THE HASSE PRINCIPLE FOR SIMILARITIES OF BILINEAR FORMS

by Anne Cortella

Introduction

Let k be a number field and V' a finite-dimensional k-vector space . Two bilinear forms b
and O : V xV — k are similar if there exists A € k* such that b and Ab’ are isomorphic.
T. Ono proved [O] that the Hasse principle holds for similarities of quadratic forms ( another
proof of this fact is given in [C1] ). W.C. Waterhouse [W] proved that the Hasse principle also
holds for isomorphisms of non-symmetric bilinear forms.

This article studies the problem for similarities of bilinear forms. We show that this Hasse
principle is not true in general and give a description of the obstruction group associated with
the problem. In part I, we define some invariants of bilinear forms, using a k-algebra introduced
by E. Bayer-Fluckiger [Ba]. These invariants are pairs of matrix algebras over k, switched by
an involution, and quadratic, alternating and hermitian forms over finite extensions of the base
field.

When the only invariant of a form b is a hermitian form of rank one over an extension
L/k of the basis field, the Hasse principle for being similar to b is equivalent to a local-global
principle concerning the norms of L over an intermediate extension. In part II, we express
the obstruction group of this norm problem, which we first translate into the language of
cohomology of algebraic tori. Then, using a theorem of Tate, we show that the obstruction is
a finite group and give an expression for this group in the case when L/k is a Galois extension.
If L/k is not Galois, we give an expression for a subgroup of the obstruction group.

We evaluate this expression for extensions of small degree, and we see that the smallest
order of the Galois group for which the obsruction can be non trivial is 8. Part III gives a
counter-example to the Hasse principle for similarities of bilinear forms. This uses a Galois
extension of Q with Galois group Hg due to J. Martinet [Ma].

I thank Eva Bayer-Fluckiger who has been my supervisor during this work, and Georges
Gras for the interest he has shown.

I Invariants associated with a bilinear form

Two bilinear forms b and &’ : V' x V — k are isomorphic if and only if their non-degenerate
parts are isomorphic. Moreover, if k is a number field, v a place of k£ and k, the completion of



k at v, the non-degenerate part of b ® k, is the extension to k, of the non-degenerate part of b.
Hence, we restrict ourselves to non-degenerate bilinear forms.

I.1 The algebra with involution

To a bilinear form b : V x V — k, we associate the k-algebra
R={(e,f) € End V x End V |V(z,y) € V', b(ex,y) = b(x, fy) and b(z,ey) = b(fz,y)}

following E. Bayer-Fluckiger in [Ba]. The algebra R only depends on the equivalence class of b
(although two non-equivalent forms can have the same k-algebra). The algebra R has a natural
involution * defined by (e, f)* = (f, e).

Recall that the norm-one group of the involution is

UR)={(e.f) € B| (e, f)"(e. f) =1}

It is easy to see that the automorphism group A, of the form b is canonically isomorphic to
U(R).
Let B be the matrix of b with respect to a basis of V' . Then we have

R={(E,F) e M,(k) x M,,(k) | BE = F'B and E'B = BF}

={EeM,(k)| EB'B"= B 'B'E}.

Let M = B7!B!. The involution of R can now be written : E* = (BEB™!)!. Moreover
M* = M1

I.2 Decomposition of R

We now define matrix algebras over extension fields of £ that characterise the algebra R .

Let J be the radical of R . Then J* = J and the involution * induces an involution, again
denoted by *, on the semi-simple algebra R/J. This algebra has a decomposition into simple
algebras :

R/J =Ry x ... x R, x (Rj1 x Ri_;) X ... x (Rs x R})
where R; = M,,,(D;) , D; is a division algebra over k , and R} = R; for i <.
Proposition : The divison algebras D; are commutative fields.

Proof : The matrix M induces a k[X]-module structure on V', where the action of X is given
by the endomorphism associated to M (again denoted by M). Then V is a finitely generated
torsion k[X]-module (since it is finitely generated over k).

The module V' is the direct sum of its indecomposable submodules. As k[X] is a principal
ideal domain, the indecomposable submodules are of the type V; = k[X]/P™ where P; is an

irreducible polynomial. Note that M (V;) C V; . We denote by M; the restriction of M to V; .
Its minimal polynomial is P/, and there exists a basis (¢;;)1<j<n, in which the matrix of M,
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is the companion-matrix of P/™, defined as follows : let P/™ = X" + a;,, 1 X"+ ... +a;p ;

then
Mi(SiJ) = & j+1 lfj S ri — 1 R and M(Eiﬂ) = — Z Q5 5E4 j+1-

Then M is bloc-diagonal with blocs M;. Let us reorder the bljocs such that M, ..., M, are
all distinct and that ¢ is maximal with this property. Let n} be the multiplicity of the bloc M;,
and let M/ be the bloc-diagonal matrix consisting in n; blocs all equal to M; .

As R is the centralizer of M , we have

t
R/J =[] R,/RadR!

i=1

where R/ is the centralizer of the matrix M/. Moreover, R} is the set of matrices of n;? blocs of
size r; X r; (i.e. the size of M;) that all commute with M; :

R, = M, (Z(M,)) with Z(M;) = {N € M,, (k) | M;N = NM;}.

Let A; = k[X]/P™ . Then A; ~ Endy4, A; , the set of k-endomorphisms of A; that commute
with the action of X, i.e. with the matrix M; . Therefore we have :

and R} = M, (A;)
Let L; be the commutative field k[X]/P;. We know that
L; = A;/Rad A; and that R./Rad R] = M, (L;).

Remark : Note that we have in fact proved that the division algebras D; are extension fields
L; = k(«;) of k, where «; is a root of the irreducible polynomial P; where P/ is the minimal
polynomial of M; for a certain m; (up to a change of indices).

1.3 The invariants of the form b

We now associate to the algebra R , and in particular to its simple factors, some invariants of
the bilinear form b. As we shall see, these invariants are of different nature according as the
simple factor is stable under the involution or not.

Recall that we have the decomposition :

R/J =Ry x..x R, x (Rj1 x Ri_;) X ... x (Rs x R})
where R; = M,,,(L;) , L; is an extension field of k , and Rf = R; for i < r.

Let us first assume that » +1 <7 < s . Then the algebras R; and R} are switched by the
involution. The invariant associated to the form b will then be the pair R; x R; .

Now assume that 1 <4 < r . Then the algebra R; is stable under the involution. The field
L; is the center of the algebra, and therefore is also preserved by the involution. The restriction
of * to L; is an involution of the field. We denote it by ~ .



The map N +— N is then another involution of R; . The Skolem-Noether theorem implies
that these two involutions are conjugate to each other. Hence there exists an H; € R; such that
for all N € R; we have N* = H;N'H; " . Moreover, H; satisfies H; = +H, [Sch, th. 7-4 p301].

When the involution of L; is of the first kind (i.e. when ~— = Idy,), then H; ' = +£H!. This
is the matrix of a symmetric or antisymmetric bilinear form h; over W; = L} .

When the involution of L; is of the second kind (i.e. when ~ # Idy,), then by the same
theorem, we can take H, ' = Hﬁ . This is the matrix of a hermitian form h; over W; = L} for
the involution ~ .

The isomorphism classes of these quadratic, alternating or hermitian forms are invariants
of the isomorphism class of b.

I.4 Restatement of the Hasse principle in a special case

The aim of this article is to study the special case where there is only one term in the de-
composition of the algebra R/J into simple factors, and where the associated invariant is a
one-dimensional hermitian form over an extension of k .

In the general case, the group G A, of similarities of b is the group :

GAyk) = {eceGL(V)|3I ek, X400, V(z,y) €V, blex,ey) = \b(z,y)}
= {eeGL(V)|3IN€k, N#0, V(z,y) €V, blex,y) = b(z, e y)} .
= {(e,/)eR|INEk, N£0, ef =)\ 1d}

Hence GAu(k) =GU(R)={re R|rr* € k*}.

If k£ is a number field, we denote by ¥ the set of places of k, and by k, the completion of k
at the place v.

Recall that for b bilinear over k (resp. k,), H'(k,GA,) ( resp. H'(k,,GAp)) is the pointed
set of similarity classes over k (resp. k,) of bilinear forms isomorphic to b over a separable
closure k*? of k (resp. ki of k,), with distinguished element the class of b (cf [Sel, X]).
Moreover, if there is a place v such that the two forms b and b’ are isomorphic over k7 | they
are also isomorphic over k*?. Indeed, the manifold of isomorphisms from b to b’ is smooth;
such a manifold has points over k*?. (cf [Ro]).

The restriction H'(k,GAy) — H'(k,, GAy) maps the similarity class of b’ over k to its
class over k,. We see that all bilinear forms from V' x V to k similar to b over every k, are
similar to b over k if and only if the kernel of the natural morphism

H'(k,GU(R)) — [] H"(k,,GU(R))

vED
is trivial.
Let us see what this means in the simplest case : suppose from now on that R is a k-algebra
which is an extension field R = L of k (i.e. r =s=1and n; =1). Then L = k(a) with « a
root of the minimal polynomial of the irreducible matrix M = B~!B* . The involution on L is

the k-involution defined by @ = a1



If this involution is trivial, then M ~! = M, hence M? — Id = 0 . As there is no subspace
invariant by M, this implies that M = +Id and L = k . Hence GU(L) = k*. By Hilbert’s
theorem 90 we have H'(k,GA,) = H'(k,G,,) = 0 . Thus every bilinear form isomorphic to b
over k°P is similar to b over k.

If now the involution ~ is not trivial, then L is a genuine extension of k , of even degree,
and L = k[X]|/P where P is an irreducible polynomial of the type :
P=>Y ;X% withforalli :a,; =¢ca;, ¢ ==+1
i=0
(because the inverses of the roots of P are again roots of P ). In other words P is symmetric
or skew-symmetric. However, a skew-symmetric polynomial of even degree is always divisible
by 1 — X2, hence cannot be irreducible. Therefore P is symmetric.

We see that
GU(L)={z€ L|zz€k"}

is the set of k-similarities of the hermitian form < 1 > over L. Hence H'(k,GA,) is the set
of k-similarity classes of one-dimensional hermitian forms over L. Note that a hermitian form
< a > over L is k-similar to < 1 > if and only if there exist z € L* and A € k* such that
a= ANk (2).

Recall that the subfield of L fixed by the involution is K = k[a + ™!

We obtain the following restatement of the Hasse principle :

Proposition : Let k be a number field, and b be a bilinear form over k. Suppose that the
k-algebra associated to b is a commutative field L and that the involution is not trivial. Let K

be the fized field of the involution.
For every place v of k, let K, be the étale algebra [] K., product of the completions of K

wlv
for the places w of K lying over v, and L, = ] L.
w'|v
Then, every bilinear form over V' similar to b over all the completions k, of k is similar to
b over k if and only if every element a of K that can be written a = \yNy, /k,(2y), with z, € L},

and X, € k, is in k* Np i (L*).

II Reformulation of the Hasse principle in terms of
cohomology of algebraic tori

Let L/k be a finite extension of number fields and let K/k be a subextension. We denote by X
the set of places of k. Set :

L={ac K" |VveX, Iz, €L;etIN, €k |a= NN,k (2)}
G =k*Np/k(L")
where K, = [[ K, and L, = [[ L.

wlv w'|v
Let mi(k,K,L) = £/G . If L/K is quadratic, then by the proposition 1.4, the Hasse
principle is equivalent to the vanishing of the group Mi(k, K, L) .
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II.1 A Tate-Schafarevich obstruction for algebraic tori

For a finite separable extension k'/k, we denote by T}y = Ry /Gy, the algebraic torus over &
which is the Weil restriction from &’ to k of the mutiplicative algebraic group G,, . The group
of k-points of Ty is then Ty (k) ~ k'™ . In particular Ty =G,,.

Let us consider the homomorphism of k-algebraic groups :

f . Gm X TL — TK
' (x,y) — $NTL/TKy

which is surjective and has connected kernel. The kernel of f is then another k-torus, which
we denote by T” .
We have the short exact sequence of tori :

(1) 1 —T — G, xT, — Tx — 1.
This sequence induces the long exact sequence of cohomology :
0 — Hk,T) — HkG, xTp) £ HOK, Tx) — H'(k,T) — H (kG x T1) -
Recall that H'(k,Tyy) = H'(k, Ry 1.Gp) = H'(K',G,,) . Hence we have :

HO(k, T) = K*
HO(kGy % Tp) = HO(k,Gn) x HO(k,Ty) = k* x L*
HY(k,G,, x T1) = H'(k,G,,) x H'(L,G,,) = 0 by Hilbert’s theorem 90.

Moreover fo : k* x L* — K* is defined by fo(X, 2) = AN k(%) , therefore G =1Im fy .
The last exact sequence implies :

E*x L* — K* — HYk,T) — 0
K*/G = cokerfo = H' (k,T") .

For a place v of k , (1) is again an exact sequence of k,-tori, and we can take its cohomology
exact sequence over k,. We get, as for k, that

K!/L, = cokerfY = H'(k,,T")
where £, = k;Np, /i, (L)) -
The fact that 11(k, K, L) = ker(K*/G — I K}/L,) (this natural morphism being the
vEY

restriction on each component) then implies :

Theorem : The obstruction group M(k, K, L) for the Hasse principle is the
Tate-Schafarevich group of the torus T :

mi(k, K, L) = wi(k, T') = ker( H'(k, ') — [[ H(k.,T")).

vEY



I1.2 Consequences of Tate’s theorem

If T is a k-torus, M/k a Galois extension containing L that splits the torus 7', G = Gal(M/k)
and G, the decomposition group of M/k at the place v. Denote by X (7') = Hom(T, G,,) the
group of characters of the torus 7" . The action of G on X (T') is given by :

CHE) =5 f(s7(1).

Theorem (Tate): (proof see for instance [PR, cor. to prop 6-9 p301 and th 6-10 p302 with
i=1] The group W (k,T) is a finite group, dual to

ker( HX(G, X(T)) — [[ HA(G,, X(T))).

vEY

We now apply this theorem to the torus 7’. Let M/k be a Galois extension that splits the
torus 77, G = Gal(M/k) , J the set of k-embeddings from L to M, I those from K to M. Then

we have :

J=G/I'y where Iy =Gal(M/L)
[=G/Ty where Ty = Gal(M/K).

The action of G over J and [ is the left translation.

Let H = Gal(L/K) (~ 72/27Z) . Then I'y is normal in I'y and I'y /T’y ~ H . This corresponds
to the tower of fields:

M
| I
I'y L
e | H
K

|
k

With these notations, the character groups of the tori are (cf [Bo, ch IIT 8)) :

XGn) = Z ( with trivial action of G)
X(Tx) = XRgpGn) = Z' = Z[G/T,]

X(Ty) = XRpuGn) = Z7 = Z[G/Ty].
The exact sequence (1) gives by transposition :

2) 0 — ZG/Ts] — Z[G/T1] x 7 — X(T') — 0
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The first homomorphism of this sequence is given by

() ZG/Ty] — ZG/Ty] and @) ZGT) — 7@
7 — S g8 2. ngg — X ng
s€ly /Ty geG/Ty geG/Ty

(obtained by transposing the norm 77, Tk Ty and the injection G,, — Tk ).

We use the cohomology exact sequence of (2) to determine the group I11(k, T") that we have
identified with its dual.

I1.3 The Galois case

If L/k is Galois, we can take M = L and we have I'y =1 et I'y = H . Set X = X(T").
The sequence (2) becomes (2') :

(2) 0 — Z|G/H] — Z|G| xZ — X — 0.
It follows that :

H*(G,Z|G/H)) — H*(G,Z|G)) x H*(G,7Z) — H*(G,X) — H*(G,Z[G/H)).

For each place v of k, we have a similar exact sequence. The restriction morphisms from
G to G, commute with the morphisms of these sequences and give rise to the commutative
diagram (D) :

HX(G,Z|G/H]) —  HXG,Z[G)xH*(G,7ZZ) — HXG,X) — HG,Z|G/H))

! ! ! !

[1H*(Gy, Z[G/H]) = 1 (H*(Gy, ZG))x H*(Gy, Z) ) — [1H* (G, X) — TIH? (G, Z[G/ H]).

vEY VEX VEX VEY

To simplify this diagram, we first observe that ZZ[G] is a free G-group and hence has trivial
cohomology.

As a G-group, Z[G/H] = Ind$, ZZ ,where H acts trivially over Z . From Shapiro’s lemma
[Br, prop. 6-2 p 73| , it follows that for all » > 1 we have inverse isomorphisms :

jores
—_

H'(G,Z|G/H]) — H'(HZ)

coroi
where i : 7 — 7L[G/H] is the inclusion and j : 7Z[G/H] — 7L is the morphism given by (ii).
As a G,-group, Z|G/H] = @ ZIK!/H) ~ @ Z|G,/H) = & Ind: 7 ;
i=1 i=1 i=1 ¢
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there KY = G, ¥ H runs through the double classes of G,\G/H , HY = G,Nzy H (z¥)~ and
the isomorphism in the middle is on each term the right translation by (z¥)~'.
Shapiro’s lemma then gives isomorphisms :
H'(G,,Z|G/H)|) ~ P H(H}, 7).

i=1

For » = 3, the facts that H and the H/’s are cyclic and act trivially on 7 imply that
H3*(H,7Z) = H'(H,7Z) = Hom(H, 7) = 0.

The commutative diagram (D) becomes :

H*(H,7Z) = H*(G,7) 2 HYG,X) — 0
(D) I o log e%

(@ HH,Z) % I1HXG.Z) % I HG,X) — 0
veY =1 vES veY
In this diagram, each morphism can be described in terms of the natural morphisms of
restriction, corestriction and conjugation : we know from (D) that a; and ay are, on each
component, the restriction from G to G, .
The morphism ay on each non-zero component is the bijection given by conjugation by

(2¢)~! from H to HY. Indeed, the cohomological functor (in A ) H"(H, A) — éva H"(HY, AY)
i=1

with AY = 2YA C Indg A, obtained by composition of the following functors

H'(H,A) 2% H™(G,Ind§ A) % H™(G,,nd§ A) “° @ H7(HY, A?)
i=1
is exactly the functor given by the compatible morphisms : conjugation by (z?)~': HY — H
and translation by z} : A — A} as it can easily be seen in degree zero.
By the same argument, the horizontal morphism g is the corestriction from H to G, and
o, 1s the sum of corestrictions from H; to G,,.
Hence we have proved :

Theorem :
ik, T") = a7 (Img)/Im @ .

We can also use the diagram to express I11(k, 7") as a quotient of a subgroup of
I ( @ H?(H?,7Z)). To do that, one just has to notice that aq is injective : it is bijective on
veY =1
each non-zero component and there is at least one non-zero HY (for G, = H and 2} =1 ).



We also need the fact that «; is injective : the exact sequence of cohomology of

0 >7%Z —-Q —Q/7Z — 0
and the fact that H(G,Q) = 0 imply H'(G,Z) = HY(G,Q/Z) for all i € Z (this equality
concerns Tate’s modified cohomology groups). Hence

oy =res : Hom(G,Q/Z) — ][] Hom(G,,Q/Z)

vEY

which is injective (because G is covered by the G,’s).
Thus 11k, T") ~ 1" (Im o)/ (ker 1o + Im ayg)

This gives rise to a first explicit description of II(k,7"). The group H is cyclic, and
H?(H,7L) = H°(H,7.) = 72/27Z. The same is true for each non-zero HY : H*(HY,7L) = 7/27L.
We deduce that :

Proposition : 111(k,T") is a finite product of cyclic groups of order 2.

To compute our obstruction group in concrete cases, we will use another description that
can be found by using once again duality.

First notice that G has finitely many subgroups. Hence {G, , v € ¥} = {Gy,...,G,} for
certain subgroups G; of G. Let v; € ¥ be such that G; = G, fori = 1,...1. Set Q = {vy,...,v;}.
When we replace “v € 37 by “v € " everywhere in (D'), we get a new commutative diagram
which discribes the obstruction group exactly as before.

The commutative square needed to describe the group III can be written as follows :

Hom(H,Q/7Z) o, Hom(G,Q/7Z)
(C) |l ag Loy

11 (@ Hom(HY,Q/Z)) -~ I Hom(G,.Q/%)

veEQR =1

Since the Pontriyagin dual of the finite group Hom(G,Q/7Z) is the greatest abelian quotient
G = G/|G,G] of G (and the same for G, , HY et H ), the dual diagram of (C) is the

commutative square :
H LG
(€’ T K

M(@H) < 1G°

veQ =1 veEQ

Each morphism involved in this diagram is the dual of the corresponding morphism in (C’),
Ty Ty

so that : g is the tranfert ver§ : G® — H ;n, = L verfs : G — @ HY ; 6, is the
i=1 : i=1
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morphism G% — G induced by the injection G,, — G; and 7¢ : H' — H is the conjugation
by (z)7" .

The dual expression of the previous theorem is :

Theorem :
11(k, T") = ker pu /6 (ker ).

II.4 The general case
We keep the notations of paragraph 2.

The exact sequence (2) now gives rise to the commutative diagram :

HXG,Z[G/Ty]) = H2(G,Z[G)Ty)) x HXG,7Z) %
L ag l o

1 HX(G,, Z[G/Ts)) 2 11 (HXG,,Z[G/T\])) x HG, %))

vEX vEN

2 HAG,X) B HYNG,ZG/TY)

lOéQ lai’m
BT HA(G,, X) B 1 H3(G,, Z[G/TY))

vEXD VEX

But 4(k,T") = a;'(Im )/Im ¢ is now just a subgroup of II(k,7") . It is the first
obstruction group to the Hasse principle.

These two groups are again isomorphic as soon as «sg is injective, and in particular when
Iy is cyclic : if we decompose, for any place v of k, GG into its double classes K} = G,z{I's
(i =1,..,7y ) of G,\G/I'y and write 'y ; = G, Nz} Ty(x})~" , it follows from Shapiro’s lemma
that a3 can be seen as a morphism :

HY Ty, ) — []( @ H (TS, 7)) .

vey =1
These groups of cohomology are trivial when I's is cyclic. The morphism «j is again injective
if there is a place v such that G, is large enough to contain a conjugate of I'y , because the
morphism from H?*(T'y, ZZ) to H*(I' ;, 7Z) is then an isomorphism (conjugation by z} ).

The commutative diagram used to define Y(k,T”) can be split into two independant squares
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H2(G,Z|G/Ts)) -2 H2(G,Z[G/T])
(CO) 1 ag 1 Bo
ng H%(G,, Z[G/Ty]) % ng H(G,, Z|G/T))
HXG,Z|G/Ty])) -5 HXG,Z)
(C1) 1 ag 1 B

[1 HX(G, Z[G/Ta)) - 1 H(G,.Z)

VEYD vEY
Thus

Yk, T") = Yg(k, T") x Yy(k,T")
where  UYo(k,7") = By '(Imo)/Im¢  and  Yy(k,T’) = B; ' (Im p)/Im 6

Study of Yy(k,T")

Let Ty be the k-torus kernel of the norm homomorphism from T to Tx. We obtain the

exact sequence

1 —->Ty — T, - Tk — 1

The torus Ty is in fact the Weil restriction from K to k of the kernel 7] of the norm from

Ry kG, to Gy, . Hence we have :

H'(k,Ty) = HYK,T}), and for a place v of k we have
HY'(k,, Ty) = 11 HY (K., T}).

w|v

So we have [[ H'(k,,Ty) = [I H'(K,,T}) and 11i(k, Tp) = U1K, T}) .

vEY WEX K

We can show as in II.1 that (K, T}) is the group of elements of K which are norms from

L, locally everywhere, modulo the norms from L. But L/K is Galois with cyclic group H, and
Hasse’s theorem for norms then implies that II(K,73) =0 .
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On the other hand, if we want to describe I11(k, Tj) with the help of a commutative diagram
of cohomology groups, then we use the exact sequence of characters of (3) :

0 — X(TK) — X(TL) — X(TO) — 0

from which we deduce :

oG, X(Tx)) 2 HXG.X(TY) — HYG X(Ty) — HYG X(Tk))
1 ag lﬁo lﬁz | as

HHQ(GWX(TK)) = HHQ(GMX(TL)) - HHQ(GMX(TO)) - HHg(GvaX(TK))

v v v v

The first part of this diagram is exactly the square (Cp) .
We see that 85 ' (Im o) /Im ¢ = Yy(k,T") is a subgroup of ker 3, = 111(k, Ty), which we saw was
trivial. We can conclude :

Proposition : Yy(k,7") =0 .

Study of 4,(k,T")

Recall that we have defined III(k, K, M) in the beginning of II.
We denote by T; the k-torus, kernel of the morphism G,, x Ty — Ty defined by

(x,y) = $-NTM/TK?J .

As we did previously, we can write the following commutative diagram whose first part is
exactly (Cy) :

HX(G,Z|G/TS)) % HXG,Z) — HXG,X(TY)) — HG,Z|G/Ts))
1 ag 1 B 1 Bs | as

[1 H*(Gy, Z[G/T3]) 5 T (H*(Gy, Z) — T H*(G,, X(Th)) — T H*(G,, Z[G/T4))

vEY vEY VEY vEY

Y(k,Ty) = By (Im p)/Im 6 = Y, (k, T") is then a subgroup of 11(k, T}) = ker 35

This subgroup is the whole group as soon as a3 is injective, which means :

Proposition : If a3 is injective,

ik, T') = 4y (k, T') = mi(k, T1) .
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As above, we use Shapiro’s lemma to describe the cohomology groups. We get :

Z|GTy) = Ind?2 /4 seen as G-modules ;
Z|GTy) = éé Ind%”_ 7L seen as G,-modules.
i=1 %

And the commutative diagram needed to describe 4; can be written (after the same remarks
as in the Galois case) :

Hom(T'2,Q/7Z) — Hom(G,Q/7Z)

1 o 1 B

[1( & Hom((Ty,.Q/%Z)) 2 [I Hom(G,,Q/7Z)

veQ) =1 ISy

The dual diagram is :
ng M Gab

Tm T 0

Ty
b m b
M(eTs,)”) — I G}
veQ =1 veES)
These morphisms are again defined via transfers, injections and compositions of conjugations
and injections.

We get Uy (k,T") ~ ker pq /1 (ker ny).

Computations are more difficult that in the case when M/K is quadratic, especially when
I's is not abelian. The simplest cases are once again those where I's is cyclic, and we then get
a whole obstruction to the Hasse principle.

II.5 Use of the cyclic subgroups of G

If v is a place of k unramified in M then G, is a cyclic subgroup of G . Conversely, a cyclic
subgroup of G is of the form G, for infinitely many places v (Frobenius-Tchebotarev). This
proves that :

ik, T') C w.(k,T) = ker| H*(G, X(T")) — ][ (H*(C.X(T"))]
cec(@)
where C(G) is the set of cyclic subgroups of G.

This group I1L.(k, T") no longer depends on the extension L/k but only on the group G, and
it turns the former arithmetic problem into an algebraic problem.
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The group MI.(k,T") can be computed exactly as I11(k,7") ; one just has to replace in all
the results the products over the places of k by products over C .

Since m(k,T") C WI.(k,T") , the triviality of Il.(k,7") implies the triviality of mi(k,T").
More precisely, if M/k is ramified then there exits a finite extension k’/k, linearly independent
of M and such that ME'/k" becomes unramified but with the same Galois group G . Then
. (k,7") = ML.(k', T") = m(k', T") .

Searching for a counter-example to the Hasse principle for similarities of bilinear forms is
then equivalent to searching for an extension L/K/k such that IIL.(k,T") # 0.

Remark : If G itself is cyclic, Il and III. are of course trivial.

II.6 Some computations in the Galois case

All extensions L/k considered here are Galois.

Recall that the expression of the transfer from G to H is the following (cf [Sel, prop. 7 p
129]) : let 0 be a section from H\G to G . Let s € G and t € H\G . Let z;, be defined by
O(t).s = z;,0(ts) ; then the transfer ver : G® — H® is defined by s ];[mm modulo the

commutators.
In particular, we have ver& = Id .
We use this description to compute II(k, K, L) in some cases of small degree.

a) For G =Z)27 x Z]27Z

Let G = {1,a,b,ab} ,and let H =< a >, H =<b>, H"”" =< ab > be the three subgroups
of G.

Then§ : G/H — G is a homomorphism of commutative groups .
l=a — 1
b=ab — b

ver$(s) = z15. Tps = 5.0(3)"L.bs.0(bs)t = b.0(b)" = 1.
We obtain ker(p : G* — H) = G .

For C =H' (or H" ), G =C.1.H and H = HNH' = 1. ;
Hence ker n = H' x H" and d(ker n) = G

Conclusion : 1I(k, K, L) =1

b) For G = H x G" with G’ abelian

In this case # : G/H — G is again a group morphism.
ver$(s) = tg[@@(f). s.0(st)™! = tg[Gls HG) Lt 00 =11 s.0(3)7" = (5.0(3) 1)

tec
Ifs=ht, he H, tc G ver§(s)=h—t
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We deduce that ker (ver%) = G if 4G’ is even and = G’ otherwise.

o If #G’ is even :
If C' is a cyclic subgroup of G', then CNH =1 ;s0 C C kern .
Let h' be an element of G’ of order two ; let h be the nontrivial element of H ; then hh' is again
an element of order two of of G and < hh' > N H = 1 which implies that < hh' >C ker n , and
since < b/ >C ker n, we get h € d(ker ) . Hence d(kern) = H x G’ = G and 11I(k, K, L) =1

o If 4G’ is odd :
For any cyclic subgroup C of G’ ; CN H =1, so ker n contains all cyclic subgroups of G', and
its image by 0 contains G'.

Hence mi(k, K, L) =1

c) For G =53

1

Let write G = {1,s,52 t,ts,ts?} , where t is of order two, s of order three, tst = s~! and

H=<t>.

The transfer from C' =< s > to H is trivial because it is a homomorphism from a group of
order three to a group of order two.

If C =< ts >, then C\G/H = {1,s} and H® =1, HY =< ts> > N < ts >= 150
C Ckern.

It follows that ker n D< s > x < ts > and since s and ts span G, d(ker n) = G .

Conclusion : 11i(k, K, L) =1 .

d) For the quaternion group IHg

G=<ts>withs?=t>, st=1,tst ! =51,
The only subgroup of order two H =< s >=< t? > in G is normal, so :
G®=G/H =<35>x <t >~7[27 x 7|27

0 : G/H — G can be defined by :
$=t=1 — 1
§3 =3 — S
f3 =1 — t
ts = st = st
T 0(1).5.0(ts) = ts(ts) =1
r5s = 0(5).s6(ss)! =1
tr, = 0(s).s0(Tss)! = stst'=ss' =1
T, = 6(1).s.0(s)7" = 1

We get ver$(s) = 1 . In the same manner ver$(f) = 1, so the transfer from Gy, to H is
trivial.
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If C' is a cyclic subgroup of GG
* if C' = H then the transfer is the identity ;
* if C' is cyclic of order four, then CNH = H.
We need to compute the transfer from C' = ZZ/A7ZL =< s > to H = 7L/27L =< s* >.
The corresponding set of representatives 6 is obtained by the morphism of groups C/H — C
defined by #(1) =1 and 0(5) = s .
We have ver$(s) = 0(5).5.0(32).0(1).5.0(3) ! = s°.

Hence ker(ver§ ) = H

Conclusion : 1.(k, K, L) = G/H ~ 7L/277, x 7227 is not trivial.

e) For the dihedral group G = IDg and H normal

G=<ts>witht?=1, st =1, tst71 =s71.
The normal subgroups of G are < s > and < s >, so H =< s* > and :
GP=G)<s®>=<t>X<35>x7)27 x U2

The map 6 has exactly the same description as for G = Hg.
We again get ver%(3) = 1, but we have to compute ver% (%) :

i, = 0(F).t0(2) = t?=1

s, = 0(38).t0(st)t = st(st)'=1
rg, = O(st).t.0(stt)' = stts™' =1
v, = 0()toHt =1

Therefore the transfer from G to H is trivial.

If C is a cyclic subgroup of GG
* if C' = H then the tranfer is the identity ;
* if C' =<t > ( or an other subgroup of order two different from H ) :
CNH =1 and H is normal so C' C ker n
x if C' =< s > we already computed that ker ver§ = H

Conclusion : ker n is the product of the subgroups of order two of G and we get
m(k, K,L)=1.

III Construction of a counter-example
The following construction is based on an idea of J-P. Serre [Se3] . In the first paragraph, we
state the results concerning a counter-example to the problem of norms, and we prove these

results in the next three paragraphs. We then give a counter-example to the problem of bilinear
forms in the fifth paragraph.
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As suggested by the previous results, we use a Galois extension of Q of Galois group Hg ,
the group of quaternions of order 8, such that the decomposition groups are all cyclic.

Such an extension exists ; we use the example produced by Martinet in [Ma]. We then
denote from now on :

k=Q, K =Q(v/5,V41) et L = K(v/M) with M = 35 44VAV/5

II1.1 Local-global principle for norms

The aim of this section is to prove :

Proposition : There is an element a in K which can be written a = \yNp, /i, (%), Ay € K},
and z, € L} for any place v in k but is not of the form ANy k(z), A€ k*, z € L* .

In order to produce a counter-example for the Hasse principle for similarities of bilinear
forms, we need the additional property :

Lemma 1 There is a primitive element « in L/k with a ”symmetric” irreducible polynomial.
The proof of the proposition is based on the following two lemmas :

Lemma 2 : If \,Np,/k,(2) =1, Ay €k, 2, € L}, then (Ay,5), = 1 (cf Serre [Se3]).

v

Lemma3 : There is an element a in K such that (a, M),, = (a, M),, = —1 and (a, M), =1
everywhere else, where p, and q; are the two ideals over < 3 > in K, and (x,y), is the
quaternion algebra over K., associated with x and y.

An element a that realizes lemma 3 also realizes the proposition : it has the right form over
each K, and the fact that it does not have the right form over K is a consequence of lemma 2.
We prove lemma 3 by taking the element a = 3.#.

I11.2 Proof of Lemma 1

We see that v M is a primitive element of LAQ) . Now, a primitive element o € L\ K has a
symmetric irreducible polynomial over @ if and only if ! is a conjugate of o over K (in which
case K =Qa+a™1]) .

We look for « of the form x +yvM , y# 0, x,y € K . Its irreducible polynomial over K
is Px(X)=X?+aX +1ifand only if (z +yvM)?* +a(z +yvM)+1=0.
This is equivalent to

20y +ay =0 2r = —a
{x2+My2+a:U+1:O and to {My2:§—1

Let b= 2 and 2¢ = M-

then M = b? —4c? and M(5-)* = 3(2)*— 1, which implies that v = 2+ + % has the desired
property.

Its irreducible polynomial over K is Px(X) = X? + 29X +1.
The irreducible polynomial of M over @ is :

18



Py(X)=X1—-5-41X342%.5-17-41 X? - 3%-5% - 412 X + 3*. 5% . 412

And by replacing M by the expression M = (o —1)?/(a+1)? , in Py (M) = 0 , we obtain the
irreducible polynomial of a over Q) :

= 189971 (189971X°® + 1607507X " + 5858953.X° + 12008589.X° + 15134360.X*

+12008589.X 2 + 5858953 X% 4 1607507X + 189971)

II1.3 Proof of the proposition assuming lemmas 2 and 3
Let k1 =Q(V/5) , ky = (v/41) and k3 = (1/5.41) be the three quadratic subfields of K/Q .

3
The prime ideal < 3 > of Q) is inert in k; (because (5) = —1 ) and the prime ideal spanned

by 3 in k; splits in K /k; into ps =< 3,v/5 + V41 > and g3 =< 3,v/5 — V41 >
(< x1, ...z, > denotes the ideal spanned by the z;’s).

The completion of K at the place p3 is K,, ~ (Qg(\/g) ; here the uniformizer is 3 , and
V5 4+ V41 = 3%z with 2 an integer (because p2 = < 7\/52\/5 >).

So V41 =91 — /5 ; 922 —22/5 —4 =0 and 225 = —4(mod 3)
r=—/5=(1++5)*(mod 3) ; z is a square in K,, .

It follows that M = (3)2(5 + v/5) (VA1) (V5 + VA1) = (£)(5 + v5)(V41) with (£) a square
and (5++/5)(v/41) = 1+ +/5(mod 3) which is not a square in the residue field IF3(v/5) of K, .
We deduce that M is a non trivial unit in K /K}?.

Now do the same in the completion K,, of K at the place q3) ; K,, ~Q4(1/5) ; here the
uniformizer is 3 , and V41 = /54 3y ; so M = —1 + v/5(mod 3) which is not a square of
IF5(V5) .

Hence M is once again a non trivial unit of K /K :32.

Now suppose a satisfies lemma 3. Let us show that a also satisfies the proposition.

We first examine the places v of @ different from the prime ideal < 3 >. If w|v in K |,
(a, M), = 1 so that a is a norm of K, (v M) .
But K, = K®Q, =[] Ky, and L, = L®Q, = [] Ky ;

wlv w’|v

For every w'|wlv , a € Np_, /K, (Ly)* implies then a € N, /k, (Ly)*
Now for the place v =< 3 >, K3 = K,, X K, ; 3 € Q4 has the property :

q3
(3,M)p, =—1=(3,M)y, - So (3a,M),, = (3a, M),, = 1. We conclude as in the previous case
that 3a € NL3/K3(L3)*-

So a = 3Ny, k,(23) with 3 €Q, and 23 € L}

We have proved thet a has the desired form for any place v.
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If we had a = ANL/K(z) with A € k* and z € L* | then we would get I],(\,5), = 1. By
lemma 2, the symbol [],(A,5), is independent of the choice of the decompositions
a = AMNpk(2) ; but TT,(Ay, 5)y = (3,5)s = —1 which implies that a does not have the desired
global form.

I11.4 Proof of lemma 2

If 5 is a square in k, , this is clear.

Otherwise, v is such that k; , is a field.

Thus K, = K, x K and L, = L,, X L,y where w and w’ are the places over v and
Kw = Do’ = kl,’u .
Ly D ki, Dk, is a cyclic extension of order 4.

We suppose that z, € L is such that A\;! = Nk, /. (2w) . We can use the following
property :

Lemma 4 : Let Ey D Ey D Eq be a cyclic extension of degree 4 of local fields.
The homomorphism induced by the inclusion EY/Ng,/p E5 — E5/Ng, g, E; is an isomor-
phism.

Using the class field isomorphism, lemma 4 follows from the fact that if C' is a cyclic group
and C”" a subgroup of C', then the transfert C' — C” is surjective.

We apply lemma 4 to L,, D k1, DQ, and consider the element A, .
The image of this element in /N, /g, K is 1, so its image in Q}/Ng, )0, Ey is also 1, which
means that (A\,,5), = 1.

I11.5 Proof of lemma 3

We study the local conditions on a in order to have (a, M), = (a,M),, = —1 and (a, M), =1
everywhere else.

At places at infinity, M is totally positive, so it gives no condition on a.

At places over 3, we have seen that M is a non trivial unit of K /K ? (the same holds at
a3) ; 50 (@, M),y 0rq, is —1 if and only if a is not a unit of K /K ? (or g3 ).

Let now look at the places dividing M. We have the equality M = ”T*/g.\/g.\/ 41.%.

1+2\/5 is a unit ;

< /5 >= psq5 where p5; =< /5,1 + V41 > and q5 =< /5,1 — V41 > are the two ideals lying
over < 5 >in K ;

< V41 >= py1q41 where py =< V41,13 ++/5 > and q1 =< V41,13 — /5 > are the two ideals
lying over < 41 > in K ;

Here

and < YOEVIL 5 2
We now have to look over 5 and 41 .
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At ps
The uniformizer is v/5 and V41 = —1(mod \/5) is a square in K:5 because —1 is a square in
the residue field IF5 .

M= (3)2V4.V5.(1 +V5).(-1 + V5 + t/5)
We have (1+ v/5)(—1+ /5 +tv/5) = —1(mod v/5) and hence it is a square in K.
We get M = z2V/5.

We know that (v/5,v/5),, = (v/5,—1),, = 1 , because —1 is a square ; so

(a,M),, =1 <= (a,V5),;, =1 <= (a=1o0rV5in K: JK)?)

At qs
The uniformizer is again v/5 , and v/41 = 1(mod v/5) is a square in K o
M = (12 VA 5.1 +V5).(1 + V5 + tV/5)
with (1+v/5)(1+ v5+tv5) = 1(mod /5) , so it is a square in K, .

As in the previous case

(@, M)y =1<= (a,V5)gs =1 <= (a=1or V5in K /K!?)

At py
The uniformizer is v/41 , and v/5 = —13(mod \/ﬂ)

M = (LPVALG + VE).(V5 + VAT)
with (5 + v/5).(v/5 + V41) = 22(mod /41)

22
And we can compute <41> =—1

So 22 is not a square in IFy and M = yv/41 in K¥ /K* ? with y a nonsquare unit.

P41 P41

That —1 is not a square in IF4; implies (v/41,v/41),,, = (vV41,—1),,, =1 and :

(a,M),,, =1 <= (a,yv4l),,, =1 <= (a=1or yv4l in K

P41

P41 /K:41 ? )

At qu
The uniformizer is v/41 , and v/5 = 13(mod \/H)

(54 v5).(V5 + V41) = —12(mod V/41)
~12

k that | — ) = —1
We know tha (41>

We again have M = yy/41 in K* /K? ? with y a nonsquare unit and

941 q41
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(a, M),,, =1 <= (a,yV4l),, =1 <= (a=1or yV4l in K} /K’ ?)

q41 q41

At the remaining places, it is enough that a be a unit because M is one.
Claim : a = 3.%5 has the desired properties.

Proof :
% @ 1s 3 times a unit in K:3 or K:a

1+V5

* Neither 3 nor 5

3
—)z—landlg—‘/gz?)in]l%,soa

: * *
are squares in K and K as (5

is a square.
3 —6
* The same holds in K7, since (ﬁ) = —1 and Y5 = —6(mod v/41) with <H) =-1,

pa1

So a is a square.

3 7
* It is also true in K, because (H) = —1land 15 = 7(mod v/41) with (H) =-—1,s0

a is a square.
* Everywhere else, a is a unit.

This concludes the proof.

I11.6 The counter-example for bilinear forms

We need to find two bilinear forms b and 3 that give respectively by 1.2 the hermitian forms
< 1> and < a > over L . We look for the matrices (b;;) and (3;;) of these forms in the basis
(1,a,02,...,a") of L/k .

We find such matrices by using Riehm’s definitions [W] of invariants of bilinear forms ; we
easily see from the definition of these invariants that the two bilinear forms we find are similar
over Q) if and only if the two hermitian forms we began with are similar (and the same is true
over @, ) . We can check that these two bilinear forms yield the algebra R = L with the
involution ~.

Hence they give the desired counter-example.

A survey of Riehm’s method

There is a one-to-one correspondance between bilinear forms over k and (—X)-hermitian
forms from N x N — E , where A = k[X,1/X] is endowed with the involution X’ = 1/X | F
is its fraction field, £ = F//A, and N runs through the finitely generated A-modules.

This correspondence is given as follows :

Let b : V XV — k be a nondegenerate bilinear form ; B the corresponding linear map from
V to its dual V* ; N the A-module isomorphic to V' over k and where the action of X is given
by the endomorphism B~'B? ; and let N* = Hom 4(N, E) be its dual.
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Let T : E — k be the k-linear map which sends an element of F written under the form
q/f, where f is a polynomial in X of degree 2d satisfying f/ = f(1/X) = X 2f and ¢ is a
polynomial of degree < 2d , to the constant term T'(q/f) of ¢ .

We denote by T, : N* — V* the k-linear map defined by T,(¢) = T' o ¢. This map is bijective,
and we associate to b the (—X)-hermitian form C' : N — N* defined by B =TC.

Such a (—X)-hermitian form is completely determined by the corresponding forms over the
primaryfactors of V.

Moreover, if the irreducible polynomial P satisfies P7A = PA and J is non trivial over
A/PA | and if we denote

Np(r)={m e N|P'm = 0}

Vp(r) = Np(r)/[Np(r — 1) + PNp(r + 1)],

then the form on Np determines a family of (—X)-hermitian forms on Vp(r) with values in
P"A/P7"TA. So if we choose basis elements w, of P~"A/P~""'A over L = A/PA , the
coordinate forms are (—Xx,)-hermitian forms with values in L, where z, satisfies w/ = z,w, .

We change w, to a new basis y,w, with y/y ' = (—=Xz,)™! , and the coordinate forms
become hermitian forms : Vp(r) x Vp(r) — L.

Determination of b and 3

We use Riehm’s method for the hermitian forms < 1 > and < a > on the vector space
N =Vp(1l) = L = A/PA where P is the irreducible polynomial of « .

We first must choose the right basis on P~*A/A over L.
P! = (1/P) is a basis. We have (1/P)’ = (1/P7) with P/ = X3P .
P’ = X*P is a new basis satisfying P"/ = X4P/ = X~*P = P'.
Then z =1 and y = X — 1 satisfy y/ = (—=X)y .
From now on, we use the basis P = (X — 1)X*P~! of P"'A/A over L = A/PA.

Now, the (—X)-hermitian forms h and h, inducing < 1 > and < a > are defined by :

(X -1)Xx*
h(Q mod P,S mod P) = QS<P ) mod A

J(x _ 4
ho(Q mod P, S mod P) = ves (); DX mod A

where U is the polynomial defined modulo P such that a = U(«) .

The bilinear forms b and 3 over L are defined by :
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bO(a), S(a)) — T(QS (XP_ DX od A>

UQs’(X —1)x+*
P

B(Q(a), 5(0)) = T( mod A)

Since P is of degree 8 and P’ = X 8P | we need to find the constant terms of polynomials
of the classes of QS7(X —1)X* mod P and UQS’(X —1)X* mod P . We do that in the basis
(1,X, X2 .. X7) of A/PA over Q by using PARI system. We get :

a = U(a) with :
94795529 2231284717 614344038 16195852
U(X) = — o220 x7 4 22000 6 X5 x4
820 2460 205 3
4504 4 1 4
+7036 50 3 876 206073X2 98952404 X4 105449371

123 + 2460 * 820 615
and the matrices of b and 3 in the basis (1, q,...,a") of L over k are :

—1 b5 bs by bs
-1 b5 bs by
-1 b5 b
-1 bs
-1

0
0

o O OO

and

Bv B2 Bs Ba Bs Bs Br Bs
Br B B Bs Bs Bs Bs Br
Bo B Bi B B3 Bs Bs5 B
Bz B2 Bi Br B B3 Ba Bs
Bs Bs B Br Br B Bz B
Bs Bs B3 B2 B B B2 Bs
Be Bs Bu Bz P B Bi B
Br Bs Bs B Pz B2 B B

with
bs = 1797478 /189971
bg = —1776427306983 /36088980841
by = 1288348045247800216/6855859779345611
bg = —769037454741294091886545/1302414538142065067281
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B = 83397269/2460

By = —258550531 /2460

35 = 11208289/60

B4 = —706184071 /2460

35 = 194229083166919 /467328660

Bs = —51909390322689686191 /38778892868360

B, = 13663658396321170597347199/16865415057190203060

Bs = —3565006060789271260797393731 /3203939763829480065511260
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