THE ASYMMETRY OF AN ANTI-AUTOMORPHISM

ANNE CORTELLA AND JEAN-PIERRE TIGNOL

ABSTRACT. The asymmetry of a nonsingular pairing on a vector space is an
endomorphism of the space on which the classification of arbitrary pairings
(not necessarily symmetric or skew-symmetric) is based. A general notion of
asymmetry is defined for arbitrary anti-automorphisms on a central simple
algebra, and conditions are given to characterize the elements which are the
asymmetries of some anti-automorphism. The asymmetry is used to define the
determinant of an anti-automorphism.

INTRODUCTION

The asymmetry of an arbitrary nonsingular pairing (not necessarily symmetric
or skew-symmetric) on a finite-dimensional vector space V is an invertible endo-
morphism of V' which is an important invariant of the pairing. It is 1 if and only if
the pairing is symmetric and —1 if and only if it is skew-symmetric. This invariant
was first considered by Williamson [9], and more recently by Riehm [6].

In the present paper, we determine under which conditions a linear map a €
GL(V) is the asymmetry of some nonsingular pairing on V: the map a must be
conjugate to its inverse and satisfy some conditions on the generalized eigenspaces
of eigenvalues +1 and —1, see Theorem 1. As pointed out by Ranicki, the property
that a is an asymmetry could be rephrased by saying that a certain asymmetric
Poincaré complex of dimension 1 is round simple null-cobordant. (See [5, Ch. 20]
for background information on Poincaré complexes.)

In section 2, we define the asymmetry of an anti-automorphism ¢ on a central
simple algebra A: it is an element a, € A* which is mapped, under scalar extension
to a splitting field of A, to the asymmetry of any nonsingular pairing to which o
is adjoint. It is defined up to sign by the properties that o?(x) = a,za;* for all
x € A and that o(a,) = a;'. This element was incidentally used by Saltman
[7, Lemma 3.3, Theorem 4.4] to show that if an Azumaya algebra A carries an
anti-automorphism, then the ring of 2 x 2 matrices M2(A) carries an involution,
and that Azumaya algebras over connected semilocal rings which are isomorphic
to their opposite have an involution. We show that in a central simple algebra of
exponent 2, an invertible element is the asymmetry of some anti-automorphism if
and only if it is conjugate to its inverse (Theorem 2). Albert’s theorem that every
central simple algebra of exponent 2 has an involution is an immediate consequence,
since involutions are the anti-automorphisms of asymmetry 4+1. In the final section,
the asymmetry is used to define the determinant of an anti-automorphism.
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1. THE ASYMMETRY OF A NONSINGULAR PAIRING

Throughout this section, V' denotes a finite-dimensional vector space over an
arbitrary field F. We define the asymmetry and the adjoint anti-automorphism of
a nonsingular pairing on V', and determine which linear transformations of V' are
asymmetries.

1.1. Definitions. Let V* = Homp(V, F) be the dual of V. Every pairing (or
bilinear form) b: V x V. — F induces a linear map b: V — V* which carries
x € V to b(z,e) € V*. The transpose map b': V = V** — V* carries x € V to
ble,z) € V*.
Proposition 1. For a pairing b on V', the following conditions are equivalent:

(a) if x € V is such that b(z,y) =0 for ally € V, then z = 0;

(b) if y € V is such that b(x,y) =0 for allx € V, then y = 0;

(c) the map b is bijective.

If these conditions hold, the pairing b is called nonsingular.
Proof. Condition (a) is equivalent to injectivity of b, and (b) to injectivity of b,
hence also to surjectivity of b. Since dimV = dim V*, each of these conditions

implies that bis bijective. O

All the pairings considered in the sequel are nonsingular. To every nonsingu-
lar pairing b on V we attach an anti-automorphism o, of Endg V and a linear
transformation a, € GL(V) as follows:

Proposition 2. Let b be a nonsingular pairing on V. There is a unique map
op: EndpV — EndpV and a unique map ap: V — V such that

(1) b(f(z),y) =b(z,00(f)(y)) forallz,yeV, feEndpV
and
(2) b(z,y) = b(y, ap(x)) forallz, yeV.

The map oy is an F-linear anti-automorphism of Endg V' and the map ay is linear
and invertible. These maps satisfy the following properties:

(i) o?(f) =apo foay" for all f € EndpV;
(i) op(ap) = a;*.
Proof. For f € Endp V,let op(f) = (iJOfOZ;’l)t. Equality (1) is easily checked, and
the fact that op is an F-linear anti-automorphism of Endp V' follows. Uniqueness
of oy, follows from the hypothesis that b is nonsingular.
On the other hand, let a, = (b*)~* 0 b. This map is clearly linear and invertible,

and it satisfies (2). Uniqueness of ap is clear. To check the additional properties,
observe that for f € Endp V

o2(f) = (bo(bo fob 1) ob) = ((b')Lob)ofo () tob)
and

(B 08) = (bo (B 0B) 0 b1)' = () o)
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We call oy, the anti-automorphism adjoint to b. Using the Skolem-Noether the-
orem, it is easily seen that every F-linear anti-automorphism of End g V' is adjoint
to some nonsingular pairing, see [4, p. 1]. The map a; is called the asymmetry
of b. From the definition, it is clear that the adjoint anti-automorphism and the
asymmetry of any scalar multiple of b are the same as those of b. Moreover, the
map ap is determined up to sign by properties (i) and (ii).

We combine a;, and o into a linear involution of Endg V as follows:

Proposition 3. Let b be a nonsingular pairing on V. There is a unique linear map
Y: EndpV — Endp V' such that

(3) b(z, f(y) = by, w(f)(z)) forallz, yeV, f €eEndpV.
This map satisfies the following additional properties:

(1) Wb(f ©go h) = Ub(h) O’yb(g) o Uljl(f) fO’I" f7 9, he EHdF V;
(11) 'Yl? = IdEnd Vs
(111) "}/b(Idv) = Qayp.

Proof. Set v(f) = o(f) o ap (= ap ooy, '(f)) for f € Endp V; then (iii) is clear
and (3), (i), (ii) follow from the properties of o}, and ap. O

We call ~, the linear involution of Endg V associated to b. As for the adjoint
anti-automorphism o, and the asymmetry ap, it is clear that ~; is also the linear
involution associated to any scalar multiple of b.

Remark. There are corresponding notions for pairings on faithfully projective mod-
ules with values in invertible modules (over an arbitrary commutative ring R):

see [3, Chap. III, (8.2)].

1.2. Characterization of asymmetries. The goal of this subsection is to answer
the following question: Under which conditions on a map a € GL(V') does there
exist a nonsingular pairing b on V' whose asymmetry is a, i.e., such that a, = a?
Identifying Endg V' with a matrix algebra M, (F) through the choice of a basis
of V, this amounts to asking for which invertible matrices a € GL,,(F') the equation
a = (z')"'z has a solution z € GL,,(F), in view of the definition of a in terms of b
in the proof of Proposition 2.

The conditions involve the following vector spaces: for an arbitrary integer m > 1
and € = +1, we let

Ve — ker(a — eIdy )™ '
"™ ker(a—eldy)™ ! + (a — eldy) (ker(a — e Idy )™ +1)
Theorem 1. Suppose char F' # 2. A map a € GL(V) is the asymmetry of some
nonsingular pairing on V' if and only if the following conditions hold:
(1) a is conjugate to a=! in GL(V);
(2) for every even integer m, dim VIt is even;
(3) for every odd integer m, dim 'V, ;1 is even.

If char F' =2, a map a € GL(V) is the asymmetry of some nonsingular pairing on
V if and only if conditions (1) and (2) hold.

Proof. We first show that the conditions are necessary. Suppose b is a nonsingular
pairing on V such that a;, = a. Proposition 2 shows that o,(a) = a~!. To see how
this equality implies condition (1), we argue in terms of matrices. Using a basis
of V| we identify Endr V' with the matrix algebra M, (F). Since the transpose
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map ¢ is an anti-automorphism, o}, o ¢ is a linear automorphism of M, (F'), hence
the Skolem-Noether theorem yields an invertible matrix u such that oy ot is the
conjugation by u. Then op(x) = uxlu~! for all € M, (F). In particular, since
op(a) = a~t it follows that a~! is conjugate to a’. But it is well-known that every
matrix is conjugate to its transpose, hence condition (1) is proved.

To show that conditions (2) and (3) are necessary if char F' # 2, we show that
the nonsingular pairing b induces a nonsingular skew-symmetric pairing on V,F! if
m is even and on V1 if m is odd. Conditions (2) and (3) follow because only
even-dimensional vector spaces carry nonsingular skew-symmetric pairings if the
characteristic of the base field is different from 2.

Fix some integer m and € = 1. For the convenience of notation, we let

U:, = ker(a — eIdy)™,
so Vi = US /(Uz,_, + (a — e1dy)(US,,,)). For x, y € US,, define
b (2,y) = b(z, (a — eldv)" " (y)).
Since y € U, we have
(4) ao(a—eldy)™ H(y) = s(a—eldy)" H(y),
hence
b(y, (a —eldy)™ H(z)) = eb(y,a0 (a —eldy)™ ! (z))
(5) =eb((a—eldy)™ (z),y).
On the other hand, equality (4) yields
(a—eldy)™ ' (y) = (ca™ )" Ha—eldy)™ H(y) = (1) top(a — e ldy)™ ' (y),
hence
(6) b((a —eldy)" ! (2),y) = (-1)""'b(, (a — e Idv)" " (y)).
Comparing (5) and (6), we obtain
by, ) = (=1)" " eby, (2, 1)

Therefore, b5, is a skew-symmetric bilinear form on U, if e = 4+1 and m is even,
and also if e = —1 and m is odd.

To see that bZ, induces a nonsingular pairing on V5,
b:,, which is

radbf, = {z € U, | b(z,2) = 0 for all z € (a —eldy)™ " (US,)}.

we consider the radical of

Thus, radbg, is the intersection of UZ, with the orthogonal! complement for the
form b of

(a —eldy)™ Y (UE) = im(a — eIdy)™ * Nker(a — e Idy),
which is keroy(a — eldy)™ ! + imoy(a — eIdy). Since op(a) = a~ !, we have
ker op(a — eIdy )™~ ! = ker(a — eIdy)™ ! and imoy(a — eldy) = im(a — e Idy),

Lf b is not symmetric nor skew-symmetric, one has to distinguish orthogonality on the left
and on the right; the orthogonal complements of a-invariant subspaces coincide, however.
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hence
rad b5, = (U, +im(a —eldy)) NUZ,
=U,_1 + (im(a — e1dv) NU,)
= U+ (a—eldy)(Ur,40)-
Therefore, b5, induces a nonsingular pairing on Ug, /(Ug,_; + (a — eIdy)(US,41)) =
e
VmSUppose now char ' = 2. The arguments above still show that b5, induces a

nonsingular bilinear pairing on V2, but in characteristic 2 skew-symmetric pair-

ings are symmetric, hence we cannot conclude that dim V5, is even. To show that

dim V! is even if m is even, we show that b1! is in fact alternating if m is even.
m ) m g
For z € UF! we have

m

(a —Idy)™ ?(z) € ker(a — Idy)? = ker(a® — Idy),

hence a? o (a — Idy )™ 2(z) = (a — Idy)™ 2(x). Since m is even, we obtain by
induction

™2 o (a — Idy)"™ (@) = (a — Idy)"™(2),
hence
(a —Idy)™ %(z) = a*> ™o (a — Idy)™ 2(z) = o(a — Idy)™ ().
Therefore,
b(z, (a—Idy)™ *(z)) = b((a — Idy)™ *(z),z) = b(z,a0 (a—Idy)" *(z)).

It follows that b(z, (a —Idy )™ !(x)) = 0, hence b;! is alternating. This completes
the proof that the conditions are necessary.

To prove that the conditions are sufficient, we shall make V into a module
over the ring F[X, X ~!] of Laurent polynomials in one indeterminate X. As a
preparation, we make some observations on the prime ideals of this principal ideal
domain.

Let J be the automorphism of F[X, X ~!] which maps X to X~!. We also
denote by J the extension of this automorphism to the field of fractions F'(X) and
to the factor module E = F(X)/F[X, X ~!]. Every prime ideal P C F[X, X 1] is
generated by an irreducible polynomial of the form

T=ao+a X+ +agX? € F[X]

such that ag, aq # 0. If P/ = P, the Laurent polynomials 7, 7/ differ by a factor
which is invertible in F[X, X "], hence 7 = aX 1’ for some o € F*. Comparing
coefficients, we have

a; = aag_; fori=0,...,d,
hence ag = aay = o?aq and therefore o = +1. If d is odd, then
(d—1)/2
T = Z ai( X+ aX ),
i=0
hence 7 is divisible by 1+ aX. As 7 is irreducible, we may then choose # = X +1 if
a=1,and m = X —1if @« = —1. Suppose next d is even. If « = —1 and char F' # 2,
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then ag/2 = —agq/2 implies ag/2 = 0. In that case, we have
d/2—1
T = Z a;( Xt — X179,
i=0

hence 7 is divisible by 1 — X. This is a contradiction, since 7 is assumed to be
irreducible. Therefore, o = 1 and (X%27~1)’ = X4/27=1, We may then choose
of the form

r=14+mX+aX?>+ - +aX"?4a X 4 X9,

Let Rq be the set of irreducible polynomials of this form.

For each pair of prime ideals { P, P’} with P/ # P, we arbitrarily choose a gen-
erator 7 € F[X] of one of P, P’ and denote by R the set of irreducible polynomials
thus chosen. Thus, the set of prime ideals of F[X, X 1] is {7 F[X, X ']} where 7
runs over the set Ry URy URY U{X —1,X + 1}, and we have 7/ F[X, X 1] #
7F[X, X! if and only if 7 € Ry URY.

Returning to the proof of Theorem 1, we define a structure of F[X, X ~!]-module
on V by letting

X v =av) forallv e V.

Since F[X, X ~!] is a principal ideal domain, the F[X, X ~!]-module V decomposes
as a (finite) direct sum of quotients of F[X, X '], as follows:

Ve @(FIX, X fam)

for some integers p(mw,m) which all vanish except a finite number, where 7 runs
over R1 URy URY U{X —1,X + 1}, and m over the positive integers.
Condition (1) shows that the elementary divisors of a are the same as those of
-1
a™", hence

Ve @(FIX, XY/ (7)),

T™,m

Therefore, we have u(m,m) = u(x”,m) for all m if T € Ra.
For all integers m and for e = £1 we have

dimV; = u(X —e,m).
Therefore, condition (2) says that u(X — 1,m) is even for all m even, and condi-
tion (3) says that u(X + 1,m) is even for all m odd. Assuming char F' # 2 and
conditions (1), (2) and (3) hold, we may decompose V into a direct sum of six

F[X, X~ 1]-submodules

V=VieVveVseaV,eVsa Vg
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where
Vi= @ @FIx,xmmy e,
TERT m
Ve @ @FIX X1/ @ FIX, X1)/(r))m) ",
TFERQ m
Vs ~ EB (F[X,Xfl]/(X _ 1)m)u(X—1,m)’
m odd

Vi @ (FIX, X '/(X -1)" & F[X,X /(X - 1)m)u(X—1,m)/2’

m even

Vs = @ (FIX, X7 '/(X + 1)m)u(X+1,m)7
Vo~ @ (FIX. X /(X +1)™ & FIX, X 1/(X + 1ym) /2,
m odd

If char F = 2 and conditions (1), (2) hold, there is a similar decomposition

V=VieV,oVzoV,

where V1, ..., Vy are as above. We shall show below (see Lemma 1) that there are
nonsingular (—X)-hermitian forms with values in E (with respect to J) on
F[X, XY/ am ifreRy,
FIX, X 1)/mm o FIX, XY /(x/)™ if 7 € Ra,
FIX, X Y/(X-1)m™ if m is odd,
(7) (FIX, X~1/(X — 1)) if m is oven,
FIX, X/ (X+1)™ if m is even and char F' # 2,
(F[X, X1)/(X + 1)) if m is odd and char F # 2.

The orthogonal sum of these forms yields a nonsingular (—X)-hermitian form
h: VxV—=E
with respect to J. As Ischebeck-Scharlau [2] or Waterhouse [§8], define an F-linear

map T: F — F by observing that every element in F is represented by a unique
rational fraction f which has a zero at co and does not have a pole at 0, and letting

T(f+F[X,X') = f(0).

It is easily verified that T'(r/) = —T(r) for all » € E. Moreover, for every nonzero
r € E there exists an integer k such that T(X ~*r) # 0, hence T does not vanish
on any nonzero F[X, X ~!]-submodule of E.

Let Ti.(h): V x V — F be the transfer bilinear map, defined by

T.(h)(z,y) = T (h(z,y)) forz, yeV.

If x € V is such that T.(h)(z,y) = 0 for all y € V, then T vanishes on the
F[X, X ~!-submodule h(x,V), hence h(z,V) = {0} and therefore z = 0 since h is
nonsingular. This shows that T, (h) is nonsingular.

Moreover, since h is (—X)-hermitian we have

T.(h)(y, 7) = T((—X)h(z,1)”) = ~T(Xh(z,p)”) =
= T(X'Ih(:c,y)) = T(h(a:,Xy)) =T.(h) (z,a(y))
for all z, y € V. Therefore, a is the asymmetry of T, (h).
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To complete the proof, we prove the existence of nonsingular (—X)-hermitian
forms as asserted above.

Lemma 1. There are nonsingular (—X)-hermitian forms with values in E (with
respect to J) on the modules listed in (7).

Proof. Suppose first m € Ry, hence (Xd/27r_1)‘] = X271 where d is the degree
of . For u, v € F[X, X1], let

h(u,v) = (X — 1)(X¥2x~ /v + F[X, X"} € E.

This map induces a sesquilinear form on F[X, X ~!]/7™. The induced form is
(—X)-hermitian since (X —1)7 = —X~1(X — 1); it is nonsingular since h(1,v) = 0
implies 7™ divides (X — 1)v in F[X, X '], hence v = 0 in F[X, X ~!]/7™ since
is prime to X — 1.

Next, suppose ™ € Ra. For uy, ug, v1, vo € F[X, X 1], we let
h((u1,u2), (v1,v2)) = 7" uivy — X (7)) udvy + F[X, XY € E.

Computation shows that this map induces a nonsingular (—X)-hermitian form on
(FIX, X7 /7™) x (F[X,X/(x7)™).

Similarly, the following maps induce nonsingular (—X)-hermitian forms on the
corresponding modules (where e is an arbitrary non-negative integer):

h(u,v) = XX — 1) /v + FIX, X" e E on FIX,X7!/(X —1)%+;

h((ur,us), (v1,v2)) = X(X — 1) *(ufve — Xugv) + FIX, X '| € E
on (FIX, X 1/(X —1)%)%
and if char F' # 2,
h(u,v) = (X = DXYX +1)"*u’v + F[X,X Y€ FE on F[X,X /(X +1)%;

h((u1,u2), (v1,v2)) = (X —1)*THX +1) 72 (ufva+ Xudvy) + FIX, X '] € E
on (F[X, X 1/(X +1)%1)*,
We omit the straightforward verifications. O

Remark. The theory of hermitian forms over principal ideal domains can also be
used to show that the conditions in Theorem 1 are necessary.

2. THE ASYMMETRY OF AN ANTI-AUTOMORPHISM

2.1. Definition. Let A be a (finite-dimensional) central simple algebra over an
arbitrary field F', and let 0: A — A be an F-linear anti-automorphism of A. Our
goal is to attach to o a unit a, € A* which plays the same role as the asymmetry
ap of a nonsingular pairing b with respect to the adjoint anti-automorphism oy.
The key to the definition is an analogue of the linear involution ~,, which we now
define.

Proposition 4. There is a unique linear map v,: A — A which satisfies the fol-
lowing property: for any splitting field K of A, any isomorphism

0: Ak =AQr K — Endg V
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and any nonsingular pairing b on V such that op = 0o (0 @ Idg) 0071,
fo (v @Idg)of ! =
This map satisfies the following additional properties:
(i) 7o (2y2) = 0(2)v0(y)o " (x) forz, y, z € A;
(ii) 72 =1d4.

Proof. Tt suffices to prove the existence of v,. Uniqueness is then clear, and the
additional properties follow from those of 7, in Proposition 3.
Let T,: A x A — F be the nonsingular pairing defined by

T, (z,y) = Trda (o (z)y) for z, y € A,

where Trd 4 is the reduced trace. Let (e;);cr be a basis of A and let (eg)iej be the
dual basis with respect to the pairing T, so that

Ta(eg,ej):&j for Z,je[
We let
Yo () = Zeimeg for x € A.
il

In other words, 7, is the image of ), e; ®eg € A®p A under the “sandwich” map
Sand: A®p A — Endp A defined by Sand(z ® y)(z) = zzy. Observe that v, does
not depend on the choice of the basis (e;)icr since ), e;® ef is the element which
corresponds to Id 4 under the bijection Id 4 @T,: A9r A — A®p A* = Endp A.

As a consequence, for every field extension K/F, the map vop1d,: A ® K —
A ® K satisfies

Yooldx = Vo @ ldx
since for r € A® K,
Yoo (2) = D _(e: ® Da(e} ©1) = (1, © Idx)(@).
iel

To show that v, is as required, assume that A is split: let A =Endr V and let b
be a nonsingular pairing on V such that ¢ = 3. We have to show that v, = ;. To
prove this equality, we use the identification V®rV = Endg V defined by the linear
isomorphism Idy ®b: V@pV -V @p V* = Endp V. Then (v® w)(x) = vb(w, x)
for v, w, x € V and moreover

fowvew)=fv)@w, oclvw)=aw)®v and Trd(v®w)=blw,v)

for v, w € V and f € Endp V. Let (v;)1<i<n be a basis of V and let (v})1<i<n be
the dual basis for the pairing b, so that

(8) b(’U;,Uj) = 51‘]‘ for 7:, ] = 1, ey

Then (v; ® vj)1<4,j<n is a basis of Endp V, and the dual basis with respect to T,
is given by

(vi ®vj)! = v} ® V).
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Therefore, we have for f € Endp V'

n

Yo (f) = D (i ®vj) 0 fo (v] ®v))

ij=1

- Z v; @ V5 b(vy, f(v]))

ij=1
= 3" @0 b(vh () ()-
Q=1

For all z € V we have = YI", v;b(v},z), hence Y1 | v; b(v},%(f)(v;)) =
Y (f)(v;) for all j, and the last equality above simplifies to

10(H) = Y W) &) = () o (e 0 0)).

Since > 7, v; @ v} = Idy, it follows that 7, (f) = 7 (f). O
In view of property (i), we have

(9) Yo () = 0(2)75 (1) = 7o (1)~ (z) for all z € A.

Therefore, 7, is completely determined by the element v, (1) € A*.

Definition. The asymmetry of the anti-automorphism o is the element a, =
(1) € A%, where 7, is the linear involution defined in Proposition 4.

If A=Endp V and o = 0} is the anti-automorphism adjoint to some nonsingular
pairing b on V, it follows from Proposition 4 and property (iii) of Proposition 3
that a, is the asymmetry of the nonsingular form b, i.e.,

s = Qyp.
In the general case, equation (9) shows that

(10) o?(z) = apza,’ for all x € A.

Moreover, since 72 = Id4 we have

(11) 1 =7,(as) =0(as)as-

The element a, is uniquely determined up to sign by (10) and (11).
Recall that an anti-automorphism o is called an involution if 02 = Id 4.

Proposition 5. A linear anti-automorphism is an involution if and only if its
asymmetry is +1 or —1.

Proof. If a, = +1, equation (10) shows that 02 = Id4. Conversely, if o is an
involution, (10) shows that a, € F*. It then follows from (11) that a2 = 1, hence
a, = £1. O

If char F' # 2, a linear involution o is called orthogonal (resp. symplectic) if
after scalar extension to a splitting field it is adjoint to a symmetric (resp. skew-
symmetric) bilinear pairing. Therefore, orthogonal involutions are exactly the lin-
ear anti-automorphisms with asymmetry +1, and symplectic involutions are those
with asymmetry —1. Therefore, equations (10) and (11) are not sufficient to de-
termine the type of the involution. This observation suggests that the sign of a, is
meaningful for arbitrary anti-automorphisms.
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The following proposition yields an alternative definition of the asymmetry a,,
without reference to the linear involution v, and without scalar extension to a
splitting field.

Let 0.: AQrp A — Endg A be the F-algebra homomorphism defined by

o«(a®b)(z) = axo(b) for a, b, z € A,

and recall (from [4, (3.5)], for instance) the Goldman element of A: this is the
element g € A ® A such that Sand(g)(x) = Trda(x) for all © € A. Thus, there is
a well-defined linear endomorphism o,(g): A — A.

Proposition 6. The asymmetry of o is the unique element a, € A* such that

o(0x(9)(f)) = asf
for all f € A.
Proof. 1t suffices to prove that a, satisfies the property above, since uniqueness
is clear. To do this, we may extend scalars to a splitting field. Therefore, we
may assume A = EndpV for some F-vector space V, and ¢ = o} is the anti-

automorphism adjoint to some nonsingular pairing b on V.
For all f € A and all z, y € V we have

b(f(x),y) =b(y,ac o f(z)),

by definition of the asymmetry (see (2)), hence we have to show

b(f(x),y) = b(y,o(0x(9)(f))(2))

or, equivalently (by definition of o = g}),

(12) b(f(@),y) = b(o.(9)(f)(y), )

forall fe Aandall z, y € V.

In order to compute the right-hand side, we identify A = Endp V to V®p V via
the linear isomorphism Idy @b: V@pV —V ®pV*=Endp V, as in the proof of
Proposition 4. If (v;)1<i<n is & basis of V and (v})1<;<y, is the dual basis for the
pairing b (see (8)), then the Goldman element is

g= Z(’Uz ®U§) ® (’Uj ® U:)
%

since it is easily computed that for all u, w € V'

Sand(g)(uv @ w) = Z(vi ® v;) o(u®w)o (v; ;) =

= (Z v; ® vi) (Z b(v’;, u)b(w, vj)) = b(w,u) Zvi @ v, = Trd(u @ w) Idy .

Now, for u, w € V,
0. () w) = 3 (0 @) 0 (u® w) o (v @)
%
Since (v ®@ w) o o(f) = u® f(w) for f € Endp V, the right-hand side of the last
equality simplifies to

Z((vl @ vj(u) @ ((v; @ vj)(w)) = Zvl ® v;b(v}, u)b(v;, w),

]
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hence
0:(9)(u®w) =wu.
Therefore, for u, w, z, y € V,

b(:(9)(u@w)(y), z) = b((w @ u)(y), z) = b(w, )b(u, y).

Since we also have b((u ® w)(z),y) = b(u,y)b(w,z), equation (12) holds for f =
u® w. Since EndpV =V ®p V, it follows that (12) holds for all f € A, and the
proof is complete. O

Remark. Asymmetries can be defined on the same model for anti-automorphisms
of Azumaya algebras; one may avoid the use of a basis of A in Proposition 4 by
defining v, = Sand(&,) where &, € A® A is the element mapped to Id 4 by Id 4 ®Tg.
Alternatively, we may set &, = (Ida ®0~1)(g) where g € A ® A is the Goldman
element. This is the approach taken by Saltman in [7] (see also [3, Chap. III, §8]).

2.2. Characterization of asymmetries. In this subsection, we show that in a
central simple algebra of exponent 2, every unit which is conjugate to its inverse is
the asymmetry of some anti-automorphism.

We first compare the asymmetries of two anti-automorphisms o, 7 on a central
simple algebra A. The Skolem-Noether theorem shows that the automorphism
700~ ! is the conjugation by some unit u € A%, i.e.,

(13) 7(x) = uo(z)u™* for all z € A.

Proposition 7. Let o, 7 be anti-automorphisms of a central simple algebra A, and
let w € A* be such that (13) holds. The asymmetries a,, ar of o and T are related

by
ar = uo(u) tag.
Proof. We use the definition of asymmetry provided by Proposition 6. For a, b,
x € A, we have
7.(a @ b)(z) = axT(b) = azuo(b)u™!
hence
7.(a @ b)(2) = 0.(a @ b)(zu)u~".

Therefore, denoting by r,,: A — A the linear map of multiplication on the right by
u, we have

T (a®b) = (ry) too(a®@b)or,
for all a, b € A, hence also
r(g) = (r) " o 0u(g) oy
for g the Goldman element of A. It follows that for all f € A,
(14) 7(9)(f) = ou(fu)u™".
By Proposition 6, the asymmetry a, satisfies
arf =7(r(9)(f)) for all f € A.
Using (14), we obtain
arf = 7(@u()(fu)ut) = uo(ou()(Fu)u ) u = uo(u) o (0w () (Fu))u .
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Proposition 6 also yields U(a*(g)(fu)) = ay fu, hence
arf =uo(u) tas f for all f € A.
The proposition follows. O

Theorem 2. Let A be a central simple algebra of exponent 2 over an arbitrary field
F. A unit is the asymmetry of some anti-automorphism of A if and only if it is
conjugate to its inverse.

Proof. Suppose a € A* is the asymmetry of some anti-automorphism o. We have
to show that the F-vector space

U={recA|ra=a'z}

contains an invertible element. This amounts to proving that the restriction of the
reduced norm polynomial Nrd 4 does not vanish on U. Theorem 1 shows that this
polynomial does not vanish on U ® K, for any splitting field K of A, since a is the
asymmetry of ¢ ® Idg. Therefore, the reduced norm does not vanish on U, since
F is an infinite field. (Note that every central simple algebra over a finite field is
split, hence of exponent 1.)

For the converse, suppose a € A* is conjugate to a~!. Let K be a splitting field
of A; identify A ® K = Endg V for some K-vector space V. We first show, by
using Theorem 1, that a (= a®1) is the asymmetry of some anti-automorphism of
Endg V. With the same notation as in Theorem 1, we have to prove that dim j V"1
is even if m is even, and moreover that dimg V! is even if m is odd and char F' # 2.
For every integer m > 1 and € = +1, we have an exact sequence of K-vector spaces

ker(a —eldy)™ ! o c1a,  ker(a —eldy)™ e
ker(a — e Idy )™ ker(a — eIdy )m—1 "

0—

— 0,

hence
(15) dim V¢ = rk(a — eIdy)™ ! — 2rk(a — e Idy)™ + rk(a — e Idy) ™,

where rk denotes the rank.
For all b € A we have

b — dimg (A ® K) _ dimpbA
deg(A® K) deg A 7

hence rkb is divisible by the Schur index ind A (see [4, (1.9)]). Since A has expo-
nent 2, ind A is even, by [1, Theorem 5.17]. Therefore, rkb is even for all b € A,
and equation (15) shows that dim V5, is even for every integer m and for € = £1.
By Theorem 1, it follows that a is the asymmetry of some anti-automorphism 6 of
AR K.

Now, fix some anti-automorphism o of A. Let a, be its asymmetry and consider
the F-vector space

W={ze€ A|za=o(z)a,}

If u € (A® K)* is such that 8(z) = u(oc @ Idg)(z)u~?! for all z € A ® K, then
u~! € W® K, by Proposition 7. Therefore, the same arguments as in the first part
of the proof show that W contains an invertible element w. Using Proposition 7
again, we see that a is the asymmetry of the anti-automorphism x — w=lo(z)w. O
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Corollary 1 (Albert). Every central simple algebra of exponent 2 carries an in-
volution. Moreover, if the characteristic of the base field is different from 2, every
central simple algebra of exponent 2 carries involutions of both orthogonal and sym-
plectic types.

Proof. Tt readily follows from Theorem 2 that +1 and —1 are asymmetries of some

anti-automorphisms. These anti-automorphisms are involutions, by Proposition 5.
O

2.3. The determinant of an anti-automorphism. Let o be a linear anti-
automorphism of a central simple algebra A over an arbitrary field F. Let a, € A%
be the asymmetry of A and -, the linear involution of Proposition 4. Consider the
vector spaces

Alt(A,0) ={z —o(x)as |z € A} = {z —v,(z) | x € A}
and
Sk(A,0)={z € A|o(x) +za,' =0} ={x € A|y,(x) = —2}.
From equations (10) and (11), it follows that Alt(A,o) C Sk(A, o). Moreover, we
have © — v, (x) = 2z for all z € Sk(A4, o), hence Alt(A, o) = Sk(A, o) if char F' # 2.

Lemma 2. Suppose o, T are anti-automorphisms of A, and let w € A™ be such
that

7(z) = uo(z)u™? forallz € A.
Then
Alt(A,7) = uAlt(A,0) and Sk(A,7)=uSk(4,0).

Proof. Proposition 7 yields a, = uo(u) ta, and a, = u~'7(u)a,. Therefore, for
all x € A we have

z—r1(z)a, =u(u'z—o(u'z)a,) and u(zr—o(z)a,) = uz — 7(uz)a,,
proving that Alt(A4, 7) = uw Alt(A4, o). The proof that Sk(A, 7) = uSk(A, o) is along
the same lines. O

Lemma 3. If deg A is even, Alt(A,0) contains invertible elements. Moreover,
the square class Nrda(z) - F*% € F*/F*? does not depend on the choice of x €
A*NAlL(A, o).

Proof. Let 7 be an anti-automorphism of A with asymmetry +1 and let u € A* be
such that

-1

7(z) = uo(x)u for all z € A.

By Lemma 2, we have
(16) Alt(A,0) = u tAlt(A, 7).

Since 7 is an involution, Corollary (2.8) of [4] shows that Alt(A,7) contains in-
vertible elements if deg A is even, hence Alt(A, o) also contains invertible elements.
Moreover, from [4, (7.1)], it follows that all the invertible elements have the same re-
duced norm up to a square of F'; therefore, if v € AXNAIt(A, 1) it follows from (16)
that Nrda(x) € Nrda(u=tv) - F*2 for all z € A* N Alt(4, o). O
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This last lemma allows us to define the determinant of an anti-automorphism o
of a central simple algebra A of even degree, as follows:

deto = Nrdy(z) - F*% € F*/F*?

for any x € A* N Alt(A, o).
This definition is consistent with [4, (7.2)], where the determinant of an orthog-
onal involution is defined.

Ezample 1. Since clearly 1 — a, € Alt(A, o), we have
deto = Nrds(1 — a,) - F*?

if 1 — a, is invertible. Therefore, the determinant of ¢ is entirely determined by its
asymmetry in this particular case.

FEzample 2. The transpose involution on a matrix algebra M, (F) (with n even)
has trivial determinant. Indeed, the matrix

mq 0
— = _ (01
where my = -+ =m,, o = (710)

0 mn/g
is in Alt(M,(F),t) and has determinant 1.

Proposition 8. Let o, 7 be anti-automorphisms of a central simple algebra A of
even degree, and let u € A* be such that

7(2) = uo(z)u™* for all z € A.
Then
det 7 = Nrd 4 (u) det 0.

Proof. This readily follows from Lemma 2. O

Proposition 9. Let V' be an even-dimensional vector space over an arbitrary field
F and let b be a nonsingular pairing on V. For every basis (v;)1<i<n of V,

det o, = det(b(vi,vj))1§i7j§n - FX2,

Proof. Identify Endp V' with the matrix algebra M, (F) by means of the basis
(vi)1<i<n. The anti-automorphism oy is then given by

op(m) = u " 'mtu for all m € M, (F),

where u = (b(v;,v;)) € M, (F). Therefore, Proposition 8 yields

1<i,j<n
det o, = det u™ ' det £.

Since it was observed in Example 2 above that dett is trivial, the proposition
follows. O
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