∩W

∼

P (f)

F 3 ∈ F

Notice that R, being a right Quillen functor, preserves weak equivalences be-
tween fibrant objects, and thus RP (f) is a weak equivalence. Now the 2-out-of-3
property assures that ϕ(f) is a weak equivalence. A similar proof shows that if
ϕ(f) : X → R(Y ) is a weak equivalence, then so is f .
ii.⇒ iii.: Assume ii. holds. Notice that by construction, the map X → Q(X)
is a weak equivalence. Now consider the following sequence of arrows:

X
∼←− Q(X)

∼−→ RPLQ(X)

where the rightmost map is a weak equivalence by assumption. Recall that when
localizing, weak equivalences become isomorphisms, and thus that gives us an
isomorphism ηX : X → RPLQ(X) which is in fact a natural transformation
η : idHoM ⇒ (RP )(LQ). In the same way we obtain a natural isomorphism
ε : (LQ)(RP ) ⇒ idHoN . Those are in fact the unit and counit of the derived
adjunction, as we have stated in remark 2.35. Thus we have proved that the
adjunction induced on the homotopy categories is in fact an equivalence of
categories.
iii.⇒ ii.: We can proceed as in the proof of ii. ⇒ iii., and use lemma 2.28 to
deduce that the arrow Q(X)→ RPLQ(X) is a weak equivalence. If X is taken
to be cofibrant, then X ∼= Q(X), and we are done. The proof for the second
arrow is similar.

To conclude this section, we present a criterion which permits us to check if
a Quillen adjunction is a Quillen equivalence.

Definition 2.39. A functor F : C → D is said to reflect some property if for
any arrow f ∈ C such that F (f) has said property, f also has the property.

Proposition 2.40. Let (L,R, ϕ) : M → N be a Quillen adjunction between
two model categories M and N . The following are equivalent:

i. (L,R, ϕ) is a Quillen equivalence.
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ii. L reflects weak equivalences between cofibrant objects and for every fibrant
Y ∈ N the map LQR(Y )→ Y is a weak equivalence in N .

iii. R reflects weak equivalences between fibrant objects and for every cofibrant
X ∈M the map X → RPL(X) is a weak equivalence in M.

The map LQR(Y ) → Y is found by applying the bijection N (LQR(Y),X) ∼=
M (QR(Y),R(X)) to the cofibrant replacement QR(Y )→ R(Y ). The map X →
RPL(X) is obtained similarly.

Proof. We will prove that i. is equivalent to ii., the proof that i. is equivalent
to iii. is dual.
i.⇒ ii.: Assume (L,R, ϕ) is a Quillen equivalence. As we have seen in propo-
sition 2.38 the map LQR(Y ) → Y is a weak equivalence for every Y which is
fibrant.

Now let X,Y ∈ M be cofibrant objects, f : X → Y be such that L(f)
is a weak equivalence. Since L preserves weak equivalences between cofibrant
objects, LQ(f) is a weak equivalence. But this means that LQ(f) is an iso-
morphism in the homotopy category HoN . Since the adjunction (LQ,RP, ϕ̃) is
an equivalence of categories (again by proposition 2.38), f is an isomorphism
in HoM. This is true if, and only if, f is a weak equivalence (by lemma 2.28).
Thus L reflects weak equivalences between cofibrant objects.
ii.⇒ i.: We show that (LQ,RP, ϕ̃) is an equivalence of categories, then propo-
sition 2.38 concludes the claim. We have to show that unit and counit maps
for this adjunction are isomorphisms in the homotopy categories. As stated in
remark 2.35, the counit map makes the following diagram commute:

LQRP (X) P (X) X∼ ∼

where the left arrow is a weak equivalence by assumption, and the right one
by construction. Thus the counit map is an isomorphism at every level in the
homotopy category.

Notice that the composition of the unit map X → RPLQ(X) with LQ gives
us the map LQ(X)→ LQRPLQ(X) which is inverse to the counit, and thus an
isomorphism (in the homotopy category). L reflects weak equivalences between
cofibrant objects, thus Q(X) → QRPLQ(X) is an isomorphism. Q reflects all
weak equivalences, thus the unit map is an isomorphism at every level, and
(LQ,RP, ϕQ) is an equivalence of categories.
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3 The model structure on topological spaces

The category of topological spaces, denoted by Top, is the category with all
topological spaces as objects, and the continuous functions between topological
spaces as arrows.

3.1 Completeness and cocompleteness of Top

The category Top is both complete and cocomplete. In fact there is an easy
way to construct limits and colimits in it. Let U : Top→ Sets be the forgetful
functor associating to every topological space its underlying set. Let I be a
small category and F : I → Top be a functor of which we would like to
find the limit. In order to do that, we construct first the limit of the functor
G = U ◦ F : I → Sets (which we know to exist, since Sets is complete), then
we topologize it with the initial topology from the maps limG → F (i), i.e. by
defining a subset of limG to be open if, and only if it is the preimage of an
open set in some of the F (i) (an alternative description of this topology is the
subspace topology of

∏
i∈I F (i) in the product topology). Similarly, if we want

to find the colimit of F , we first find the colimit of G and put on it the final
topology from the maps F (i) → colimG, i.e. by defining a subset of colimG
to be open if, and only if its preimage under every one of said maps is open
(alternative definition: the quotient topology from

∐
i∈I F (i)).

We give as example the explicit construction of pushouts.

Example 3.1. We want to construct the colimit of the following diagram:

A Y

X

f

g

The colimit of the diagram in the category Sets of sets is given by

X ∪A Y = (X t Y )/{f(a) ∼ g(a)|a ∈ A}

We put on this set the final topology with respect to the inclusions of X and Y ,
given by iX(x) = [x] and iy(y) = [y] respectively. That means that a subset V
of X ∪A Y is open if, and only if, i−1

X (V ) is open in X and i−1
Y (V ) is open in

Y .

3.2 The model structure on Top

Here and in the rest of this section, we denote the closed unit interval by I =
[0, 1]. Every map is an arrow in Top , and thus a continuous function. We also
denote by Sn−1 the unit sphere in Rn, and by Dn the closed unit ball in Rn
(with the standard topology).

We define the following sets of maps:
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- WTop is the set of maps map f : X → Y such that X 6= ∅ and

πn(f, x) : πn(X,x)→ πn(Y, f(x))

is a group isomorphism for every n ≥ 0 and every x ∈ X plus the identity
map of the empty set; we call those arrows weak (homotopy) equivalences

- ITop = {Sn−1 ↪−→ Dn|n ≥ 0}

- JTop = {Dn → Dn × I, x 7→ (x, 0)|n ≥ 0}

- FTop = Jt
Top, we call those arrows fibrations

- CTop = ITop−cof = t(ItTop), we call those arrow cofibrations

We claim those sets define a model structure on Top.

Theorem 3.2. (Top, CTop, FTop,WTop) is a model category which is cofi-
brantly generated with ITop as set of generating cofibrations and JTop as set
of generating trivial cofibrations.

Remark 3.3. Maps in ITop-cell are usually called relative cell complexes. A
special case are the relative CW-complexes. In particular, every map in JTop

can be described as a relative CW-complex, thus we have the relation JTop ⊆
ITop−cell ⊆ ITop−cof, and thus JTop−cof ⊆ ITop−cof. The fibrations are
often called Serre fibrations in the literature.

Proof. We prove this theorem by verifying the assumptions of theorem 2.24.
We do this in a number of smaller lemmas and theorems, of which we give an
overview below:

a) WTop satisfies the 2-out-of-3 property and is closed under retracts (lemma
3.4)

b) the domains of the maps in ITop, JTop are small relative to ITop-cell and
JTop-cell respectively (proposition 3.9)

c) JTop−cell ⊆ (ITop−cof ∩WTop) (proposition 3.11)

d) ItTop ⊆ (Jt
Top ∩WTop) (lemma 3.12)

e) (Jt
Top ∩WTop) ⊆ ItTop (proposition 3.13)

We will not prove point (e). As it would have required us to introduce more
technical results of algebraic topology.

We begin by proving that the weak equivalences satisfy the required prop-
erties. After we have done this, we will turn to prove the properties needed on
ITop and JTop.

Lemma 3.4. WTop satisfies the 2-out-of-3 property and is closed under retracts.
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Proof. Let f : X → Y , g : Y → Z, h : X → X be maps such that g ◦ f = h. If
f and g are in WTop, then obviously so is h. The same is true for g and h in
WTop. The problem that could arise if we have f and h in WTop and we want to
show that g is in WTop is that we could have a point y ∈ Y which is not in the
image of f (and thus we would have, a priori, no means to check if πn(g, y) is a
bijection). This potential problem is solved by noticing that if y1, y2 ∈ Y are in
the same path connected component, then πn(Y, y1) ∼= πn(Y, y2), and that with
π0(f) the problem is not present.

If we have a retract f of some w ∈ WTop, we can take the image of the
retraction diagram under πn. Then it is easy to directly obtain an inverse for
πn(w, ·) using the fact that πn(f, ·) is a bijection.

We attack now the problem of showing that the domains of the maps of ITop

and JTop are small relative to ITop-cell and JTop-cell respectively.

Definition 3.5. A map f : X → Y is a closed T1 inclusion if it is an inclusion
of X in Y , it is a closed map (equivalently: f(X) is closed in Y ) and every
point in Y \f(X) is closed in Y .

Lemma 3.6. Closed T1 inclusions are closed under pushouts and transfinite
compositions.

In particular, every map in ITop-cell is a closed T1 inclusion.

Proof. Let i ∈ ITop, j a pushout of i. This means we have a pushout diagram:

A Y

X X ∪A Y

a

i j

b

Then j is injective. We show j is a closed inclusion. By the construction of the
topology on the pushout X∪AY , j(Y ) is closed if and only if b−1(j(Y )) is closed
in X. Since i is injective we have a−1(j(Y )) = i(b−1(Y )). Since i is a closed
map, this set is closed in X, and thus j(Y ) is closed in the pushout. Hence, j
is a closed inclusion. Now let p ∈ X ∪A Y \j(Y ). Then, by construction of the
pushout, b−1(p) is a single point x ∈ X\i(A). Since i is a closed T1 inclusion,
{x} is closed in X. It follows (again by how pushouts are contructed in Top)
that {p} is closed in X ∪A Y . Thus j is a closed T1 inclusion.

Let X : λ→ Top be a λ-sequence of closed T1 inclusions. This means that
every map Xα → Xα+1 is a closed T1 inclusion. We use transfinite induction
to show that the composition of the sequence is again a closed T1 inclusion.
The case of a finite composition is trivial, so let α be a limit ordinal and assume
X0 → Xβ is a closed T1 inclusion for every β < α. Denote by iβ the composition
X0 → Xβ , and by iβ the composition Xβ → Xα. We have to show that f is
injective, a homeomorphism with its image, a closed map and that every point
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not in f(X0) is closed.
iα is injective: It is easy to prove that in fact any transfinite composition of
injective arrows is again injective.
iα is an inclusion: We show that iα is a homeomorphism with its image by
proving it is a closed map. Let U ⊆ X0 be closed, then by induction hypothesis,
iβ(U) is closed in Xβ . Since (iβ)−1(iα(U)) = iβ(U) (by injectivity of all the
maps), we have that iα(U) is closed in Xα (recall that the colimit Xα has the
final topology of the maps iβ).
iα is closed: By induction hypothesis, iβ(X0) is closed in Xβ for every β < α.
Notice that since every iβ is injective, we have (iβ)−1(iα(X0)) = iβ(X0). Again
by construction of the colimit, this means that iα(X0) is closed in Xα.
Every x ∈ Xα\iα(X0) is closed: Let x ∈ Xα\iα(X0). By injectivity of all the
iβ , we have that (iβ)−1({x}) is always either empty of a point in Xβ\iβ(X0),
and thus closed. This implies that x is closed in Xα.

Notice that every map in ITop is a closed T1 inclusion. Thus every map in
ITop−cell is a closed T1 inclusion by definition.

Lemma 3.7. Compact topological spaces are finite (i.e. ω-small) relative to
closed T1 inclusions.

Proof. Let λ be a limit ordinal (any limit ordinal is good, since every ordinal is
ω-filtered), X : λ → Top a λ-sequence of closed T1 inclusions. Then for every
α < λ, lemma 3.6 shows that the map Xα → colimβ<λXβ =: Xλ is again a
closed T1 inclusion. Because of this fact, we will abuse of notation and denote
the image of Xα in Xλ again by Xα.

Let A be a compact topological space and f : A → colimβ<λXβ . We have
to prove that f factors through some Xα, i.e. that there exist some α < λ such
that f(A) is completely contained in the image of Xα in colimβ<λXβ .

Assume it is not true. Then there exist a sequence {αn}n∈N of ordinals
smaller than λ together with a sequence S = {xn}n∈N ⊆ f(A) such that xn ∈
Xαn\Xαn−1 , where we take α0 = 0. We will show that S is closed and discrete
as a subspace of Xλ. This implies that it has no limit points, which is in
contradiction with the fact that f(A) is compact.

Let µ = supn αn ≤ λ. Then µ is a limit ordinal and Xµ = colimβ<µXβ =
colimnXαn . By construction, the intersection of any subset S′ ⊆ S with any of
the Xαn is finite and don’t intersect X0 = Xα0 , and thus closed. Recall that Xµ

is endowed with the final topology induced by the inclusions of the Xαn , thus
S′ is closed in the subspace topology of Xµ. Then, since the map Xµ → Xλ is
a closed T1 inclusion, and in particular a closed map, S′ is closed as a subspace
of Xλ. In particular we have that S is closed (take S′ = S) and discrete (every
subset of S is closed implies that every subset of S is also open).

Uniqueness of the factorization is a trivial consequence of the fact that any
(transfinite) composition of closed T1 inclusions is a closed T1 inclusion (lemma
3.6).

This, together with lemma 3.6, shows that the domains of the maps of ITop

(which are compact) are small relative to ITop-cell. For JTop we have:
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Lemma 3.8. Every map in ITop-cof is a closed T1 inclusion.

Proof. Since we know that the domain of every map in ITop is small relative to
ITop-cell, we can apply lemma 2.19, which tells us that every map in ITop-cof
is the retract of some map in ITop-cell. Thus it is enough to show that closed
T1 inclusions are closed under retracts.

Suppose f is the retract of some closed T1 inclusion g with the following
retraction diagram:

A X A

B Y B

a

f

r

g f

i b

Then it is easy to see that f must be injective. To show that f is a closed
inclusion, it is enough to show that for every C ⊆ A closed, f(C) is closed in
B. But f(C) = (i−1 ◦ g ◦ r−1)(C), and thus it is closed.

Now let y ∈ B\f(A). Then we have that i(y) /∈ g(X). Indeed, if i(y) = g(x)
for some x ∈ X, then we would have y = b(g(x)) = f(r(x)), which would be a
contradiction. Thus i(y) is closed. i is injective, so we have that y = i−1(i(y))
is closed. It follows that f is a closed T1 inclusion.

Thanks to those results, we can complete the proof of point (b):

Proposition 3.9. The domains of the maps in ITop are small relative to
ITop−cell, and the domains of the maps in JTop are small relative to JTop−cell.

Proof. As stated before, lemma 3.7 and lemma 3.6 imply that the domains of
the maps in ITop are small relative to ITop−cell.

For the second part of the theorem, we have that JTop−cell ⊆ JTop−cof ⊆
ITop−cof, thus every map in JTop−cell is a closed T1 inclusion. Again by
lemma 3.7, we conclude that the domains of the maps in JTop are small relative
to JTop−cell.

In order to go on, we need a couple of results.

Lemma 3.10. Let X : λ→ Top be a λ-sequence of maps which are both weak
equivalences and closed T1 inclusions. Then the map X0 → colimα<λXα is both
a weak equivalences and a closed T1 inclusions.

Proof. Since we have shown that closed T1 inclusions are closed under transfinite
compositions (lemma 3.6), it will be enough to show that for every α ≤ λ, the
map iα : X0 → Xα is a weak equivalence. We will do so using using transfinite
induction. This is trivial for α = 0, and if we assume we have proved the fact up
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to α, then the case α+ 1 is also true, since weak equivalences are stable under
composition. So let α be a limit ordinal, n > 0 and fix a base point x0 ∈ X0.

We show πn(iα, x0) is surjective. Let [f ] ∈ πn(Xα, iα(x0)) be the equivalence
class of some map f : (Sn, ∗)→ (Xα, x0). Then by lemma 3.7, f factors through
some map g : (Sn, ∗) → Xβ for some β < α. Thus [f ] is in the image of
πn(Xβ , iβ(x0)). Since iβ is a weak equivalence, [f ] is also in the image of iα.

We show πn(iα, x0) is injective. Let [f ], [g] ∈ πn(X0, x0) be two different
elements of πn(X0, x0). Assume by contradiction that iα(f) and iα(g) are ho-
motopic, with a basepoint-preserving homotopy H : Sn ∧ I+ → Xα, where
Sn ∧ I+ = (Sn × I)/(∗ × I) (i.e. the “path” of the basepoint in Sn × I is
identified to a single point). Again by lemma 3.7, H factors through a map
Hβ : Sn ∧ I+ → Xβ for some β < α. Then Hβ is a basepoint-preserving ho-
motopy between iβ(f) and iβ(g). Since iβ is a weak equivalence, f and g are
homotopic in X0, contradicting the assumption.

We are left to prove the case n = 0. Again, we use transfinite induction. If
it is true for every ordinal up to α (included), then it is also true for α+1, since
the map Xα → Xα+1 induces a bijection π0(Xα) ∼= π0(Xα+1). So let α be a
limit ordinal.

Surjectivity: We take a point x ∈ Xα. Since Xα is the colimit of the λ-
sequence restricted to all ordinals less than α, x must be in the image of Xβ for
some β < α. This implies that the path-connected component [x] ∈ π0(Xα) is
in the image of π0(Xβ), and thus the map induced on the π0 by the composition
of the sequence is surjective on path components.

Injectivity: Let x, y ∈ Xα be in the same path-connected component, and let
γ : I → Xα be a path from x to y. Then, by lemma 3.7 and the fact that α is ω-
filtered, γ factors through Xβ for some β < α, and thus the preimages of x and
y are in the same path-connected component of Xβ . This implies that the map
π0(X0) → π0(Xα) induced by the (partial) transfinite composition is injective.
Indeed, if [x0], [y0] ∈ π0(X0) are two path-connected components with the same
image in π0(Xα), by the reasoning above we get some β < α such that the image
of [x0] and [y0] are the same. Thus, by induction hypothesis, [x0] = [y0].

We prove JTop−cell ⊆ (ITop−cof ∩WTop). The following lemma does the
job, together with lemma 2.23.

Proposition 3.11. Every map in JTop-cof is a trivial cofibration.

Let X ⊆ Y , i : X ↪−→ Y the inclusion map. Recall that a deformation
retraction is a continuous map H : Y × I → Y such that H(i(x), t) = i(x) for
every x ∈ X and t ∈ I, H(y, 0) = y for every y ∈ Y and H(y, 1) ∈ i(X) for
every y ∈ Y . Mote that H(−, 1) is a retraction. If a deformation retraction
exists, then i is called the inclusion of the deformation retract. An inclusion of
a deformation retract is a homotopy equivalence, and thus a weak equivalence.

Proof. As remarked before, we have that JTop−cof ⊆ ITop−cof, thus every
map in JTop-cof is a cofibration. We are left to show that every such map is a
weak equivalence.
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Notice that every map in JTop is the inclusion of a deformation retract. We
have to show that the class of inclusions of deformation retracts is closed under
pushouts. Once we have done so, knowing that pushouts of maps in JTop are also
closed T1 inclusions (since closed T1 inclusions are closed under pushouts, as we
have seen in the proof of lemma 3.6), we also have that transfinite compositions
of pushouts of maps in JTop are weak equivalences (by lemma 3.10), i.e. that
JTop−cell ⊆ WTop. Thus the fact that weak equivalences are closed under
retracts gives us that every map in JTop-cof is also a weak equivalence, by
lemma 2.19.

So, let i be the inclusion of a deformation retract and suppose we have a
pushout diagram as follows.

A Y

X X ∪A Y

i j

a

Then (because the functor − × I commutes with colimits, since I is locally
compact) we also have the following diagram, which is again a pushout diagram:

A× I Y × I

X × I (X ∪A Y )× I

where the maps are the same as in the previous diagram in product with the
identity map of I.

Let K : X × I → X be the homotopy that makes i into an inclusion of a
deformetion retract. Then we induce the map H in the following diagram by
universal property of the pushout.

A× I Y × I

X × I (X ∪A Y )× I

X X ∪A Y

(y, t) 7→
j(y)

K
H

a

Then H is a homotopy with j as inclusion. Indeed, by construction we have
H(j(y), t) = j(y). We also have H(p, 0) = p. Indeed, if p is in the image of j,
then what just said does the job. Else p = a(x) for some x ∈ X, and thus by
construction H(p, 0) = H(a(x), 0) = a(K(x, 0)) = a(x) = p.

We show ItTop ⊆ (Jt
Top ∩WTop).
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Lemma 3.12. Every map in ItTop is a trivial fibration.

Proof. From JTop−cof ⊆ ITop−cof follows ItTop ⊆ Jt
Top, and thus every element

of ItTop is a fibration. We are left to show that they are weak equivalences.

Let p : X → Y be in ItTop, x0 ∈ X. We show p is a weak equivalence by
proving that πn(p, x0) : πn(X,x0) → πn(Y, p(x0)) is bijective for every n > 0,
and that π0(p) : π0(X)→ π0(Y ) is also bijective. Begin by taking n > 0.

πn(p, x0) is surjective: Note that the map ∗ → Sn is the pushout of the
inclusion map Sn−1 ↪−→ Dn:

Sn−1 ∗

Dn Sn

As we have explained previously, the pushout is obtained by taking the quotient
of ∗tDn on the image of Sn−1, that is by identifying all of the boundary of Dn

with the point ∗. The resulting space is obviously the n-sphere Sn. Thus the
map ∗ → Sn is in ITop-cof. Indeed, let i ∈ ItTop, and assume we have a square
diagram as follows.

∗ A

Sn B

i

Then the fact that the inclusion Sn−1 ↪−→ Dn is in ITop induces the diagonal filler
denoted by d in the next diagram. The filler for the lifting property (denoted
by a dashed arrow) is the induced by universal property of the pushout.

Sn−1 ∗ A

Dn Sn B

id

Now let f : (Sn, ∗)→ (Y, p(x0)). We show that there is an arrow g : (Sn, ∗)→
(Y, p(x0)) such that f = p ◦ g. We can write our arrows as follows:
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(Sn, ∗) (Y, p(x0) (X,x0)

∗ ∗ ∗

Sn Y X

f p

∗
7→
p
(x

0 )

∗
7→
x

0

f p

The required map g : Sn → X is then induced by lifting property through the
following diagram.

∗ X

Sn Y

t(ItTop) 3 p ∈ ItTop
g

f

πn(p, x0) is injective: Let f, g : (Sn, ∗)→ (X,x0) be such that [p◦f ] = [p◦g]
in πn(Y, p(x0)). Then we have a basepoint preserving homotopy H : Sn×I → Y
between the two maps p ◦ f and p ◦ g. We can see this homotopy as a map
H̄ : Sn ∧ I+ → Y (recall that Sn ∧ I+ = (Sn × I)/(∗ × I)). The maps f and g
induce a map (f, g) : Sn ∨Sn → X, where Sn ∨Sn = (Sn×{0, 1})/(∗×{0, 1}).
Since the inclusion map Sn ∨ Sn ↪−→ Sn ∧ I+ is a relative CW-complex, and
thus in ITop-cof, the desired homotopy between f and g is obtained by lifting
property in the diagram:

Sn ∨ Sn X

Sn ∧ I+ Y

(f, g)

p

H̄

Now for the case n = 0.
π0(p) is surjective: Notice that the map ∅ → ∗ is in ITop. The following com-

muting diagram (induced by lifting property) shows that in fact p is surjective
(which is stronger than what we were set to prove):
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∅ X

∗ Y

p

π0(p) is injective: Notice that the inclusion {0, 1} ↪−→ I is in ITop. Let
x, y ∈ X be two points such that p(x) and p(y) are in the same path con-
nected component, and let γ be a path in Y from p(x) and p(y) then the lifting
property shows that x and y are in the same path connected component of X.
In a diagram:

{0, 1} X

I Y

(x, y)

p

γ

Finally, we have the following result which, by theorem 2.24, concludes the
proof of the fact that the structure we have defined is effectively a model struc-
ture on Top:

Proposition 3.13. Every trivial fibration is in ItTop.

The interested reader can refer to [3, p. 54] for a proof.
We have the following nice result about fibrant and cofibrant objects in Top,

which will be useful later.

Lemma 3.14. Every topological space is fibrant, and CW-complexes are cofi-
brant.

Proof. Let X be any topological space. Then the (unique) map X → ∗ to the
terminal object ∗ (the one-point-set) is a fibration. Indeed, assume we have a
commutative square as follows:

Dn X

Dn × I ∗

a

Then we always have a diagonal filler given by h : Dn × I → X, h(x, t) = a(x).
Thus every element of Top is fibrant.

Now let X be a CW-complex. By definition of CW-complexes, the map
∅ → X from the initial object (the empty set) to X is in I−cell ⊆ I−cof. Thus
all CW-complexes are cofibrant.
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We will now turn to the study of the model structure on the category of
simplicial sets.
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4 The model structure on simplicial sets

4.1 The category SSet

Definition 4.1. The simplicial category ∆ is the category with objects

[n] = {0, 1, . . . , n}

for n ∈ N0 and arrows the weakly order preserving maps. Said otherwise, we
have f ∈ ∆ ([n], [k]) if and only if x ≤ y ⇒ f(x) ≤ f(y) for every x, y ∈ [n].

We can interpret geometrically the objects of ∆ as follows. The simplex [n]
is the convex closure of the points e0, e1, . . . , en in Rn+1, where ei denote the
elements of the standard basis. Otherwise said, it is the subset of Rn+1 given
by {(x0, . . . , xn) :

∑n
i=0 = 1, xi ≥ 0 ∀i}.

∆ has the two subcategories ∆+ and ∆− of injective and surjective order-
preserving maps. Every map in ∆ can be factored in one element in ∆− followed
by one in ∆+. ∆ is in fact generated by the morphisms di : [n− 1]→ [n] ∈ ∆+

(n ≥ 1, 0 ≤ i ≤ n) whose image doesn’t include i, and the morphisms si : [n]→
[n− 1] ∈ ∆− (n ≥ 1, 0 ≤ i ≤ n− 1) identifying i and i+ 1.

The maps di can be seen as the inclusion of a face of dimension n− 1 in the
n-simplex [n], and the maps si as “collapsing one dimension” of the n-simplex.
This extends to a nice geometrical interpretation of all the arrows in ∆, which
can be formalized in a functor r : ∆→ Top as follows:

• r[n] = {(x0, . . . , xn) :
∑n
i=0 = 1, xi ≥ 0 ∀i} ⊂ Rn+1

• r[di] : r[n− 1]→ r[n] is given by the inclusion of coordinates

r[di](x0, . . . , xn−1) = (x0, . . . , xi−1, 0, xi, . . . , xn−1)

• r[si] : r[n] → r[n − 1] is obtained crushing two dimensions together as
follows

r[si](x0, . . . , xn) = (x0, . . . , xi−1, xi + xi+1, xi+2, . . . , xn−1)

Given any category C we define the category of simplicial objects in C as
the category of functors from ∆op to C, usually denoted by C∆op

. The case we
are interested in is when C is the category Sets of sets.

Definition 4.2. The category SSet of simplicial sets is defined as the category
of presheaves over ∆. In other words, it is the category with functors from
∆op to Sets as objects and natural transformations between such functors as
morphisms.

Let K ∈ SSet, i.e. a functor K : ∆op → Sets. Then we denote K([n]) by
Kn.

There are two important types of maps in SSet, dual to the maps di and
si respectively. Let K ∈ SSet. For n ≥ 1, 0 ≤ i ≤ n we have the face maps
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di : Kn → Kn−1, which associate to an n-simplice (i.e. an element of Kn) its
faces (which are (n − 1)-simplices). For n ≥ 1, 0 ≤ i ≤ n − 1 we have the
degeneracy maps si : Kn−1 → Kn. A simplex is called non-degenerate if it is
not in the image of a degeneracy map. A face of a simplex x of K is the image
of x under any iteration of face maps. Every map of simplicial sets f : K → L
is equivalent to a collection of maps fn : Kn → Ln all commuting with the face
and degeneracy maps.

We can see a simplicial set X geometrically by gluing all of its (non degen-
erate) simplices together along their common faces (this concept will then be
formalized to a functor in section 4.2).

Examples

There are some important simplicial sets that we will need later when we discuss
the model structure on SSet .

- We define a functor ∆[−] : ∆ → SSet by ∆[n] : ∆op → Sets as the

Yoneda embedding of ∆ into SSet = Sets∆op

. It sends [k] to the set of
order preserving maps from [k] to [n]. Its geometrical interpretation is the
topological space r[n], i.e. the closed convex hull of 0, e1, . . . , en.

- The boundary of the simplicial set ∆[n], denoted by ∂∆[n] is obtained as
the coequalizer gluing all (n−1)-simplices together along their boundaries
according to the face maps:⊔

[n−2]→[n] inj.

∆[n− 2] −→−→
⊔

[n−1]→[n] inj.

∆[n− 1]→ ∂∆[n]

It is given by all the injective, order preserving maps [k]→ [n] for 0 ≤ k <
n. It can be seen as topological boundary of the geometrical interpretation
of ∆[n].

- For 0 ≤ r ≤ n we define the r-horn of ∆[n], denoted by Λr[n] and given
by the coequalizer gluing toghether all (n−1)-simplices with r as a vertex
along their boundaries according to the face maps:⊔

[n−2]→[n] inj.
r in the image

∆[n− 2] −→−→
⊔

[n−1]→[n] inj.
r in the image

∆[n− 1]→ ∂∆[n]

Geometrically, Λr[n] is obtained by taking away the interior and the face
opposite to the vertex r from the simplicial set ∆[n]. The following draw-
ing illustrates the concept for n = 2:
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2

0 1

∆[2] =

2

0 1

Λ0[2] =

2

0 1

Λ1[2] =

2

0 1

Λ2[2] =

4.2 Geometric realization

We will now construct an adjunction (| · |,Sing, ϕ) : SSet → Top. The left
adjoint | · | : SSet → Top is called geometric realization and the right adjoint
Sing : Top → SSet is called singular functor. The geometric realization will
make the following diagram commute:

∆ SSet

Top

∆[−]

r | · |

The geometric realization of a simplicial set K ∈ SSet is defined as the coend:

|K| =
∫ [n]∈∆

Kn · r[n]

where Kn · r([n]) is the coproduct
⊔
Kn

r([n]). It can also be seen as a
coequalizer (i.e. a generalized quotient):⊔

[n]→[m]∈∆

Km · r[n] −→−→
⊔
n

Kn · r[n] −→ |K|

where the two parallel arrows are given by the maps Km× r[n]→ Kn× r[n]
and Km × r[n]→ Km × r[m] induced by the associated function [n]→ [m].

This can be seen as taking the geometric interpretation of every simplex in
K and gluing them together along their common faces. We try to make this
clearer with an example.

Example 4.3. Take the simplicial set K given by K0 = {A,B,C,D}, K1 =
{AB,AC,AD,BC,CD} and K2 = {ABD,ACD} (where the order of the letters
gives us the orientation). It can be represented as follows:
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A B

C D

Then its geometric realization is (quite obviously) the square |K| = I × I.

Now we construct the singular functor. Given X ∈ Top, we define Sing(X)
to be the simplicial set having as n-simplices the set Top (r[n],X). This can be
seen as trying to fit as many geometrical simplices as possible into the topological
space X.

Example 4.4. The singular functor is very sensible of the topology, as the
following three examples on X = {0, 1} show:

• Let X = {0, 1} with the discrete topology. Then Sing(X) has only two
non-degenerate simplex, both of dimension 0, corresponding to the maps
r[0] 7→ 0 and r[1] 7→ 1.

• Let X = {0, 1} with the indiscrete topology. Then every map r[n]→ X is
continuous, and thus Sing(X)n ∼= {0, 1}r[n].

• Let X = {0, 1} with the Sierpinski topology (i.e. the open sets are ∅,
{0} and X). Then Sing(X)n is in bijective correspondence with the open
subsets of r[n], corresponding to the possible inverse images of 0.

Finally, we show that they form in fact an adjunction. Let K ∈ SSet and
X ∈ Top. The bijection ϕK,X : Top (|K|,X) → SSet (K,Sing(X)) is given by
the following composition:

SSet (K,Sing(X)) ∼=
∫

[n]∈∆

Sets (Kn,Sing(X)n)

=

∫
[n]∈∆

Sets (Kn,Top (r[n],X))

∼=
∫

[n]∈∆

Top (Kn · r[n],X)

∼= Top

(∫ [n]∈∆

Kn · r[n],X

)
= Top (|K|,X)

The first isomorphism is given by the fact that if F,G : C → D are two functors,
then the set of natural transformations from F to G equals

∫
c∈C C (F(c),G(c))

(see [5, p. 223] for details). The second one (third line) is given by associating
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to every f ∈ Sets (Kn,Top (r[n],X)) the element g ∈ Top (Kn · r[n],X) given
by g(k, x) = f(k)(x). The third isomorphism comes from the fact that a coend
is a colimit.

4.3 Completeness and cocompleteness

Since SSet is the category of presheaves on ∆, completeness and cocompleteness
are given. Limits and colimits are computed termwise. This means that if I is
an index category and we want to compute the limit of F : I → SSet, then we
can define L = limi∈I F (i) by Ln = limi∈I F (i)n in Sets.

4.4 The model structure on SSet

We define the following sets of maps in SSet:

- WSSet is the set of arrows in SSet such that |f | ∈ WTop; we call those
maps weak equivalences

- ISSet = {∂∆[n] ↪−→ ∆[n]|n ≥ 0}

- JSSet = {Λr[n] ↪−→ ∆[n]|n > 0, 0 ≤ r ≤ n}

- FSSet = Jt
SSet, we call those maps fibrations

- CSSet = ISSet−cof = t(ItTop), we call those maps cofibrations

We claim those sets define a model structure on SSet.

Theorem 4.5. (SSet, CSSet, FSSet,WSSet) is a model category which is cofi-
brantly generated with ISSet as set of generating cofibrations and JSSet as set
of generating trivial cofibrations.

Remark 4.6. In the literature, the elements of Jt
SSet (the fibration) are often

called Kan fibrations, and the elements of JSSet-cof anodyne extensions.

Proof. We prove this theorem by verifying the assumptions of theorem 2.24.
We do this in a number of smaller lemmas and theorems, of which we give an
overview below:

a) WSSet has the 2-out-of-3 property and is closed under retracts (lemma
4.7)

b) the domains of the maps in ISSet, JSSet are small relative to ISSet-cell
and JSSet-cell respectively (by lemma 4.8)

c) JSSet−cell ⊆ (ISSet−cof ∩WSSet) (proposition 4.11)

d) ItSSet ⊆ (Jt
SSet ∩WSSet) (proposition 4.17)

e) (Jt
SSet ∩WSSet) ⊆ ItSSet (proposition 4.18)
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Again as for Top, point (e) is the hardest to prove, and we will not give a
proof of it.

Point (a) is really easy to prove.

Lemma 4.7. WSSet satisfies the 2-out-of-3 property and is closed under re-
tracts.

Proof. This is a trivial consequence of the definition of WSSet, the fact that
| · | is a functor and the fact that WTop satisfies the 2-out-of-3 property and is
closed under retracts (which was proven in lemma 3.4).

We will now prove the desired smallness properties.

Lemma 4.8. Every simplicial set is small.

Proof. Let K ∈ SSet be a simplicial set. Let κ = max{2ω, |
⊔
n∈NKn|}. Notice

that κ is strictly greater than both ω and than the cardinality of every set of
simplices of K. We will show that K is κ-small. Let λ be a κ-filtered ordinal,
X : λ→ SSet a λ-sequence. In order to show smallness of K, we have to show
that the canonical map of sets:

colimβ<λSSet (K,Xβ)→ SSet (K, colimβ<λXβ)

is an isomorphism.
Surjectivity: Let f : K → colimβ<λXβ =: Xλ. Then for every n ∈ N there is
some βn < λ such that fn factors through Xβn , since Kn is |Kn|-small in Sets
(example 2.6). We have the commutative diagram:

(Xβn)n

Kn (Xλ)n
fn

Since λ is κ-filtered, and κ > ω), we have α := supn βn < λ. Thus fn factors
through Xα for every n ∈ N. The map thus obtained is only a map of sets, it
is not necessarily a map of simplicial sets. In other words, let u : [n] → [m] be
any map in ∆, then the following square does not necessarily commute:

Km (Xα)m

Kn (Xα)n

K(u) Xα(u)

But it commutes after composition with (Xα)n → (Xλ)n. By smallness of Km

we deduce the existence of an ordinal α < αu < λ such that the two composite
arrows Km ⇒ (Xα)n coequalize in Xαu . In a diagram:
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(Xαu)n

Km (Xα)n (Xλ)n

Now notice that the number of arrows in ∆ is ω, and thus θ := supu αu < λ.
Thus f splits through Xθ in two maps of simplicial sets.
Injectivity: Let f1, f2 ∈ colimβ<λSSet (K,Xβ) be two maps having the same
image g ∈ SSet (K, colimβ<λXβ). The restriction of f1, f2 to n-simplices gives
us the maps of sets (f1)n, (f2)n ∈ colimβ<λSets (Kn, (Xβ)n). By assumption,
both have the same image gn ∈ Sets (Kn, (colimβ<λXβ)n). Since all sets are
small (as shown in example 2.6), we get (f1)n = (f2)n. This is true for every
n ∈ N, so f1 = f2.

In particular, the domains of the maps in ISSet and JSSet are small relative
to ISSet -cell and JSSet -cell respectively.

We show that JSSet−cell ⊆ ISSet−cof ∩WSSet. In order to do this, we have
first to characterize all cofibrations in SSet , which is surprisingly simple.

Lemma 4.9. f ∈ ISSet−cof ⇔ f is injective.

Proof. Every map in ISSet is obviously injective, and injections are closed under
pushouts, transfinite compositions and retracts, thus every map in ISSet-cell is
injective. Then lemma 2.19 (a corollary of the retract argument) implies that
every map in ISSet-cof is also injective.

Suppose now that f : K → L is injective. We show that f ∈ ISSet-cell by
writing it as a (countable) transfinite composition of pushouts of coproducts of
maps in ISSet. We start by setting X0 = K, f0 = f : X0 → L. Let S0 indicate
the set of 0-simplices of L (i.e. elements of L0 = L[0]) which are not in the
image of f0. Every element s ∈ S0 corresponds to a map ∆[0] → L. We get
X1 and f1 by pushout as follows (the first horizontal map is obtained as the
coproduct of the restriction of the inclusions s→ L to the boundaries):

∅ =
⊔
s∈S0

∂∆[0] X0

⊔
s∈S0

∆[0] X1

L

f0

a

f1

Notice that by construction, the map f1 is injective (since both a and f0 are,
and their images are disjoint) and surjective on the 0-simplices.

Assume we have constructed simplices Xk and maps fk : Xk → L for k up
to n such that every fk is injective and surjective on the simplices of dimension
less than k. Then we can construct a similar map fn+1 in a fashion similar to
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the one used before for f1: define Sn to be the set of all n-simplices in L which
are not in the image of fn. Notice that every element s ∈ Sn is non-degenerate
(degenerate simplexes are already taken care of in the lower dimensional cases)
and corresponds to a map ∆[n] → L. Again (by restricting those maps to the
boundary) we obtain Xn+1 and fn+1 by pushout:⊔

s∈Sn ∂∆[n] Xn

⊔
s∈Sn ∆[n] Xn+1

L

fn

b

fn+1

By construction, the map fn+1 is injective (again, since b and fn are, and have
disjoint images) and surjective on the n-simplices (and thus on all simplices of
dimension less or equal to n).

Then the map f is a composition of the sequence Xn, and thus an element
in ISSet-cell.

Remark 4.10. In fact, the proof shows more than what is stated: it also implies
that every cofibration is in ISSet-cell, so ISSet−cell = ISSet−cof.

Proposition 4.11. Every anodyne extension is a trivial cofibration.

Proof. Every map in JSSet is injective, thus by lemma 4.9 JSSet ⊆ ISSet−cof.
It follows that JSSet−cof ⊆ ISSet−cof.

It is left to show that every map in JSSet−cof is a weak equivalence, i.e. that
its geometric realization is a weak equivalence in Top. Let f ∈ JSSet, then f has
the form of an inclusion Λr[n] ↪−→ ∆[n]. Notice that |∆[n]| ∼= Dn ∼= Dn−1 × I,
and we can choose those homeomorphisms in a way such that |Λr[n]| is taken
to Dn−1 × {0}. Thus |f | ∈ JTop−cof, as the following diagram suggests:

|Λr[n]| Dn−1

|∆[n]| Dn−1 × I

∼

|f | ∈ Jt
Top

∼

This means that |JSSet| ⊆ JTop−cof, and thus we have

|JSSet−cof| ⊆ |JSSet|−cof ⊆ JTop−cof

where we used lemma 2.30 for the first inequality. Thus the geometric realization
of any map in JSSet-cof is a weak equivalence in Top, meaning that every map
in JSSet-cof is a weak equivalence in SSet.
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We show ItSSet ⊆ (JSSet ∩W ). In order to do that, we need to prove that
the geometric realization preserves finite limits.

Lemma 4.12. Let i : L → K be an injective arrow in SSet. Then |i| ∈
ITop−cell. In particular it is a closed T1 inclusion.

Proof. By lemma 4.9, i ∈ ISSet−cell. That means that i is a transfinite com-
position of pushouts of maps in ISSet. Since the geometric realization is a left
adjoint it preserves colimits, and thus |i| is a transfinite composition of maps in
{|j| : j ∈ ISSet}. Let jn denote the inclusion ∂∆[n] ↪−→ ∆[n], then |jn| can be
seen as the inclusion Sn−1 ↪−→ Dn. Thus |i| ∈ ITop−cell.

Remark 4.13. Note that in particular if we take L = ∅, the lemma 4.12 above
shows that |K| is a CW-complex. Thus we can take the geometric realization
as a functor from SSet to one of many convenient subcategories of Top, for
example the subcategory CGHaus of compactly generated Hausdorff spaces, or
the subcategory K of k-spaces (sometimes called compactly generated spaces).

Proposition 4.14. The geometric realization preserves finite products.

Proof. Since the product preserves colimits in both SSet and K, it will be
enough to prove that the continuous map

|∆[n]×∆[m]| → |∆[n]| × |∆[m]|

(obtained by universal property) is a homeomorphism. We will shortly prove
that both the domain and range of that map are compact Hausdorff. Thus it
will suffice to prove that the map is bijective.

The first step is to characterize all non-degenerate simplices of ∆[n]×∆[m].
A (non necessarily non-degenerate) p-simplex of ∆[n]×∆[m] is basically equiv-
alent to an order preserving map [p] → [n] × [m], where in [n] × [m] we say
that (a1, b1) ≤ (a2, b2) if, and only if, a1 ≤ a2 and b1 ≤ b2. This can be better
visualized by drawing [n]× [m] as the integer lattice between (0, 0) and (n,m).
Then the more on the right and up elements are, the bigger they are. A non-
degenerate p-simplex is an injective order preserving map [p] → [n] × [m], also
called a chain in [n] × [m]. We give a graphical example for the case p, n = 3,
m = 2.

[3] [3]× [2]

Every such p-chain can be maximally extended to an (n+m)-chain (which
is not necessarily unique), thus every non-degenerate simplex of ∆[n]×∆[m] is
a face of some (n + m)-simplex. Now notice that, since a step in a chain can
only be either a step up or a step to the right, an (n + m)-chain is completely

45



determined by the vertical coordinates at the end of the horizontal segments,
thus there is a bijective correspondence between such chains and m-subsets of
{1, 2, . . . , n+m}. Thus we have

(
n+m
m

)
maximally extended chains.

Now let c(i), 1 ≤ i ≤
(
n+m
m

)
be an enumeration of all maximally extended

chains, and for any chain c denote by nc the number of edges of c (e.g. in our
example above, nc = 3). Then ∆[n]×∆[m] is given as the following coequalizer
(in SSet): ⊔

1≤i<j≤(n+m
m )

∆[nc(i)∩c(j)] −→−→
⊔

1≤i≤(n+m
m )

∆[nc(i)]

where the two horizontal arrows are induced by the inclusion of c(i) ∩ c(j)
into c(i) and c(j) respectively. An example of this fact which is easy to visualize
is the case n = m = 1. Indeed ∆[1] × ∆[1] is given by two copies of ∆[2],
corresponding to the chains {(0, 0), (0, 1), (1, 1)} and {(0, 0), (1, 0), (1, 1)}, glued
together along the 1-simplex given by {(0, 0), (1, 1)}, which is the intersection
of the two chains.
Claim: |∆[n]×∆[m]| is compact Hausdorff.
Proof: The geometric realization is a left adjoint, thus it preserves coequalizers.
It is then easy to see that |∆[n]×∆[m]| is compact. It is Hausodrff by remark
4.13. �

We will now prove that the map |∆[n]×∆[m]| → |∆[n]|×|∆[m]| is bijective.
Consider a simplex ∆[k]. Then the coordinates on |∆[k]| are an assignment

of weights of total sum 1 to the k+1 vertices of ∆[k]. Given such an assignment
(x0, . . . , xk), the position on |∆[k]| = r[k] is the baricenter of the vertices with

the respective weights, i.e.
∑k
i=0 xiei (if you prefer, it is a convex combination

of the basis vectors e0, . . . , ek corresponding to the vertices). Such assignemnt is
called barycentric coordinates. Now every point of |∆[n]×∆[m]| corresponds to
an assignment of coordinates (c, x0, . . . , xm+n), where c is a maximally extended
chain and (x0, . . . , xm+n) barycentric coordinates on ∆[m + n]. The following
drawing illustrates the concept:

[4]× [3]
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Here the red path, which we will denote c1, and the blue path, c2, are both
maximally extended, and represent two (5 + 4)-simplices of ∆[n] ×∆[m]. The
dashed path c1∩c2 is a 5-simplex along which the two other simplices fit together.
Two assignments of coordinates (c1, x1, . . . , x9) and (c2, y1, . . . , y9) represent the
same point of |∆[n]×∆[m]| if, and only if they have the same weights on c1∩ c2
and weight 0 everywhere else.

The map |∆[n]×∆[m]| → |∆[n]|× |∆[m]| can be described as follows: Start
with a coordinate (c, x0, . . . , xm+n) ∈ |∆[n]×∆[m]|, write the dots in the grid
representing ∆[n] × ∆[m]. Then the weights on |∆[n]| (respectively |∆[m]|)
are obtained by giving weight 0 to the vertices not in c and summing over
the coloumns (respectively the rows). Again, we illustrate the concept with a
drawing.

x6 x7

x5

x3

x4

x0 x1 x2

∆[3]

x6 + x7

x5

x3 + x4

x0 + x1 + x2

∆[4] x
0

x
1

x
2

+
x

3

x
4

+
x

5
+
x

6

x
7

It is then an easy exercise to show surjectivity (by finding an algorithm as-
sociating to every coordinate of |∆[n]| × |∆[m]| a maximal chain and coordi-
nates on |∆[n]×∆[m]|) and injectivity of the map (beware that some points of
|∆[n]×∆[m]| can be on more than one (m+ n)-simplex).

Now given this, let K,L ∈ SSet. Then the co-Yoneda lemma tells us that
K and L can be expressed as a coend:

K ∼=
∫ [m]∈∆

Km ·∆[m] L ∼=
∫ [n]∈∆

Ln ·∆[n]
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The following formal argument concludes the proof:

|K × L| ∼=

∣∣∣∣∣
(∫ [m]∈∆

Km ·∆[m]

)
×

(∫ [n]∈∆

Ln ·∆[n]

)∣∣∣∣∣
∼=

∣∣∣∣∣
∫ [m]∈∆ ∫ [n]∈∆

(Km × Ln) · (∆[m]×∆[n])

∣∣∣∣∣
∼=
∫ [m]∈∆ ∫ [n]∈∆

(Km × Ln) · |∆[m]×∆[n]|

∼=
∫ [m]∈∆ ∫ [n]∈∆

(Km × Ln) · |∆[m]| × |∆[n]|

∼=

(∫ [m]∈∆

Km · r[m]

)
×

(∫ [n]∈∆

Ln · r[n]

)
= |K| × |L|

where the first isomorphism is given by the expressions for K and L given by the
co-Yoneda lemma, the second and fifth by the fact that the product commutes
with colimits in Sets and in the nice category K (here we overlook some subtility
in the treatement of the fifth isomorphism, in a fully formal derivation we should
treat products in K and their relationship with products in Top more carefully).
The third isomorphism derives from the fact that the geometric realization is a
left adjoint, and thus commutes with colimits. Finally the fourth isomorphism
is what we have proven above.

Proposition 4.15. The geometric realization preserves finite limits. In partic-
ular, it preserves pullbacks.

Proof. We have just proved that it preserves finite products. By a classical result
of category theory (see for example [5, p. 113] for a reference), it is enough to
show that it preserves equalizers.

Let f, g : L → M be two arrows in SSet with equalizer i : K → L, and let
j : Z → |L| be the equalizer of |f |, |g| : |L| → |M | in Top. Then i and j are
injective. By lemma 4.12, |i| is a closed T1 inclusion. By universal property, we
have the following dashed arrow:

Z |L| |M |

|K|

j |f |

|g|
u

|i|

Since both |i| and j are injective, so is u. In particular, since |i| is an inclusion,
|K| is homeomorphic to a subspace of Z. It is thus enough to prove that u is
a surjection to conclude that Z ∼= |K|. We will prove the equivalent assertion
that the images of |i| and j are equal. Let z ∈ Z, then j(z) ∈ |x| for some
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non-degenerate simplex x ∈ L. By definition of the geometric realization, (|f | ◦
j)(z) = (|g|◦j)(z) if, and only if f(x) = g(x). Thus xmust be a (non-degenerate)
simplex of the image of K in L, and thus j(z) is in the image of |K| in |L|.

Lemma 4.16. If f ∈ ItSSet, then |f | ∈ Jt
Top.

Proof. Since f ∈ ItSSet, by lemma 4.9 it has the right lifting property relative to
every injective map of simplicial sets, in particular to inclusions. We can thus
find a lift h in the following diagram.

K K

K × L L

(idK , f) fh

πL

where πL is the projection onto L. Thus f is a retract of πL, with the obvious
diagram. This implies that |f | is a retraction of |πL|. Notice that |πL| is a fibra-
tion in Top. Indeed, since the geometric realization preserves finite products
(proposition 4.14), |πL| = π|L| : |K| × |L| → |L| is again the projection on the
second factor. If we have a diagram as follows:

Dn |K| × |L|

Dn × I |L|

a

π|L|

b

then a diagonal filler c : Dn× I → |K| × |L| is given by c(x, t) = (π|K| ◦ a)(x)×
b(x, t).

Thus by lemma 2.13, |f | is a fibration in Top, i.e. an element of Jt
Top.

Proposition 4.17. Every map in ItSSet is a trivial fibration.

Proof. As we already noted before, JSSet ⊆ ISSet-cof, thus ItSSet ⊆ Jt
SSet (i.e.

every map in ItSSet is a fibration).
Let f : K → L be any map in ItSSet. In order to show that every map in

ItSSet is in fact a trivial fibration, we must show that |f | ∈ WTop, i.e. that |f |
induces isomorphisms in every homotopy group.

Let v be a vertex (i.e. a 0-simplex) of L, let F = f−1(v) be the fiber of f
over v. Then we have the following pullback diagram.

F K

∆[0] L

f

v
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By proposition 4.15, we have the pullback diagram:

|F | |K|

∗ |L|

|f |

|v|

Thus |f | has fibre |F | above the point |v|.
Note that the map F → ∆[0] is in ItSSet, as the following diagram shows:

∂∆[n] F = f−1(v) K

∆[n] ∆[0] L

f

v

The dashed arrow is induced by lifting property of f and shows that the image
of ∆[n] in K is completely contained in F . Thus we can find a lift ∆[n]→ F .
This implies, by lemma 4.9, that it has the right lifting property relative to
every injective map, in particular to every inclusion, and also that F contains
a 0-simplex w. We denote the map collapsing all of F to w by cw. It is given
by the composition F → ∆[0]

w→ F . Then we have a lift H : F ×∆[1] → F in
the following diagram (induced by lifting property).

F × ∂∆[1] F

F ×∆[1] ∆[0]

(idF , cw)

H

By proposition 4.14, the geometric realization preserves products. Thus our
diagram in Top reads (forgetting the one-point-set in the lower right corner):

|F | × {0, 1} |F |

|F | × I

(id|F |, |w|)

|H|

So |H| : |F | × I → |F | is a homotopy from the identity map id : |F | → |F | to
the constant map |w|, and thus |F | is contractible.

By lemma 4.16, |f | is a fibration. The maps |F | ↪−→ |K| |f |−→ |L| induce a long
exact sequence in homotopy (for further details on the topic, refer for example
to [2, p. 344]):
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(. . .)

π2(|F |, |w|) π2(|K|, |w|) π2(|L|, |v|)

π1(|F |, |w|) π1(|K|, |w|) π1(|L|, |v|)

π0(|F |) π0(|K|) π0(|L|)

π2(|f |, |w|)

π1(|f |, |w|)

d

π0(|f |)

Exactness at the level of π0 means that d(π0(|F |)) = π0(|f |)−1([|v|]).
Since |F | is contractible, πn(|F |, |w|) is trivial for every n ≥ 0, and thus

πn(|f |, |w|) is an isomorphism for every n ≥ 1. We are left to show that π0(|f |) :
π0(|K|)→ π0(|L|) is also an isomorphism. It is certainly injective, since the long
sequence is exact for every |v|. In order to see that |f | induces a surjective map
on path components, notice that every point in |L| is in the same component
of the realization of some vertex v ∈ L0. Since f has the right lifting property
relative to all inclusions, it is surjective on vertices. Indeed we have the following
diagram:

∅ K

∆[0] L

f

v

So there is a vertex w ∈ K0 which is mapped to v, giving us surjectivity on path
components.

The last thing left to show is that (JSSet ∩W )t ⊆ ItSSet. Then theorem
2.24 will ensure that what we defined is truly a model structure on SSet. To
prove this fact would require to introduce a great deal of technical notation and
auxiliary objects. Since this would exceed the goal of this thesis , we give the
result as a theorem and refer to [3, p. 98] for a complete treatment.

Proposition 4.18. Every trivial fibration is an element of ItSSet.

We will now move on to the proof of the Quillen equivalence between Top
and SSet.
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5 Proof of the Quillen equivalence

We conclude this thesis with the proof that the adjunction we constructed in
the previous section is in fact a Quillen equivalence. In order to do so, we have
to develop a bit of theory about the homotopy theory of simplicial sets.

5.1 Homotopy groups

We define the notion of homotopy groups for simplicial sets. We begin by
defining what it means for two 0-simplices to be homotopic in a fibrant simplicial
set.

Definition 5.1. Let K be a fibrant simplicial set, and let x, y ∈ K0 be 0-
simplices. We say that x and y are homotopic (denoted by x ∼ y) if there is
some 1-simplex z ∈ K1 such that d0(z) = x and d1(z) = y (i.e. x and y are the
two faces of z).

Lemma 5.2. If K is a fibrant simplicial set, then the homotopy forms an
equivalence relation on K0.

Proof. We have to prove that the relation ∼ is reflexive, symmetric and transi-
tive.
Reflexivity: Let x ∈ K0. Then if we consider s0(x) ∈ K1 we have d0(s0(x)) =
d1(s0(x)) = x, and thus that x ∼ x.
Symmetry: Let x, y ∈ K0 such that x ∼ y, and let z ∈ K1 be the 1-simplex such
that d0(z) = x and d1(z) = y. Then we have a map f : Λ0[2]→ K given by the
inclusion of the 2-horn drawn below in K.

y

x x

z

s0(x)

Since K is fibrant, f induces an arrow g : ∆[2]→ K (a 2-simplex) extending f
by the diagram:

Λ0[2] K

∆[2] ∆[0]

f

g

Then d0(g) is the required homotopy to get y ∼ x.
Transitivity: Let x, y, z ∈ K0 be such that x ∼ y and y ∼ z. Then we have a
map f : Λ0[2]→ K given by the inclusion of the following 2-horn in K:
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z

y x

Again as before, since K is fibrant this induces a 2-simplex g : ∆[2] → K.
Then d0(g) is the desired homotopy giving x ∼ z.

We can now define the notion of 0-th homotopy set for fibrant simplicial
sets.

Definition 5.3. Let K be a fibrant simplicial set. Then we denote by π0(K)
the set K0/ ∼.

Lemma 5.4. Let K be a fibrant simplicial set. Then there is an isomorphism
π0(K) ∼= π0(|K|).

Proof. Let a : π0(K) → π0(|K|) be the map taking [v] ∈ π0(K) to the path
connected component of |X| containing |v|.

Since |∆[n]| is path connected for n ≥ 0, by construction of the geometric
realization every point in |K| is in the same path connected component of the
geometric realization of some vertex in K. Thus a is surjective.

To show injectivity, consider for every [v] ∈ π0(K) the set K[v] of simplices
of K having all vertices in [v]. Notice that every such K[v] is a sub-simplicial
set of K. We can consider them as the path connected components of K. We
have that K is the coproduct

⊔
[v]∈π0(K)K[v]. Since the geometric realization

preserves colimits (since it is a left adjoint), we have:

|K| =
⊔

[v]∈π0(K)

|K[v]|

where each of the |K[v]| is obviously path connected. This expresses a bijection
π0(K) ∼= π0(|K|).

This lemma tells us that to call this set π0(K) makes sense. We will call
elements of π0(K) path components of K, and if v ∈ K0 we will also denote by
π0(K, v) the pointed set π0(K) with basepoint v.

We want now to extend our definition to higher homotopy groups.

Definition 5.5. Let K,L ∈ SSet be two simplicial sets. Then we define the in-
ternal hom of K and L as the simplicial set [K,L] ∈ SSet with sets of simplices
[K,L]n = SSet (K×∆[n],L). The arrows between the various sets of simplices
are induced by the maps between the ∆[k]. Notice that [K,L]0 is the set of maps
of simplicial sets between K and L, and [K,L]1 is the set of homotopies between
such maps.
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Definition 5.6. Let K be a fibrant simplicial set, v ∈ K0 a vertex of K. If L
is any simplicial set, we denote again by v the constant map L → ∆[0]

v→ K.
Let F be the fibre over v : ∂∆[n] → K of the fibration [∆[n],K] → [∂∆[n],K]
induced by the inclusion ∂∆[n] ↪−→ ∆[n]. Then we define the n-th homotopy
group πn(K, v) to be the pointed set π0(F, v).

The map [∆[n],K]→ [∂∆[n],K] is a fibration by [3, p. 81].

Remark 5.7. An equivalent definition is to say that πn(K, v) is the set of
equivalence classes [x] of n-simplices whose entire boundary is degenerate in the
vertex v, where two n-simplices x and y are equivalent if there is a homotopy
H : ∆[n]×∆[1]→ K such that H(·, 0) is the inclusion of x in K, H(·, 1) is the
inclusion of y and the restriction of H to ∂∆[n]×∆[1] is the constant map v.

It is not clear yet that those homotopy groups are in fact groups. The next
proposition implies it.

Lemma 5.8. Let K,L ∈ SSet be simplicial sets and assume that there exist a
trivial fibration f : K → L. Then K and L have the same homotopy groups.

Proof. We will show that the maps π0(f) and πn(f, v) induced by f are all
bijections.
Injectivity: Let [p], [q] ∈ πn(K) (where we omit the basepoint) with the same
image in πn(L), i.e. [f ◦ p] = [f ◦ q]. We show that there exist a homotopy
between p and q (representants of the classes [p] and [q] respectively). Consider
the following diagram:

∂∆[n]× ∂∆[1] K

∂∆[n]×∆[1] L

(p, q)

f

H

where H is the homotopy between f ◦ p and f ◦ q. Notice that the left vertical
map is injective, and thus an element of ISSet−cof by lemma 4.9. Thus the
dashed filler is induced by lifting property, providing the desired homotopy.
Surjectivity: Let [p] ∈ πn(L), then the following diagram proves surjectivity:

∅ K

∂∆[n] L

f

p

where again we have used the fact that the left vertical map is injective, and
thus a cofibration.
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Proposition 5.9. Let K be a fibrant simplicial set. Then for every n ≥ 0 and
every vertex v of K there is an isomorphism πn(K, v) ∼= πn(|K|, |v|).

Proof. The proof goes by induction on n. Notice that the case n = 0 is given
by lemma 5.4.

We define the simplicial set PvK as the following pullback:

PvK [∆[1],K]

K K ×K ∼= [∂∆[1],K]

(s, t)

v × idK

where s and t denote the source and target maps induced by the two maps
∂∆[1]→ ∆[1]. We define a second simplicial set ΩK, again as a pullback:

ΩK PvK

∆[0] Kv

Using those two commutative squares, we obtain the following diagram:

ΩK PvK [∆[1],K]

∆[0] K K ×K

∆[0] K

(s, t)

v v × idK
p1

v

where p1 : K ×K → K denotes the projection on the first factor. Notice that
all cells in the diagram are pullback squares. it can be proven that the vertical
composite p1 ◦ (s, t) is in ItSSet, i.e. it is a trivial fibration (we will not fill in
the details fo the proof of this fact, since in order to do so we would need much
of the theory we skipped in the last section; the interested reader can refer
to [3, p. 97]). Then the universal properties of the pullbacks give us that the
composite map f : PvK → K → ∆[0] is a trivial fibration. In particular, it
follows by lemma 5.8 that all the homotopy groups of PvK are trivial. Notice
that ΩK is the fibre of the map PvK → K over v, thus we have a long exact
sequence of homotopy groups:

. . . πn+1(K) πn(ΩK) πn(PvK) πn(K) . . .
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where we omitted the basepoints. Since the πn(PvK) are trivial, we obtain that
πn+1(K) ∼= πn(ΩK).

Now we will show that a similar thing is true in Top. Indeed we can take
the geometric realization of the diagram above. By proposition 4.15, pullbacks
are preserved. Also by definition of geometric realization, the map |f | is a
weak equivalence. Then the long homotopy sequence tells us that πn+1(|K|) ∼=
πn(|ΩK|). We can now conclude our induction. Assume that for every simplicial
set L we have πk(L) ∼= πk(|L|) for every k ≤ n. Then:

πn+1(K) ∼= πn(ΩK) ∼= πn(|ΩK|) ∼= πn+1(|K|)

5.2 Proof of the Quillen equivalence

Theorem 5.10. The adjunction (| · |,Sing, ϕ) : SSet → Top is a Quillen
equivalence.

Proof. We will first prove that it is a Quillen adjunction, and then that it is a
Quillen equivalence.
Quillen adjunction: To prove this, we will apply proposition 2.34, that states
that for an adjunction it is equivalent to be Quillen or to satisfy i ∈ ISSet ⇒
|i| ∈ ITop−cof and j ∈ JSSet ⇒ |j| ∈ JTop−cof.

So let i : ∂∆[n] ↪−→ ∆[n] be an element of ISSet. Then we have an arrow
such that the following diagram commutes.

|∂∆[n]| Sn−1

|∆[n]| Dn

∼

|i| ∈ ITop

∼

This shows that |i| ∈ ITop-cof. Similarly for j ∈ JSSet we have that |j| ∈ JTop-
cof. Thus, by proposition 2.34, (| · |,Singϕ) is a Quillen adjunction.
Quillen equivalence: We want now to use proposition 2.40 to show that this
Quillen adjunction is a Quillen equivalence. It states that a Quillen adjunction
is a Quillen equivalence if, and only if it satisfies the following two conditions:

a) | · | reflects weak equivalences between cofibrant objects.

b) For every X ∈ Top which is fibrant, the map |Q◦Sing(X)| → X is a weak
equivalence.

By definition of WSSet, the geometric realization reflects weak equivalences,
so condition a) is trivially satisfied. We are left to show that the map

|Sing(X)| → X

is a weak equivalence for every X which is fibrant, i.e for every topological space
X, as shown in lemma 3.14 (notice that since Sing is a right Quillen functor,
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Sing(X) is fibrant). So, we have to show that for every n ≥ 0 and every point
v ∈ X the map

πn(|Sing(X)|, v)→ πn(X, v)

is an isomorphism (where we have denoted again by v ∈ |Sing(X)| the image
of v ∈ X). Indeed, the set of points of X is in bijective correspondence with the
vertices of Sing(X) and every point of |Sing(X)| is in the same path component
of some vertex of Sing(X). Now, since Sing(X) is fibrant, by proposition 5.9
we have an isomorphism

πn(Sing(X), v) ∼= πn(|Sing(X)|, v)

By composing the map induced by the adjunction with this isomorphism, we
get a map πn(Sing(X), v)→ πn(X, v).

In order to conclude the proof, we will elaborate a bit on remark 5.7. Con-
sider the simplicial set obtained through the following pushout:

∂∆[n] ∆[n]

∆[0] S[n]

Then every element of πn(Sing(X), v) can be represented by some map p :
S[n]→ Sing(X) sending the unique 0-simplex of S[n] to v. Now, applying the
adjunction we obtain:

SSet (S[n],Sing(X)) ∼= Top (Sn,X)

(notice that |S[n]| ∼= Sn since the geometric realization preserves pushouts). It
is enough to show that the adjunction sends homotopies into homotopies, but
since the geometric realization preserves finite products we have:

SSet (S[n]×∆[1],Sing(X)) ∼= Top (Sn × I,X)

and we’re done.
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