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Abstract. The asymmetry of a nonsingular pairing on a vector space is an
endomorphism of the space on which the classification of arbitrary pairings

(not necessarily symmetric or skew-symmetric) is based. A general notion of
asymmetry is defined for arbitrary anti-automorphisms on a central simple

algebra, and conditions are given to characterize the elements which are the
asymmetries of some anti-automorphism. The asymmetry is used to define the
determinant of an anti-automorphism.

Introduction

The asymmetry of an arbitrary nonsingular pairing (not necessarily symmetric
or skew-symmetric) on a finite-dimensional vector space V is an invertible endo-
morphism of V which is an important invariant of the pairing. It is 1 if and only if
the pairing is symmetric and −1 if and only if it is skew-symmetric. This invariant
was first considered by Williamson [9], and more recently by Riehm [6].

In the present paper, we determine under which conditions a linear map a ∈
GL(V ) is the asymmetry of some nonsingular pairing on V : the map a must be
conjugate to its inverse and satisfy some conditions on the generalized eigenspaces
of eigenvalues +1 and −1, see Theorem 1. As pointed out by Ranicki, the property
that a is an asymmetry could be rephrased by saying that a certain asymmetric
Poincaré complex of dimension 1 is round simple null-cobordant. (See [5, Ch. 20]
for background information on Poincaré complexes.)

In section 2, we define the asymmetry of an anti-automorphism σ on a central
simple algebra A: it is an element aσ ∈ A× which is mapped, under scalar extension
to a splitting field of A, to the asymmetry of any nonsingular pairing to which σ
is adjoint. It is defined up to sign by the properties that σ2(x) = aσxa

−1
σ for all

x ∈ A and that σ(aσ) = a−1
σ . This element was incidentally used by Saltman

[7, Lemma 3.3, Theorem 4.4] to show that if an Azumaya algebra A carries an
anti-automorphism, then the ring of 2 × 2 matrices M2(A) carries an involution,
and that Azumaya algebras over connected semilocal rings which are isomorphic
to their opposite have an involution. We show that in a central simple algebra of
exponent 2, an invertible element is the asymmetry of some anti-automorphism if
and only if it is conjugate to its inverse (Theorem 2). Albert’s theorem that every
central simple algebra of exponent 2 has an involution is an immediate consequence,
since involutions are the anti-automorphisms of asymmetry ±1. In the final section,
the asymmetry is used to define the determinant of an anti-automorphism.
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1. The asymmetry of a nonsingular pairing

Throughout this section, V denotes a finite-dimensional vector space over an
arbitrary field F . We define the asymmetry and the adjoint anti-automorphism of
a nonsingular pairing on V , and determine which linear transformations of V are
asymmetries.

1.1. Definitions. Let V ∗ = HomF (V, F ) be the dual of V . Every pairing (or

bilinear form) b : V × V → F induces a linear map b̂ : V → V ∗ which carries

x ∈ V to b(x, •) ∈ V ∗. The transpose map b̂t : V = V ∗∗ → V ∗ carries x ∈ V to
b(•, x) ∈ V ∗.
Proposition 1. For a pairing b on V , the following conditions are equivalent:

(a) if x ∈ V is such that b(x, y) = 0 for all y ∈ V , then x = 0;
(b) if y ∈ V is such that b(x, y) = 0 for all x ∈ V , then y = 0;

(c) the map b̂ is bijective.

If these conditions hold, the pairing b is called nonsingular.

Proof. Condition (a) is equivalent to injectivity of b̂, and (b) to injectivity of b̂t,

hence also to surjectivity of b̂. Since dimV = dimV ∗, each of these conditions

implies that b̂ is bijective.

All the pairings considered in the sequel are nonsingular. To every nonsingu-
lar pairing b on V we attach an anti-automorphism σb of EndF V and a linear
transformation ab ∈ GL(V ) as follows:

Proposition 2. Let b be a nonsingular pairing on V . There is a unique map
σb : EndF V → EndF V and a unique map ab : V → V such that

b
(
f(x), y

)
= b
(
x, σb(f)(y)

)
for all x, y ∈ V , f ∈ EndF V(1)

and

b(x, y) = b
(
y, ab(x)

)
for all x, y ∈ V .(2)

The map σb is an F -linear anti-automorphism of EndF V and the map ab is linear
and invertible. These maps satisfy the following properties:

(i) σ2
b (f) = ab ◦ f ◦ a−1

b for all f ∈ EndF V ;

(ii) σb(ab) = a−1
b .

Proof. For f ∈ EndF V , let σb(f) = (b̂◦f ◦ b̂−1)t. Equality (1) is easily checked, and
the fact that σb is an F -linear anti-automorphism of EndF V follows. Uniqueness
of σb follows from the hypothesis that b is nonsingular.

On the other hand, let ab = (b̂t)−1 ◦ b̂. This map is clearly linear and invertible,
and it satisfies (2). Uniqueness of ab is clear. To check the additional properties,
observe that for f ∈ EndF V

σ2
b (f) =

(
b̂ ◦ (b̂ ◦ f ◦ b̂−1)t ◦ b̂−1

)t
=
(
(b̂t)−1 ◦ b̂

)
◦ f ◦

(
(b̂t)−1 ◦ b̂

)−1

and

σb
(
(b̂t)−1 ◦ b̂

)
=
(
b̂ ◦
(
(b̂t)−1 ◦ b̂

)
◦ b̂−1

)t
=
(
(b̂t)−1 ◦ b̂

)−1
.
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We call σb the anti-automorphism adjoint to b. Using the Skolem-Noether the-
orem, it is easily seen that every F -linear anti-automorphism of EndF V is adjoint
to some nonsingular pairing, see [4, p. 1]. The map ab is called the asymmetry
of b. From the definition, it is clear that the adjoint anti-automorphism and the
asymmetry of any scalar multiple of b are the same as those of b. Moreover, the
map ab is determined up to sign by properties (i) and (ii).

We combine ab and σb into a linear involution of EndF V as follows:

Proposition 3. Let b be a nonsingular pairing on V . There is a unique linear map
γb : EndF V → EndF V such that

b
(
x, f(y)

)
= b
(
y, γb(f)(x)

)
for all x, y ∈ V , f ∈ EndF V .(3)

This map satisfies the following additional properties:

(i) γb
(
f ◦ g ◦ h

)
= σb(h) ◦ γb(g) ◦ σ−1

b (f) for f , g, h ∈ EndF V ;

(ii) γ2
b = IdEndV ;

(iii) γb(IdV ) = ab.

Proof. Set γb(f) = σb(f) ◦ ab (= ab ◦ σ−1
b (f)) for f ∈ EndF V ; then (iii) is clear

and (3), (i), (ii) follow from the properties of σb and ab.

We call γb the linear involution of EndF V associated to b. As for the adjoint
anti-automorphism σb and the asymmetry ab, it is clear that γb is also the linear
involution associated to any scalar multiple of b.

Remark. There are corresponding notions for pairings on faithfully projective mod-
ules with values in invertible modules (over an arbitrary commutative ring R):
see [3, Chap. III, (8.2)].

1.2. Characterization of asymmetries. The goal of this subsection is to answer
the following question: Under which conditions on a map a ∈ GL(V ) does there
exist a nonsingular pairing b on V whose asymmetry is a, i.e., such that ab = a?
Identifying EndF V with a matrix algebra Mn(F ) through the choice of a basis
of V , this amounts to asking for which invertible matrices a ∈ GLn(F ) the equation

a = (xt)−1x has a solution x ∈ GLn(F ), in view of the definition of a in terms of b̂
in the proof of Proposition 2.

The conditions involve the following vector spaces: for an arbitrary integer m ≥ 1
and ε = ±1, we let

V εm =
ker(a− ε IdV )m

ker(a− ε IdV )m−1 + (a− ε IdV )
(
ker(a− ε IdV )m+1

) .

Theorem 1. Suppose charF 6= 2. A map a ∈ GL(V ) is the asymmetry of some
nonsingular pairing on V if and only if the following conditions hold:

(1) a is conjugate to a−1 in GL(V );
(2) for every even integer m, dimV +1

m is even;
(3) for every odd integer m, dimV −1

m is even.

If charF = 2, a map a ∈ GL(V ) is the asymmetry of some nonsingular pairing on
V if and only if conditions (1) and (2) hold.

Proof. We first show that the conditions are necessary. Suppose b is a nonsingular
pairing on V such that ab = a. Proposition 2 shows that σb(a) = a−1. To see how
this equality implies condition (1), we argue in terms of matrices. Using a basis
of V , we identify EndF V with the matrix algebra Mn(F ). Since the transpose
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map t is an anti-automorphism, σb ◦ t is a linear automorphism of Mn(F ), hence
the Skolem-Noether theorem yields an invertible matrix u such that σb ◦ t is the
conjugation by u. Then σb(x) = uxtu−1 for all x ∈ Mn(F ). In particular, since
σb(a) = a−1 it follows that a−1 is conjugate to at. But it is well-known that every
matrix is conjugate to its transpose, hence condition (1) is proved.

To show that conditions (2) and (3) are necessary if charF 6= 2, we show that
the nonsingular pairing b induces a nonsingular skew-symmetric pairing on V +1

m if
m is even and on V −1

m if m is odd. Conditions (2) and (3) follow because only
even-dimensional vector spaces carry nonsingular skew-symmetric pairings if the
characteristic of the base field is different from 2.

Fix some integer m and ε = ±1. For the convenience of notation, we let

Uεm = ker(a− ε IdV )m,

so V εm = Uεm/
(
Uεm−1 + (a− ε IdV )(Uεm+1)

)
. For x, y ∈ U εm, define

bεm(x, y) = b
(
x, (a− ε IdV )m−1(y)

)
.

Since y ∈ U εm, we have

a ◦ (a− ε IdV )m−1(y) = ε(a− ε IdV )m−1(y),(4)

hence

b
(
y, (a− ε IdV )m−1(x)

)
= εb

(
y, a ◦ (a− ε IdV )m−1(x)

)

= εb
(
(a− ε IdV )m−1(x), y

)
.(5)

On the other hand, equality (4) yields

(a− ε IdV )m−1(y) = (εa−1)m−1(a− ε IdV )m−1(y) = (−1)m−1σb(a− ε IdV )m−1(y),

hence

b
(
(a− ε IdV )m−1(x), y

)
= (−1)m−1b

(
x, (a− ε IdV )m−1(y)

)
.(6)

Comparing (5) and (6), we obtain

bεm(y, x) = (−1)m−1εbεm(x, y).

Therefore, bεm is a skew-symmetric bilinear form on U εm if ε = +1 and m is even,
and also if ε = −1 and m is odd.

To see that bεm induces a nonsingular pairing on V ε
m, we consider the radical of

bεm, which is

rad bεm =
{
x ∈ Uεm | b(x, z) = 0 for all z ∈ (a− ε IdV )m−1(Uεm)

}
.

Thus, rad bεm is the intersection of U εm with the orthogonal1 complement for the
form b of

(a− ε IdV )m−1(Uεm) = im(a− ε IdV )m−1 ∩ ker(a− ε IdV ),

which is kerσb(a − ε IdV )m−1 + imσb(a − ε IdV ). Since σb(a) = a−1, we have
kerσb(a − ε IdV )m−1 = ker(a − ε IdV )m−1 and imσb(a − ε IdV ) = im(a − ε IdV ),

1If b is not symmetric nor skew-symmetric, one has to distinguish orthogonality on the left
and on the right; the orthogonal complements of a-invariant subspaces coincide, however.
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hence

rad bεm =
(
Uεm−1 + im(a− ε IdV )

)
∩ Uεm

= Uεm−1 +
(
im(a− ε IdV ) ∩ Uεm

)

= Uεm−1 + (a− ε IdV )(Uεm+1).

Therefore, bεm induces a nonsingular pairing on U εm/
(
Uεm−1 + (a− ε IdV )(Uεm+1)

)
=

V εm.
Suppose now charF = 2. The arguments above still show that bεm induces a

nonsingular bilinear pairing on V ε
m, but in characteristic 2 skew-symmetric pair-

ings are symmetric, hence we cannot conclude that dimV ε
m is even. To show that

dimV +1
m is even if m is even, we show that b+1

m is in fact alternating if m is even.
For x ∈ U+1

m we have

(a− IdV )m−2(x) ∈ ker(a− IdV )2 = ker(a2 − IdV ),

hence a2 ◦ (a − IdV )m−2(x) = (a − IdV )m−2(x). Since m is even, we obtain by
induction

am−2 ◦ (a− IdV )m−2(x) = (a− IdV )m−2(x),

hence

(a− IdV )m−2(x) = a2−m ◦ (a− IdV )m−2(x) = σ(a− IdV )m−2(x).

Therefore,

b
(
x, (a− IdV )m−2(x)

)
= b
(
(a− IdV )m−2(x), x

)
= b
(
x, a ◦ (a− IdV )m−2(x)

)
.

It follows that b
(
x, (a− IdV )m−1(x)

)
= 0, hence b+1

m is alternating. This completes
the proof that the conditions are necessary.

To prove that the conditions are sufficient, we shall make V into a module
over the ring F [X,X−1] of Laurent polynomials in one indeterminate X. As a
preparation, we make some observations on the prime ideals of this principal ideal
domain.

Let J be the automorphism of F [X,X−1] which maps X to X−1. We also
denote by J the extension of this automorphism to the field of fractions F (X) and
to the factor module E = F (X)/F [X,X−1]. Every prime ideal P ⊂ F [X,X−1] is
generated by an irreducible polynomial of the form

π = a0 + a1X + · · ·+ adX
d ∈ F [X]

such that a0, ad 6= 0. If P J = P , the Laurent polynomials π, πJ differ by a factor
which is invertible in F [X,X−1], hence π = αXdπJ for some α ∈ F×. Comparing
coefficients, we have

ai = αad−i for i = 0, . . . , d,

hence ad = αa0 = α2ad and therefore α = ±1. If d is odd, then

π =

(d−1)/2∑

i=0

ai(X
i + αXd−i),

hence π is divisible by 1+αX. As π is irreducible, we may then choose π = X+1 if
α = 1, and π = X−1 if α = −1. Suppose next d is even. If α = −1 and charF 6= 2,
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then ad/2 = −ad/2 implies ad/2 = 0. In that case, we have

π =

d/2−1∑

i=0

ai(X
i −Xd−i),

hence π is divisible by 1 − X. This is a contradiction, since π is assumed to be
irreducible. Therefore, α = 1 and (Xd/2π−1)J = Xd/2π−1. We may then choose π
of the form

π = 1 + a1X + a2X
2 + · · ·+ a2X

d−2 + a1X
d−1 +Xd.

Let R1 be the set of irreducible polynomials of this form.
For each pair of prime ideals {P, P J} with P J 6= P , we arbitrarily choose a gen-

erator π ∈ F [X] of one of P , P J and denote byR2 the set of irreducible polynomials
thus chosen. Thus, the set of prime ideals of F [X,X−1] is {πF [X,X−1]} where π
runs over the set R1 ∪ R2 ∪ RJ2 ∪ {X − 1, X + 1}, and we have πJF [X,X−1] 6=
πF [X,X−1] if and only if π ∈ R2 ∪RJ2 .

Returning to the proof of Theorem 1, we define a structure of F [X,X−1]-module
on V by letting

X · v = a(v) for all v ∈ V .

Since F [X,X−1] is a principal ideal domain, the F [X,X−1]-module V decomposes
as a (finite) direct sum of quotients of F [X,X−1], as follows:

V '
⊕

π,m

(
F [X,X−1]/πm

)µ(π,m)

for some integers µ(π,m) which all vanish except a finite number, where π runs
over R1 ∪R2 ∪RJ2 ∪ {X − 1, X + 1}, and m over the positive integers.

Condition (1) shows that the elementary divisors of a are the same as those of
a−1, hence

V '
⊕

π,m

(
F [X,X−1]/(πJ)m

)µ(π,m)
.

Therefore, we have µ(π,m) = µ(πJ ,m) for all m if π ∈ R2.
For all integers m and for ε = ±1 we have

dimV εm = µ(X − ε,m).

Therefore, condition (2) says that µ(X − 1,m) is even for all m even, and condi-
tion (3) says that µ(X + 1,m) is even for all m odd. Assuming charF 6= 2 and
conditions (1), (2) and (3) hold, we may decompose V into a direct sum of six
F [X,X−1]-submodules

V = V1 ⊕ V2 ⊕ V3 ⊕ V4 ⊕ V5 ⊕ V6
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where

V1 '
⊕

π∈R1

⊕

m

(
F [X,X−1]/πm

)µ(π,m)
,

V2 '
⊕

π∈R2

⊕

m

(
F [X,X−1]/πm ⊕ F [X,X−1]/(πJ)m

)µ(π,m)
,

V3 '
⊕

m odd

(
F [X,X−1]/(X − 1)m

)µ(X−1,m)
,

V4 '
⊕

m even

(
F [X,X−1]/(X − 1)m ⊕ F [X,X−1]/(X − 1)m

)µ(X−1,m)/2
,

V5 '
⊕

m even

(
F [X,X−1]/(X + 1)m

)µ(X+1,m)
,

V6 '
⊕

m odd

(
F [X,X−1]/(X + 1)m ⊕ F [X,X−1]/(X + 1)m

)µ(X+1,m)/2
.

If charF = 2 and conditions (1), (2) hold, there is a similar decomposition

V = V1 ⊕ V2 ⊕ V3 ⊕ V4

where V1, . . . , V4 are as above. We shall show below (see Lemma 1) that there are
nonsingular (−X)-hermitian forms with values in E (with respect to J) on

F [X,X−1]/πm if π ∈ R1,
F [X,X−1]/πm ⊕ F [X,X−1]/(πJ)m if π ∈ R2,

F [X,X−1]/(X − 1)m if m is odd,(
F [X,X−1]/(X − 1)m

)2
if m is even,

F [X,X−1]/(X + 1)m if m is even and charF 6= 2,(
F [X,X−1]/(X + 1)m

)2
if m is odd and charF 6= 2.

(7)

The orthogonal sum of these forms yields a nonsingular (−X)-hermitian form

h : V × V → E

with respect to J . As Ischebeck-Scharlau [2] or Waterhouse [8], define an F -linear
map T : E → F by observing that every element in E is represented by a unique
rational fraction f which has a zero at∞ and does not have a pole at 0, and letting

T
(
f + F [X,X−1]

)
= f(0).

It is easily verified that T (rJ) = −T (r) for all r ∈ E. Moreover, for every nonzero
r ∈ E there exists an integer k such that T (X−kr) 6= 0, hence T does not vanish
on any nonzero F [X,X−1]-submodule of E.

Let T∗(h) : V × V → F be the transfer bilinear map, defined by

T∗(h)(x, y) = T
(
h(x, y)

)
for x, y ∈ V .

If x ∈ V is such that T∗(h)(x, y) = 0 for all y ∈ V , then T vanishes on the
F [X,X−1]-submodule h(x, V ), hence h(x, V ) = {0} and therefore x = 0 since h is
nonsingular. This shows that T∗(h) is nonsingular.

Moreover, since h is (−X)-hermitian we have

T∗(h)(y, x) = T
(
(−X)h(x, y)J

)
= −T

(
Xh(x, y)J

)
=

= T
(
XJh(x, y)

)
= T

(
h(x,Xy)

)
= T∗(h)

(
x, a(y)

)

for all x, y ∈ V . Therefore, a is the asymmetry of T∗(h).
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To complete the proof, we prove the existence of nonsingular (−X)-hermitian
forms as asserted above.

Lemma 1. There are nonsingular (−X)-hermitian forms with values in E (with
respect to J) on the modules listed in (7).

Proof. Suppose first π ∈ R1, hence (Xd/2π−1)J = Xd/2π−1, where d is the degree
of π. For u, v ∈ F [X,X−1], let

h(u, v) = (X − 1)(Xd/2π−1)muJv + F [X,X−1] ∈ E.
This map induces a sesquilinear form on F [X,X−1]/πm. The induced form is
(−X)-hermitian since (X − 1)J = −X−1(X − 1); it is nonsingular since h(1, v) = 0
implies πm divides (X − 1)v in F [X,X−1], hence v = 0 in F [X,X−1]/πm since π
is prime to X − 1.

Next, suppose π ∈ R2. For u1, u2, v1, v2 ∈ F [X,X−1], we let

h
(
(u1, u2), (v1, v2)

)
= π−muJ1 v2 −X(πJ)−muJ2 v1 + F [X,X−1] ∈ E.

Computation shows that this map induces a nonsingular (−X)-hermitian form on(
F [X,X−1]/πm

)
×
(
F [X,X−1]/(πJ)m

)
.

Similarly, the following maps induce nonsingular (−X)-hermitian forms on the
corresponding modules (where e is an arbitrary non-negative integer):

h(u, v) = Xe−1(X − 1)−2e−1uJv + F [X,X−1] ∈ E on F [X,X−1]/(X − 1)2e+1;

h
(
(u1, u2), (v1, v2)

)
= Xe(X − 1)−2e(uJ1 v2 −XuJ2 v1) + F [X,X−1] ∈ E

on
(
F [X,X−1]/(X − 1)2e

)2
;

and if charF 6= 2,

h(u, v) = (X − 1)Xe(X + 1)−2euJv + F [X,X−1] ∈ E on F [X,X−1]/(X + 1)2e;

h
(
(u1, u2), (v1, v2)

)
= (X−1)2e+1(X+ 1)−2e−1(uJ1 v2 +XuJ2 v1) +F [X,X−1] ∈ E

on
(
F [X,X−1]/(X + 1)2e+1

)2
.

We omit the straightforward verifications.

Remark. The theory of hermitian forms over principal ideal domains can also be
used to show that the conditions in Theorem 1 are necessary.

2. The asymmetry of an anti-automorphism

2.1. Definition. Let A be a (finite-dimensional) central simple algebra over an
arbitrary field F , and let σ : A → A be an F -linear anti-automorphism of A. Our
goal is to attach to σ a unit aσ ∈ A× which plays the same rôle as the asymmetry
ab of a nonsingular pairing b with respect to the adjoint anti-automorphism σb.
The key to the definition is an analogue of the linear involution γb, which we now
define.

Proposition 4. There is a unique linear map γσ : A → A which satisfies the fol-
lowing property: for any splitting field K of A, any isomorphism

θ : AK = A⊗F K → EndK V
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and any nonsingular pairing b on V such that σb = θ ◦ (σ ⊗ IdK) ◦ θ−1,

θ ◦ (γσ ⊗ IdK) ◦ θ−1 = γb.

This map satisfies the following additional properties:

(i) γσ
(
xyz) = σ(z)γσ(y)σ−1(x) for x, y, z ∈ A;

(ii) γ2
σ = IdA.

Proof. It suffices to prove the existence of γσ. Uniqueness is then clear, and the
additional properties follow from those of γb in Proposition 3.

Let Tσ : A×A→ F be the nonsingular pairing defined by

Tσ(x, y) = TrdA
(
σ(x)y

)
for x, y ∈ A,

where TrdA is the reduced trace. Let (ei)i∈I be a basis of A and let (e]i)i∈I be the
dual basis with respect to the pairing Tσ, so that

Tσ(e]i , ej) = δij for i, j ∈ I.

We let

γσ(x) =
∑

i∈I
eixe

]
i for x ∈ A.

In other words, γσ is the image of
∑
i∈I ei⊗e

]
i ∈ A⊗F A under the “sandwich” map

Sand: A⊗F A→ EndF A defined by Sand(x⊗ y)(z) = xzy. Observe that γσ does

not depend on the choice of the basis (ei)i∈I since
∑
i∈I ei⊗e

]
i is the element which

corresponds to IdA under the bijection IdA⊗T̂σ : A⊗F A→ A⊗F A∗ = EndF A.
As a consequence, for every field extension K/F , the map γσ⊗IdK : A ⊗ K →

A⊗K satisfies

γσ⊗IdK = γσ ⊗ IdK

since for x ∈ A⊗K,

γσ⊗IdK (x) =
∑

i∈I
(ei ⊗ 1)x(e]i ⊗ 1) = (γσ ⊗ IdK)(x).

To show that γσ is as required, assume that A is split: let A = EndF V and let b
be a nonsingular pairing on V such that σ = σb. We have to show that γσ = γb. To
prove this equality, we use the identification V ⊗F V = EndF V defined by the linear

isomorphism IdV ⊗b̂ : V ⊗F V → V ⊗F V ∗ = EndF V . Then (v⊗w)(x) = vb(w, x)
for v, w, x ∈ V and moreover

f ◦ (v ⊗ w) = f(v)⊗ w, σ(v ⊗ w) = ab(w)⊗ v and Trd(v ⊗ w) = b(w, v)

for v, w ∈ V and f ∈ EndF V . Let (vi)1≤i≤n be a basis of V and let (v′i)1≤i≤n be
the dual basis for the pairing b, so that

b(v′i, vj) = δij for i, j = 1, . . . , n.(8)

Then (vi ⊗ vj)1≤i,j≤n is a basis of EndF V , and the dual basis with respect to Tσ
is given by

(vi ⊗ vj)] = v′i ⊗ v′j .
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Therefore, we have for f ∈ EndF V

γσ(f) =
n∑

i,j=1

(vi ⊗ vj) ◦ f ◦ (v′i ⊗ v′j)

=
n∑

i,j=1

vi ⊗ v′j b
(
vj , f(v′i)

)

=

n∑

i,j=1

vi ⊗ v′j b
(
v′i, γb(f)(vj)

)
.

For all x ∈ V we have x =
∑n
i=1 vib(v

′
i, x), hence

∑n
i=1 vi b

(
v′i, γb(f)(vj)

)
=

γb(f)(vj) for all j, and the last equality above simplifies to

γσ(f) =
n∑

j=1

γb(f)(vj)⊗ v′j = γb(f) ◦
( n∑

j=1

vj ⊗ v′j
)
.

Since
∑n
j=1 vj ⊗ v′j = IdV , it follows that γσ(f) = γb(f).

In view of property (i), we have

γσ(x) = σ(x)γσ(1) = γσ(1)σ−1(x) for all x ∈ A.(9)

Therefore, γσ is completely determined by the element γσ(1) ∈ A×.

Definition. The asymmetry of the anti-automorphism σ is the element aσ =
γσ(1) ∈ A×, where γσ is the linear involution defined in Proposition 4.

If A = EndF V and σ = σb is the anti-automorphism adjoint to some nonsingular
pairing b on V , it follows from Proposition 4 and property (iii) of Proposition 3
that aσ is the asymmetry of the nonsingular form b, i.e.,

aσ = ab.

In the general case, equation (9) shows that

σ2(x) = aσxa
−1
σ for all x ∈ A.(10)

Moreover, since γ2
σ = IdA we have

1 = γσ(aσ) = σ(aσ)aσ.(11)

The element aσ is uniquely determined up to sign by (10) and (11).
Recall that an anti-automorphism σ is called an involution if σ2 = IdA.

Proposition 5. A linear anti-automorphism is an involution if and only if its
asymmetry is +1 or −1.

Proof. If aσ = ±1, equation (10) shows that σ2 = IdA. Conversely, if σ is an
involution, (10) shows that aσ ∈ F×. It then follows from (11) that a2

σ = 1, hence
aσ = ±1.

If charF 6= 2, a linear involution σ is called orthogonal (resp. symplectic) if
after scalar extension to a splitting field it is adjoint to a symmetric (resp. skew-
symmetric) bilinear pairing. Therefore, orthogonal involutions are exactly the lin-
ear anti-automorphisms with asymmetry +1, and symplectic involutions are those
with asymmetry −1. Therefore, equations (10) and (11) are not sufficient to de-
termine the type of the involution. This observation suggests that the sign of aσ is
meaningful for arbitrary anti-automorphisms.
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The following proposition yields an alternative definition of the asymmetry aσ,
without reference to the linear involution γσ and without scalar extension to a
splitting field.

Let σ∗ : A⊗F A→ EndF A be the F -algebra homomorphism defined by

σ∗(a⊗ b)(x) = axσ(b) for a, b, x ∈ A,

and recall (from [4, (3.5)], for instance) the Goldman element of A: this is the
element g ∈ A⊗F A such that Sand(g)(x) = TrdA(x) for all x ∈ A. Thus, there is
a well-defined linear endomorphism σ∗(g) : A→ A.

Proposition 6. The asymmetry of σ is the unique element aσ ∈ A× such that

σ
(
σ∗(g)(f)

)
= aσf

for all f ∈ A.

Proof. It suffices to prove that aσ satisfies the property above, since uniqueness
is clear. To do this, we may extend scalars to a splitting field. Therefore, we
may assume A = EndF V for some F -vector space V , and σ = σb is the anti-
automorphism adjoint to some nonsingular pairing b on V .

For all f ∈ A and all x, y ∈ V we have

b
(
f(x), y

)
= b
(
y, aσ ◦ f(x)

)
,

by definition of the asymmetry (see (2)), hence we have to show

b
(
f(x), y

)
= b
(
y, σ
(
σ∗(g)(f)

)
(x)
)

or, equivalently (by definition of σ = σb),

b
(
f(x), y

)
= b
(
σ∗(g)(f)(y), x

)
(12)

for all f ∈ A and all x, y ∈ V .
In order to compute the right-hand side, we identify A = EndF V to V ⊗F V via

the linear isomorphism IdV ⊗b̂ : V ⊗F V → V ⊗F V ∗ = EndF V , as in the proof of
Proposition 4. If (vi)1≤i≤n is a basis of V and (v′i)1≤i≤n is the dual basis for the
pairing b (see (8)), then the Goldman element is

g =
∑

i,j

(vi ⊗ v′j)⊗ (vj ⊗ v′i)

since it is easily computed that for all u, w ∈ V

Sand(g)(u⊗ w) =
∑

i,j

(vi ⊗ v′j) ◦ (u⊗ w) ◦ (vj ⊗ v′i) =

=
(∑

i

vi ⊗ v′i
)(∑

j

b(v′j , u)b(w, vj)
)

= b(w, u)
∑

i

vi ⊗ v′i = Trd(u⊗ w) IdV .

Now, for u, w ∈ V ,

σ∗(g)(u⊗ w) =
∑

i,j

(vi ⊗ v′j) ◦ (u⊗ w) ◦ σ(vj ⊗ v′i).

Since (u ⊗ w) ◦ σ(f) = u ⊗ f(w) for f ∈ EndF V , the right-hand side of the last
equality simplifies to

∑

i,j

(
(vi ⊗ v′j(u)

)
⊗
(
(vj ⊗ v′i)(w)

)
=
∑

i,j

vi ⊗ vjb(v′j , u)b(v′i, w),
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hence

σ∗(g)(u⊗ w) = w ⊗ u.
Therefore, for u, w, x, y ∈ V ,

b
(
σ∗(g)(u⊗ w)(y), x

)
= b
(
(w ⊗ u)(y), x

)
= b(w, x)b(u, y).

Since we also have b
(
(u ⊗ w)(x), y

)
= b(u, y)b(w, x), equation (12) holds for f =

u ⊗ w. Since EndF V = V ⊗F V , it follows that (12) holds for all f ∈ A, and the
proof is complete.

Remark. Asymmetries can be defined on the same model for anti-automorphisms
of Azumaya algebras; one may avoid the use of a basis of A in Proposition 4 by
defining γσ = Sand(ξσ) where ξσ ∈ A⊗A is the element mapped to IdA by IdA⊗T̂σ.
Alternatively, we may set ξσ = (IdA⊗σ−1)(g) where g ∈ A ⊗ A is the Goldman
element. This is the approach taken by Saltman in [7] (see also [3, Chap. III, §8]).

2.2. Characterization of asymmetries. In this subsection, we show that in a
central simple algebra of exponent 2, every unit which is conjugate to its inverse is
the asymmetry of some anti-automorphism.

We first compare the asymmetries of two anti-automorphisms σ, τ on a central
simple algebra A. The Skolem-Noether theorem shows that the automorphism
τ ◦ σ−1 is the conjugation by some unit u ∈ A×, i.e.,

τ(x) = uσ(x)u−1 for all x ∈ A.(13)

Proposition 7. Let σ, τ be anti-automorphisms of a central simple algebra A, and
let u ∈ A× be such that (13) holds. The asymmetries aσ, aτ of σ and τ are related
by

aτ = uσ(u)−1aσ.

Proof. We use the definition of asymmetry provided by Proposition 6. For a, b,
x ∈ A, we have

τ∗(a⊗ b)(x) = axτ(b) = axuσ(b)u−1

hence

τ∗(a⊗ b)(x) = σ∗(a⊗ b)(xu)u−1.

Therefore, denoting by ru : A→ A the linear map of multiplication on the right by
u, we have

τ∗(a⊗ b) = (ru)−1 ◦ σ∗(a⊗ b) ◦ ru
for all a, b ∈ A, hence also

τ∗(g) = (ru)−1 ◦ σ∗(g) ◦ ru
for g the Goldman element of A. It follows that for all f ∈ A,

τ∗(g)(f) = σ∗(fu)u−1.(14)

By Proposition 6, the asymmetry aτ satisfies

aτf = τ
(
τ∗(g)(f)

)
for all f ∈ A.

Using (14), we obtain

aτf = τ
(
σ∗(g)(fu)u−1

)
= uσ

(
σ∗(g)(fu)u−1

)
u−1 = uσ(u)−1σ

(
σ∗(g)(fu)

)
u−1.
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Proposition 6 also yields σ
(
σ∗(g)(fu)

)
= aσfu, hence

aτf = uσ(u)−1aσf for all f ∈ A.

The proposition follows.

Theorem 2. Let A be a central simple algebra of exponent 2 over an arbitrary field
F . A unit is the asymmetry of some anti-automorphism of A if and only if it is
conjugate to its inverse.

Proof. Suppose a ∈ A× is the asymmetry of some anti-automorphism σ. We have
to show that the F -vector space

U = {x ∈ A | xa = a−1x}
contains an invertible element. This amounts to proving that the restriction of the
reduced norm polynomial NrdA does not vanish on U . Theorem 1 shows that this
polynomial does not vanish on U ⊗K, for any splitting field K of A, since a is the
asymmetry of σ ⊗ IdK . Therefore, the reduced norm does not vanish on U , since
F is an infinite field. (Note that every central simple algebra over a finite field is
split, hence of exponent 1.)

For the converse, suppose a ∈ A× is conjugate to a−1. Let K be a splitting field
of A; identify A ⊗ K = EndK V for some K-vector space V . We first show, by
using Theorem 1, that a (= a⊗ 1) is the asymmetry of some anti-automorphism of
EndK V . With the same notation as in Theorem 1, we have to prove that dimK V

+1
m

is even if m is even, and moreover that dimK V
−1
m is even if m is odd and charF 6= 2.

For every integer m ≥ 1 and ε = ±1, we have an exact sequence of K-vector spaces

0→ ker(a− ε IdV )m+1

ker(a− ε IdV )m
a−ε IdV−−−−−→ ker(a− ε IdV )m

ker(a− ε IdV )m−1
→ V εm → 0,

hence

dimV εm = rk(a− ε IdV )m−1 − 2 rk(a− ε IdV )m + rk(a− ε IdV )m+1,(15)

where rk denotes the rank.
For all b ∈ A we have

rk b =
dimK b(A⊗K)

deg(A⊗K)
=

dimF bA

degA
,

hence rk b is divisible by the Schur index indA (see [4, (1.9)]). Since A has expo-
nent 2, indA is even, by [1, Theorem 5.17]. Therefore, rk b is even for all b ∈ A,
and equation (15) shows that dimV ε

m is even for every integer m and for ε = ±1.
By Theorem 1, it follows that a is the asymmetry of some anti-automorphism θ of
A⊗K.

Now, fix some anti-automorphism σ of A. Let aσ be its asymmetry and consider
the F -vector space

W = {x ∈ A | xa = σ(x)aσ}.
If u ∈ (A ⊗ K)× is such that θ(x) = u(σ ⊗ IdK)(x)u−1 for all x ∈ A ⊗ K, then
u−1 ∈W ⊗K, by Proposition 7. Therefore, the same arguments as in the first part
of the proof show that W contains an invertible element w. Using Proposition 7
again, we see that a is the asymmetry of the anti-automorphism x 7→ w−1σ(x)w.
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Corollary 1 (Albert). Every central simple algebra of exponent 2 carries an in-
volution. Moreover, if the characteristic of the base field is different from 2, every
central simple algebra of exponent 2 carries involutions of both orthogonal and sym-
plectic types.

Proof. It readily follows from Theorem 2 that +1 and −1 are asymmetries of some
anti-automorphisms. These anti-automorphisms are involutions, by Proposition 5.

2.3. The determinant of an anti-automorphism. Let σ be a linear anti-
automorphism of a central simple algebra A over an arbitrary field F . Let aσ ∈ A×
be the asymmetry of A and γσ the linear involution of Proposition 4. Consider the
vector spaces

Alt(A, σ) = {x− σ(x)aσ | x ∈ A} = {x− γσ(x) | x ∈ A}
and

Sk(A, σ) = {x ∈ A | σ(x) + xa−1
σ = 0} = {x ∈ A | γσ(x) = −x}.

From equations (10) and (11), it follows that Alt(A, σ) ⊂ Sk(A, σ). Moreover, we
have x− γσ(x) = 2x for all x ∈ Sk(A, σ), hence Alt(A, σ) = Sk(A, σ) if charF 6= 2.

Lemma 2. Suppose σ, τ are anti-automorphisms of A, and let u ∈ A× be such
that

τ(x) = uσ(x)u−1 for all x ∈ A.

Then

Alt(A, τ) = uAlt(A, σ) and Sk(A, τ) = u Sk(A, σ).

Proof. Proposition 7 yields aτ = uσ(u)−1aσ and aσ = u−1τ(u)aτ . Therefore, for
all x ∈ A we have

x− τ(x)aτ = u
(
u−1x− σ(u−1x)aσ

)
and u

(
x− σ(x)aσ

)
= ux− τ(ux)aτ ,

proving that Alt(A, τ) = uAlt(A, σ). The proof that Sk(A, τ) = u Sk(A, σ) is along
the same lines.

Lemma 3. If degA is even, Alt(A, σ) contains invertible elements. Moreover,
the square class NrdA(x) · F×2 ∈ F×/F×2 does not depend on the choice of x ∈
A× ∩Alt(A, σ).

Proof. Let τ be an anti-automorphism of A with asymmetry +1 and let u ∈ A× be
such that

τ(x) = uσ(x)u−1 for all x ∈ A.

By Lemma 2, we have

Alt(A, σ) = u−1 Alt(A, τ).(16)

Since τ is an involution, Corollary (2.8) of [4] shows that Alt(A, τ) contains in-
vertible elements if degA is even, hence Alt(A, σ) also contains invertible elements.
Moreover, from [4, (7.1)], it follows that all the invertible elements have the same re-
duced norm up to a square of F ; therefore, if v ∈ A×∩Alt(A, τ) it follows from (16)
that NrdA(x) ∈ NrdA(u−1v) · F×2 for all x ∈ A× ∩Alt(A, σ).
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This last lemma allows us to define the determinant of an anti-automorphism σ
of a central simple algebra A of even degree, as follows:

detσ = NrdA(x) · F×2 ∈ F×/F×2

for any x ∈ A× ∩Alt(A, σ).
This definition is consistent with [4, (7.2)], where the determinant of an orthog-

onal involution is defined.

Example 1. Since clearly 1− aσ ∈ Alt(A, σ), we have

detσ = NrdA(1− aσ) · F×2

if 1− aσ is invertible. Therefore, the determinant of σ is entirely determined by its
asymmetry in this particular case.

Example 2. The transpose involution on a matrix algebra Mn(F ) (with n even)
has trivial determinant. Indeed, the matrix



m1 0

. . .

0 mn/2


 where m1 = · · · = mn/2 =

(
0 1
−1 0

)

is in Alt
(
Mn(F ), t

)
and has determinant 1.

Proposition 8. Let σ, τ be anti-automorphisms of a central simple algebra A of
even degree, and let u ∈ A× be such that

τ(x) = uσ(x)u−1 for all x ∈ A.

Then

det τ = NrdA(u) detσ.

Proof. This readily follows from Lemma 2.

Proposition 9. Let V be an even-dimensional vector space over an arbitrary field
F and let b be a nonsingular pairing on V . For every basis (vi)1≤i≤n of V ,

detσb = det
(
b(vi, vj)

)
1≤i,j≤n · F

×2.

Proof. Identify EndF V with the matrix algebra Mn(F ) by means of the basis
(vi)1≤i≤n. The anti-automorphism σb is then given by

σb(m) = u−1mtu for all m ∈Mn(F ),

where u =
(
b(vi, vj)

)
1≤i,j≤n ∈Mn(F ). Therefore, Proposition 8 yields

detσb = detu−1 det t.

Since it was observed in Example 2 above that det t is trivial, the proposition
follows.
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Départment de Mathématiques
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