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Équipe de Mathématiques de Besançon, UMR 6623 du CNRS,
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0 Introduction

A possible approach to the rationality problem for a connected linear algebraic group G defined
over a field k is based on the representation of the function field k(G) in the form F (Tx) where
F = k(X) is the field of rational functions of the variety of maximal tori of G and Tx is a
“generic” maximal torus of G. Indeed, since X is a k-rational variety [3], [5, XIV.6.1], the
F -rationality of Tx would immediately imply the k-rationality of G. This method allows one
to prove that all k-forms of a semisimple adjoint group of type A2l are rational [21].

Recall that if k is a number field, generic tori possess excellent arithmetic properties (the
Hasse principle for principal homogeneous spaces, weak approximation) whenever one restricts
oneself to simply connected, adjoint, or absolutely almost simple groups [8].

Note that although there are numerous cases where one can prove rationality for particular
groups and/or for particular ground fields (see [12], [2] and the references there), there are not
many examples of non-rational semisimple groups. One can mention Serre’s classic examples
[16] (where the groups are neither simply connected nor adjoint); Platonov’s examples for
certain simply connected groups of type Al [13] (generalized by Rost and Merkurjev [11]) and
of type D2l+1 [14]; and, finally, examples by Merkurjev [12] and Gille [7] for adjoint groups of
type Dl. One might hope to obtain some results for the remaining types using properties of
generic tori.

Our goal is to show the limitations of this method. Our main result (Theorem 0.1) says
that there are no rational generic tori apart from already known cases. A particular case of
that theorem for inner forms of simply connected groups of type Al (Proposition 0.2) confirms
a conjecture by Le Bruyn [10] that there are no rational generic norm tori of dimension greater
than two.

We are now going to state our main results.
Let k be a field, G a reductive k-group, T0 a maximal k-torus of G, N = NG(T0) the

normalizer of T0. The homogeneous variety X = G/N is called the variety of maximal tori of
G: indeed, since all maximal tori are conjugate, one can associate to each maximal torus T a
g ∈ G such that g−1Tg = T0, and such a g is defined up to a factor in N . Conversely, for any
semisimple element g ∈ G there exists a maximal k-torus containing g. If g is regular then such
a torus is determined uniquely. For a separable extension K/k, we thus obtain a one-to-one
correspondence between maximal K-tori of G and K-points of X0 = G0/N where G0 denotes
the set of regular points of G.

To be more precise, one constructs a “tautologic” fibration π:H −→ X where H is the
image of the morphism α:G×k T0 −→ X ×k G, (g, t) 7→ (gN, gtg−1) and π stands for the first
projection. One can show that H is birationally equivalent to G [19] (see also [20, 4.1]). Let
now x be a generic point of X, so that k(x) = k(X) = F . The fibre π−1(x) = Hx is called the
generic torus of G.

In this paper, we are interested in the rationality problem for generic tori. We restrict our
attention to the case where G is an (absolutely almost) simple group, either adjoint or simply
connected. Recall that an F -torus T is called stably rational if there is an F -rational variety
T ′ such that T × T ′ is F -rational.
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Theorem 0.1 Let G be a simple k-group, either adjoint or simply connected, and let T be the
generic torus of G. If G is of one of the following types:

1. rkG ≤ 2,

2. G is an inner form of an adjoint group of type Al,

3. G is a form of an adjoint group of type A2l,

4. G is a form of an adjoint group of type Bl,

5. G is a form of a simply connected group of type Cl,

then T is rational. Otherwise, T is not stably rational.

Let us note an important particular case of the above theorem. Let G be an inner form of
a simply connected group of type Al, and let T be the generic torus of G. Denote by L the
splitting field of T , and let Γ = Gal(L/F ). Then the character module M of T is isomorphic to
the weight lattice P(Al), and Γ acts on M as the Weyl group W(Al), which is the symmetric
group Sl+1. The Γ-module M is isomorphic to Z[Sl+1/Sl]/Z. The torus T is none other than the
norm torus corresponding to a generic separable extension K/F of degree l+ 1, i.e. a separable
extension of degree l + 1 whose normal closure has the symmetric group Sl+1 as Galois group.
Such a torus is called a generic norm torus and is denoted by Tl+1.

In [10], Le Bruyn proved that the generic norm torus Tn is not stably rational over F
provided n is prime, and stated a conjecture that Tn is never stably rational for n > 3 (except
possibly for n = 6). In this paper, we prove the above conjecture.

Proposition 0.2 The generic norm torus Tn is not stably rational for n > 3.

The structure of this paper is as follows. In Section 1, we collect necessary information on
tori and Galois cohomology. In Section 2, we present a general plan of the proof of the main
theorem. In Section 3 we review the cases where the generic tori are rational and we analyze
the remaining ones case by case in Sections 4 to 8. The three-dimensional case, serving as the
induction base, is considered separately (Section 4). Among the inductive branches of the proof,
the case P(Al) (Section 8) plays a special rôle: it contains the proof of Le Bruyn’s conjecture
(Proposition 0.2). In the Appendix, we present, for the reader’s convenience, a self-contained
proof of a technical lemma needed for the proof of Proposition 0.2.

Notation and conventions

Given a field F , we denote by F a fixed separable closure of F , g = Gal(F/F ) is the absolute
Galois group of F , F ∗ stands for the multiplicative group of F . We denote by K/F a finite
separable extension. All algebraic groups under consideration are assumed to be connected.

An algebraic F -torus T is called quasi-trivial if it is a direct product of tori of the form
RK/FGm where K/F is a finite extension and RK/F stands for the Weil restriction of scalars.
A norm torus is the kernel of the norm map RK/FGm → Gm,F , we often denote it by TK/F . Let
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T̂ denote the group of characters of a torus T ; viewed as a g-module, T̂ is a Z-free g-module of
finite rank. If T is quasi-trivial, then T̂ is a permutation module (i.e. it has a Z-basis permuted
by g). A torus T is called anisotropic if it has no character defined over F ; in other words, the
group of invariants T̂ g is zero.

If M is a Galois module (i.e. a discrete continuous g-module of finite rank), we denote by
H i(F,M) (or by H i(g,M)) the i-th Galois cohomology group, and by Xi

ω(g,M) the kernel of
the restriction map

H i(g,M)→
∏

γ

H i(γ,M)

where γ runs over all closed procyclic subgroups of g. The dual module Hom(M,Z) is denoted
by M ◦.

Two modules M1 and M2 are called similar if there are permutation modules P1 and P2

such that M1 ⊕ P1
∼= M2 ⊕ P2; let [M ] denote the similarity class of M .

For a smooth projective F -variety X we denote X ×F F by X, PicX = H1
ét(X,Gm) is the

Picard group.
We use the notation in [1] for all objects related to a root system R. In particular, W(R)

is the Weyl group, A(R) is the automorphism group of R; the group A(R) is a semi-direct
product W(R)oSym(R) where Sym(R) stands for the group of symmetries of the corresponding
Dynkin diagram. Furthermore, Q(R) is the root lattice, P(R) is the weight lattice, R∨ is the
dual root system. For an irreducible root system R of rank n, we denote by {α1, . . . , αn} (resp.
{ω1, . . . , ωn}) the basis of Q(R) (resp. P(R)) presented in the corresponding table in [1] in
terms of the standard basis {εi} of the vector space spanned by R over R.

If k is a field and G a semisimple k-group, let F = k(X) denote the function field of the
variety of maximal tori of G and let T be a generic torus of G. Let R be the corresponding
root system, then T̂ = P(R) if G is simply connected, and T̂ = Q(R) if G is adjoint. We often
shorten “absolutely almost simple group” to “simple group”.

Acknowledgements. The work on this paper started while the second named author visited the
Université de Franche-Comté (Besançon). It was finished during the visit of the first named
author at the University of Chicago and the visit of the two authors at the Max-Planck-Institut
für Mathematik (Bonn). The authors are grateful to all these institutions (and especially to
E. Bayer-Flückiger and J. Alperin) for their hospitality and support. We also thank C. Bonnafé
and E. Plotkin for their very valuable suggestions, and the referee for useful remarks.

1 Preliminaries

In this section, we collect information on algebraic tori (in particular, on generic tori in semisim-
ple groups) and Galois cohomology which will be systematically used in what follows.
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1.1 Birational invariants of algebraic tori

Let T be an F -torus, T̂ its character module. There is a canonical exact sequence of g-modules
[17, 4.45, 4.52], [20, 4.6]:

0→ T̂ → S → P → 0

where S is a permutation module and P is a so-called flasque module (i.e. for all closed
subgroups h ⊆ g one has H1(h, P ◦) = 0). The similarity class [P ] turns out to be a birational
invariant of T ; to be more precise, two tori T1 and T2 are stably equivalent if and only if
[P1] = [P2] [17, 4.60], [20, 4.7]. This shows that stable rationality depends on the character
module T̂ rather than on the torus T . The class [P ] is denoted by p(T ) and is called the Picard
class (indeed, if F is of characteristic zero, one can take for P the Picard module PicV where
V is a smooth projective variety containing T as an open subset).

Rougher (but very useful and computable) invariants arise from Galois cohomology: for
every closed subgroup h ⊆ g, the group H1(h, P ) is a birational invariant of T . In particular,
to prove that T is not stably rational, it is enough to find a subgroup h with H 1(h, P ) 6= 0.
This will be one of our main devices. We use another characterisation for the above invariant
which is, in a sense, more intrinsic [4, Prop. 9.5(ii)] :

H1(h, P ) = X2
ω(h, T̂ ).

Note that although the above cited Proposition 9.5(ii) is formulated under the hypothesis
that the characteristic of the ground field is zero, this restriction only refers to the part of the
formula which relates the invariant H1(h, P ) to the Brauer group of a smooth compactification
of T ; as to the above cited formula, it is true for tori defined over arbitrary fields.

The invariants of the above paragraph can be explained somewhat simpler by passing to
a certain finite level. Namely, let L denote the splitting field of T (i.e. the minimal Galois
extension of F such that T ×F L ∼= Gd

m,L), and let Γ = Gal(L/F ). Then, since P is a torsion-

free module and Gal(F/L) acts trivially on T̂ (and hence on P ), one has H1(Gal(F/L), P ) = 0,
and the restriction-inflation exact sequence gives H 1(g, P ) = H1(Γ, P ). We shall freely use this
remark below.

The most important example here is a norm torus T = TK/F . If K/F is a Galois extension

with group Γ, one has T̂ = JΓ = Z[Γ]/Z, and X2
ω(Γ, T̂ ) = H3(Γ,Z); in particular, if Γ contains

a bicyclic subgroup Γ′ = Z/pZ × Z/pZ, one has X2
ω(Γ′, T̂ ) = Z/pZ and hence the torus TK/F

is not stably rational [17, 6.46], [20, 4.8].
Another important tool in studying birational properties of tori is the passage to the

anisotropic factor.

Lemma 1.1 [17, 4.22] Let 1 → Gr
m → T → Ta → 1 be an exact sequence of F -tori, then it

admits a rational F -section s:Ta → T which gives rise to a birational equivalence T ∼ Ta×FGr
m.

This lemma is especially useful if Ta is anisotropic since the module T̂a is often much simpler
than T̂ .
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1.2 Generic tori in semisimple groups

¿From now on, we denote by T be the generic torus of a semisimple k-group G (see Introduc-
tion). Let F = k(X) be the field of definition of T , L the splitting field of T , Γ = Gal(L/F )
the splitting group. Let R denote the root system of G×F with respect to T ×F . The Galois
group g = Gal(F/F ) permutes the roots; we thus obtain an action of the splitting group Γ on
R. Let ρ: Γ → A(R) be the corresponding representation. It turns out that the image of ρ is
“as big as possible”; to be more precise, we cite the following theorem [19], [20, 4.2], which in
fact goes back to E. Cartan:

Theorem 1.2 Let G be a semisimple group, T the generic torus of G, R the corresponding
root system, Γ the splitting group of T , and ρ: Γ→ A(R). Then

W(R) ⊆ ρ(Γ) ⊆ A(R).

Moreover, if G is of inner type, then ρ(Γ) = W(R).

2 Plan of the proof

In this section, we outline the proof of Theorem 0.1. The first step concerns the “good” cases of
the theorem, i.e. those where generic tori are rational. All these cases are already known, and
we simply give the necessary references in Section 3. We thus only have to prove that all the
other cases are “bad”, i.e. the corresponding generic tori are not stably rational. We proceed
case by case using the Killing–Cartan classification, and in each case we show that p(T ) 6= 0
for the generic torus T .

Except for the case P(Al), our main device is as follows: we find a finite extension K/F
such that the torus TK = T ×F K is stably equivalent to a three-dimensional torus T ′ which is
shown in Section 4 to be non-stably rational. Here we build upon the birational classification of
three-dimensional algebraic tori which can be found in [9]. In most cases, this approach works
in a surprisingly easy way: in fact, it turns out that one can find an extension K/F such that
L/K is biquadratic and T ′ is the norm torus TL/K . The only exception is the case P(D4) (and
those deduced from it by induction) where one has to use a more complicated non-rational
torus T ′ with a triquadratic splitting field.

For P(Al), the tori under consideration are generic norm tori. The analysis of this case
heavily uses a result of Le Bruyn [10] establishing non-rationality of the generic norm torus
TL/K where L/K is an extension of prime degree p ≥ 5. Having this result at our disposal and
using the reduction of the general case to the case where the degree of L/K is square-free, we
are led to the consideration of only one case, namely (L : K) = 6. This last case can be treated
using results by Drakokhrust and Platonov [6]; for the reader’s convenience, we also present a
(rather technical) self-contained argument in the Appendix.

The general scheme of the proof is depicted on the following tripartite diagram which gives
rise to Sections 5, 6, and 7. We did not include the separate case P(Al) which is treated in
Section 8.
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Q(A3)out +3 Q(A2l+1)out P(B3) +3 P(B2l+1)

Q(C3) +3 Q(Cl) P(A3) P(D3)

KS

+3 P(D2l+1)

KS

Q(D3)out +3 Q(D4)

"*MMMMMMMMMM

MMMMMMMMMM

��

+3 Q(Dl)

KS

P(B4) +3 P(B2l)

Q(E6) +3

��

Q(E7)

��

P(D4)

KS

+3

��

P(D2l)

KS

P(E6) P(E7) Q(E8) P(F4) Q(F4)

We explain the notations. First, the subscript “out” refers to groups of the outer type when
the corresponding splitting group Γ maps onto A(R). Secondly, an arrow means that due to
the existence of an extension K0/F at the tail of the arrow with the property “T0×F K0 is not
stably rational”, one can “naturally” find an extension K1/F at the head of the arrow with the
property “T1 ×F K1 is not stably rational”.

To be more precise, we shall often make use of the following induction argument. We say
that R′ is a root subsystem of R if R′ ⊂ R and there exist a basis ∆ of R and a basis ∆′ of R′

such that ∆′ is a part of ∆. Denoting by V (resp. V ′) the vector space spanned by ∆ (resp.
∆′) over R, we get R′ = R ∩ V ′ and Q(R′) = Q(R) ∩ V ′. In particular, Q(R′) is a direct factor
of Q(R) (as a Z-module). Moreover, since W(R′) is generated by the reflections orthogonal to
the hyperplanes Hx with x ∈ R′, it can be naturally viewed as a subgroup of W(R); W(R′)
acts trivially on V/V ′ and hence on Q(R)/Q(R′). We write Q(R)/Q(R′) = Zl−l′ , the trivial
W(R′)-module (here l = dimV and l′ = dimV ′).

Lemma 2.1 Let R′ be a root subsystem of R. Suppose that there is a subgroup U ⊂ W(R′)
such that the Z[U ]-module Q(R′) is the character module of a torus T ′, where T ′ is defined over
K = LU , split over L, and is not stably rational over K.

(i) Let G be an adjoint form of type R. Then its generic torus T is not stably rational.

(ii) Suppose, in addition, that Q(R′) = P(R) ∩ V ′. If G is a simply connected form of type
R, its generic torus is not stably rational.

Proof. The exact sequence of W(R′)-modules (and hence of Z[U ]-modules)

0→ Q(R′)→ Q(R)→ Zl−l′ → 0

induces the exact sequence of K-tori

1→ Gl−l′
m → TK → T ′ → 1

8



where TK = T ×F K. By Lemma 1.1, TK is stably equivalent to T ′, whence (i). With the
additional assumption of (ii), Q(R′) = P(R) ∩ V ′ naturally embeds into P(R) in such a way
that the quotient C = P(R)/Q(R′) has no torsion (so the Z-module P(R) can be decomposed
into a direct sum Q(R′) ⊕ C), and W(R′) acts trivially on C. We thus get an exact sequence
of Z[U ]-modules

0→ Q(R′)→ P(R)→ Zl−l′ → 0

and proceed as in (i).

2

3 Positive cases

Here we just have to make references for each of cases 1–5.
1) All two-dimensional tori are F -rational [17, 4.73, 4.74], [20, 4.9].
2) If M = Q(Al) and Γ = W(Al) = Sl+1, then the Z[Sl+1]-module M is the augmentation

ideal Il+1 = ker [Z[Sl+1/Sl]→ Z]. The corresponding torus is rational [17, Ex. 4.8].
3) If M = Q(A2l) then M = Il ⊗ I2. The generic torus is rational [21, Corollary of Th. 8].
4) and 5) In each of these two dual cases, the representation of Γ in A(R) is orthogonal (i.e.

respects the quadratic form x2
1 + . . .+ x2

l ), and the generic torus is rational [18], [20, 8.2].

4 Three-dimensional tori

Let first M = P(A3). Then Γ = W(A3) = S4 acts on M = Z[S4/S3]/Z via the standard
permutation action of S4 on S4/S3. Choose U = 〈(14)(23), (13)(24)〉 to be a Klein’s four-
subgroup. The elements of U represent the cosets of S4/S3. Hence M ∼= Z[U ]/Z as a U -module.
If now T is the generic torus defined over F and split over L with Gal(L/F ) = S4, set K = LU .
Then TK is the norm torus defined over K with biquadratic splitting field L. Since TK is not
stably rational (see Section 1), we conclude that T is not stably rational.

Let now M = Q(A3). If Γ = W(A3), the generic torus is rational (see Section 3). So let
Γ = A(A3) = S4 × Z/2Z. The module M is isomorphic to I4 ⊗ I2 where for any n we denote
by In = ker [Z[Sn/Sn−1] → Z] the augmentation ideal. One can then take U = 〈c(12), c(34)〉,
where c sends εi to −εi (i = 1, . . . , 4), and show (see [9]) that M ∼= Z[U ]/Z as a U -module. For
reader’s convenience here is a proof of this assertion.

Recall that one can take αi = εi − εi+1, i = 1, 2, 3, as a basis of Q(A3). The group
U = 〈c(12), c(34)〉 = 〈a, b〉 acts as follows:

a:





α1 7→ α1

α2 7→ −α1 − α2

α3 7→ −α3

b:





α1 7→ −α1

α2 7→ −α2 − α3

α3 7→ α3

(1)

In order to show that M ∼= JU = Z[U ]/Z, we have to compare the action of U given by
formulas (1) with the standard action of U on the module JU . Let 0 → Z → Z[U ] → JU → 0
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be the exact sequence defining JU , and denote by βi (i = 1, . . . , 4) the images in JU of the
standard generators of Z[U ]. Choosing {β1, β2, β3} as a basis of JU and taking into account
that β1 + . . .+ β4 = 0, we obtain the following formulas for the action of U = 〈a, b〉:

a:





β1 7→ −β1 − β2 − β3

β2 7→ β3

β3 7→ β2

b:





β1 7→ β3

β2 7→ −β1 − β2 − β3

β3 7→ β1

(2)

By setting β1 = α1 + α2 + α3, β2 = α2, β3 = −α1 − α2, we show the equivalence of (1) and (2)
and thus identify M with JU .

Formally speaking, we are finished with the three-dimensional case since D3
∼= A3. However,

it is convenient not simply to appeal to the above isomorphism, but rather to exhibit an explicit
subgroup U ⊂ W(D3) (resp. U ⊂ A(D3)) such that P(D3) (resp. Q(D3)) is isomorphic to
Z[U ]/Z as a U -module. This will simplify our induction arguments in forthcoming sections.

Recall that A(Dn) is a semidirect product (Z/2Z)n o Sn, we denote by c1, . . . , cn the gen-
erators of (Z/2Z)n. For g = ci1 . . . cikσ ∈ A(Dn), set sign(g) = (−1)k, we then identify W(Dn)
with the subgroup of A(Dn) consisting of the elements g with sign(g) = 1.

We now show that in the case P(D3), U = 〈c1c2, c2c3〉 = 〈a, b〉 ⊂ W(D3) is a required
subgroup. Indeed, U acts on M = P(D3) as follows. Let ω1 = ε1, ω2 = (ε1 + ε2 − ε3)/2,
ω3 = (ε1 + ε2 + ε3)/2 be a standard basis of P(D3). Then we have

a:





ω1 7→ −ω1

ω2 7→ −ω3

ω3 7→ −ω2

b:





ω1 7→ ω1

ω2 7→ ω1 − ω2

ω3 7→ ω1 − ω3

(3)

By setting β1 = ω3 − ω1, β2 = ω2, β3 = −ω3, we identify M with JU , as required.
In the case Q(D3), we choose U = 〈c1c3, c2(13)〉 = 〈a, b〉 ⊂ A(D3). In the standard basis

α1 = ε1 − ε2, α2 = ε2 − ε3, α3 = ε2 + ε3, the group U acts on M = Q(D3) as follows:

a:





α1 7→ −α1 − α2 − α3

α2 7→ α3

α3 7→ α2

b:





α1 7→ α3

α2 7→ −α1 − α2 − α3

α3 7→ α1

This coincides with the standard formulas (2) for JU .
To conclude the consideration of three-dimensional tori, it only remains to note that Q(C3) =

Q(D3), P(B3) = P(D3) (as Z-modules), and W(D3) ⊂W(C3) = W(B3) = A(D3).

5 Cases deducible from Q(A3)out

5.1 Case Q(A2k+1)out

In this case R = Al with l = 2k + 1, Γ = A(R) = Sl+1 × Z/2Z. We denote by c the generator
of Z/2Z sending any r ∈ R to −r. The elements αi = εi − εi+1, i = 1, . . . , l, form a standard
basis of M = Q(R).
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We choose U = 〈a, b〉 with a = c(12)(34) . . . (2k − 1 2k), b = c(2k + 1 2k + 2), and write
down the formulas for the action of U on M :

a:





α1 7→ α1

α2 7→ −α1 − α2 − α3

α3 7→ α3

α4 7→ −α3 − α4 − α5

. . . . . . . . .
α2k−1 7→ α2k−1

α2k 7→ −α2k−1 − α2k

α2k+1 7→ −α2k+1

b:





α1 7→ −α1

α2 7→ −α2

α3 7→ −α3

α4 7→ −α4

. . . . . . . . .
α2k−1 7→ −α2k−1

α2k 7→ −α2k − α2k+1

α2k+1 7→ α2k+1

Set βi = αi + αi+1 + αi+2 for odd i < 2k − 1 and βi = αi otherwise. We write the action of a
and b in the matrix form with respect to this new basis:

A =




0 −1
−1 0

0 −1
−1 0

. . .

1 −1 0
0 −1 0
0 0 −1



, B =




−1
−1

−1
−1

. . .

−1 0 0
0 −1 0
0 −1 1




where the empty places correspond to zero entries. We see that the module M restricted to U
decomposes into a direct sum of two-dimensional modules and the three-dimensional module J
corresponding to the bottom right corner of the matrices. Looking at equations (1), we observe
that J coincides with JU . Since the norm torus corresponding to J is not stably rational, this
allows us to conclude that the generic torus is not stably rational.

5.2 Case Q(Cl)

As already shown in Section 4, the generic torus of an adjoint group of type C3 is not stably
rational. Since C3 is a root subsystem of Cl for any l > 3, Lemma 2.1 implies that the
corresponding generic torus is not stably rational.

5.3 Case Q(D4)

In R4 equipped with the standard basis ε1, . . . , ε4, we consider M = Q(D4) with Z-basis
α1 = ε1 − ε2, α2 = ε2 − ε3, α3 = ε3 − ε4, α4 = ε3 + ε4. We choose U = 〈c3c4, c1c2(34)〉.
The group U acting on M respects V ′ = 〈ε2, ε3, ε4〉 = 〈α2, α3, α4〉, and R′ = D4 ∩ V ′ ∼= D3.
Moreover, U respects the one-dimensional Z-module generated by α1: indeed, c3c4 fixes α1

and c1c2(34) sends α1 to −α1. Therefore the U -module M decomposes into a direct sum of a
one-dimensional module and a three-dimensional module. It remains to note that the latter
three-dimensional module J is isomorphic to JU . To see that, we observe that the action of
c1c2(34) on J coincides with the action of c2(34) ∈ W(C3) on Q(C3) = Q(D3), and we are led
(up to permutation of indices) to the subgroup considered in Section 5.2. We thus proved that
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for K = LU , we have TK = T1 × TL/K where T1 is a one-dimensional torus and TL/K is the
norm torus corresponding to the biquadratic extension L/K. Hence TK is not stably rational
and therefore T is not stably rational.

5.4 Cases Q(Dl), Q(El), and P(El)

The system D4 is a root subsystem of Dl, l ≥ 5 (generated by the four last roots of the standard
basis), and it is also a root subsystem of El, l = 6, 7, 8 (generated by αi, i = l−4, . . . , l−1, with
the standard notation of [1] for exceptional root systems). By Lemma 2.1(i) and the results
of Section 5.3, we conclude that in the cases Q(Dl) and Q(El) the generic tori are not stably
rational.

In order to treat the cases P(E6) and P(E7), we have to apply Lemma 2.1(ii). Let R′ be a
root subsystem of R in the sense of Lemma 2.1, we have

P(R) ∩ V ′ = {x ∈ V ′ :< x, α∨ >∈ Z ∀α ∈ R},

P(R′) = {x ∈ V ′ :< x, α∨ >∈ Z ∀α ∈ R′},
so that P(R) ∩ V ′ ⊂ P(R′). Therefore, there are two injections:

(P(R) ∩ V ′)/(Q(R) ∩ V ′)→ P(R)/Q(R)

and
(P(R) ∩ V ′)/(Q(R) ∩ V ′)→ P(R′)/Q(R′).

For R = E6 and R′ = D4, we have P(R)/Q(R) = Z/3Z and P(R′)/Q(R′) = Z/2Z×Z/2Z. Thus
the only common subgroup is the trivial one. This means that P(R)∩V ′ = Q(R)∩V ′ = Q(R′).
Hence Q(D4) = P(E6) ∩ V ′, i.e. the hypotheses of Lemma 2.1(ii) are satisfied. For R = E7

and R′ = E6, we have P(R)/Q(R) = Z/2Z and P(R′)/Q(R′) = Z/3Z. This implies that
Q(E6) = P(E7) ∩ V ′, and we are once again in the conditions of Lemma 2.1(ii). We thus
conclude that the generic tori corresponding to P(E6) and P(E7) are not stably rational.

6 Cases deducible from P(D3)

6.1 Case P(D2k+1)

We consider the case when M = P(Dl) with l = 2k + 1. Recall that the case M = P(D3) was
already treated in Section 4. We mimic the three-dimensional case and take

U = 〈c1c2 . . . cl−1, cl−1cl〉 = 〈a, b〉 .

Since l is odd, U lies in W(Dl). Let

ω1 = ε1,

ω2 = ε1 + ε2,

12



. . . . . . . . . (4)

ωl−2 = ε1 + . . .+ εl−2,

ωl−1 = (ε1 + . . .+ εl−2 + εl−1 − εl))/2,
ωl = (ε1 + . . .+ εl−2 + εl−1 + εl))/2

form a standard basis of P(Dl). The action of U can then be written down as follows:

a:





ω1 7→ −ω1

. . . . . . . . .
ωl−3 7→ −ωl−3

ωl−2 7→ −ωl−2

ωl−1 7→ −ωl
ωl 7→ −ωl−1

b:





ω1 7→ ω1

. . . . . . . . .
ωl−3 7→ ωl−3

ωl−2 7→ ωl−2

ωl−1 7→ ωl−2 − ωl−1

ωl 7→ ωl−2 − ωl

The above formulas show that the U -module M decomposes into a direct sum of l − 3 one-
dimensional modules generated by the first l− 3 elements of the basis and a three-dimensional
module which we shall denote by J . We have to prove that J ∼= JU . This can be easily done
by comparing the action of U on the module spanned by {ωl−2, ωl−1, ωl} with formulas (3).

6.2 Case P(B2k+1)

Since P(Bl) coincides with P(Dl) and W(Dl) ⊂ W(Bl), we can take the same subgroup U as
in Section 6.1 (viewed as a subgroup of W(Bl)) in order to show that the corresponding torus
is not stably rational.

7 Cases deducible from P(D4)

7.1 Case P(D4)

In this case, we cannot play the same game with biquadratic norm tori and have to use more
subtle arguments.

Let M = T̂ = P(D4), U = 〈c3c4, (12), c1c2c3c4〉 ⊂ W(D4). Let us show that the torus T
corresponding to the U -module T̂ is not stably rational.

In the standard basis ω1 = ε1, ω2 = ε1+ε2, ε3 = (ε1+ε2+ε3−ε4)/2, ε4 = (ε1+ε2+ε3+ε4)/2,
the action of U = 〈a, b, c〉 can be written down as follows:

a:





ω1 7→ ω1

ω2 7→ ω2

ω3 7→ ω2 − ω3

ω4 7→ ω2 − ω4

b:





ω1 7→ −ω1 + ω2

ω2 7→ ω2

ω3 7→ ω3

ω4 7→ ω4

c:ωi 7→ −ωi (i = 1, . . . 4)
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After the base change given by h1 = ω1, h2 = ω1 − ω2 + ω3, h3 = ω3, h4 = ω3 − ω4, we obtain

a:





h1 7→ h1

h2 7→ h1 − h3

h3 7→ h1 − h2

h4 7→ −h4

b:





h1 7→ −h2 + h3

h2 7→ −h1 + h3

h3 7→ h3

h4 7→ h4

c:hi 7→ −hi (i = 1, . . . 4)

Hence T ∼= T3 × T1 where dimT1 = 1, dimT3 = 3. Denote by H ⊂ GL(3,Z) the subgroup
corresponding to the module T̂3, we have

H =

〈


1 1 1
0 0 −1
0 −1 0


 ,




0 −1 0
−1 0 0
1 1 1


 ,



−1 0 0
0 −1 0
0 0 −1



〉
.

This torus was studied in [9] and turned out to be non stably rational (H = W2 in the notation
of Theorem 1 of [9]).

7.2 Case P(D2k)

Just as in Section 6, we now proceed by induction in order to treat the case P(D2k).
Let M = T̂ = P(Dl) with l even,

U = 〈c1c2 . . . cl−4cl−1cl, (l − 3 l − 2), c1c2 . . . cl〉 ⊂W(Dl).

Let us show that the torus T corresponding to the U -module T̂ is not stably rational.
Let us write down the action of U = 〈a, b, c〉 in another basis ω ′1 = ε1, . . . , ω

′
l−3 = εl−3,

ω′l−2 = εl−3 + εl−2, ω′l−1 = (ε1 + . . .+ εl−2 + εl−1 − εl)/2, ω′l = (ε1 + . . .+ εl−2 + εl−1 + εl)/2:

a:





ω′1 7→ −ω′1
. . . . . . . . .
ω′l−4 7→ −ω′l−4

ω′l−3 7→ ω′l−3

ω′l−2 7→ ω′l−2

ω′l−1 7→ ω′l−2 − ω′l−1

ω′l 7→ ω′l−2 − ω′l

b:





ω′1 7→ ω′1
. . . . . . . . .
ω′l−4 7→ ω′l−4

ω′l−3 7→ −ω′l−3 + ω′l−2

ω′l−2 7→ ω′l−2

ω′l−1 7→ ω′l−1

ω′l 7→ ω′l

c:ωi 7→ −ωi

We get T̂ = T̂l−4 ⊕ T̂4 where Tl−4 is a direct product of l − 4 one-dimensional tori and T4 is
isomorphic to the torus considered in Subsection 7.1. Since T4 is not stably rational, so is T .

7.3 Cases P(B2k) and P(F4)

We can now easily deduce the remaining cases P(B2k) and P(F4) from the already treated ones.
Let M = T̂ = P(Bl) with l even. Then the torus T corresponding to the module T̂ is not

stably rational. Indeed, one has to use the same argument as in Section 6.2.
To prove that the torus T corresponding to the module T̂ = P(F4) is not stably rational, we

observe that P(F4) coincides with P(D4) (as Z-modules) and W(D4) is a subgroup in W(F4).
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8 Case P(Al): Le Bruyn’s conjecture

Let G be an inner form of a simply connected group of type Al. Then the group of characters
of the generic torus T is the Z-lattice M = P(Al) and by Theorem 1.2 the splitting group of
T is Γ = W(Al) = Sl+1. As Z[Sl+1]-module, M is isomorphic to Z[Sl+1/Sl]/Z, and we may
(and shall) consider the generic torus T as a generic norm torus. Recall the definition of such
a torus.

Let F be a field. A separable extension K/F of degree n is said to be generic if the Galois
group of the normal closure L of K/F is the symmetric group Sn. Let TK/F = R1

K/FGm be
the corresponding norm torus, i.e. the kernel of the norm map NK/F :RK/FGm → Gm,F where
RK/F stands for Weil’s restriction of the ground field from K to F . The F -points of TK/F are
the elements of K∗ with norm one. The torus TK/F is called generic norm torus. We shall often
denote it by Tn if it does not lead to any confusion.

The following result is a cornerstone for what follows.

Lemma 8.1 (Le Bruyn [10]) Let n > 3 be a prime number. Then Tn is not stably rational.

Note that this fact is surprising enough in view of a theorem by Colliot-Thélène and Sansuc
[4] stating that for a prime n the torus Tn is a direct factor of a rational variety. In the same
paper [10], Le Bruyn made a conjecture that Tn is never stably rational if n > 3 (except,
possibly, for n = 6). Saltman and Snider proved this fact for n divisible by a square. We are
going to prove here Proposition 0.2 (see Introduction) confirming the above conjecture (without
any exceptions).

We shall deduce Proposition 0.2 from Lemma 8.1 using the following key lemma.

Lemma 8.2 Let n = rs with arbitrary r, s > 1, and let K/F be a generic extension of degree
n. If TK/F = Tn is stably rational over F , there exist an extension E/F and a generic extension
K ′/E of degree r such that TK′/E = Tr is stably rational over E.

Proof. We regard Sr as a subgroup of Sn embedded diagonally: if i ∈ {0, . . . , s−1} then Sr acts
naturally on {ir + 1, . . . , (i+ 1)r} by σ · (ir + k) = ir + σ(k) where σ ∈ Sr and k ∈ {1, . . . , r}.
This defines an action of Sr on {1, . . . , sr} and hence an embedding of Sr into Ssr = Sn. We
denote by Ur the image of Sr under this embedding.

Let P be the character module of the torus RK/FGm. It is an Sn-module isomorphic to
Z[Sn/Sn−1]. As a Ur-module, it decomposes into a direct sum:

P ∼=
s−1⊕

i=0

Z[Sr/Sr−1]. (5)

Indeed, the action of σ ∈ Sr on the coset (n ir + k)Sn−1 ∈ Sn/Sn−1 (where i ∈ {0, . . . , s − 1}
and k ∈ {1, . . . , r}) is given by

σ · (n ir + k)Sn−1 = (n σ · (ir + k))Sn−1 = (n ir + σ(k))Sn−1.
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For a fixed i, we thus obtain an isomorphism of Z[Ur]-modules

〈(n ir + k)Sn−1, k = 1, . . . , r〉Z ∼= 〈(r k)Sr−1, k = 1, . . . r〉 = Z[Sr/Sr−1],

whence the required isomorphism (5). Let us rewrite this decomposition as P =
⊕s−1

i=0 Pi.
Consider the exact sequence of F -tori split over L:

1→ Tn → RK/FGm → Gm,F → 1.

It induces the exact sequence of character modules of these tori

0→ Z N→ P →M → 0 (6)

which is an exact sequence of Sn-modules; we may then view it as an exact sequence of Ur-
modules. Here M is the group of characters of the torus Tn and N is the norm map defined
by

1 7→
∑

σSn−1∈Sn/Sn−1

σSn−1 = NSn/Sn−1(1).

According to the above decomposition of P ,

NSn/Sn−1(1) =

s−1∑

i=0

∑

σSr−1∈Sr/Sr−1

σSr−1 =

s−1∑

i=0

NSr/Sr−1(1).

We deduce from (5) and (6) that

M ∼= P/N(Z) =

(
s−1⊕

i=0

Pi

)
/N(Z).

Consider

ϕ:
s−1⊕

i=0

Pi → P0/NSr/Sr−1(Z)⊕
s−1⊕

i=1

Pi

given by ϕ(ai) = (ā0, ai − a0). This is an epimorphism of Z[Sr]-modules with kernel N(Z).
Hence

M ∼= P0/NSr/Sr−1(Z)⊕
s−1⊕

i=1

Pi = Mr ⊕
s−1⊕

i=1

Pi,

where Mr is defined by the following exact sequence of Sr-modules:

0→ Z
NSr/Sr−1−→ Z[Sr/Sr−1]→Mr → 0.

Denote by E = LUr the fixed field of Ur. Then Gal(L/E) ∼= Sr. Let K ′ = LSr−1 . Then
K ′/E is a generic extension of degree r and Mr is the character module of the generic torus
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Tr = TK′/E . Denote S =
∏s−1

i=1 RK′/EGm, it is a quasi-trivial torus whose character module is

the Z[Sr]-module
⊕s−1

i=1 Pi. We then have an isomorphism of E-tori

Tn ×F E ∼= Tr × S. (7)

Since any quasi-trivial torus is rational, the isomorphism (7) proves the lemma: indeed, if Tn
is stably rational over F , Tn ×F E is stably rational over E and so is Tr.

2

Lemma 8.2 allows us to reprove the above mentioned result by Saltman and Snider. It
suffices to combine Lemma 8.2 with the following fact.

Lemma 8.3 If n is a square, Tn is not stably rational.

Proof. Denote n = m2, P = Z[Sn/Sn−1], and let U be the subgroup of Sn generated by

σ = (1 2 . . . m)(m+ 1 m+ 2 . . . 2m) . . . (n−m+ 1 n−m+ 2 . . . n),

τ = (1 m+ 1 . . . n−m+ 1)(2 m+ 2 . . . n−m+ 2) . . . (m 2m . . . m2).

The group U is isomorphic to Z/mZ×Z/mZ (σ and τ are of order m and commute). We have

σi(m2) = (m− 1)m+ i for 1 ≤ i ≤ m,

τ jσi(m2) = (j − 1)(m− 1) + i for 1 ≤ j ≤ m.

Thus τ jσiSn−1 = ((j − 1)(m − 1) + i m2)Sn−1 in Sn/Sn−1. This defines a bijection of U to
Sn/Sn−1 and an isomorphism of U -modules Z[Sn/Sn−1] ∼= Z[U ]. Therefore the exact sequence
of Z[Sn]-modules

0→ Z→ Z[Sn/Sn−1]→M → 0

corresponding to the exact sequence of F -tori

1→ Tn → RK/FGm → Gm,F → 1

can be rewritten as an exact sequence of U -modules as follows:

0→ Z→ Z[U ]→M → 0. (8)

We thus obtain that M is isomorphic to Z[U ]/Z as a U -module. From (8) we deduce that
X2

ω(U,M) = Z/mZ 6= 0 (see Section 1). Therefore if E = LU , the E-torus Tn ×F E, whose
character module is M , is not stably rational, and hence so is Tn.

2

Lemma 8.4 The torus T6 is not stably rational.
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Proof. Denote M = T̂6, and let U be the subgroup of S6 generated by σ = (12)(34) and
τ = (34)(56). Let us show that X2

ω(U,M) 6= 0.
Denote by H = A4 the alternating group of degree 4 viewed as a transitive subgroup of S6

(in other words, we regard H as the group of motions of tetrahedron in its action on the edges).
We can view U as a subgroup of H, moreover, U is the Sylow 2-subgroup of H. In Lemma 13
of [6], it is shown (implicitly) that X2

ω(H,M) = Z/2Z. This immediately proves the lemma.
Indeed, suppose that X2

ω(U,M) = 0. For a Sylow 3-subgroup V of H, we have X2
ω(V,M) =

0 because V is cyclic. Since the order of H equals 12, this gives X2
ω(H,M) = 0 (here we use

the equality X2
ω(H,M) = H1(H,P ), see Section 1, and the fact that for any Γ-module A,

H1(Γ, A) = 0 if and only if H1(Γ(p), A) = 0 for all Sylow p-subgroups Γ(p) of Γ). The obtained
contradiction proves the lemma.

2

Remark. For reader’s convenience, we present a self-contained proof of Lemma 8.4 in the
Appendix.

Lemmas 8.1 to 8.4 prove Proposition 0.2. Indeed, Lemmas 8.2 and 8.3 reduce the general
case to the case where n is squarefree. Applying Lemma 8.1 and once again Lemma 8.2, we are
reduced to the case n = 6. This last case is treated by Lemma 8.4. Proposition 0.2 is proved.

2

If now G is an arbitrary form of a simply connected group of type Al and Γ = Gal(L/E)
is the splitting group of the generic torus T of G, we have Γ ⊇ W(Al) = Sl+1 (see Section 1).
Setting E = LSl+1 , we see that T ×F E is a generic norm torus. Since it is not stably rational
for l > 2, so is T .

This finishes the proof of Theorem 0.1.

Appendix

We present here a proof of Lemma 8.4 not appealing to Lemma 13 of [6] (but using the methods
of this paper, see also [15], Ch. 6.3). We recall here the main points.

The exact sequence of Z[Sn]-modules defining M = T̂n:

0→ Z→ Z[Sn/Sn−1]→M → 0 (9)

induces a commutative diagram with exact rows

H2(U,Z)
ϕ1→ H2(U,Z[Sn/Sn−1])

ϕ2→ H2(U,M)
ϕ3→ H3(U,Z)yα1

yα2

yα3

yα4

∏
g∈U

H2(〈g〉 ,Z)
ψ1→ ∏

g∈U
H2(〈g〉 ,Z[Sn/Sn−1])

ψ2→ ∏
g∈U

H2(〈g〉 ,M)
ψ3→ ∏

g∈U
H3(〈g〉 ,Z) = 0

(10)

where the rows are the cohomology exact sequences corresponding to (9) with respect to U and
〈g〉, and the vertical arrows are restriction maps. Since 〈g〉 is a cyclic group acting trivially on
Z, we have H3(〈g〉 ,Z) = H1(〈g〉 ,Z) = 0.
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Then X2
ω(U,M) = kerα3 ⊃ α−1

2 (imψ1)/imϕ1. We denote the latter group by Q2
ω(U,M)

and prove that it is not zero.
We have a decomposition of U -modules

Z[Sn/Sn−1] =
r⊕

i=1

Z[Ki/Sn−1] =
r⊕

i=1

IndUUiZ

where Ki = UxiSn−1 runs over the set of double cosets U\Sn/Sn−1 and Ui = (xiSn−1x
−1
i ) ∩ U .

By Shapiro’s lemma, H2(U,Z[Sn/Sn−1]) =
⊕r

i=1 H
2(Ui,Z). One can get a similar description

of H2(〈g〉 ,Z[Sn/Sn−1]) for g ∈ U .
For n = 6, let us give an explicit expression for the above decomposition. We write the cosets

S6/S5 in the form {(j 6)S5, j = 1, . . . 6} (with abusive notation (6 6) = Id), and U\S6/S5 is in
one-to-one correspondence with the orbits of U in S6/S5. If U = 〈(12)(34), (34)(56)〉 = 〈σ, τ〉,
as in Lemma 8.4, there are three such orbits. We choose x1 = Id, x2 = (26), x3 = (36) as
representatives of these double cosets. Then U1 = 〈σ〉, U2 = 〈τ〉, U3 = 〈στ〉. We choose Id,
(26), (36), (56) as representatives of the double cosets from 〈σ〉 \S6/S5. The double cosets
Ki = UxiS5 decompose as follows:

K1 = 〈σ, τ〉 · Id · S5 = Kσ
11 ∪Kσ

12

with Kσ
11 = 〈σ〉 · S5 = 〈σ〉 · Id · S5 and Kσ

12 = 〈σ〉 · τ · S5, we set yσ11 = Id, yσ12 = τ , and s1σ = 2.
Similarly,

K2 = 〈σ , τ〉 · (26) · S5 = Kσ
21 = 〈σ〉 · (26) · S5 = 〈σ〉 · Id · x2 · S5,

we set yσ21 = Id and s2σ = 1. Finally,

K3 = 〈σ, τ〉 · (36) · S5 = Kσ
31 = 〈σ〉 · (36) · S5 = 〈σ〉 · Id · x3 · S5;

we set yσ31 = Id and s3σ = 1. With this notation, Kσ
ij = 〈σ〉 yσijxiS5 and yσij ∈ U . We then have

a decomposition of 〈σ〉-modules

Z[S6/S5] =
3⊕

i=1

sσ,i⊕

j=1

Z[Kσ
ij/S5] =

3⊕

i=1

sσ,i⊕

j=1

Ind
〈σ〉
Uσij
Z

where

Uσ
ij = (yσijxi)S5(yσijxi)

−1 ∩ 〈σ〉 = yσij(xiS5x
−1
i )yσij ∩ U ∩ 〈σ〉

= yσij(xiS5x
−1
i ∩ U)(yσij)

−1 ∩ 〈σ〉 = yσijUi(y
σ
ij)
−1 ∩ 〈σ〉

(here we observed that yσij ∈ U). Hence Uσ
11 = 〈σ〉 = Uσ

12 and Uσ
21 = 1 = Uσ

31.
Let us repeat the above calculation for τ and στ . We get

yτ11 = 1, s1τ = 1, U τ
11 = 1;

yτ21 = 1, yτ22 = σ, s2τ = 2, U τ
21 = U τ

22 = 〈τ〉 ;
yτ31 = 1, s3τ = 1, U τ

31 = 1,
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and

yστ11 = 1, s1,στ = 1, Uστ
11 = 1;

yστ21 = 1, s2,στ = 1, Uστ
21 = 1;

yστ31 = 1, yστ32 = τ, s3,στ = 2, Uστ
31 = Uστ

32 = 〈στ〉 .

We can now rewrite the left square of diagram (10):

H2(U,Z)
ϕ1→

3∏
i=1

H2(Ui,Z)
yα1

yα2

∏
g∈U

H2(〈g〉 ,Z)
ψ1→ ∏

g∈U

3∏
i=1

sig∏
j=1

H2(U g
ij,Z)

Here the arrows are the natural homomorphisms of restriction and conjugation. Consider
the Pontryagin dual of the above diagram (note that if G is a finite group, H 2(G,Z) =
H1(G,Q/Z) = Hom(G,Q/Z) is dual to Gab = G/[G,G]):

U
λ←−

3∏
i=1

Ui
xγ

xδ
∏
g∈U
〈g〉 η←− ∏

g∈U

3∏
i=1

sig∏
j=1

U g
ij.

We deduce that Q2
ω(U,M) is dual to kerλ/δ(ker η). Let us now rewrite the above diagram

substituting the results of our preceding calculations:

U
λ←− 〈σ〉 × 〈τ〉 × 〈στ〉xγ

xδ
〈σ〉 × 〈τ〉 × 〈στ〉 η←− 〈σ〉 × 〈σ〉 × 〈τ〉 × 〈τ〉 × 〈στ〉 × 〈στ〉 .

Note that η and δ are the same homomorphisms, hence δ(ker η) = 1. Moreover, λ(σ, τ, στ) =
λ(σ)λ(τ)λ(στ) = στστ = 1, so (σ, τ, στ) ∈ kerλ, and this is the only non-zero element of kerλ.
We thus obtain Q2

ω(U,M) ∼= Z/2Z 6= 0. This finishes the proof of Lemma 8.4.

2
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[20] V. E. Voskresenskĭı, Algebraic Groups and Their Birational Invariants, Transl. of Math.
Monographs, vol. 179, Amer. Math. Soc., Providence, Rhode Island, 1998.

21
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