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Chapter 1

Introduction

The main goal of this thesis is to prove untyped lambda calculus initial in a
specific category. To understand the statements and proofs herein the reader
should have basic knowledge of lambda calculus (as it can be found in [BB00]
for example) and category theory (especially functors, natural transformations,
monads, slice categories, and cartesian closed categories).

This thesis is based on [Zsi06], which is itself based on [HM05]. The state-
ments therein are the same as ours. However we prove the main theorem without
the help of the theorem prover “Coq”, which was used in the above papers.

We try to motivate our definitions and proofs in such a way that the reader
can not just understand what we did but also why. The thesis is therefore a bit
longer than it would need to be but we feel that it is better for the understanding
of the subject to know why we do things the way we do them. This also means
that we sometimes show that the obvious way has to fail. We always mention
when inserting such a part as not to confuse the reader.

On the way to our goal we proceed step by step. Chapter 2 gives all the defi-
nitions needed for the category we are going to work with, which is the category
of exponential monads. We don’t mention properties that we are not going to
use. For further facts about monads and modules such as pull-backs we refer the
reader to [Zsi06].

In the following chapter we describe untyped lambda calculus in these terms.
Afterwards we show in Chapter 4 that all objects in the category of exponential
monads (or under even weaker conditions) satisfy some properties that are known
for lambda calculus. Finally we prove the main theorem in Chapter 5.

The last chapter then gives a small summery of our work and shows how one
can proceed with this result at hand. We explain for example how one could
show a similar statement for simply typed lambda calculus. Additionally we give
some ideas for an approach by operads instead of monads.

Notation

• By N we denote the natural numbers according to the Dedekind-Peano
axioms, i.e. we have 0 ∈ N.

• By Set we denote the category of all small sets (as defined in [ML98]). By
a formulation like “X ∈ Set” we mean an object in that category. If we
talk about morphisms we state so explicitly.

1



2 CHAPTER 1. INTRODUCTION

• As we are not going to consider large sets we just write “set” instead of
“small set”.

• For X,Y ∈ Set we define their disjoint union by

X ∐ Y := (X × {0}) ∪ (Y × {1}).

We use the following (abuse) of notation: For all x ∈ X we denote its image
in X ∐ Y by x and not by jX(x), where jX : X → X ∐ Y is the canonical
inclusion of X into X ∐ Y , and similarly for all y ∈ Y .

• If no confusion arises we omit parentheses for functors, i.e. given two cate-
gories C and D and a functor F: C → D we write FC for the image under
F of any object C ∈ C and F g for the image under F of any morphism
g ∈ C . However for a map f : X → Y between two sets X and Y we write
f(x) for the image under f of any x ∈ X.

• When we are working with λ-terms without any equivalence relation in-
volved we write L = K to state that the two λ-terms are equal. As soon as
an equivalence relation is involved we use the notation of [Sel07], i.e. L = K
denotes that L and K are two representatives of the same equivalence class
and L ≡ K denotes syntactic equivalence (they are the same “symbol by
symbol”).

• For λ-terms we use the same rules for omitting parentheses as [Bar84], i.e.
dropping outermost parentheses, taking application as left associative, and
abstraction as right associative and binding as far to the right as possible.

• When talking about α-, β-, and/or η-conversions we will talk about the
equivalence relations they generate, however this is a (usual) misnomer: As
described in [Bar84, p. 51] these equivalence relations are built step by step
where one step involves a compatible closure, i.e. the relations are actually
congruence relations (with respect to application and abstraction). For
details see [Bar84, Lemma 3.1.6].
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Work in Progress (Just for Fun)

The picture below shows the evolution of a proof in the case of Lemma 4.5. This
includes digital sketches on the go and sketches on the blackboard and on paper
(top row). These were followed by a (more or less) readable sketch on paper and
finally everything was typeset such that you get what you see right now.



Chapter 2

Categorical Preliminaries

This chapter introduces the necessary definitions for the category we are going
to work with in this thesis. Most of the definitions should be familiar but some
might not. This chapter mainly serves to establish the notation we use.

Let C be any category, a monad over C is a triple (T, η, µ) where T: C → C

is an endofunctor and η : Id
q

→ T and µ : T2 q

→ T are natural transformations
such that the two diagrams

TX T2X TX

TX

T ηX ηT X

IdT X IdT X

µX (2.1)

T T TX T TX

T TX TX

µT X

TµX

µX

µX (2.2)

are commutative for all objects X ∈ C . Here Id : C → C denotes the identity
functor on C . The natural transformations η and µ are called the unit and the
multiplication of the monad. Condition (2.2) is referred to as the associativity of
the monad (or the associativity of µ). If η and µ are understood we call T itself
a monad. All monads in this thesis (except Chapter 6) are over Set, we are often
not mentioning this explicitly.

For all X ∈ Set we denote by X∗ the disjoint union of X with a one-element
set ∗. Unless stated otherwise we use “∗” to denote the one-element set as well
as its unique element. The canonical injection of X into X∗ is denoted by ιX .
For a map of sets f : X → Y we denote by f∗ : X∗ → Y ∗ the map satisfying
f∗|X = ιY ◦ f and f(∗) = ∗.

Given any monad (T, η, µ) over Set, we define its derived monad T′ for all
X ∈ Set by

T′X := TX∗(= T(X∗))

4



5

and on all morphisms of sets f : X → Y by

T′ f := T f∗(= T(f∗)).

The unit and the multiplication are given for all X ∈ Set by

η′
X := T ιX ◦ ηX

µ′
X := µX∗ ◦ T dX ,

where dX : (T′X)∗ → T′X is given by dX |T′ X = IdT′ X and dX(∗) = ηX∗(∗). By
[Zsi06, Remark 2.5] the derived monad of a monad is again a monad.

Let (T, η(T), µ(T)) and (S, η(S), µ(S)) be two monads over Set. A morphism of
monads is a natural transformation τ : T

q

→ S such that the two diagrams

X TX

SX

η
(T)
X

η
(S)
X

τX (2.3)

T TX TX

T SX S TX

S SX SX

µ
(T)
X

τX

µ
(S)
X

T τX

τS X

τT X

S τX

(2.4)

commute for all X ∈ Set.
A right module over a monad (T, η, µ) over Set is a pair (M, σ), where M is

an endofunctor on Set and σ : M T
q

→ M is a natural transformation such that

M T TX M TX

M TX MX

σT X

MµX

σX

σX and

MX M TX

MX

IdM X

M ηX

σX (2.5)

commute for all X ∈ Set. Sometimes, e.g. in [HM04] and [Zsi06], it is only
required that the diagram on the left commutes. However also asking for the
right diagram to commute justifies the terminology “module” (as it is known in
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ring theory) and does not introduce any restrictions to the statements in this
thesis. We are not going to consider left modules, therefore a right module will
just be referred to as a module. As with monads we often call M a module without
mentioning σ explicitly. By setting σ := µ we see by (2.1) and (2.2) that T is a
module over itself, called the tautological module.

Given a monad (T, η, µ) over Set and a T-module (M, σ), we construct its
derived module (M′, σ′) as follows: M′ is given for all X ∈ Set by

M′X := MX∗,

for all morphisms f : X → Y in Set by

M′ f := M f∗,

and σ′ is given for all X ∈ Set by

σ′
X := σX∗ ◦M gX ,

where gX : (TX)∗ → TX∗ is defined by gX |T X = T ιX and gX(∗) = ηX∗(∗).

Lemma 2.1 Let (T, η, µ) be any monad over Set and let (M, σ) be any T-module.
Then the derived module (M′, σ′) is itself a T-module.

Proof We need to prove the diagrams corresponding to (2.5) commutative for all
X ∈ Set. The commutativity of the left diagram is shown in [Zsi06, Remark 2.11].
For the right diagram let X ∈ Set be arbitrary. We need to prove

M′X M′ TX

M′X

IdM′ X

M′ ηX

σ′
X

commutative. Using the definitions this diagram becomes

M′X M′ TX

M TX∗

M′X.

IdM′ X

M′ ηX

M ηX∗
M gX

σX∗
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The lower triangle commutes as (M, σ) is a T-module, hence it suffices to prove
the upper triangle commutative. By functoriality it is even enough to prove

X∗ (TX)∗

TX∗

η∗
X

ηX∗
gX

commutative. Using the definitions of η∗
X and gX we easily see the commutativity

for ∗ ∈ X∗. The commutativity for all x ∈ X follows in the same way using
naturality of η, i.e. that

X TX

X∗ TX∗

ηX

T ιXιX

ηX∗

commutes, and that the image of ιX is (contained in) X →֒ X∗. �

Given two T-modules (M, σ(M)) and (N, σ(N)), a morphism of (right) T-modules
is a natural transformation ϕ : M

q

→ N such that

M TX MX

N TX NX

σ
(M)
X

ϕT X

σ
(N)
X

ϕX (2.6)

commutes for all X ∈ Set. We get that the canonical injection M ι : M →֒ M′ is
a morphism of modules (cf. [Zsi06, Lemma 2.12]).

Given two T-modules (M, σ(M)) and (N, σ(N)), the product of M and N in the
category of all functors from Set to Set is again a T-module by setting

σ
(M × N)
X := σ

(M)
X × σ

(N)
X

for all X ∈ Set (cf. [Zsi06, Remark 2.13]).
An exponential monad (T, ε) over Set is a pair consisting of a monad (T, η, µ)

together with an isomorphism ε from the tautological T-module to its derived
module T′.

Given two exponential monads (T, ε(T)) and (S, ε(S)), a morphism of exponen-
tial monads is a natural transformation ν : T

q

→ S such that both squares (the
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one with ε
(T)
X and ε

(S)
X and the one with ε

(T)
X

−1
and ε

(S)
X

−1
) in

TX SX

T′X S′X

νX

νX∗

ε
(T)
X ε

(T)
X

−1
ε

(S)
X ε

(S)
X

−1

commute for all X ∈ Set.

Lemma 2.2 Exponential monads and morphisms of exponential monads form
the objects and morphisms of a category.

Proof Composition of morphisms is just vertical composition of natural trans-
formations (cf. [ML98, p. 40]), therefore we immediately have the existence of an
identity and the associativity of composition. The only thing left to show is that
everything commutes with the isomorphisms of exponential monads. Therefore
let (P, ε(P)), (Q, ε(Q)), (R, ε(R)), and (S, ε(S)) be any exponential monads. For
the identity this means that for all morphisms of exponential monads ν : P

q

→ Q
and τ : Q

q

→ R the four composed rectangles in

PX QX QX RX

P′X Q′X Q′X R′X

νX

νX∗

ε
(P)
X ε

(P)
X

−1
ε

(Q)
X ε

(Q)
X

−1

IdQ X

IdQ X∗

ε
(Q)
X ε

(Q)
X

−1

τX

τX∗

ε
(R)
X ε

(R)
X

−1

are commutative for all X ∈ Set. This is obvious as by the definition of mor-
phisms of exponential monads all three small squares are commutative for all
X ∈ Set. For associativity let ν : P

q

→ Q, τ : Q
q

→ R, and ω : R
q

→ S be
morphisms of exponential monads. One can then take a look at

PX QX RX SX

P′X Q′X R′X S′X,

νX

νX∗

ε
(P)
X ε

(P)
X

−1
ε

(Q)
X ε

(Q)
X

−1

τX

τX∗

ε
(R)
X ε

(R)
X

−1

ωX

ωX∗

ε
(S)
X ε

(S)
X

−1

where “everything” commutes for all X ∈ Set as this is the case for all small
squares. �

We are now prepared to move on to give a description of untyped lambda
calculus in these terms.



Chapter 3

Untyped Lambda Calculus as an
Exponential Monad

In this chapter we show how untyped lambda calculus can be seen as an expo-
nential monad. We do so by first defining an endofunctor on Set not involving
any equivalence relations and then realize lambda calculus as this endofunctor
with equivalence relations applied together with a suitable unit and multiplica-
tion. The last step is then a justification why this endofunctor describes lambda
calculus.

This Chapter contains parts (such as Section 3.1) that describe ideas that are
not going to work. We suggest the reader not to skip them as they might still
give some intuition of what is going on.

3.1 Direct Approach

We first give a description of a “direct” approach of defining lambda calculus as
an exponential monad and show why it fails. We try to define an endofunctor
SLC on Set which assigns to every set the set of λ-terms with free variables
in that set and which assigns to every function between sets the function that
renames the variables in the λ-terms according to this function. However this
approach has to fail as soon as we introduce equivalence classes: For example
consider lambda calculus over two sets X and Y such that x1, x2, x3 ∈ X and
y1, y2, y3 ∈ Y . Given a map f : X → Y satisfying f(x1) = f(x2) = y1 and
f(x3) = y3 we get the following results by renaming:

λx3.x2 7→ λy3.y1 and λx1.x2 7→ λy1.y1.

The two left sides are equivalent by an α−conversion (λx3.x2 = λx1.x2) however
the right sides are clearly not (λy3.y1 is a constant but λy1.y1 is the identity).
Therefore this map would not be well-defined on equivalence classes. The idea is
now to introduce a new set (called D) to which all bound variables get mapped
first and then apply f only to the free variables (and not changing the bound
ones).

3.2 Action on Objects

Formally we define SLC as follows: For the rest of this thesis let D denote a fixed
countably infinite set. Further fix an order on D such that D is isomorphic to

9



10 CHAPTER 3. LAMBDA CALCULUS AS AN EXPONENTIAL MONAD

the natural numbers in the category of totally ordered sets (i.e. it has a smallest
element and for every element a unique successor such that every element, except
the smallest one, is the successor of another element). We define the action of
the functor SLC: Set→ Set for all X ∈ Set by

X 7→ {L | L is a λ-term with variables in X ∐D with FV(L) ⊆ X},

where FV(L) denotes the set of free variables of L. In the following we use letters
from the end of the alphabet (mostly x, y, z) to denote variables that may be free,
letters from the beginning of the alphabet (mostly c, d) for variables belonging
to D, and intermediate letters (mostly p, q) to denote variables that might come
from either set.

3.3 Preparations for Action on Morphisms

Before we can define the action of SLC on morphisms we need some additional
notations and statements that make our presentation simpler (although it might
not seem so at first).

For all X ∈ Set we denote by varX : X → SLCX the insertion of variables,
i.e. every x ∈ X gets mapped to the variable corresponding to x. The map that
sends two λ-terms in SLCX for some X ∈ Set to the application of the two
λ-terms is denoted by appX : SLCX × SLCX → SLCX.

The straight forward approach to define SLC f : SLCX → SLCY for all
morphisms f : X → Y in Set would be to do so recursively for all L ∈ SLCX by

L 7→





varY (f(x)), if L = varX(x) with x ∈ X,

appY (SLC f(L1),SLC f(L2)), if L = appX(L1, L2)

with L1, L2 ∈ SLCX,

λ varY (f̃(q)).(SLC f(L′)), if L = λq.L′ with q ∈ X ∐D

and L′ ∈ SLCX,

where f̃ : X∐D → Y ∐D is given by f̃ := f ∐ IdD. However this approach has to
fail as if we have q ∈ D in the last case, then q might be free in L′ which would
imply L′ /∈ SLC(X).

To give a well-defined action on morphisms we need some additional construc-
tions. We say that a λ-term is in canonical form if all bound variables used to
build it belong to D and are in ascending order (from inside out) starting with
the smallest element in D. For all X ∈ Set and all L ∈ SLCX there exists a
unique λ-term in canonical form in SLCX which is α-equivalent to L. This λ-
term is denoted by (L)CX

. For all X ∈ Set we denote by CX : SLCX → SLCX
the map which assigns to each L ∈ SLCX its canonical form. It is not easy
(if at all possible) to give a closed or recursive formula for this process, however
one can write an algorithm that computes this function such that we see that
it is well-defined. An example of how such an algorithm could work is given in
Section 3.9.
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We could now define SLC f : SLCX → SLCY for all f : X → Y in Set by

L 7→ f̃((L)CX
)

for all L ∈ SLCX, where f̃ is again given by f̃ := f∐IdD. For c := min{d | d ∈ D}
the example from Section 3.1 becomes

λx3.x2 7→ λc.x2 7→ λc.y1 and λx1.x2 7→ λc.x2 7→ λc.y1.

One could now show that this map is actually constant on δ-equivalence classes
for δ ∈ {α, αβ, αη, αβη}. As we are not going to take this as our definition of
SLC f a proof is omitted. The reason for not taking this approach is that it
is too artificial in the sense that the definition doesn’t involve the structure of
λ-terms. For example if a λ-term is built by an application we would like to
say that the image of this λ-term under SLC f is determined by the images of
these two λ-terms under SLC f . The advantage of the (more technical) approach
below is that it gives a way of proving statements inductively, which would not
be possible by the way described above. In the following we make this precise but
the reader should keep in mind that our definition below is (up to α-equivalence)
just what we described right now.

We define for all X ∈ Set a map absX : SLC′X → SLCX which is given for
all L ∈ SLC′X by

absX(L) := rX((λ ∗ .L)CX∗ ),

where rX : SLC′X → SLCX is given for all K ∈ SLC′X by

K 7→

{
K, if FV(K) ∪ BV(K) ⊂ X ∐D,

λc.c, otherwise,

where BV(K) denotes the bound variables in K, c := min{d | d ∈ D}, and the
K on the right side stands for the λ-term in SLCX that is built in the same way
as K is in SLC′X, i.e. has the same form and the same variables (with respect
to the inclusion of variables in the corresponding disjoint unions). Note that for
all L ∈ SLC′X it holds that FV((λ ∗ .L)CX∗ ) ∪ BV((λ ∗ .L)CX∗ ) ⊂ X ∐D.

In the following lemma we show that for any λ-term L ∈ SLCX of the form
L = λq.L′ it holds that (L)CX

is in the image of absX . For simplicity we assume
in the following that the corresponding λ-term in SLC′X is in canonical form
(which exists by the lemma).

Lemma 3.1 For all X ∈ Set and all L ∈ SLCX of the form L = λq.L′ it holds
that (L)CX

is in the image of absX , i.e. there exists a K ∈ SLC′X such that
absX(K) = (L)CX

. Further this K is unique if we force it to be in canonical
form.
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Proof Let X ∈ Set be arbitrary. We get the needed K ∈ SLC′X by chasing
L ∈ SLCX through the following chain of maps:

SLCX
CX−→ SLCX

sX−→ SLC′X
C∗,X∗

−→ SLC′X
fX−→ SLC′X.

The maps used are the following:

• CX is the function that maps any λ-term to its canonical form.

• sX : SLCX → SLC′X is the map similar to rX defined earlier, i.e. it sends
any λ-term L ∈ SLCX to the “same” λ-term in SLC′X (with respect to
the corresponding inclusions into the disjoint unions).

• C∗,X∗ is CX∗ composed with c∗,X : SLC′X → SLC′X, which is given for
all L ∈ SLC′X by

L 7→





varX∗(y), if L = varX∗(y) with y ∈ X∗,

appX∗(L1, L2), if L = appX∗(L1, L2) with L1, L2 ∈ SLC′X,

A∗(L), if L = λq.L′ with q ∈ D and ∗ /∈ L′,

λc.c, otherwise,

where c := min{d | d ∈ D} and A∗(L) denotes the λ-term L after the
α-conversion that replaces q with ∗ (this is possible due to the assumption
that ∗ /∈ L′). Precomposition with sX and CX∗ guarantees that we land in
one of the first three cases.

• fX : SLC′X → SLC′X is given for all L ∈ SLC′X by

L 7→

{
L′, if L = λ ∗ .L′ with L′ ∈ SLC′X,

varX∗(min{d | d ∈ D}), otherwise.

Precomposition with the previous maps again guarantees that we land in
the first case.

The statement that abs(K) = (L)CX
holds for K = fX(C∗,X∗(sX(CX(L)))) is

just that absX turns

SLCX SLCX

SLCX SLC′X SLC′X SLC′X

CX

CX

sX C∗,X∗ fX

absX

commutative. This is obvious by the definitions of the maps involved.
The last part is easy to see: Assume that there are K,K ′ ∈ SLC′X such that

absX(K) = absX(K ′). As the last two maps in the definition of absX are not
changing the structure of the λ-terms we get that λ∗ .K is α-equivalent to λ∗ .K ′.
However this implies that K and K ′ are α-equivalent. The claim then follows as
α-equivalent λ-terms have the same canonical form. �
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3.4 Main Proof Technique

Most of our proofs (and definitions) will be inductively on the complexity of the
λ-terms involved. More precisely we define the degree of any untyped λ-term
L ∈ SLCX for all X ∈ Set by the function deg : SLCX → N, which is given by
precomposition with CX of d̃eg : SLCX → N defined for all K ∈ SLCX by

d̃eg(K) :=





0, if (K)CX
= K = varX(x) with x ∈ X,

d̃eg(K1) + d̃eg(K2) + 1, if (K)CX
= K = appX(L1, L2)

with K1,K2 ∈ SLCX,

d̃eg(K ′) + 1, if (K)CX
= K = absX(K ′)

with K ′ ∈ SLC′X,

0, otherwise.

For all X ∈ Set and all k ∈ N we denote by SLC〈k〉X the set of all L ∈ SLCX
with deg(L) = k.

Our proofs usually have the following form: We first show that a statement
holds for SLC〈0〉X for all X ∈ Set (and/or for all morphisms between these sets
induced by f : X → Y in Set). We then assume that the statement holds for
SLC〈i〉X for all X ∈ Set (and/or for all morphisms between these sets induced
by f : X → Y in Set) for all i < k for some k ∈ N \ {0}. If we succeed to
prove that given these assumptions the statement also holds for SLC〈k〉X for all
X ∈ Set (and/or for all morphisms between these sets induced by f : X → Y in
Set) we are done as any L ∈ SLCX belongs to exactly one SLC〈j〉X for some
j ∈ N. As any λ-term is built - up to α-equivalence (see paragraph below) - from
variables and the operations app and abs (and any λ-term generated by these
operations has a strictly higher degree than the λ-term(s) used to build it) this
means that we need to prove the statement for variables (base case) and then for
λ-terms built by app or abs as a last step, assuming the statement holds for the
λ-terms used therein (induction). As not to make proofs longer than needed we
are not going to repeat this argument but just apply this technique.

The formulation of the induction technique above will not really give a proof
as abs always yields a term in canonical form but there are other terms that are
abstractions in the usual sense of lambda calculus. However this can be fixed in
the following way:

Convention For all X ∈ Set we always assume that any map from SLCX is
precomposed with CX and any map to SLCX is postcomposed with CX (even if
we don’t mention it explicitly).

Hence assume we need to prove the diagram on the left in (3.1) (see next page)
commutative for some monads M, N, and T, some A,B,C,X ∈ Set, and some
maps f and g. Assuming that the statement holds for terms in canonical form we
then know that the dashed part in the right diagram in (3.1) commutes. However
as we assume that f and g are some maps precomposed with CX we see (using
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that CX is idempotent, i.e. that CX ◦CX = CX holds) that the two triangles also
commute. Therefore the statement has to hold for all λ-terms in SLCX if we are
able to show that this is so for terms in canonical form.

SLCX MA

NB TC

f

g

SLCX

SLCX MA

NB TC

CX

f

g

f

g

(3.1)

Alternatively one could also use SLCα (see Section 3.5 below for the definition)
and just work with the term in canonical form (we can use the same proof tech-
nique). All our proofs are such that either interpretation works, i.e the reader
may always replace SLC by SLCα and imagine that we pick the representative in
canonical form.

3.5 Action on Morphisms

We define SLC f : SLCX → SLCY for all morphisms f : X → Y in Set by
SLC f := fX ◦ CX , where fX : SLCX → SLCY is defined recursively for all
X ∈ Set and all L ∈ SLCX by

L 7→





varY (f(x)), if L = varX(x) with x ∈ X,

appY (fX(L1), fX(L2)), if L = appX(L1, L2) with L1, L2 ∈ SLCX,

absY (fX∗(L′)), if L = absX(L′) with L′ ∈ SLC′X,

λc.c, otherwise,

where c := min{d | d ∈ D}. In the second line we used that if L = appX(L1, L2)
is in canonical form so are L1 and L2. Note that by the remark before Lemma 3.1
we always land in one of the first three cases due to precomposition with CX .

This construction satisfies SLC IdX = IdSLC X and SLC(h◦g) = SLCh◦SLC g
for all X ∈ Set and all pairs of composable morphisms h and g.

For δ ∈ {α, αβ, αη, αβη} we denote by SLCδ the construction similar to
SLCX which sends every X ∈ Set to SLCX modulo the equivalence relation
generated by δ-conversions on λ-terms. For this to be well-defined we just need to
note that SLC f for any morphism f : X → Y in Set is constant on equivalence
classes.

Lemma 3.2 SLC f : SLCX → SLCY is constant on equivalence classes of SLCδ

for all morphisms f : X → Y in Set and all δ ∈ {α, αβ, αη, αβη}.
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Proof Let f : X → Y be any morphism in Set. We show that SLC f is constant
with respect to any of the three equivalence relations separately. This implies all
four statements.

SLC f is clearly constant with respect to α-equivalence due to the precompo-
sition with CX and the fact that α-equivalent λ-terms have the same canonical
form.

For β- and η-equivalence it is enough to show that two λ-terms differing by
one such step are equivalent – the statement then follows by induction. Further
the recursive definition of SLC f shows that this is enough to show that two λ-
terms containing equivalent subterms (and being equal otherwise) get mapped to
the same equivalence class.

First consider β-equivalence: Assume that L ∈ SLCX contains a β-redex, i.e.
is of the form appX(absX(L1), L2) with L1 ∈ SLC′X and L2 ∈ SLCX. We then
get the following chain of equalities:

SLC f(appX(absX(L1), L2)) = appY (SLC f(absX(L1)),SLC f(L2))

= appY (absY (SLC f∗(L1)),SLC f(L2))

= SLC f∗(L1)[∗ ← SLC f(L2)]

= SLC f(L1[∗ ← L2]).

The first two equalities hold by the definition of SLC f and the third one by β-
equivalence (on SLCY ). The last equality holds by showing the outer rectangle
in

SLCX∗ SLC SLCX SLCX

SLCY ∗ SLC SLCY SLCY

SLC γ1

SLC γ2

SLC f∗ SLC SLC f SLC f

µ
(SLC)
X

µ
(SLC)
Y

commutative, where γ1 : X∗ → SLCX is given for all z ∈ X∗ by

z 7→

{
η

(SLC)
X (z), if z ∈ X,

L2, if z = ∗

and γ2 : Y ∗ → SLCY is given for all z ∈ Y by

z 7→

{
η

(SLC)
Y (z), if z ∈ Y,

SLC f(L2), if z = ∗.

In this diagram the right square commutes as µ(SLC) is a natural transformation
(cf. proof of Lemma 3.3) and the left square commutes as SLC is a functor and
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the square

X∗ SLCX

Y ∗ SLCY

γ1

γ2

f∗ SLC f

is clearly commutative.
It is left to show that SLC f is constant with respect to η-equivalence. There-

fore assume that L ∈ SLCX is a λ-term containing an η-redex, i.e. L is of the
form absX(appX∗(SLC ιX(K), varX∗(∗))) with K ∈ SLCX. We then get the
following chain of equalities:

SLC f(absX(appX∗(SLC ιX(K), varX∗(∗))))

= absY (SLC f∗(appX∗(ιX(K), varX∗(∗))))

= absY (appY ∗(SLC f∗(ιX(K)),SLC f∗(varX∗(∗))))

= absY (appY ∗(SLC f∗(ιX(K)), varY ∗(f∗(∗))))

= absY (appY ∗(SLC f∗(ιX(K)), varY ∗(∗)))

= absY (appY ∗(ιY (SLC f(K)), varY ∗(∗)))

= SLC f(K).

Here the first four equations hold by the definition of SLC f and the last one
holds by η-equivalence (on SLCY ). For the fifth equation note that

SLCX SLCX∗

SLCY SLCY ∗

SLC ιX

SLC ιY

SLC f SLC f∗

commutes, as SLC is a functor and the square

X X∗

Y Y ∗

ιX

ιY

f f∗

obviously commutes. �

We write LC for SLCαβη. This is our interpretation of lambda calculus, hence
the name LC. For all X ∈ Set and all L ∈ SLCX we denote by L its equivalence
class in SLCδ X for all δ ∈ {α, αβ, αη, αβη}. For an arbitrary equivalence class
we usually use the letter T and the letter L for elements in SLCX therein. If it
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is clear which functor we are dealing with we omit the upper indices for var, app,
and abs.

As α-equivalent λ-terms have the same canonical form, deg : SLCX → N is
constant on equivalence classes with respect to α-equivalence. However this is
obviously not the case for β- and η-equivalences respectively. We therefore define
deg : SLCδ → N for all δ ∈ {α, αβ, αη, αβη}, all X ∈ Set, and all T ∈ SLCδ X by

deg(T ) := min{deg(L) | L ∈ SLCX with L ∈ T}.

This is well-defined as equivalence classes are not empty and picking any repre-
sentative in T gives an upper bound for deg(T ). We are not concerned how one
can actually compute the degree of a λ-term.

3.6 (Exponential) Monad Structure

We define two maps on SLC that induce maps on SLCδ that satisfy the conditions
of the unit and multiplication of a monad for δ ∈ {α, αβ, αη, αβη}. However
(as explained further after Lemma 3.3) these maps will not be a unit and a
multiplication for SLC itself.

The maps η
(SLC)
X : X → SLCX and µ

(SLC)
X : SLC SLCX → SLCX are given

for all X ∈ Set by η
(SLC)
X := varX (i.e. insertion of variables) and by letting

µ
(SLC)
X be replacement (i.e. a variable corresponding to a λ-term gets replaced by

its corresponding λ-term). More precisely replacement is given by first mapping
any term to its canonical form, then replacing the free variables by their cor-
responding λ-terms, and finally identifying all bound variables with the “same”
bound variables (according to the respective inclusions in the disjoint union).
Remember that this function then gets composed with CX . It is not hard to see
that these maps are constant on equivalence classes with respect to α-, β-, and
η-equivalence.

Lemma 3.3 For δ ∈ {α, αβ, αη, αβη} the triples (SLCδ, η
(SLCδ), µ(SLCδ)) define

a monad.

Proof It is easy to see that the diagrams corresponding to (2.1) commute for
the triples (SLCδ, η

(SLCδ), µ(SLCδ)) with δ ∈ {α, αβ, αη, αβη}. The commutativity
of the diagrams corresponding to (2.2) follows from the substitution lemma of
lambda calculus (cf. [Bar84, Lemma 2.1.16] for the statement and a proof of that
lemma). Hence it is left to show naturality.

As the maps η(SLCδ) and µ(SLCδ) come from maps for SLC we will prove all
statements (if possible) in that setting as this implies the corresponding state-
ments for SLCδ.

It is easy to see that η(SLC) is a natural transformation. For µ(SLC) we prove
naturality by induction on the degree of the λ-terms. Therefore let f : X → Y
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be any morphism in Set. We need to prove

SLC SLCX SLCX

SLC SLCY SLCY

µ
(SLC)
X

SLC SLC f

µ
(SLC)
Y

SLC f

commutative. We use induction on the outer degree, therefore the base case is for
λ-terms in SLC〈0〉 SLCX. For any L ∈ SLCX we denote by xL ∈ SLC SLCX the

variable corresponding to L, i.e. we have µ
(SLC)
X (xL) = µ

(SLC)
X (varSLC X(L)) = L.

Therefore let L ∈ SLC〈0〉 SLCX be arbitrary. The base case then holds by

SLC f(µ
(SLC)
X (xL)) = SLC f(L) = µ

(SLC)
Y (xSLC f(L)) = µ

(SLC)
Y (SLC SLC f(L)).

If L = appSLC X(L1, L2) ∈ SLC SLCX with L1, L2 ∈ SLC SLCX we have the
following two induction hypotheses:

SLC f(µ
(SLC)
X (Li)) = µ

(SLC)
Y (SLC SLC f(Li))

for i ∈ {1, 2}. The statement we need to show is

SLC f(µ
(SLC)
X (appSLC X(L1, L2))) = µ

(SLC)
Y (SLC SLC f(appSLC X(L1, L2))).

As application and multiplication commute by the definition of lambda calculus
and application and SLC f commute by the definition of SLC we get

SLC f(µ
(SLC)
X (appSLC X(L1, L2)))

= SLC f(appX(µ
(SLC)
X (L1), µ

(SLC)
X (L2)))

= appY (SLC f(µ
(SLC)
X (L1)),SLC f(µ

(SLC)
X (L1))).

Then, using the induction hypotheses and the same arguments as above, the
equalities

appY (SLC f(µ
(SLC)
X (L1)),SLC f(µ

(SLC)
X (L1)))

= appY (µ
(SLC)
Y (SLC SLC f(L1)), µ

(SLC)
Y (SLC SLC f(L2)))

= µ
(SLC)
Y (appSLC Y (SLC SLC f(L1),SLC SLC f(L2)))

= µ
(SLC)
Y (SLC SLC f(appSLC X(L1, L2)))

hold, which shows the first inductive step.
If L = absSLC X(L′) ∈ SLC SLCX with L′ ∈ SLC′ SLCX we have the follow-

ing induction hypothesis:

SLC′ f(µ
(SLC)
X∗ (SLC gX(L′))) = µ

(SLC)
Y ∗ (SLC SLC′ f(SLC gX(L′))),
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where the map gX : (SLCX)∗ → SLCX∗ is defined by gX |SLC X = SLC ιX

and gX(∗) = η
(SLC)
X∗ (∗). Note that gX is an injection satisfying the condition

deg(L′) = deg(SLC gX(L′)). We then need to show that

SLC f(µ
(SLC)
X (absSLC X(L′))) = µ

(SLC)
Y (SLC SLC f(absSLC X(L′)))

holds. The proof can be visualized in the diagram

SLC′ SLCX SLC SLC′X SLCX

SLC SLCX SLCX

SLC SLCY SLCY,

SLC gX µ
(SLC)
X∗

absSLC X absX

µ
(SLC)
X

SLC SLC f SLC f

µ
(SLC)
Y

(3.2)

where the upper rectangle commutes by the definition of µ(SLC) and the definition
of lambda calculus.

Let L′ ∈ SLC′ SLCX be arbitrary. We get the following chain of equalities:

SLC f(µ
(SLC)
X (absSLC X(L′)))

= SLC f(absX(µ
(SLC)
X∗ (SLC gX(L′)))) (3.3)

= absY (SLC′ f(µ
(SLC)
X∗ (SLC gX(L′)))) (3.4)

= absY (µ
(SLC)
Y ∗ (SLC SLC′ f(SLC gX(L′)))) (3.5)

= absY (µ
(SLC)
Y ∗ (SLC gX(SLC′ SLC f(L′)))) (3.6)

= µ
(SLC)
Y (absSLC Y (SLC′ SLC f(L′))) (3.7)

= µ
(SLC)
Y (SLC SLC f(absSLC X(L′))). (3.8)

We now give arguments why these equations hold. (3.3) and (3.7) hold by the
commutativity of the upper rectangle in (3.2) (in the second case with X replaced
by Y ). (3.4) and (3.8) are just the definitions of the action of SLC on morphisms.
Further (3.5) is the induction hypothesis. Hence it is left to show that (3.6) holds.
This follows from the commutativity of

SLC(SLC(X)∐ ∗) SLC(SLC(X ∐ ∗))

SLC(SLC(Y )∐ ∗) SLC(SLC(Y ∐ ∗)),

SLC gX

SLC(SLC f)∗

SLC gY

SLC(SLC f∗)
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which commutes as SLC is a functor and

SLC(X)∐ ∗ SLC(X ∐ ∗)

SLC(Y )∐ ∗ SLC(Y ∐ ∗),

gX

(SLC f)∗

gY

SLC f∗

is clearly commutative. This finishes the second case of the induction and hence
proves that µ(SLC) is actually a natural transformation. �

Note that the triple (SLC, η(SLC), µ(SLC)) fails to satisfy the commutativity of
the diagram corresponding to (2.1) by α-equivalence (start with a λ-term that is
not in canonical form). This could be avoided by (properly) defining replacement
without invoking canonical forms. However for the naturality of this replacement
we would then need to change the action of SLC on morphisms to one that is not
constant with respect to δ-equivalence for δ ∈ {α, αβ, αη, αβη}. Therefore SLC
can not be turned into a monad in a reasonable way.

Finally we define the exponential structure on LC. We use the fact that abs is
a morphism of LC-modules which is shown in the next section. For all X ∈ Set
we define a map app1X : SLCX → SLC′X for all L ∈ SLCX by

app1X(L) := appX∗(SLC ιX(L), varX∗(∗)).

By [Zsi06, Remark 2.23] this defines a morphism app1: LC→ LC′ of LC-modules.

Further by setting ε(LC) = app1 and ε(LC)−1
= abs we see that LC is an exponen-

tial monad as for all X ∈ Set and all T ′ ∈ LC′X we have app1X(absX(T ′)) = T ′

by β-equivalence and for all T ∈ LCX we get absX(app1X(T )) = T by η-
equivalence.

3.7 Morphisms of Lambda Calculus

Our goal is to show that basic operations of lambda calculus can be seen as maps
or even morphisms in our setting. We already used the operation var of lambda
calculus for the unit of our monads. Further we can regard app as a morphism of
LC-modules LC×LC→ LC and abs as a morphism of LC-modules LC′ → LC:

Lemma 3.4 app : LC×LC → LC and abs : LC′ → LC are morphisms of LC-
modules.

Proof The naturality of app and abs means that they commute with morphisms
induced by morphisms in Set. This is satisfied by the definition of the action of
SLC on any morphism f : X → Y in Set.

app and abs turn the diagrams corresponding to (2.6) commutative by the
definition of substitution (cf. Examples 2.14 and 2.15 in [Zsi06]). �
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Further we can use replacement (i.e. µ(LC)) to describe substitution as already
used in Lemma 3.2: Given T1, T2 ∈ LCX for some X ∈ Set we get T1[x ← T2]
for x ∈ X by chasing T1 ∈ LCX through the following chain of maps:

LCX
LC γ
−→ LC LCX

µ
(LC)
X−→ LCX, (3.9)

where γ : X → LCX is given for all y ∈ X by

y 7→





var
(SLC)
X (y) = η

(LC)
X (y), if x 6= y ∈ X,

T2, if y = x.

Note that we can consider T2 as an equivalence class in LC(X \x) if x /∈ FV(T2).
We can therefore regard γ as a map from X to LC(X \ x) (this is later used for
X = Y ∗, where Y ∈ Set and x = ∗).

3.8 Justification of the Definition

As stated earlier we now need to justify why our definition of LC is equivalent
to “the” standard definition of lambda calculus. Here we need to pay atten-
tion that different authors use different definitions for lambda calculus. All the
usual definitions take some variables and then build all λ-terms involving those
variables. Hence the main difference to our definition is that there is no set of
variables that can only occur bound. Where the different definitions differ is in
what the variables should be. For example [Bar84] assumes that the variables
form a countably infinite set but [Sel07] just assumes that the variables form any
infinite set.We can now justify our definition as follows:

(i) By the example at the beginning of this section we see that “usual” lambda
calculus is not well-behaved under renaming variables, i.e. it is not functorial
in general. Hence there is some change needed such that it is “well-behaved”.

(ii) “Usual” lambda calculus is not defined on non-empty, finite sets: Assume
we form all λ-terms with variables in the set X = {x1, x2, . . . , xm} with
m ∈ N and m ≥ 1. We then consider the λ-term

λx2.(λx1.x1 · · ·xm)(x1 · · ·xm).

By β-equivalence we get a λ-term of the form

(λx1.x1 · · ·xm)[x2 ← (x1 · · ·xm)].

However this λ-term is not defined as x1 ∈ FV(x1 · · ·xm) and we can not
apply an α-conversion without changing the meaning of the first λ-term
(and we still couldn’t apply substitution for the same reason). Additionally
the author is not aware why one should consider lambda calculus on an
empty set of variables (as it would be the empty set itself).
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(iii) Adding only a single variable that needs to be bound would already elim-
inate this problem, however a similar argument as the example at the be-
ginning of this section would show that the “renaming morphism” would
still not be well-behaved in general. We therefore need a place to “store”
or “hide” the bound variables from renaming. Note that if X is infinite, a
λ-term over X may have arbitrarily many different bound variables. This
has the following two consequences: First the set of strictly bound variables
for X needs to be infinite as to be able to “hide” all bound variables of all
possible λ-terms over X. Second if we want to map these variables injec-
tively into bound variables of another (possibly finite) set we need to have
arbitrarily many bound variables for this set too, i.e. this set needs to be
infinite.

(iv) Another (although weaker) argument to take infinitely many bound vari-
ables is the following: If we would only add a finite set of bound variables,
app1 and abs would not form an isomorphism for finite sets (using the pi-
geonhole principle): Assume we form all λ-terms with free variables in a
finite, non-empty set X = {x1, x2, . . . , xm} and bound variables in a finite
(possibly empty) set Y = {y1, y2, . . . , yn} with X∩Y = ∅. We then consider
the λ-term

λx1 · · ·xmy1 · · · yn.x1 · · ·xmy1 · · · yn∗

over the variables X∗ ∪ Y . Applying absX yields

λ ∗ .(λx1 · · ·xmy1 · · · yn.x1 · · ·xmy1 · · · yn∗),

but as ∗ /∈ (X∪Y ) we need to replace it by an element in X∪Y . No matter
which one we pick, app 1X can not return the λ-term we started with.

(v) By Lemma 3.5 below it does not matter what infinite set of variables we
take, hence there is no argument not to take the smallest possible. We
might even take different sets of strictly bound variables (not necessarily
of the same cardinality) for different sets. The statements used here would
still hold with the same ideas but it would be harder to formulate proofs.

(vi) For infinite sets X ∈ Set and injective maps between these sets we get by
Lemma 3.6 that our definition coincides with the “usual” one. The outlined
proof thereof also shows how one could (with a simple change) extend this
version to any maps between infinite sets.

(vii) One might be tempted to take SLC as the endofunctor that assigns to each
X ∈ Set all λ-terms with free variables in X and arbitrary bound variables,
i.e. the set of all variables would be

VAR :=
⋃

X∈Set

{x | x ∈ X}.

However this union would form a proper class, i.e. the codomain of SLC
would not be Set. This would make notation easier, but most definitions
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impossible: First we would need to extend lambda calculus to classes, then
the λ-terms formed over a set could not be regarded as elements of a set
(otherwise we would have that all λ-terms are variables), and finally even
after equivalence relations on classes we would not get sets, i.e. no equiva-
lence to “usual” lambda calculus.

(viii) After the previous points we have two possible ways we can take: Either we
just consider SLC and SLCδ for δ ∈ {α, αβ, αη, αβη} as endofunctors on
Set∞

inj, the category of infinite sets with injective morphisms (where “usual”
lambda calculus applies), or we can extend lambda calculus in a (hopefully)
reasonable (and minimal) way to finite sets and arbitrary morphisms. The
first possibility has the advantage of precisely capturing lambda calculus but
the second one has the advantage that the endofunctors are over a category
with many (nice) properties. The proof of the main theorem involves one
step (the generalization of application in Section 4.2) that uses an additional
property of the category Set which does not hold in Set∞

inj. Hence our proof
does not work in that setting. However if we use the remark in the proof
of Lemma 3.6 and work in the category of infinite sets with all morphisms
between these sets the proof still works, i.e. the reader may still derive the
result in that setting if needed.

Lemma 3.5 For all X ∈ Set there is a natural isomorphism SLCδ X ∼= S̃LCδX

for δ ∈ {α, αβ, αη, αβη}, where S̃LCδ : Set → Set are the functors defined in a
similar way as SLCδ but with the set D replaced by any infinite set E.

Proof (Sketch) A complete proof of this statement would require a proof that
all maps involved are well-defined which we omit as they are (almost) the same
as for SLCδ. However it is important to note that we do not impose any ordering
of the elements of the set E. Hence the canonical form described below contains
a choice which means that S̃LC is not well-defined. However the monads S̃LCδ

for δ ∈ {α, αβ, αη, αβη} are well-defined as they all contain α-equivalence.
It is enough to proof the statement for δ = α as this implies (by construction)

the other results. First fix a countably infinite subset F ⊆ E and equip it with
a total order such as D. We can then define a map ϕ : D → F which sends the
smallest element of D to the smallest one of F and recursively the successor of any
element of D to the successor of the corresponding predecessor in F . This map
is clearly an isomorphism of totally ordered sets. Further we define a canonical
representative for all X ∈ Set and all L ∈ S̃LCX with respect to F in a similar
way as we did for SLC and D. This representative is denoted by C̃X(L).

We then define two maps ξX : SLCX → S̃LCX and ζX : S̃LCX → SLCX for
all X ∈ Set, all L ∈ SLCX, and all K ∈ S̃LCX by

ξX(L) := ϕ̃((L)CX
),

ζX(K) := ϕ̃−1((K)
C̃X

),
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where ϕ̃ is the map that exchanges all bound variables in (L)CX
according to ϕ

(they all belong to D by the definition of (L)CX
) and similarly for ϕ̃−1.

Note that none of the involved maps changes the “structure” of a λ-term, all
changes can be achieved by α-conversions (in a suitable set of bound variables).
It is now easy to see that ξ and ζ induce an isomorphism between SLCα and

S̃LCα (any two α-equivalent λ-terms have the same canonical form and ξ and ζ
induce a bijection of canonical forms). Naturality of this isomorphism follows by
the fact that the actions on morphisms are defined in a similar way, just with
respect to to different canonical forms. Similarly it could be shown that this
actually defines a natural isomorphism of exponential monads (in the case of LC
and L̃C respectively). �

Lemma 3.6 We define a functor ŜLC: Set∞
inj → Set∞

inj for all X ∈ Set∞
inj by

X 7→ {L | L is a λ-term with variables in X}

and for all (injective) morphisms f : X → Y in Set∞
inj for all L ∈ ŜLCX recur-

sively by

L 7→





varY (f(x)), if L = varX(x) with x ∈ X,

appY (ŜLCf(L1), ŜLCf(L2)), if L = appX(L1, L2)

with L1, L2 ∈ ŜLCX,

λ varY (f(x)).(ŜLC(f)(L′)), if L = λx.L′

with x ∈ X and L′ ∈ ŜLCX.

One can define ŜLCδ similarly to SLCδ for δ ∈ {α, αβ, αη, αβη}.

We claim that there is a natural isomorphism SLCδ Z ∼= ŜLCδZ for all infinite
sets Z ∈ Set and injective maps between them, i.e. there is a natural isomorphism

between SLCδ and ŜLCδ if we restrict domain and codomain of SLCδ to Set∞
inj.

Proof (Sketch) We again only give a sketch of how such a proof works, similar
to Lemma 3.5 above. Before we give the sketch of the proof there are two points
one should note: The first one is that ŜLC is actually an endofunctor, i.e. it
does map injective morphisms between sets to injective morphisms. The second
point is that as above the canonical form of λ-terms used in this proof is only
well-defined after applying α-equivalence.

As in Lemma 3.5 it is enough to prove the statement for δ = α. The idea is
the same as in that lemma, it just involves a different canonical form.

For all X ∈ Set∞
inj fix a countably infinite subset X̂ ⊆ X and equip it with a

total order such as D. For simplicity we assume that X̂ is given by {x̂j | j ∈ N}.
For the canonical representative we need a small change as an arbitrary λ-term
L ∈ ŜLCX may contain “small” variables (with respect to the corresponding
total order) of X̂ as free variables. Therefore we need to change the second stage
of the algorithm in Section 3.9 in the following way:
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For every edge that is labelled with a “0” the algorithm searches the highest
label of any edge in the subtree starting with the source node of this edge. Let
this number be n ∈ N. Then define the subset X̂n ⊆ X̂ as the (in ascending
order) smallest n+ 1 elements in X̂ which are not free in this subtree (note that
this set is dependent on the subtree of the considered λ-term and not just on the
natural number n – we just don’t want to introduce too many indices). Such a
set always exists as X̂ is infinite and any λ-term can only contain a finite number
of free (and bound) variables. For notational convenience we assume that X̂n

is given by {ŷj | 0 ≤ j ≤ n}. Every labelled variable is in exactly one of these
subtrees. If the variable is labelled with i ∈ N, it is replaced by ŷk with k = n− i.
The relabelling of the edges is given as follows: An edge labelled with i ∈ N is
relabelled with the index of ŷk with k = n− i inside X̂ (e.g. if ŷk = x̂l, then the
edge is labelled with “l”). The algorithm then goes up in the tree and outputs
the (new) λ-term at the top (reverse construction of the first stage).

In Figure 3.3 on page 29 we included an example with X = X̂ = {xj | j ∈ N}
and L = λx0x3.x1x0x2. In this case we have FV(L) = {x1, x2}, n = 2, and
X̂n = {ŷ0 = x0, ŷ1 = x3}.

We then define ĈX(L) as usual. Note that this construction works for SLC
and ŜLC, therefore the two maps ξX : SLCX → ŜLCX and ζX : ŜLCX → SLCX
can be defined for all sets X ∈ Set∞

inj, all L ∈ SLCX, and all K ∈ ŜLCX by

ξX(L) := ((L)CX
)
ĈX

= (L)
ĈX
,

ζX(K) := (K)
ĈX
.

As any two α-equivalent λ-terms have exactly one canonical representative with
respect to either canonical form it is obvious that ξ and ζ induce a natural

isomorphism of SLCα and ŜLCα (as noted earlier SLC f for any morphism of
sets f just renames the free variables according to f , up to α-equivalence).

Note that by introducing this canonical representative on ŜLC we could ex-
tend “usual” lambda calculus to the full subcategory of Set consisting of all
infinite sets by defining ŜLCf for any morphism f : X → Y of infinite sets for all
L ∈ ŜLCX as applying the first stage of the algorithm for the canonical form in
ŜLCX, then renaming all free variables according to f , and finally applying the
second stage of the algorithm of the canonical form in ŜLCY (by just considering
the labels of the variables and ignoring that they have “wrong” names for Y ).�

3.9 Canonical Form

In this section we give an informal description of an algorithm that computes the
canonical form of a λ-term as described in Section 3.3.

Let D ∈ Set be given by D := {di | i ∈ N} with the total order given by the
indices and X ∈ Set such that x, y, z ∈ X. We just give an informal description
of how such an algorithm might work as a detailed description would be tedious
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and not very enlightening. It may be useful to look at the two stages of the
algorithm in the example of the λ-term (λxd1.yzd1)(λd0d2.d0d2(λx.x)) given in
Figures 3.1 and 3.2 on pages 27 and 28.

First stage. In a first stage the algorithm decomposes the given λ-term into
its components in reverse order of its building process and therefore creates a
“building tree” of the λ-term. The root of the tree is given by the λ-term itself.
If the λ-term is an application the algorithm just splits the λ-term into its two
components. If it is an abstraction the algorithm “throws out” the outermost
abstraction and labels the edge as one higher than the highest labelled edge from
this node to the root (or 0 if no such edge exists) and also labels the abstracted
variable(s) (if there are any) accordingly (in our example the labels are the upper
indices in red). If the λ-term is a variable the algorithm stops. This process is
then repeated in all subtrees until all leaves are variables.

Second stage. In the second stage the algorithm “reassembles” the λ-term with
(new) variables defined as follows: Unlabelled variables stay the same (these need
to be elements in X). For every edge that is labelled with a “0” the algorithm
searches the highest label of any edge in the subtree starting with the source node
of this edge. Let this number be n ∈ N (in our example we have n = 1 in the left
subtree and n = 2 in the right subtree). Every labelled variable is in exactly one
of these subtrees. If the variable is labelled with i ∈ N, it is replaced by dk with
k = n − i (in our example the indices of the new variables are in green). The
same relabelling is also done for the labelled edges. The algorithm then goes up
in the tree and outputs the (new) λ-term at the top (reverse construction of the
first stage).

Note that the resulting λ-term of this process is α-equivalent to the input
λ-term. Further the proposed algorithm has a running time (low-)polynomial in
the degree of the λ-term.
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Chapter 4

Properties of Exponential Monads

In this chapter we show that two properties of lambda calculus hold in very
general situations. These properties could be described as “morphisms of monads
commute with substitution” and “application commutes with multiplication”.

4.1 Morphisms and Substitution

For the first property consider the map τ : LC→ LC′ defined for all X ∈ Set by
τX := LC ιX . It is easy to see that this defines a morphism of monads. Given
any T1, T2 ∈ LCX for some X ∈ Set we immediately see that

τX(T1)[x← τX(T2)] = τX(T1[x← T2])

holds, i.e. it does not matter if we first apply τX to both terms and then substitute
or if we first substitute and then apply τX .

This is a property that holds for all monads and morphisms between them,
however we first need to define substitution for an arbitrary monad. Therefore
let (M, η(M), µ(M)) be any monad. Substitution in this monad is then defined as
for LC in (3.9) on page 21 by replacing LC by M.

Lemma 4.1 Let (T, η(T), µ(T)) and (S, η(S), µ(S)) be two monads over Set. If
τ : T

q

→ S is a morphism of monads then it commutes with substitution in the
following two ways:

(i) For all X ∈ Set, all K1,K2 ∈ TX, and all x ∈ X it holds that

τX(K1)[x← τX(K2)] = τX(K1[x← K2]).

(ii) For all X ∈ Set, all K1 ∈ T′X, and all K2 ∈ TX it holds that

τX∗(K1)[∗ ← τX(K2)] = τX(K1[∗ ← K2]).

Proof For (i), given the assumptions of the statement, we need to prove that

30
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the outer rectangle in

TX T TX TX

T SX

SX S SX SX

T γ1

T γ2

τX

S γ2

T τX

τS X

µ
(T)
X

µ
(S)
X

τX

is commutative, where γ1 : X → TX is given for all y ∈ X by

y 7→

{
η

(T)
X (y), if x 6= y ∈ X,

K2, if y = x

and γ2 : X → SX is given for all y ∈ X by

y 7→

{
η

(S)
X (y), if x 6= y ∈ X,

τX(K2), if y = x.

It is enough to prove the two rectangles and the triangle to be commutative. The
right rectangle in this diagram commutes due to condition (2.4) in the definition
of a morphism of monads. The lower left rectangle commutes as τ is natural by
definition. The commutativity of the triangle follows from the commutativity of

X TX

SX

γ1

γ2
τX

and the fact that T is a functor. However this triangle clearly commutes: For
x 6= y ∈ X this follows from condition (2.3) in the definition of a morphism of
monads and for x ∈ X we have

τX(γ1(x)) = τX(K2) = γ2(x).

For (ii) we need to prove

TX∗ T TX TX

T SX

SX∗ S SX SX

T γ1

T γ2

τX∗

S γ2

T τX

τS X

µ
(T)
X

µ
(S)
X

τX
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commutative, where γ1 : X∗ → TX is given for all y ∈ X∗ by

y 7→

{
η

(T)
X (y), if y ∈ X,

K2, if y = ∗

and γ2 : X∗ → SX is given for all y ∈ X∗ by

y 7→

{
η

(S)
X (y), if y ∈ X,

τX(K2), if y = ∗.

This follows by the same argument as in the previous case. �

4.2 Application and Multiplication

For the second property consider the monad LC again. We have that application
and multiplication commute, i.e. for all X ∈ Set and all T1, T2 ∈ LC LCX the
equation

µ
(LC)
X (appLC X(T1, T2)) = appX(µ

(LC)
X (T1), µ

(LC)
X (T2))

holds.
To generalize this statement we need to define application for general monads.

However we only do this for monads together with a morphism of modules from
the tautological module to its derived module. As for substitution we describe
application in categorical terms such that this definition coincides with the usual
one in the case of LC (and SLC).

For any monad M with a morphism of modules ε(M) : M
q

→ M′ we define for

all X,Y ∈ Set a map app
(M)
X,Y : MX ×MY → M(X ∐ Y ) by the following chain

of maps:

MX ×MY
ε

(M)
X

×IdM Y
−→ MX∗ ×MY

k
(M)
X,Y
−→ M(X ∐MY )

l
(M)
X,Y
−→ · · ·

· · ·
l
(M)
X,Y
−→ M M(X ∐ Y )

µ
(M)
X∐Y−→ M(X ∐ Y ),

where k
(M)
X,Y : MX∗ ×MY → M(X ∐MY ) is determined by

r
(M)
X,Y : MY → Hom(X∗, X ∐MY )

T 7→

{
x 7→ x, if x ∈ X,

∗ 7→ T

and l
(M)
X,Y : M(X ∐MY )→ M M(X ∐ Y ) is induced by

s
(M)
X,Y : X ∐MY → M(X ∐ Y ),

z 7→

{
η

(M)
X∐Y (z), if z ∈ X,

M jY (z), if z ∈ MY.
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For X = Y we can further define a map app
(M)
X : MX × MX → MX by the

composition of app
(M)
X,X with the map induced by the map ∇X from X ∐X to X

which sends every element in X ∐X to the one of the same name in X (we give
a shorter description of this map after Lemma 4.4).

Note that in the cases of SLC and SLCδ, for δ ∈ {α, αβ, αη, αβη}, with

ε = app1 we have that appX = app
(SLCδ)
X holds by definition, i.e. we do not

introduce any ambiguity by using this notation. Further it is not hard to see that

app
(M)
− already determines app

(M)
−,− by

MX ×MY
M jX×M jY−→ M(X ∐ Y )×M(X ∐ Y )

app
(M)
X∐Y−→ M(X ∐ Y ).

It is also important to note that app
(M)
−,− and app

(M)
− form natural transformations

as we now prove.

Lemma 4.2 With the notation above the map app
(M)
−,− : M×M → G is a nat-

ural transformation of bifunctors, where G : Set × Set → Set is given by the
composition of the functor that takes two sets to their disjoint union with M.

Proof Let f : X → A and g : Y → B be any morphisms in Set. We need to
prove the outside of

MX ×MY MA×MB

MX∗ ×MY MA∗ ×MB

M(X ∐MY ) M(A∐MB)

M M(X ∐ Y ) M M(A∐B)

M(X ∐ Y ) M(A∐B)

M f ×M g

M f∗ ×M g

M(f ∐M g)

M M(f ∐ g)

M(f ∐ g)

ε
(M)
X × IdM Y

k
(M)
M X,M Y

l
(M)
M X,M Y

µ
(M)
X∐Y

ε
(M)
A × IdM B

k
(M)
M A,M B

l
(M)
M A,M B

µ
(M)
A∐B

commutative.
The top and bottom rectangles in this diagram commute as ε(M), Id, and

µ(M) are natural transformations. For the two rectangles in the middle it is



34 CHAPTER 4. PROPERTIES OF EXPONENTIAL MONADS

enough to prove that the maps that induce k
(M)
−,− and l

(M)
−,− satisfy the corresponding

properties.

For k
(M)
−,− this means proving

X∗ ×MY A∗ ×MB

X ∐MY A∐MB

f∗ ×M g

f ∐M g
commutative, where the vertical maps are the inducing ones. By first going down
and then right we get

(y, T ) 7→

{
(f ∐M g)(y), if y ∈ X,

(f ∐M g)(T ), if y = ∗

for all y ∈ X∗ and all T ∈ MY . By first going right and then down we get

(y, T ) 7→ (f∗(y),M g(T )) 7→

{
f∗(y), if f∗(y) ∈ A,

M g(T ), if f∗(y) = ∗

for all y ∈ X∗ and all T ∈ MY . As we have

f∗(y) = ∗ ⇔ y = ∗

and f∗|X = ιA ◦ f , we can rewrite the second composite as

(y, T ) 7→

{
f(y), if y ∈ X,

M g(T ), if y = ∗.

That the two composites agree follows by the definition of the disjoint union.

For l
(M)
−,− this means proving

X ∐MY A∐MB

M(X ∐ Y ) M(A∐B)

f ∐M g

M(f ∐ g)

s
(M)
X,Y s

(M)
A,B

commutative. By definition we have

M(f ∐ g) ◦ s
(M)
X,Y =

{
x 7→ η

(M)
X∐Y (x) 7→ M(f ∐ g)(η

(M)
X∐Y (x)), if x ∈ X,

L 7→ M jY (L) 7→ M(f ∐ g)(M jY (L)), if L ∈ MY

and

s
(M)
A,B ◦ f ∐M g =

{
x 7→ (f ∐M g)(x) 7→ η

(M)
A∐B((f ∐M g)(x)), if x ∈ X,

L 7→ (f ∐M g)(L) 7→ M jB((f ∐M g)(L)), if L ∈ MY.
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We can now conclude as

M(f ∐ g)(η
(M)
X∐Y (x)) = η

(M)
A∐B((f ∐M g)(x))

holds for all x ∈ X by the naturality of η(M) and

M(f ∐ g)(M jY (L)) = M jB((f ∐M g)(L))

holds for all L ∈ MY as M is a functor and as jB ◦ g = (f ∐ g) ◦ jY holds. �

Corollary 4.3 app
(M)
− : (M×M) ◦∆→ M is a natural transformation, where ∆

denotes the diagonal functor.

Proof Let f : X → A be any morphism in Set. With Lemma 4.2 at hand it is
only left to show that

M(X ∐X) M(A∐A)

MX MA

M(f ∐ f)

M f

M∇X M∇A

commutes. This follows from the commutativity of the square

X ∐X A∐A

X A

f ∐ f

f

∇X ∇A

and functoriality. �

Before we give the actual statement we need a preliminary result that will

allow us to use an alternative description of app
(M)
− .

Lemma 4.4 With the notation above the diagram

MX∗ ×MX M(X ∐MX) M M(X ∐X)

M MX MX M(X ∐X)

k
(M)
X,X l

(M)
X,X

µ
(M)
X∐X

M∇X

m
(M)
X

µ
(M)
X
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commutes for all X ∈ Set, where m
(M)
X : MX∗×MX → M MX is defined as the

map induced by

t
(M)
X : MX → Hom(X∗,MX)

T 7→

{
x 7→ η

(M)
X (x), if x ∈ X,

∗ 7→ T.

Proof Let X ∈ Set be arbitrary. Note that

M∇X ◦ µ
(M)
X∐X = µ

(M)
X ◦M M∇X

holds by the naturality of µ(M). It is therefore sufficient to prove

MX∗ ×MX M(X ∐MX) M M(X ∐X)

M MX MX M MX

k
(M)
X,X l

(M)
X,X

M M∇X

µ
(M)
X

m
(M)
X

µ
(M)
X

commutative. By adding the identities between the two M MX sets it follows
that proving

MX∗ ×MX M(X ∐MX)

M MX M M(X ∐X)

k
(M)
X,X

l
(M)
X,X

M M∇X

m
(M)
X

commutative already implies the result.
That this holds can be seen by considering the maps that induce the ones

above, which is shown in

MX Hom(X∗, X ∐MX)

Hom(X∗,MX) Hom(X∗,M(X ∐X)),

r
(M)
X,X

s
(M)
X,X ∗

(M∇X)∗

t
(M)
X

where a lower star denotes postcomposition by that map.

Plugging in the definitions we see that (M∇X)∗ ◦ s
(M)
X,X ∗

◦ r
(M)
X,X is given for all

T ∈ MX by

T 7→

{
x 7→ x 7→ η

(M)
X (x) 7→ η

(M)
X (x), if x ∈ X,

∗ 7→ T 7→ M jX(T ) 7→ T,



4.2. APPLICATION AND MULTIPLICATION 37

where we used ∇X ◦ jX = IdX for the last step. However this is exactly the

definition of t
(M)
X and hence finishes the proof. �

This lemma implies that

MX ×MX MX∗ ×MX

MX∗ ×MX M(X ∐MX)

M MX M M(X ∐X)

MX M(X ∐X)

ε
(M)
M X × IdM M X

m
(M)
X

µ
(M)
X

ε
(M)
M X × IdM M X

k
(M)
X,X

l
(M)
X,X

µ
(M)
X∐X

M∇X

commutes for all X ∈ Set, i.e. it gives an alternative way of defining app
(M)
− .

This notation is going to make the presentation of the next proof simpler.

Lemma 4.5 Let M and ε(M) be as above. Then the identity

µ
(M)
X (app

(M)
M X(L1, L2)) = app

(M)
X (µ

(M)
X (L1), µ

(M)
X (L2))

holds for all X ∈ Set and all L1, L2 ∈ M MX.

Proof Let X ∈ Set be arbitrary. We need to prove

M MX ×M MX MX ×MX

M MX MX

µ
(M)
X × µ

(M)
X

app
(M)
M X

µ
(M)
X

app
(M)
X
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commutative. Plugging in the definitions shows that this diagram is

M MX ×M MX MX ×MX

M(MX)∗ ×M MX MX∗ ×MX

M(MX ∐M MX) M(X ∐MX)

M M(MX ∐MX) M M(X ∐X)

M(MX ∐MX) M(X ∐X)

M MX MX.

µ
(M)
X × µ

(M)
X

ε
(M)
M X × IdM M X ε

(M)
X × IdM X

k
(M)
M X,M X

k
(M)
X,X

l
(M)
M X,M X l

(M)
X,X

µ
(M)
M X∐M X µ

(M)
X∐X

∇M X ∇X

µ
(M)
X

Using Lemma 4.4 this is equivalent to proving the outside of

M MX ×M MX MX ×MX

M(MX)∗ ×M MX MX∗ ×MX

M M MX M MX

M MX MX

µ
(M)
X × µ

(M)
X

ε
(M)
M X × IdM M X ε

(M)
X × IdM X

µ′(M)
X × µ

(M)
X

m
(M)
M X

m
(M)
X

Mµ
(M)
X

µ
(M)
M X µ

(M)
X

µ
(M)
X

(4.1)
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commutative. In this diagram the upper rectangle commutes by the component-
wise definition of the product of two modules and the assumption that ε(M) is a
morphism of modules. Further the lower rectangle commutes by the associativity
of µ(M). However the middle triangle is in general not commutative, e.g. for LC
it will not commute. Our goal is to prove that the composition of the lower two
rectangles is commutative.

By fixing T ∈ M MX the middle rectangle becomes

M(MX)∗ MX∗

M M MX M MX,

µ′(M)
X

m
(M)
M X,T

m
(M)

X,µ(M)(T )

Mµ
(M)
X

where m
(M)
M X,T : M(MX)∗ → M M MX is induced by

u
(M)
M X,T : (MX)∗ → M MX

L 7→

{
η

(M)
M X(L), if L ∈ MX,

T, if L = ∗

and m
(M)

X,µ(M)(T )
: MX∗ → M MX is induced by

v
(M)

X,µ(M)(T )
: X∗ → MX

y 7→

{
η

(M)
X (y), if y ∈ X,

µ(M)(T ), if y = ∗.

Recall that the map gX : (MX)∗ → MX∗ is defined by g|M X = M ιX and

g(∗) = η
(M)
X∗ (∗). This induces the map M gX from M(MX)∗ to M MX∗. By

Lemma 4.6 below the diagram

M MX∗ MX∗

M M MX M MX

µ
(M)
X∗

m̃
(M)
X,T

m
(M)

X,µ(M)(T )

µ
(M)
M X

(4.2)

commutes for all X ∈ Set, where m̃
(M)
X,T : M MX∗ → M M MX is induced by

w
(M)
X,T : X∗ → M MX

y 7→

{
η

(M)
M X(η

(M)
X (y)), if y ∈ X,

T, if y = ∗
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(first it induces a map from M MX∗ to M M M MX and we then compose with

M Mµ
(M)
X ).

We already know that the first rectangle in (4.1) commutes, hence it is enough
to prove the lower part commutative. If we fix T ∈ M MX we get

M(MX)∗ MX∗

M M MX M MX

M MX MX,

µ′(M)
X

m
(M)
M X,T

m
(M)

X,µ
(M)
X

(T )

µ
(M)
M X µ

(M)
X

µ
(M)
X

(4.3)

where the second index is a reference to the fixed element.
The commutativity of this diagram follows from

M(MX)∗ M MX∗ MX∗

M M M MX M M M MX

M M MX M MX

M MX MX.

µ′(M)
X

M gX µ
(M)
X∗

m
(M)
M X,T

M Mw
(M)
X,T

M Mw
(M)
X,T

Mµ
(M)
M X

M Mµ
(M)
X

n
(M)

X,µ
(M)

X
(T )

µ
(M)
M XMµ

(M)
X µ

(M)
X

µ
(M)
X

(4.4)

In this diagram the top commutes by the definition of µ′(M)
X . Further the right

figure commutes due to Lemma 4.6. Note that the diamond in the middle does
not commute in general. However if we go from M MX∗ all the way down to
MX it does not matter which side of the diamond we take by the associativity
condition of a monad.

It is left to show that going from M(MX)∗ to M MX via m
(M)
M X,T is the same
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as using the left side of the diamond, i.e. we want to prove

M(MX)∗ M MX∗

M M MX M M M MX

M MX M M MX

M gX

m
(M)
M X,T

M Mw
(M)
X,T

Mµ
(M)
M X

Mµ
(M)
X

Mµ
(M)
X

commutative.
First we consider ∗ ∈ (MX)∗ as we have there that the rectangle in (4.4)

already commutes (equivalently we could draw identity arrows between the two
M M MX sets). Further we use functoriality to make our lives easier, i.e. it
suffices to prove

(MX)∗ MX∗

M MX M M MX

gX

u
(M)
M X,T

Mw
(M)
X,T

µ
(M)
M X

commutative. By using the naturality of η(M) we see that

X∗ MX∗

M MX M M MX

η
(M)
X∗

w
(M)
X,T Mw

(M)
X,T

η
(M)
M M X

commutes. Hence we have

µM X(Mw
(M)
X,T (gX(∗))) = µM X(Mw

(M)
X,T (ηX∗(∗)))

= µM X(η
(M)
M M X(w

(M)
X,T (∗)))

= w
(M)
X,T (∗)

= T

= u
(M)
M X,T (∗),

where we use the definitions of the maps involved and for the third equation the
property of the unit of a monad.



42 CHAPTER 4. PROPERTIES OF EXPONENTIAL MONADS

Now let L ∈ MX be arbitrary. Note that we have w
(M)
X,T

∣∣∣
X

= η
(M)
M X ◦ η

(M)
X . As

we clearly have w
(M)
X,T ◦ ιX = w

(M)
X,T

∣∣∣
X

we get (using functoriality, the definitions

of the various maps, and the properties of the unit of a monad):

Mµ
(M)
X ◦Mµ

(M)
M X ◦M Mw

(M)
X,T ◦M gX ◦M(L)

= Mµ
(M)
X ◦Mµ

(M)
M X ◦M Mw

(M)
X,T ◦M(gX(L))

= Mµ
(M)
X ◦Mµ

(M)
M X ◦M Mw

(M)
X,T ◦M(M ιX(L))

= Mµ
(M)
X ◦Mµ

(M)
M X ◦M Mw

(M)
X,T ◦M M ιX ◦M(L)

= Mµ
(M)
X ◦Mµ

(M)
M X ◦M M(w

(M)
X,T ◦ ιX) ◦M(L)

= Mµ
(M)
X ◦Mµ

(M)
M X ◦M M(w

(M)
X,T

∣∣∣
X

) ◦M(L)

= Mµ
(M)
X ◦Mµ

(M)
M X ◦M M(η

(M)
M X ◦ η

(M)
X ) ◦M(L)

= Mµ
(M)
X ◦M(µ

(M)
M X ◦M η

(M)
M X ◦M η

(M)
X ) ◦M(L)

= Mµ
(M)
X ◦M(M η

(M)
X ) ◦M(L)

= M(µ
(M)
X ◦M η

(M)
X ) ◦M(L)

= M(IdM X) ◦M(L)

= IdM M X ◦M(L)

= M(L)

= M(IdM X) ◦M(L)

= M(µ
(M)
X ◦ η

(M)
M X) ◦M(L)

= Mµ
(M)
X ◦M(η

(M)
M X) ◦M(L)

= Mµ
(M)
X ◦m

(M)
M X,T (L).

We can now conclude the proof by showing (4.3) commutative. All transfor-
mations below can be visualized in (4.4). By the associativity of a monad we
have

µ
(M)
X ◦ µ

(M)
M X ◦m

(M)
M X,T = µ

(M)
X ◦Mµ

(M)
X ◦m

(M)
M X,T .

The argument just above implies

µ
(M)
X ◦Mµ

(M)
X ◦m

(M)
M X,T = µ

(M)
X ◦Mµ

(M)
X ◦Mµ

(M)
M X ◦M Mw

(M)
X,T ◦M gX .

Again by the associativity of a monad it follows that

µ
(M)
X ◦Mµ

(M)
X ◦Mµ

(M)
M X ◦M Mw

(M)
X,T ◦M gX

= µ
(M)
X ◦ µ

(M)
M X ◦M Mµ

(M)
X ◦M Mw

(M)
X,T ◦M gX
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holds. By Lemma 4.6 we then have

µ
(M)
X ◦ µ

(M)
M X ◦M Mµ

(M)
X ◦M Mw

(M)
X,T ◦M gX

= µ
(M)
X ◦m

(M)

X,µ
(M)
X

(T )
◦ µ

(M)
X∗ ◦M gX

Finally we can conclude by using the definition of µ′(M)
X to get

µ
(M)
X ◦m

(M)

X,µ
(M)
X

(T )
◦ µ

(M)
X∗ ◦M gX = µ

(M)
X ◦m

(M)

X,µ
(M)
X

(T )
◦ µ′(M)

X . �

Lemma 4.6 (4.2) commutes for all X ∈ Set.

Proof Let X ∈ Set be arbitrary. Writing (4.2) in detail we get

M MX∗ MX∗

M M M MX

M M MX M MX.

µ
(M)
X∗

M Mw
(M)
X,T

M Mµ
(M)
X

M v
(M)

X,µ(M)(T )

µ
(M)
M X

As we have, by definition, that µ
(M)
x ◦ w

(M)
X,T = v

(M)

X,µ(M)(T )
holds this can be

written as

M MX∗ MX∗

M M MX M MX,

µ
(M)
X∗

M M v
(M)

X,µ(M)(T )
M v

(M)

X,µ(M)(T )

µ
(M)
M X

which commutes by the naturality of µ(M). This shows the claimed statement.�

These lemmata are not just fun facts but will be used in the proof of our main
theorem in Chapter 5.



Chapter 5

Categorical Characterization of
Untyped Lambda Calculus

In this chapter we prove that untyped lambda calculus as defined in Chapter 3 is
an initial object in the category of exponential monads. The outline of our proof
follows the one in [Zsi06, Chapter 2]. The main difference is that we do all proofs
explicitly “by hand”, i.e. without any help from computers.

This chapter is divided into two sections. The first one contains the main
statement of this thesis and an outline of the proof whereas the second one
contains all (technical) proofs of the statements used in the first section.

5.1 Untyped Lambda Calculus as an Initial Object

After all the preparation we are ready to characterize untyped lambda calculus
as follows:

Theorem 5.1 The exponential monad (LC, app1) is an initial object in the cat-
egory of exponential monads.

Proof Let ((M, η(M), µ(M)), ε(M)) be any exponential monad. We need to prove
that there is a unique morphism of exponential monads ϕ : LC → M. We first
show the existence of such a morphism and then its uniqueness.

Existence. We first recursively define a function ψX : SLCX → MX for all
X ∈ Set and all L ∈ SLCX by precomposition with CX of the map given for all
K ∈ SLCX by

K 7→





η
(M)
X (x), if K = varX(x) with x ∈ X,

ε
(M)
X (ψX(K1))[∗ ← ψX(K2)], if K = appX(K1,K2)

with L1, L2 ∈ SLCX,

ε
(M)
X

−1
(ψX∗(K ′)), if K = absX(K ′) with K ′ ∈ SLC′X,

ψX(λc.c), otherwise,

where c := min{d | d ∈ D}. By precomposition with CX we always get into one
of the first three cases.

By Lemma 5.3 we get that ψ is a natural transformation such that the dia-
grams corresponding to (2.3) and (2.4) commute. Further we know by Lemma 5.5
that ψ is constant on equivalence classes with respect to α-, β-, and η-equivalence.
Therefore we get that the map ϕX : LCX → MX given for all X ∈ Set and all

44
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T ∈ LCX by
T 7→ ψX(L),

where L ∈ SLCX is any representative in T , is well-defined. Further it follows
that it is even a morphism of monads. Finally by Lemma 5.4 we see that ψ

is compatible with ε(M) and app1. As ψ is compatible with ε(M)−1
and abs by

definition, ψ being constant on equivalence classes implies that ϕ is actually a
morphism of exponential monads as claimed.

Uniqueness. Let ρ : LC
q

→ M be any morphism of exponential monads. For
all X ∈ Set and all T ∈ LCX there exists a representative L ∈ SLCX of T . We
prove by induction that ρX(T ) = ψX(L) holds and therefore ρ = ϕ.

If T = varX(x) ∈ LCX for some x ∈ X we get, by the definition of a
morphism of monads, that

X LCX

MX

η
(LC)
X = var

(LC)
X

η
(M)
X

ρX

commutes. Hence

ρX(var
(LC)
X (x)) = η

(M)
X (x) = ψX(var

(SLC)
X (x))

as needed.
If T = appX(T1, T2) ∈ LCX with T1, T2 ∈ LCX we have the following two

induction hypotheses:
ρX(Ti) = ψX(Li)

for some (and hence any) Li ∈ SLCX belonging to Ti for i ∈ {1, 2}. We then
need to show that

ρX(appX(L1, L2)) = ψX(appX(L1, L2))

holds, which is equivalent to

ρX(app 1X(L1)[∗ ← L2]) = ψX(app 1X(L1)[∗ ← L2]).

By the definition of the equivalence relation as a congruence relation and as
morphisms of (exponential) monads commute with substitution (Lemma 4.1) we
get

ρX(app 1X(L1)[∗ ← L2]) = ρX(app 1X(L1)[∗ ← L2])

= ρX∗(app 1X(L1))[∗ ← ρX(L2)]

= ρX∗(app 1X(L1))[∗ ← ρX(L2)].
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By the definition of a morphism of exponential monads applied to ρ and the
induction hypotheses we have

ρX∗(app 1X(L1))[∗ ← ρX(L2)] = ε
(M)
X (ρX(L1))[∗ ← ρX(L2)]

= ε
(M)
X (ψX(L1))[∗ ← ψX(L2)].

Then, as ψ is compatible with ε(M) and app1 (Lemma 5.4) and commutes with
substitution (Lemma 4.1), we conclude with

ε
(M)
X (ψX(L1))[∗ ← ψX(L2)] = ψX∗(app1X(L1))[∗ ← ψX(L2)]

= ψX(app1X(L1)[∗ ← ψX(L2)]).

If T = absX(T ′) ∈ LCX with T ′ ∈ LC′X we have the following induction
hypothesis:

ρX∗(T ′) = ψX∗(L′)

for some L′ ∈ SLCX belonging to T ′. Our goal is to prove

ρX(absX(L′)) = ψX(absX(L′)).

Using the definition of the equivalence relation and the fact that ρ is a morphism
of exponential monads it follows that

ρX(absX(L′)) = ρX(absX(L′))

= ε
(M)
X

−1
(ρX∗(L′))

holds. Finally using the induction hypothesis and the definition of ψ we get

ε
(M)
X

−1
(ρX∗(L′)) = ε

(M)
X

−1
(ψX∗(L′))

= ψX(absX(L′)). �

Corollary 5.2 SLCδ for δ ∈ {α, αβ, αη} is characterized as follows:

(i) SLCα is initial among monads with morphisms of modules τ : M
q

→ M′ and
ω : M′ q

→ M.

(ii) SLCαβ is initial among monads with morphisms of modules τ : M
q

→ M′

and ω : M′ q

→ M such that τ ◦ ω = IdM′ holds.

(iii) SLCαη is initial among monads with morphisms of modules τ : M
q

→ M′

and ω : M′ q

→ M such that ω ◦ τ = IdM holds.

It is enough to notice that the proof of Theorem (5.1) is modular in the
following sense: Whenever we verify a property with respect to β-equivalence we
don’t assume any properties with respect to η-equivalence and conversely. Further
we only use the property that εX ◦ ε

−1
X = IdM X∗ holds for all X ∈ Set in proofs

involving β-equivalence and we only use the property that ε−1
X ◦εX = IdM X holds

for all X ∈ Set when dealing with η-equivalence. By “cutting out” unnecessary
parts of the proof above we get the claimed statements.
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5.2 Technical Facts

This section only contains (technical) proofs which were omitted in the previous
section to yield a nicer presentation of our actual goal. This section is there-
fore just a list of statements and proofs which is not to be understood as an
independent section, i.e. there will be no motivation and/or connection between
statements. To keep the statements short we further assume the notation at the
point of the previous section at which the statements are claimed to hold.

Lemma 5.3 ψ : SLC → M is a natural transformation such that the diagrams
corresponding to (2.3) and (2.4) commute..

Proof Let f : X → Y be any morphism in Set. Proving ψ natural means that
we need to show that

SLCX MX

SLCY MY

ψX

SLC f

ψY

M f

commutes. We prove this by induction on the degree of the λ-terms L ∈ SLCX.
For variables we see by the definition of ψ that we need to show

X MX

Y MY

η
(SLC)
X

f

η
(SLC)
Y

M f

commutative. This holds due to the fact that η(SLC) is a natural transformation.
If L = appX(L1, L2) ∈ SLCX with L1, L2 ∈ SLCX we have the following

two induction hypotheses:

ψY (SLC f(Li)) = M f(ψX(Li))

for i ∈ {1, 2}. We need to show that

ψY (SLC f(L)) = M f(ψX(L))

holds. By plugging in the definitions and using the induction hypotheses we get

ψY (SLC f(L)) = ψY (appY (SLC f(L1),SLC f(L2)))

= ε
(M)
Y (ψX(SLC f(L1)))[∗ ← ψY (SLC f(L2))]

= ε
(M)
Y (M f(ψX(L1)))[∗ ← M f(ψX(L2))]
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and
M f(ψX(L)) = M f(ε

(M)
X (ψX(L1))[∗ ← ψX(L2)]).

Hence we have to show

ε
(M)
Y (M f(ψX(L1)))[∗ ← M f(ψX(L2))] = M f(ε

(M)
X (ψX(L1))[∗ ← ψX(L2)]).

This follows from the commutativity of

MX MX∗ M MX MX

MY MY ∗ M MY MY,

ε
(M)
X M γ1 µ

(M)
X

ε
(M)
Y

M γ2 µ
(M)
Y

M f M f∗ M M f M f

where γ1 : X∗ → MX is given for all z ∈ X∗ by

z 7→

{
η

(M)
X (z), if z ∈ X,

ψX(L2), if z = ∗

and γ2 : Y ∗ → MY is given for all z ∈ Y by

z 7→

{
η

(M)
Y (z), if z ∈ Y,

M f(ψX(L2)), if z = ∗.

The left square in this diagram commutes as ε(M) is a natural transformation by
definition, the right square commutes as µ(M) is natural, and the middle square
commutes as M is a functor and the square

X∗ MX

Y ∗ MY

γ1

γ2

f∗ M f

commutes: For x ∈ X this is the same square as the one for the base case and
for ∗ we have

M f(γ1(∗)) = M f(ψX(L2)) = γ2(∗) = γ2(f∗(∗)),

where the “∗” in the last expression is the one from X∗ and the one in the second
to last expression is the one from Y ∗.

If L = absX(L′) ∈ SLCX with L′ ∈ SLC′X we have the following induction
hypothesis:

ψY ∗(SLC f∗(L′)) = M f∗(ψX∗(L′)).
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We have to prove that

ψY (SLC f(L)) = M f(ψX(L))

holds. By plugging in the definitions of SLC f and ψ and using the induction
hypothesis we get

ψY (SLC f(L)) = ψY (SLC f(absX(L′)))

= ψY (absY (SLC f∗(L′)))

= ε
(M)
Y

−1
(ψY ∗(SLC f∗(L′)))

= ε
(M)
Y

−1
(M f∗(ψX∗(L′))).

By the fact that ε(M) is natural and the definition of ψ we then get

ε
(M)
Y

−1
(M f∗(ψX∗(L′))) = M f(ε

(M)
X

−1
(ψX∗(L′)))

= M f(ψX(absX(L′)))

= M f(ψX(L)).

Hence we have shown that ψ is a natural transformation.
The diagram corresponding to (2.3) is

X SLCX

MX,

η
(SLC)
X = var

(SLC)
X

η
(M)
X

ψX

which commutes for all X ∈ Set by the definition of ψ on variables.
It is therefore left to show that the diagram corresponding to (2.4), which is

SLC SLCX SLCX

SLC MX M SLCX

M MX MX,

µ
(SLC)
X

ψX

µ
(M)
X

SLCψX

ψM X

ψSLC X

MψX

commutes for all X ∈ Set. First we note that the diamond on the left commutes
as we just proved that ψ is a natural transformation. For the rest we are going
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to use induction on the outer degree again, as in Lemma 3.2. Let X ∈ Set be
arbitrary. For the base case we have L ∈ SLC〈0〉 SLCX, i.e. L = varSLC X(K)
for some K ∈ SLCX. We then get by using the left side of the diamond and the
various definitions:

µ
(M)
X (ψM X(SLCψX(L))) = µ

(M)
X (ψM X(SLCψX(varSLC X(K))))

= µ
(M)
X (ψM X(varM X(ψX(K))))

= µ
(M)
X (η

(M)
M X(ψX(K))).

By using condition (2.1) of a monad (i.e. that η(M) is the unit of the monad) and
the definitions again we get that

µ
(M)
X (η

(M)
M X(ψX(K))) = (ψX(K))

= ψX(µ
(SLC)
X (varSLC X(K)))

= ψX(µ
(SLC)
X (L))

holds, which finishes the base case.
If L = appSLC X(L1, L2) ∈ SLC SLCX with L1, L2 ∈ SLC SLCX we have the

following two induction hypotheses (using the left side of the diamond):

µ
(M)
X (ψM X(SLCψX(Li))) = ψX(µ

(SLC)
X (Li))

for i ∈ {1, 2}. The statement we need to show is

µ
(M)
X (ψM X(SLCψX(appSLC X(L1, L2)))) = ψX(µ

(SLC)
X (appSLC X(L1, L2))).

With the notation from Section 4.2 we can rewrite the second line in the
definition of ψ, which was ε

(M)
X (ψX(L1))[∗ ← ψX(L2)] (if L = appX(L1, L2) with

L1, L2 ∈ SLCX), as app
(M)
X (ψX(L1), ψX(L2)). This holds as the maps inducing

these maps agree.
As the two definitions of application for SLC agree, as multiplication com-

mutes with application (Lemma 4.5), and the definition of ψ we have

ψX(µ
(SLC)
X (appSLC X(L1, L2))) = ψX(µ

(SLC)
X (app

(SLC)
SLC X(L1, L2)))

= ψX(app
(SLC)
X (µ

(SLC)
X (L1), µ

(SLC)
X (L2)))

= app
(M)
X (ψX(µ

(SLC)
X (L1)), ψX(µ

(SLC)
X (L2))).

Using the induction hypotheses, the commutativity of multiplication with appli-
cation, and the definition of ψ we derive

app
(M)
X (ψX(µ

(SLC)
X (L1)), ψX(µ

(SLC)
X (L2)))

= app
(M)
X (µ

(M)
X (ψM X(SLCψX(L1))), µ

(M)
X (ψM X(SLCψX(L2))))

= µ
(M)
X (app

(M)
M X(ψM X(SLCψX(L1)), ψM X(SLCψX(L2))))

= µ
(M)
X (ψM X(app

(SLC)
M X (SLCψX(L1),SLCψX(L2)))).
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As application is a natural transformation

SLC SLCX × SLC SLCX SLC SLCX

SLC M×SLC MX SLC MX

app
(SLC)
SLC X

SLCψX × SLCψX

app
(SLC)
M X

SLCψX

commutes and we can therefore conclude with

µ
(M)
X (ψM X(app

(SLC)
M X (SLCψX(L1),SLCψX(L2))))

= µ
(M)
X (ψM X(SLCψX(app

(SLC)
SLC X(L1, L2))))

= µ
(M)
X (ψM X(SLCψX(appSLC X(L1, L2)))).

If L = absSLC X(L′) ∈ SLC SLCX with L′ ∈ SLC′ SLCX we have the follow-
ing induction hypothesis (using again the left side of the diamond):

µ
(M)
X∗ (ψM X∗(SLCψX∗(SLC g

(SLC)
X (L′)))) = ψX∗(µ

(SLC)
X∗ (SLC g

(SLC)
X (L′))),

where g
(SLC)
X : (SLCX)∗ → SLCX∗ is defined by g

(SLC)
X

∣∣∣
SLC X

= SLC ιX and

g
(SLC)
X (∗) = η

(SLC)
X∗ (∗). Recall that g

(SLC)
X is an injection that does not change the

degree of the λ-term, i.e. we have deg(L′) = deg(SLC g
(SLC)
X (L′)). We have to

prove that

µ
(M)
X (ψM X(SLCψX(absSLC X(L′)))) = ψX(µ

(SLC)
X (absSLC X(L′)))

holds. As multiplication and abstraction commute by the definition of a mor-
phism of modules and by the definition of ψ we get

ψX(µ
(SLC)
X (absSLC X(L′))) = ψX(absX(µ′(SLC)

X (L′)))

= ε
(M)
X

−1
(ψX∗(µ′(SLC)

X (L′))).

It then follows by the definition of µ′(SLC)
X and the induction hypothesis, that

ε
(M)
X

−1
(ψX∗(µ′(SLC)

X (L′))) = ε
(M)
X

−1
(ψX∗(µ

(SLC)
X∗ (SLC g

(SLC)
X (L′))))

= ε
(M)
X

−1
(µ

(M)
X∗ (ψM X∗(SLCψX∗(SLC g

(SLC)
X (L′)))))

holds. By the naturality of ψ we have

ψM X∗ ◦ SLCψX∗ ◦ SLC g
(SLC)
X = ψM X∗ ◦ SLC g

(M)
X ◦ SLC′ ψX

= M g
(M)
X ◦ ψ(M X)∗ ◦ SLC′ ψX ,
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where g
(M)
X : (MX)∗ → MX∗ is defined analogously to g

(SLC)
X , which then implies

ε
(M)
X

−1
(µ

(M)
X∗ (ψM X∗(SLCψX∗(SLC g

(SLC)
X (L′)))))

= ε
(M)
X

−1
(µ

(M)
X (M g

(M)
X (ψ(M X)∗(SLC′ ψX(L′))))).

By the definition of µ′(M)
X and the commutativity of multiplication and ε(M)−1

we
find

ε
(M)
X

−1
(µ

(M)
X (M g

(M)
X (ψ(M X)∗(SLC′ ψX(L′)))))

= ε
(M)
X

−1
(µ′(M)

X (ψ(M X)∗(SLC′ ψX(L′))))

= µ
(M)
X (ε

(M)
M X

−1
(ψ(M X)∗(SLC′ ψX(L′)))).

Finally by the definition of ψ and the naturality of abstraction we get

µ
(M)
X (ε

(M)
M X

−1
(ψ(M X)∗(SLC′ ψX(L′)))) = µ

(M)
X (ψM X(absX(SLC′ ψX(L′))))

= µ
(M)
X (ψM X(SLCψX(absSLC X(L′)))),

which finishes the inductive step and the proof. �

Lemma 5.4 ψ : SLC→ M is compatible with ε(M) and app1, i.e. for all X ∈ Set
and L ∈ SLCX it holds that

ψX∗(app1X(L)) = ε
(M)
X (ψX(L)).

Proof Let X ∈ Set be arbitrary. We need to prove

SLCX MX

SLC′X M′X

ψX

ψX∗

app1X ε
(M)
X

commutative. By plugging in the definitions of app1X and ψX∗ we need to show
that

ε
(M)
X∗ (ψX∗(L))[⋆← ψX∗(∗)] = ψX(ε

(M)
X (L))

holds for all L ∈ SLCX, where we use ⋆ to denote the element for the disjoint
union with X∗ to distinguish it from ∗, i.e. X∗∗ = (X ∐ ∗) ∐ ⋆. In other words
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we need to prove the outside of

SLCX SLCX∗

MX MX∗

MX∗ MX∗∗

M MX∗

SLC ιX

M ιX

M ιX∗

ψX ψX∗

ε
(M)
X ε

(M)
X∗

M γµ
(M)
X∗

commutative, where γ : X∗∗ → MX∗ is given for all y ∈ X∗∗ by

y 7→




η

(M)
X∗ (y), if y ∈ X∗,

η
(M)
X∗ (∗) = ψX∗(∗), if y = ⋆.

The upper rectangle in this diagram commutes as ψ is a natural transformation
(proof of Lemma 5.3) and the lower rectangle commutes as ε(M) is a natural
transformation by the definition of an exponential monad (the reader may want
to redraw the rectangle using that MX∗ = M′X holds). Hence the statement
follows by proving that

µ
(M)
X∗ ◦M γ ◦M ιX∗ = IdM X∗

holds. By condition (2.1) of a monad we know that M η
(M)
X∗ ◦µ

(M)
X∗ = IdM X∗ holds,

therefore we are done by proving

MX∗ MX∗∗

M MX∗

M ιX∗

M γM η
(M)
X∗

commutative. However this is obvious as M is a functor and as by the definition
of γ the triangle

X∗ X∗∗

MX∗

ιX∗

γ
η

(M)
X∗

commutes. �
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Lemma 5.5 Let X ∈ Set be any set and let K,L ∈ SLCX be any λ-terms such
that K = L holds in LCX. Then it holds that ψX(K) = ψX(L).

Proof As in Lemma 3.2 it is sufficient to prove that the statement holds for any
two λ-terms which differ by one step of any of the three equivalences.

Given the assumptions of the lemma, α-equivalence is again no problem due
to precomposition with CX .

For β-equivalence assume that L ∈ SLCX contains a β-redex, i.e. is of the
form appX(absX(L1), L2) with L1 ∈ SLC′X and L2 ∈ SLCX. We then get the
following chain of equalities:

ψX(appX(absX(L1), L2)) = ε
(M)
X (ψX(absX(L1)))[∗ ← ψX(L2)]

= ε
(M)
Y (ε

(M)
X

−1
(ψX∗(L1)))[∗ ← ψX(L2)]

= ψX∗(L1)[∗ ← ψX(L2)]

= ψX(L1[∗ ← ψX(L2)]).

The first two equations hold by the definition of ψ, the third one due to the fact

that ε
(M)
Y ◦ ε

(M)
X

−1
= IdM X∗ holds, and the last one holds by Lemma 4.1.

For η-equivalence we assume that L ∈ SLCX contains an η-redex, i.e. is of
the form absX(appX∗(SLC ιX(K), varX∗(∗))) with K ∈ SLCX. We then get the
following chain of equalities:

ψX(absX(appX∗(SLC ιX(K), varX∗(∗)))) = ψX(absX(app1X(K)))

= ε
(M)
X

−1
(ψX∗(app1X(K)))

= ε
(M)
X

−1
(ε

(M)
X (ψX(K)))

= ψX(K).

In this case we used the definition of app1X for the first equation, the definition

of ψ for the second one, Lemma 5.4 for the third one, and ε
(M)
X

−1
◦ ε

(M)
X = IdM X

for the last one. �



Chapter 6

Outlook and Summary

In this chapter we give some ideas of how one can continue with the results of the
previous chapters at hand and also mention alternative approaches. In Section 6.1
we describe how one can deduce similar results for simply typed lambda calculus.
We don’t give full details but mention some important points. Afterwards we
give some ideas we did not have time to work out in the limited time allotted
for a master’s thesis in Section 6.2. Some ideas may not be complete and some
guesses may even turn out to be wrong. This is of course not a complete list of
possible topics but rather a starting point for further research.

6.1 Simply Typed Lambda Calculus

In this section we describe how one can transform the previous chapters to yield a
similar result for simply typed lambda calculus. Giving all details would be cum-
bersome and not very enlightening, we therefore only give some key ideas. The
notation of this chapter is based on [HM10] and the outline loosely follows [Zsi06].

For the rest of this section let B be any non-empty set (whose elements are
called base types). The set T of all types with respect to B is defined by:

• Whenever t ∈ B, then t ∈ T .

• Whenever s, t ∈ T , then s→ t ∈ T .

• Only the elements defined above belong to T .

Any family of sets indexed by T is referred to as a T -set. For any T -set X and
any x ∈ X we denote by x : t that x belongs to the component of type t in X.
Equivalently we can regard T -sets as objects in the slice category (Set ↓ T ). In
the following we work with both points of view and pick the one that feels more
intuitive to us in the given situation.

The morphisms of T -sets are morphism in (Set ↓ T ), i.e. type preserving
maps: Given f : X → T , g : Y → T ∈ (Set ↓ T ) a morphism between f and g is
a map h : X → Y such that

X Y

T

h

f g

commutes.

55
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For all t ∈ T we denote by τt : (Set ↓ T ) → Set the functor that assigns to
any T -set X the component of type t, denoted by Xt. For any T -set X we have
X = ∐t∈T Xt. In case that X already has a lower index we add the type to this
index separated by a semicolon. By Xt we denote the map that includes Xt into
X such that all elements of Xt are of type t.

Before we continue we need to generalize the notion of a (right) module. Let
C be any category and let (T, η, µ) be any monad over C . A (right) T-module
is a pair (M, σ), where M : C → D is a functor and σ : M T

q

→ M is a natural
transformation such that the diagrams corresponding to (2.5) commute.

A monad over (Set ↓ T ) is called a T -monad. Let T be any T -monad and
let (M, σ(M)) with M : (Set ↓ T ) → (Set ↓ T ) be any T-module. We then have
for all t ∈ T a module (Mt, σ

(Mt)), where Mt : (Set ↓ T )→ Set is given by

Mt := τt M

and σ(Mt) : Mt T = τt M T
q

→ Mt is given for all T -sets X by

σ
(Mt)
X := τt(σ

(M)
X ((M T X)t

(M TX)t)).

More intuitively this means applying σ(M) as if we regard elements of τt M TX
as elements of M TX. This holds as σ(M) is a natural transformation, hence its
components preserve types.

In contrast to modules over a monad over Set we don’t have just one derived
module but a derived module for every type t ∈ T . More precisely let T be any
T -monad and let M be any T-module. For all t ∈ T we denote by ∂tM the derived
module of M with respect to t, which is given for all f : X → T ∈ (Set ↓ T ) by

∂t M f := M f∗t ,

where f∗t : X∗ → T is given by f∗t |X = f and f∗t(∗) = t, and for all morphisms
h ∈ (Set ↓ T ) by

∂t Mh := Mh∗.

This definition can be visualized as first transforming the left triangle in

X Y

T

h

f g

X∗ Y ∗

T

h∗

f∗t g∗t

into the right one and then applying M. In the following a notation of the form
X∗t for some T -set X and some t ∈ T means that we add the singleton ∗ of type
t to X.
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All proofs we referenced in Chapter 2, e.g. that the derived module is again
a module over the same monad, still hold in the same form. It is enough to note
that all maps involved are actually morphisms of the slice category. Therefore
the untyped case implies the commutativity of the needed diagrams and the
morphisms imply compatibility with the types. For example let (T, η, µ) be any
T -monad. For all T -sets X and all t ∈ T the map gX;t : (TX)∗t → TX∗t given
by gX;t|T X

= T ιX and gX;t(∗) = ηX∗t (∗) is a morphism of T -sets as ιX is a
morphism, T is a functor, and ∗ is of type t in both cases.

An exponential T -monad is a T -monad M with, for all s, t ∈ T , an isomor-

phism ε
(M)
s,t : Ms→t → ∂s Mt. These monads together with the obvious morphism

form a category as in Lemma 2.2.
We now define a functor SST : (Set ↓ T ) → (Set ↓ T ) similar to SLC. Let

DT be a fixed T -set where every component has the same properties as the set
D in the untyped case. We then define SST on objects for all T -sets X by

X 7→ {L | L is a T -typed λ-term with variables in X ∐DT with FV(L) ⊆ X},

where the disjoint union of X and DT is given componentwise:

X ∐DT = ∐t∈T (Xt ∐DT ;t).

The typing environment ΓX for any T -sets X is given by

(bound)
d : t ∈ DT

ΓX ⊢ var(d) : t

(var)
x : t ∈ X

ΓX ⊢ var(x) : t

(app)
ΓX ⊢ L1 : s→ t ΓX ⊢ L2 : s

ΓX ⊢ L1L2 : t

(abs)
ΓX ⊢ L : t ΓX ⊢ x : s

ΓX ⊢ λx.L : s→ t
.

We can then define a canonical form similar to the untyped case (the renaming
of the variables has to respect their type). For application we need to note
that this is no longer a morphism of SST-modules SST×SST → SST as we
need to regard the types. However we still have morphisms of SST-modules
apps,t : SSTs→t×SSTs → SSTt for all s, t ∈ T . It is important to note that we
regard SSTt as an object in Set for all t ∈ T - if we were regarding it as an object
in (Set ↓ T ) with all elements of the same type the product SSTs→t×SSTs would
be empty (recall that the product in (Set ↓ T ) is determined by the pullback
in Set). Similarly we have for all s, t ∈ T that abstraction is a morphism of
SST-modules abss,t : ∂s SSTt → SSTs→t.

With these remarks we can then define the degree of a typed λ-term and the
action of SST on morphisms analogously to the untyped case by first mapping
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the terms to the module corresponding to their types, then applying the maps
described above, and afterwards including them back into the monad.

Further SSTδ and ST are defined analogously to SLCδ and LC respectively
for all δ ∈ {α, αβ, αη, αβη}. These are again monads when the unit and the
multiplication are defined as in the untyped case. We also have that ST is an

exponential T -monad with abss,t = ε
(ST)
s,t

−1
: ∂s STt → STs→t whose inverse

app1s,t : STs→t → ∂s STt is induced by

app1X;s,t(L) := appX∗s ;s,t(SST ιX(L), varX∗s (∗))

for all T -sets X, all s, t ∈ T , and all L ∈ SSTs→tX.
Almost all of our proofs in the previous chapters were elementary in the

sense that we always reduced the problem at hand to its simplest case, e.g. when
proving a map constant with respect to some equivalence relation we showed
that that map is constant for one step of the generating relation. Therefore the
proofs can be generalized by replacing statements of the form “for all X ∈ Set
and all L ∈ SLCX” by “for all T -sets X, all t ∈ T , and all L ∈ SLCtX” and
accordingly changing the indices of the maps involved. This also holds for our
general principle of proofs by induction on the degree of λ-terms.

We also see that our general notion of substitution (Equation (3.9)) is still
well-defined as T2 and x need to be of the same type by the definition of substi-
tution in simply typed lambda calculus.

In the generalization of application we need to pay more attention. We there-
fore give all details of its definition. For any T -monad M with morphisms of

modules ε
(M)
s,t : Ms→t → ∂s Mt we define for all T -sets X and Y and all s, t ∈ T a

map app
(M)
X,Y ;s,t : Ms→tX ×Ms Y → Mt(X ∐ Y ) by the following chain of maps:

Ms→tX ×Ms Y
ε

(M)
X;s,t

×IdMs Y

−→ MtX
∗s ×Ms Y

k
(M)
X,Y ;s,t
−→ Mt(X ∐MY )

l
(M)
X,Y ;s,t
−→ · · ·

· · ·
l
(M)
X,Y ;s,t
−→ Mt M(X ∐ Y )

µ
(Mt)
X∐Y−→ Mt(X ∐ Y ).

The maps used are the following:

• k
(M)
X,Y ;s,t : MtX

∗s ×Ms Y → Mt(X ∐MY ) is determined by

r
(M)
X,Y ;s,t : Ms Y → Hom(Set↓T )(X

∗s , X ∐MY )

T 7→

{
x 7→ x, if x ∈ X,

∗ 7→ T,

which then induces a map from Ms Y to Hom(Set↓T )(MX∗s ,M(X ∐MY )).
However Hom(Set↓T )(A,B) for any T -sets A and B is itself a T -set by

(Hom(Set↓T )(A,B))t := {f | f : At → Bt} = HomSet(At, Bt)
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for all t ∈ T . Hence we get a map

Ms Y → HomSet(MtX
∗s ,Mt(X ∐MY )),

which determines k
(M)
X,Y ;s,t.

• l
(M)
X,Y ;s,t : Mt(X ∐MY )→ Mt M(X ∐ Y ) is induced by

s
(M)
X,Y ;s,t : X ∐MY → M(X ∐ Y ),

z 7→

{
η

(M)
X∐Y (z), if z ∈ X,

M jY (z), if z ∈ MY.

s
(M)
X,Y ;s,t is obviously a morphism of T -sets as η(M) is natural and jY is a

morphism of T -sets by definition.

• µ(Mt) is derived from µ(M) in the same way as σ(Mt) was derived from σ(M).

The maps app
(M)
X;s,t : Ms→tX×MsX → MtX for all T -sets X and all s, t ∈ T are

then defined as in the untyped case.
This leads to the analog statement of Theorem 5.1, which is:

Theorem 6.1 The exponential T -monad (ST, {app1s,t}s,t∈T ) is an initial object
in the category of exponential T -monads.

Of course one also gets the statements corresponding to the ones in Corol-
lary 5.2.

6.2 Miscellaneous

In this section we give some ideas of what else could have been done or what
could have been done in another way. We don’t give full details in this section
as its intention is to show where one could go in a next step.

6.2.1 Cartesian Closed Categories

Here we follow the ideas of [Sco80]. Let C be any cartesian closed category with
small hom-sets. For all objects D ∈ C we get an endofunctor on Set defined for
all X ∈ Set by

MD X := HomC (DX , D)

and for all morphisms f : X → Y in Set by precomposition with the mor-
phism induced by the universal property of the product and the morphisms∏

y∈Y Dy
πy
−→ Dy

∼= Dx whenever f(x) = y, where πy denotes the projection
morphism of the product.
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This endofunctor can be turned into a monad in the following way: The unit
is given for all X ∈ Set by

ηX : X → HomC (DX , D)

x 7→
∏

x∈X

Dx
πx−→ Dx

∼= D

and the multiplication µX : HomC (DHomC (DX ,D), D)→ HomC (DX , D) is defined

for all X ∈ Set by precomposition with the morphism from DX to DHomC (DX ,D)

which is induced by the universal property of the product and the morphisms
DX ϕ
−→ D ∼= Dϕ for all ϕ ∈ HomC (DX , D).

Assume that the object D ∈ C is such that there exists an isomorphism
D ∼= DD. In this case the monad MD is exponential, where the isomorphism is
induced by

MD X∗ = HomC (DX∐∗, D)

∼= HomC (DX ×D,D)

∼= HomC (DX , DD)

∼= HomC (DX , D).

Theorem 5.1 implies that there exists a unique morphism of exponential monads
LC → MD. By weakening the assumption on the object D in the obvious ways
one gets into settings where it is possible to apply Corollary 5.2.

Guess 6.2 Let C be a cartesian closed category with small hom-sets generated
by one object D and morphisms ε : D → DD and ε−1 : DD → D such that
ε ◦ ε−1 = IdDD and ε−1 ◦ ε = IdD hold. Then MD

∼= LC.

6.2.2 Operadic Approach

In this subsection we consider lambda calculus from an operadic point of view.
All ideas in this part as well as the next subsection are due to my advisor.

In the following we give a short definition of an operad in Set. For a more
“down to earth” introduction we refer the reader to the literature (consider for
example [Fre12], which contains a nice and general description).

An S-module is a sequence of sets X = (X (n))n∈N together with a right group
action of Sn on X (n) for all n ∈ N, where Sn denotes the symmetric group on n
elements. A morphism between S-modules X and Y is a sequence of equivariant
maps f = (fn : X (n) → Y(n))n∈N. S-modules together with the corresponding
morphisms form a category which we denote by S- mod.

Let G be any group and let X and Y be any sets with a right action of G. By
composing with the inverse operation of G we get a left action of G on Y . We
then define

X ×
G
Y := X × Y/{((xg, y), (x, gy)) | x ∈ X, y ∈ Y, g ∈ G}.
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This allows us to define a monoidal structure ◦ on S- mod given for all objects
X ,Y ∈ S- mod and all n ∈ N by

(X ◦ Y)(n) :=
∐

k,m1+···+mk=n
k,m1,...,mk∈N

(
Y(k)×

Sk

(X (m1)× · · · × X (mk))
)

×
Sm1 ×···×Smk

Sn.

The unit 1 = (1(n))n∈N is given by

1(n) =

{
∗, if n = 1,

∅, otherwise.

An operad in Set is a monoid in the monoidal category (S- mod, ◦).
Let O be an operad. A right O-module is an object P in S- mod that is a

right module over the monoid O with respect to the monoidal structure ◦. If P
is a right O-module we define its derivative P ′ by

P ′(n) := P(n+ 1)

for all n ∈ N, where the action of Sn comes from the inclusion Sn →֒ Sn+1 induced
by in : {1, . . . , n} →֒ {1, . . . , n + 1} defined by i(l) = l for all l ∈ {1, . . . , n}, and
the operad structure is given similarly for all k,m1, . . . ,mk ∈ N by

P ′(k)×
Sk

O(m1)× · · · × O(mk)

= P(k + 1) ×
Sk+1

O(m1)× · · · × O(mk)

→ P(k + 1) ×
Sk+1

O(m1)× · · · × O(mk)×O(1)

→ P(m1 + · · ·+mk + 1)

= P ′(m1 + · · ·+mk).

An exponential operad is an operad O together with an isomorphism of right
O-modules ε : O

∼
−→ O′.

Lambda calculus (without equivalence relations) can be seen as an operad
λCalc by setting

λCalc(n) :=




L

∣∣∣∣∣∣∣∣

L is a λ-term with variables in {x1, . . . , xn} ∐D with

FV(L) = {x1, . . . , xn} and every free variable occurs

exactly once





for all n ∈ N, where D is the same set as in the previous chapters. The action of
Sn is the permutation of the n variables. The operad structure is induced for all
k,m1, . . . ,mk ∈ N by

λCalc(k)×λCalc(m1)× · · · × λCalc(mk)→ λCalc(m1 + · · ·+mk)

(T, (T1, . . . , Tk)) 7→ (T [xi ← Ti | i ∈ {1, . . . , n}])C{x1,...,xm1+···+mk
}
,
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where we implicitly rename the free variables in the λ-terms Ti for i ∈ {1, . . . , n}
accordingly. We further define two morphisms app1 : λCalc → λCalc′ and
abs: λCalc′ → λCalc for all n ∈ N by

app1n : λCalc(n)→ λCalc′(n)
T 7→ app(T, xn+1),

absn : λCalc′(n)→ λCalc(n)
T 7→ (λc.(T [xn+1 ← c]))C{x1,...,xn}

,

with c := min{d | d ∈ D and d /∈ FV(T )}.

Guess 6.3 The following statements hold:

(i) λCalc is initial among operads O together with morphisms of O-modules
ε : O → O′ and ε−1 : O′ → O.

(ii) app1 and abs descend to the quotients λCalcδ for δ ∈ {α, αβ, αη, αβη},
where λCalcδ is defined analogously to SLCδ.

(iii) λCalcαβη is an exponential operad.

(iv) λCalcαβη is initial among exponential operads.

Proof (Sketch of (i)) We just give the main idea of the proof. We are less
rigorous than in the rest of this thesis. More precisely we don’t mention assump-
tions, conditions, or quantifiers when understood and we also use notation that
should intuitively be clear without an explicit definition.

Let O be any operad with morphisms of right O-modules ε : O → O′ and
ε−1 : O′ → O. Define a morphism of S-modules ψ : λCalc → O inductively on
the degree of the λ-terms by:

• ψ〈0〉 : λCalc〈0〉 → O is defined as the unit of O. This comes from the fact
that the inclusion λCalc〈0〉 →֒ λCalc is the unit of λCalc.

• Note that we have by the definitions that

app(L′, L′′) = app1(L′)[xdeg(L′)+1 ← L′′] = app1(L′) ◦ (Id, . . . , Id, L′′)

holds whenever any (and hence all) of the expressions are well-defined.

If L = app(L′, L′′) ∈ λCalc〈k〉 for some k ∈ N \ {0} we define

ψ(L) := ε(ψ(L′)) ◦ (Id, . . . , Id, ψ(L′′)).

For convenience we denote this by app(ψ(L′), ψ(L′′)).

• If L = λc.(L′[xn+1 ← c]) ∈ λCalc〈k〉 for some k ∈ N \ {0} we set

ψ(L) := ε−1(ψ(L′)).

This implies that the corresponding morphisms commute with ψ.
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One can check that ψ is well-defined and a morphism of S-modules. Further it
commutes with the given module morphisms.
Claim 1: ψ is a morphism of operads.

We need to prove that ψ(L ◦ (L1, . . . , Ln)) = ψ(L) ◦ (ψ(L1), . . . , ψ(Ln)) holds
(whenever either of the two expressions makes sense). We use induction on the
the degree of the λ-term L:

• If L ∈ λCalc〈0〉 the property is satisfied as ψ is defined as the unit of O on
λCalc〈0〉.

• If L = app(L′, L′′) ∈ λCalc we get by Claim 2 below (for the second and
fifth equations), the definition of ψ (for the third and sixth equations), and
the induction hypothesis that

ψ(app(L′, L′′) ◦ (L1, . . . , Ln))

= ψ(app(L′ ◦ (L1, . . . , Lm), L′′ ◦ (Lm+1, . . . , Ln))

= app(ψ(L′ ◦ (L1, . . . , Lm)), ψ(L′′ ◦ (Lm+1, . . . , Ln)))

= app(ψ(L′) ◦ (ψ(L1), . . . , ψ(Lm)), ψ(L′′) ◦ (ψ(Lm+1), . . . , ψ(Ln)))

= app(ψ(L′), ψ(L′′)) ◦ (ψ(L1), . . . , ψ(Ln))

= ψ(app(L′, L′′)) ◦ (ψ(L1), . . . , ψ(Ln))

holds, which finishes this case.

• If L = abs(L′) for some L′ ∈ λCalc〈k−1〉(n+ 1) we have

ψ(abs(L′) ◦ (L1, . . . , Ln)) = ψ(abs(L′ ◦ (L1, . . . , Ln, Id)))

= ε−1(ψ(L′ ◦ (L1, . . . , Ln, Id)))

= ε−1(ψ(L′) ◦ (ψ(L1), . . . , ψ(Ln), Id))

= ε−1(ψ(L′)) ◦ (ψ(L1), . . . , ψ(Ln))

by using that abs is a morphism of λCalc-modules, the definition of ψ, the
induction hypothesis, and that ε−1 is a morphism of O-modules.

Claim 2: If O is an operad and ε : O → O′ is a morphism of O-modules, then

app(L′, L′′) ◦ (L1, . . . , Ln) = app(L′ ◦ (L1, . . . , Lm), L′′ ◦ (Lm+1, . . . , Ln))

holds (whenever either of the two expressions makes sense).
We get the result by the definitions and the fact that ε is a morphism of

O-modules:

app(L′, L′′) ◦ (L1, . . . , Ln)

= ε(L′) ◦ (Id, . . . , Id, L′′) ◦ (L1, . . . , Ln)

= ε(L′) ◦ (L1, . . . , Lm, Id) ◦ (Id, . . . , Id, L′′ ◦ (Lm+1, . . . , Ln))

= ε(L′ ◦ (L1, . . . , Lm)) ◦ (Id, . . . , Id, L′′ ◦ (Lm+1, . . . , Ln))

= app(L′ ◦ (L1, . . . , Lm), L′′ ◦ (Lm+1, . . . , Ln)). �
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6.2.3 Connection of the Two Approaches

In this final subsection we give some connections between the monadic and the
operadic approach. This subsection is mostly a collection of ideas that we did not
have enough time to work out in detail. The structure is therefore not perfect but
we welcome the reader to read it nonetheless as we point out where connections
between several constructions we used might be found.

Convention We assume (implicitly) that all categories in this subsection have
small hom-sets.

From Cartesian Closed Categories to Operads

Let C be a cartesian closed category and let D be an object therein. The endo-
morphism operad EndC (D) of D is defined for all n ∈ N by

(EndC (D))(n) := HomC (Dn, D).

The right action of Sn on HomC (Dn, D) is given for all n ∈ N by the left action
of Sn on Dn. The operad structure is induced for all k,m1, . . . ,mk ∈ N by

HomC (Dk, D)×HomC (Dm1 , D)× · · · ×HomC (Dmk , D)

HomC (Dk, D)×HomC (Dm1+···+mk , Dk)

HomC (Dm1+···+mk , D).

IdHomC (Dk,D)×(k-fold product of maps)

composition

Given an operad O and a cartesian closed category C we define an O-algebra
as an object D ∈ C with a morphism of operads ρD : O → EndC (D). O-algebras
with their structure preserving morphisms define a category which we denote by
O- alg.

Note that for O = EndC (D) the functor MD defined in Subsection 6.2.1 can
be extended to a functor from Set to O- alg as we have an obvious morphism of
operads

(ρHomC (DY ,D))n : HomC (Dn, D)→ HomSet(HomC (DY , D)n,HomC (DY , D))

for all Y ∈ Set and all n ∈ N. One might further try to characterize this functor
to establish a connection to the construction in Subsection 6.2.1.
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From Operads to Monads

Using the notation of the previous paragraph we have an obvious forgetful functor
G : O- alg → C . If this functor has a left adjoint (which it does for example if
C = Set) we call it the free O-algebra functor. This adjunction defines a monad
MO : C → C .

A reflexive (respectively a coreflexive) operad is an operad O together with
morphisms of O-modules ε : O → O′ and ε−1 : O′ → O such that ε ◦ ε−1 = IdO′

(ε−1 ◦ ε = IdO respectively) holds. There are statements corresponding to the
last two points of Guess 6.3 for reflexive and coreflexive operads. Further we also
assume:

Guess 6.4 If O is an exponential (respectively reflexive or coreflexive) operad,
then MO is an exponential (respectively reflexive or coreflexive) monad.

From Monads to Cartesian Closed Categories

By combining the previous two paragraphs we get a functor from cartesian closed
categories to monads. Our goal is now to construct a left adjoint to this functor.

Let (M, η, µ) be any monad over Set. We construct a category CM as follows:

• The objects of CM are the objects of Set.

• The hom-sets are given for all objects X,Y ∈ CM by

HomCM
(X,Y ) := HomSet(Y,MX).

• Composition of morphisms is given by the multiplication of M. More pre-
cisely we define the composition of f : Y → MX ∈ HomCM

(X,Y ) and
g : Z → MY ∈ HomCM

(Y, Z) for any X,Y, Z ∈ CM by

g ◦ f := Z
g
−→ MY

M f
−→ M MX

µX−→ MX ∈ HomCM
(X,Z).

• The identity morphism is given by the unit of M, i.e. for all X ∈ CM we
have IdX = ηX : X → MX ∈ HomCM

(X,X).

• The cartesian structure on CM is given by the disjoint union of sets. In
detail let X,Y ∈ CM be arbitrary. The construction is visualized in the
diagrams below, where we depict the situation in CM in the top diagram
and the situation in Set in the lower one. Starting in the bottom diagram we
have the solid arrows given by the disjoint union, M, and composition. The
composition maps are then the projections of the product in CM. For the
universal property assume we are given Z ∈ CM with morphisms f1 : Z → X
and f2 : Z → Y (dotted arrows). These correspond to maps X → MZ and
Y → MZ in Set. Therefore by the universal property of X ∐ Y there
exists a unique map f : X∐Y → MZ (dashed arrow) such that the bottom
diagram commutes. By the definition of morphisms in CM this is the unique
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morphism such that the top diagram commutes.

X

Z X × Y

Y

X

M(X ∐ Y ) X ∐ Y MZ

Y

M jX

M jY

f1

f2

f

jX

jY

M

M jX

M jY

f1

f2

f

For the one-element set ∗ ∈ CM we have that the endofunctor M∗ is isomorphic
to M as we have

M∗ Y = HomCM
(∗Y , ∗) ∼= HomCM

(Y, ∗) = HomSet(∗,MY ) ∼= MY

for all Y ∈ Set.
The composed functor from monads to cartesian closed categories to monads

is isomorphic to the identity. On the other hand if we start with a cartesian
closed category C and an object D ∈ C we have a functor from CMD

to C which
is given for all objects X ∈ CMD

by X 7→ DX and on morphisms by

HomCMD
(X,Y ) = HomSet(Y,MD X) = HomSet(Y,HomC (DX , D))

∼= HomC (DX , DY ).

We therefore have a natural transformation to the identity from which we can
then conclude that we indeed have an adjunction.
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From Monads to Operads

Next we construct a left adjoint to the functor that sends an operad to the monad
defined be the free algebra adjunction.

Let (M, η, µ) be any monad over Set. We construct an operad OM as follows:

• Set OM(n) := M[n] for all n ∈ N, where [n] := {1, . . . , n}. The action of Sn

comes from the functoriality of M.

• The operad structure is induced for all k,m1, . . . ,mk ∈ N by

M[k]×M[m1]× · · · ×M[mk]

M[k]× (M[m1 + · · ·+mk])k

M[k]×HomSet([k],M[m1 + · · ·+mk])

M[k]×HomSet(M([k]),M M[m1 + · · ·+mk])

M M[m1 + · · ·+mk]

M[m1 + · · ·+mk].

IdM[k]×M([ki] →֒ [m1 + · · ·+mk])

IdM[k]× ∼=

IdM[k]×M

evaluation

µ[m1+···+mk]

The obvious maps from O(n) to MO[n] lead to a natural transformation from
the identity on the category of operads to the composite of the two functors
defined above. On the other hand we have for all monads (M, η, µ) and all
X ∈ Set that MX is an OM-algebra, where

OM(n) = M[n]→ HomSet((MX)n,MX)

is given as above. By adjunction the unit ηX : X → MX determines a morphism
of OM-algebras from MOMX to MX. This leads to the second natural trans-
formation of the adjunction from which we can then conclude that we actually
constructed a left adjoint.
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Adjunctions and Modules

Recall that a monad over Set can be described as a monoid in the monoidal
category (SetSet, ◦), where SetSet denotes the category of all covariant functors
from Set to Set. We then have an adjunction

S- mod SetSet.
F

G

F is given by the Schur functor, i.e. we define

F: S- mod→ SetSet

X 7→

(
Y 7→ S(X , Y ) :=

∐

n∈N

X (n) ×
Sn

Y n

)
.

Its right adjoint G is given by

G: SetSet → S- mod

M 7→
(
G M(n) := Hom

Set
Set(P(n),M)

)
n∈N

,

where P: Set→ Set is defined for all Y ∈ Set by GY := Y n.
Let O be any operad and let MO be the associated monad. The MO-module

MO′ is not isomorphic to M′
O. However we still have a natural transformation

MO′ → M′
O. This leads to the following statement:

Guess 6.5 If O is initial among exponential operads, then MO is initial among
exponential monads.

As we don’t have the other direction of this statement we can not give an
equivalence between the monadic approach and the operadic approach but we
get at least some connection between them.

6.3 Summary

Chapters 3 through 5 were devoted to prove the main statement of this thesis
which is Theorem 5.1. This proof turned out to be longer than expected and
(unfortunately) also very technical without a lot of insight. We hope to have
provided at least some kind of motivation for our approach.

Due to that fact the time left for generalizations or other approaches was
very limited. But we still managed to give some examples thereof in the previous
sections of this chapter. First we showed how one can derive a similar statement
for simply typed lambda calculus. One could now proceed by trying to generalize
this to other types of lambda calculus. Afterwards we gave the main idea for an
approach via operads. Finally we shed some light on the connection between the
two approaches that could also be deepened in a further step.
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