Habilitation à Diriger des Recherches -Contributions aux modèles fonctionnels de régression

Christophe Crambes

30 juin 2020

Plan de l'exposé

Introduction

Imputation par régression dans le modèle linéaire fonctionnel

Modèle fonctionnel de convolution

Perspectives

Plan de l'exposé

Introduction

Imputation par régression dans le modèle linéaire fonctionnel

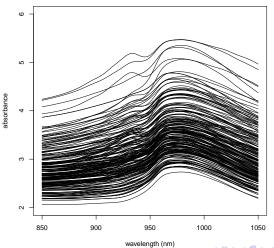
Modèle fonctionnel de convolution

Perspectives

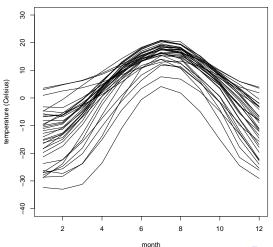
Analyse de données fonctionnelles

- Donnée fonctionnelle : variable aléatoire à valeurs dans un espace de fonctions (ex : L²([a; b]))
- En pratique : observation d'une donnée fonctionnelle en certains points de mesure
- → Point clé : régularité
- Références: Ramsay et Silverman (2002, 2005), Ferraty et Vieu (2006), Horvàth et Kokoszka (2012), Hsing et Eubank (2015), . . .

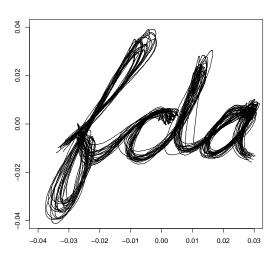
Données spectrométriques



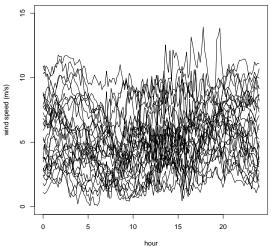
Données de températures canadiennes

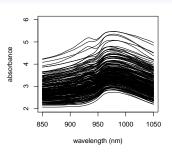


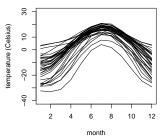
Données d'écriture

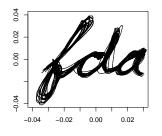


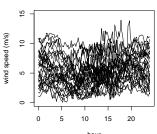
Données éoliennes









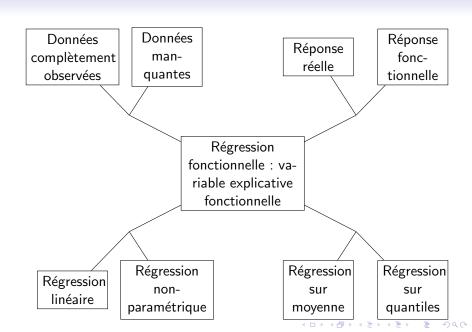


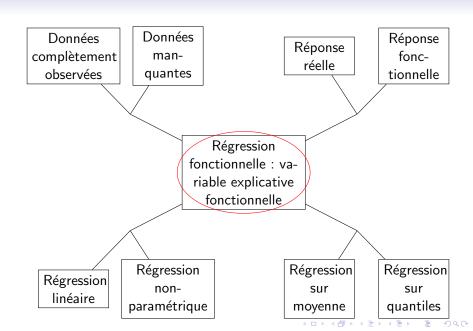
Modèles de régression

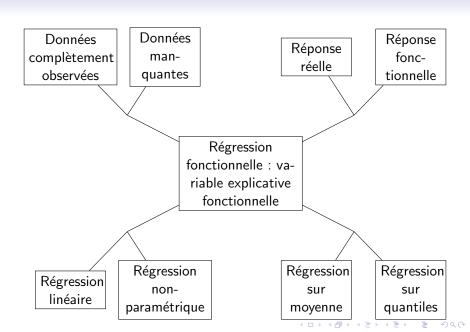
→ Modèle général :

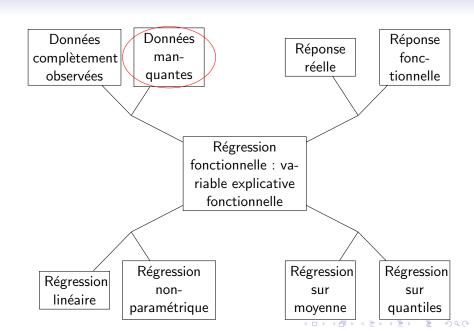
$$Y = \Psi(X) + \varepsilon$$

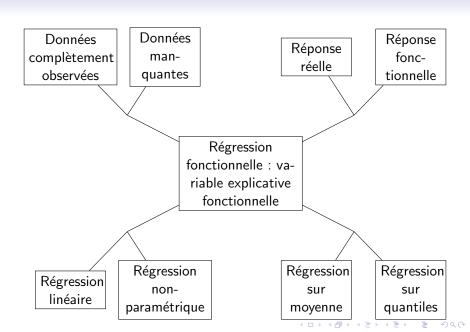
- X: variable explicative fonctionnelle (à valeurs dans $\mathbb{L}^2([a;b])$)
- Y : variable réponse réelle ou fonctionnelle
- lacksquare Ψ : opérateur de régression $\mathbb{L}^2([a;b])\longrightarrow \mathbb{R}$
- $ightharpoonup \varepsilon$: bruit du modèle, indépendant de X

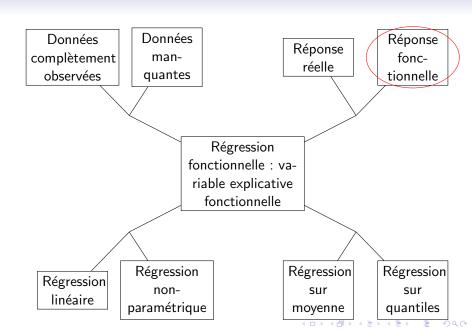












Modèle linéaire complètement fonctionnel

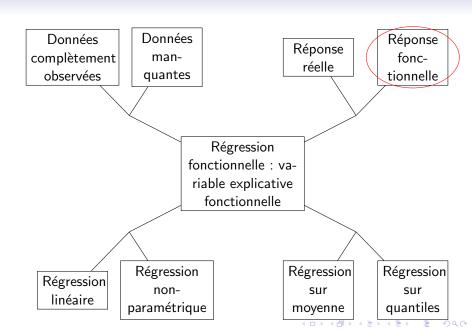
- ➡ Travail réalisé avec André Mas (2013)
- → Modèle :

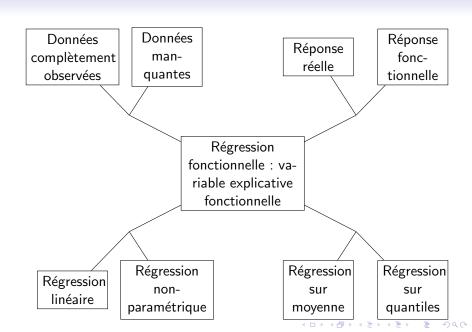
$$Y(t) = \Theta X(t) + \varepsilon(t)$$

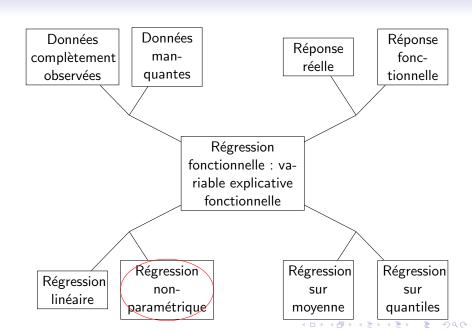
Estimateur :

$$\widehat{\Theta} = \widehat{\Pi}_{k_n} \widehat{\Delta}_n \left(\widehat{\Pi}_{k_n} \widehat{\Gamma}_n \right)^{-1}$$

- ullet $\widehat{\Gamma}_n$: opérateur de covariance empirique $\widehat{\Gamma}_n$
- $\widehat{\Pi}_{k_n}$: opérateur de projection sur le sous-espace engendré par les k_n premières fonctions propres de $\widehat{\Gamma}_n$
- $\widehat{\Delta}_n$: opérateur de covariance croisée empirique







Estimateur non-paramétrique récursif (1)

- ➡ Travail réalisé avec Aboubacar Amiri et Baba Thiam (2014)
- ➡ Estimateur :

$$\Psi_n^{[\ell]}(\chi) = \frac{\sum_{i=1}^n \frac{Y_i}{F(h_i)^{\ell}} K\left(\frac{\|\chi - X_i\|}{h_i}\right)}{\sum_{i=1}^n \frac{1}{F(h_i)^{\ell}} K\left(\frac{\|\chi - X_i\|}{h_i}\right)}$$

- $\chi \in \mathbb{L}^2([a;b]), \ \ell \in [0;1]$
- $(h_n)_{n\geq 1}$: suite de fenêtres
- K : noyau
- F : fonction de répartition de $\|\chi X\|$

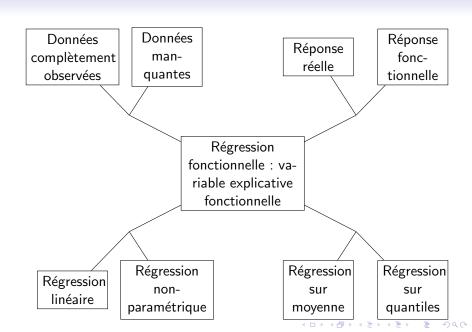
Estimateur non-paramétrique récursif (2)

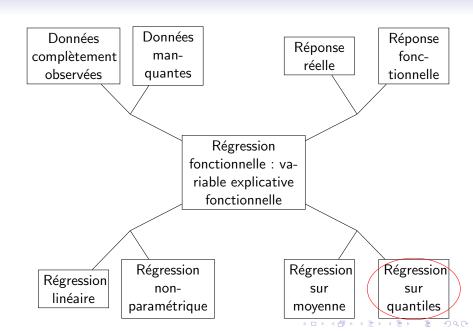
Écriture récursive :

$$\Psi_{n+1}^{[\ell]}(x) = \frac{\left[\sum_{i=1}^{n} F(h_{i})^{1-\ell}\right] \varphi_{n}^{[\ell]}(\chi) + \left[\sum_{i=1}^{n+1} F(h_{i})^{1-\ell}\right] Y_{n+1} K_{n+1}^{[\ell]}\left(\|\chi - X_{n+1}\|\right)}{\left[\sum_{i=1}^{n} F(h_{i})^{1-\ell}\right] f_{n}^{[\ell]}(\chi) + \left[\sum_{i=1}^{n+1} F(h_{i})^{1-\ell}\right] K_{n+1}^{[\ell]}\left(\|\chi - X_{n+1}\|\right)}$$

$$\varphi_{n}^{[\ell]}(\chi) = \frac{\sum_{i=1}^{n} \frac{Y_{i}}{F(h_{i})^{\ell}} K\left(\frac{\|\chi - X_{i}\|}{h_{i}}\right)}{\sum_{i=1}^{n} F(h_{i})^{1-\ell}} \qquad f_{n}^{[\ell]}(\chi) = \frac{\sum_{i=1}^{n} \frac{1}{F(h_{i})^{\ell}} K\left(\frac{\|\chi - X_{i}\|}{h_{i}}\right)}{\sum_{i=1}^{n} F(h_{i})^{1-\ell}} K_{i}^{[\ell]}(.) = \frac{K\left(\frac{.}{h_{i}}\right)}{F(h_{i})^{\ell} \sum_{i=1}^{i} F(h_{j})^{1-\ell}}$$

➤ Calcul du biais, de la variance, résultats de convergence presque sûre et de normalité asymptotique





Estimation de quantiles de régression par méthodes SVM (1)

- Travail réalisé avec Yousri Henchiri et Ali Gannoun (2010-2013)
- Problème de minimisation

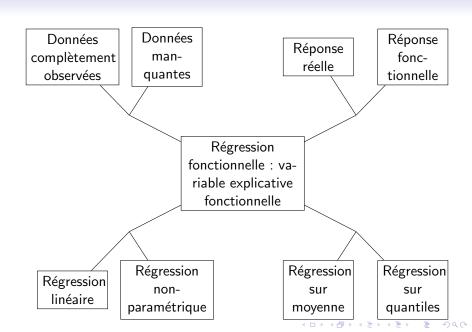
$$\min_{\Psi \in \mathcal{H}_{\mathcal{K}}} \left\{ \frac{1}{\ell} \sum_{i=1}^{\ell} \rho_{\tau} \left(Y_{i} - \Psi(X_{i}) \right) + \lambda \left\| \Psi \right\|_{\mathcal{H}_{\mathcal{K}}}^{2} \right\}$$

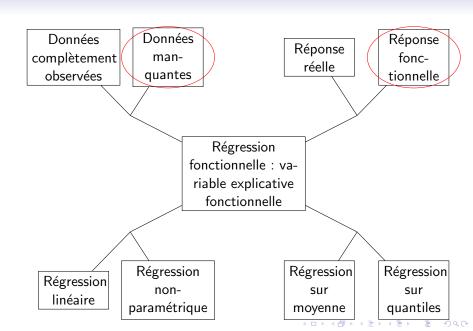
- $\rho_{\tau}(u) = |u| + (2\tau 1)u$: fonction de perte
- ullet : noyau associé à un RKHS $\mathcal{H}_{\mathcal{K}}$
- Problème reformulé :

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^{\ell}} \left\{ \frac{1}{\ell} \sum_{i=1}^{\ell} \rho_{\tau} \left(Y_{i} - \sum_{j=1}^{\ell} \alpha_{j} \mathcal{K}^{(d)}(X_{i}^{(d)}, X_{j}^{(d)}) \right) + \lambda \boldsymbol{\alpha}' \mathbf{K}^{(d)} \boldsymbol{\alpha} \right\}$$

Estimation de quantiles de régression par méthodes SVM (2)

- Résolution du problème de minimisation par moindres carrés itérés
- Extension au cas de plusieurs variables explicatives avec un modèle additif
- Résultats de convergence en probabilité avec une vitesse de convergence





Plan de l'exposé

Introduction

Imputation par régression dans le modèle linéaire fonctionnel

Modèle fonctionnel de convolution

Perspectives

Plan de l'exposé

Introduction

Imputation par régression dans le modèle linéaire fonctionnel

Modèle fonctionnel de convolution

Perspectives

Modèle linéaire fonctionnel

- ➡ Travail réalisé avec Yousri Henchiri (2019)
- → Modèle :

$$Y = \langle \theta, X \rangle + \varepsilon$$

- X: variable explicative fonctionnelle (à valeurs dans $\mathbb{L}^2([a;b])$)
- Y : variable réponse réelle
- lacktriangledown : fonction de régression appartenant à $\mathbb{L}^2([a;b])$
- $ightharpoonup \varepsilon$: bruit du modèle, indépendant de X

Données manquantes sur la réponse

➡ Indicateur de données observées :

$$\delta_i = \left\{ egin{array}{ll} 0 \; {
m si} \; Y_i \; {
m est \; manquant} \ 1 \; {
m si} \; Y_i \; {
m est \; observ\'e} \end{array}
ight.$$

Cadre Missing At Random (MAR) :

$$\mathbb{P}\left(\delta=1\mid X,Y\right)=\mathbb{P}\left(\delta=1\mid X\right)$$

Nombre de données manquantes dans l'échantillon :

$$m_n = \sum_{i=1}^n \mathbb{1}_{\{\delta_i = 0\}}$$

lacktriangle Objectif : reconstruction de l'échantillon, estimation de θ et prévision d'une nouvelle valeur de la réponse

Imputation des données manquantes par régression

Diagonalisation de l'opérateur de covariance empirique :

valeurs propres :
$$\widehat{\lambda}_1, \dots, \widehat{\lambda}_{k_n}$$
 fonctions propres : $\widehat{v}_1, \dots, \widehat{v}_{k_n}$

Imputation :

$$Y_{\ell,imp} = \frac{1}{n - m_n} \sum_{i=1}^{n} \sum_{j=1}^{k_n} \frac{\langle X_i, \widehat{v_j} \rangle \langle X_\ell, \widehat{v_j} \rangle \delta_i Y_i}{\widehat{\lambda}_j}$$

Estimation et prévision

Réponse complétée :

$$Y_i^{\star} = Y_i \delta_i + Y_{i,imp} (1 - \delta_i)$$

ightharpoonup Estimation de θ :

$$\widetilde{\theta} = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{k_n} \frac{\langle X_i, \widehat{v}_j \rangle Y_i^*}{\widehat{\lambda}_j} \widehat{v}_j$$

ightharpoonup Prévision pour une nouvelle entrée X_{new} :

$$\widehat{Y}_{new} = \langle X_{new}, \widetilde{\theta} \rangle = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{k_n} \frac{\langle X_i, \widehat{v}_j \rangle \langle X_{new}, \widehat{v}_j \rangle Y_i^{\star}}{\widehat{\lambda}_j}$$

Hypothèses

- (A.1) Il existe une fonction convexe λ telle que $\lambda(j) = \lambda_j$ pour tout $j \geq 1$ qui interpole de façon continue les valeurs propres de l'opérateur de covariance
- → (A.2) Il existe une constante C > 0 telle que :

$$\mathbb{E}\left(\|X\|^4\right) \leq C$$

→ (A.3) On a:

$$\lim_{n\to+\infty}\lambda_{k_n}k_n=0$$

Consistance de l'imputation

Sous les hypothèses (A.1)-(A.3), on a :

$$\mathbb{E}\left(Y_{\ell,imp} - \langle \theta, X_{\ell} \rangle\right)^{2} = \sum_{j=k_{n}+1}^{+\infty} \left(\Theta\Gamma^{1/2}v_{j}\right)^{2} + \frac{\sigma_{\varepsilon}^{2}k_{n}}{n-m_{n}} + o\left(\frac{k_{n}}{n-m_{n}}\right)$$

Vitesses particulières

▶ Vitesses pour $\mathbb{E}\left(Y_{\ell,imp} - \langle \theta, X_{\ell} \rangle\right)^2$ suivant les données manquantes :

$$\varphi = \varphi_{pol} = C_{\alpha} j^{-(2+\alpha)}$$

$$m_n := a_n n = o(n) \qquad \sim K_{\alpha} n^{-(1+\alpha)/(2+\alpha)}$$

$$m_n = \rho n \qquad \sim K_{\alpha} (1-\rho)^{1/(2+\alpha)} n^{-(1+\alpha)/(2+\alpha)}$$

$$u_n := n - m_n = o(n) \qquad \sim K_{\alpha} u_n^{-(1+\alpha)/(2+\alpha)}$$

Résultat sur la prévision

Sous les hypothèses (A.1)-(A.3), si de plus $m_n = o(n)$ et $m_n^2 k_n = O(n)$, alors

$$\mathbb{E}\Big(Y_{new} - \langle \theta, X_{new} \rangle\Big)^2 = \sum_{j=k_n+1}^{+\infty} \left(\Theta \Gamma^{1/2} v_j\right)^2 + O\left(\frac{k_n}{n}\right)$$

Perspectives (1)

- Travail actuellement en collaboration avec Chayma Daayeb et Ali Gannoun
- Données manquantes sur la variable explicative : reconstruction de courbes (Kneip et Liebl, 2020)
- Opérateur linéaire de reconstruction :

$$X_i^M(s) = L(X_i^O(t)) + Z_i(s)$$

➡ Estimation de L à l'aide des parties observées des courbes

Perspectives (2)

- Résultats obtenus : analogues à ceux présentés ici en tenant en compte de la reconstruction des données manquantes sur les courbes
- Autres perspectives :
 - Amélioration de l'imputation par imputation multiple
 - Généralisation à une variable d'intérêt fonctionnelle

Introduction

Imputation par régression dans le modèle linéaire fonctionnel

Modèle fonctionnel de convolution

Introduction

Imputation par régression dans le modèle linéaire fonctionnel

Modèle fonctionnel de convolution

Modèle fonctionnel de convolution

- Travail réalisé avec Tito Manrique et Nadine Hilgert (2013-2016)
- → Modèle :

$$Y(t) = \int_0^t \theta(s)X(t-s)ds + \varepsilon(t)$$

- → X : variable explicative fonctionnelle
- ➤ Y : variable réponse fonctionnelle
- $ightharpoonup \theta$: fonction de régression
- $ightharpoonup \varepsilon$: bruit du modèle, indépendant de X

Transformation de Fourier

Transformée de Fourier :

$$\mathcal{F}(f): \xi \longmapsto \mathcal{F}(f)(\xi) = \int_{-\infty}^{+\infty} f(x)e^{-i\xi x} dx$$

Transformée de Fourier inverse :

$$\mathcal{F}^{-1}(g): x \longmapsto \mathcal{F}^{-1}(g)(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} g(\xi) e^{ix\xi} d\xi$$

Modèle fonctionnel concurrent

→ Modèle :

$$\mathcal{Y}(\xi) = \beta(\xi)\mathcal{X}(\xi) + \mathcal{E}(\xi)$$

- \rightarrow $\mathcal{X} = \mathcal{F}(X)$: variable explicative
- $\rightarrow \mathcal{Y} = \mathcal{F}(Y)$: variable réponse
- $\Rightarrow \beta = \mathcal{F}(\theta)$: fonction de régression
- $ightharpoonup \mathcal{E} = \mathcal{F}(\varepsilon)$: bruit du modèle, indépendant de \mathcal{X}

Estimation

ightharpoonup Estimation de β :

$$\widehat{\beta}_n := \frac{\frac{1}{n} \sum_{i=1}^n \mathcal{Y}_i \, \mathcal{X}_i^*}{\frac{1}{n} \sum_{i=1}^n |\mathcal{X}_i|^2 + \frac{\lambda_n}{n}}$$

ightharpoonup Estimation de θ :

$$\widehat{\theta}_n := \mathcal{F}^{-1}(\widehat{\beta}_n) = \mathcal{F}^{-1}\left(\frac{\frac{1}{n}\sum_{i=1}^n \mathcal{Y}_i \, \mathcal{X}_i^*}{\frac{1}{n}\sum_{i=1}^n |\mathcal{X}_i|^2 + \frac{\lambda_n}{n}}\right)$$

Hypothèses

- lacktriangledown (A.1) $\overline{supp(|\mathcal{F}(\theta)|)} \subseteq \overline{supp(\mathbb{E}(|\mathcal{F}(X)|))}$
- $(A.2) \mathbb{E}\left(\left||\mathcal{X}|^2\right|^2\right) < \infty$
- $\qquad \qquad \bullet \quad \text{(A.3)} \ \left\| \frac{|\mathcal{F}(\theta)|}{\mathbb{E}(|\mathcal{F}(X)|^2)} \ 1\!\!1_{\overline{supp}(\mathcal{F}(\theta)) \setminus \partial(supp(\mathbb{E}(|\mathcal{F}(X)|)))} \right\| < +\infty$
- ▶ (A.4) Il existe des nombres réels positifs $\alpha > 0$, $M_0, M_1, M_2 > 0$ tels que pour tout $p \in C_{\theta, \partial X}$, il existe un voisinage ouvert $J_p \subset supp(|\mathcal{F}(\theta)|)$ pour lequel
 - Pour tout $t \in J_p$, $\mathbb{E}(|\mathcal{F}(X)|^2(t)) \geq |t-p|^{\alpha}$ et

$$\left\|\frac{1}{\mathbb{E}(|\mathcal{F}(X)|^2)}\right\|_{L^2(J_p\setminus\{p\})}\leq M_0$$

- $\sum_{p \in C_{\theta,\partial X}} \|\theta\|_{C_0(J_p)}^2 < M_1$
- $\frac{|\mathcal{F}(\theta)|}{\mathbb{E}(|\mathcal{F}(X)|^2)} \mathbb{1}_{supp(|\mathcal{F}(\theta)|)\setminus J} < M_2$, où $J := \bigcup_{p \in C_{\theta,\partial X}} J_p$

Résultat de convergence

Sous les hypothèses (A.1)-(A.4), si de plus $\lambda_n := n^{1-\frac{1}{4\alpha+2}}$, on a

$$\left\|\widehat{\theta}_{n}-\theta\right\|_{L^{2}}=O_{P}\left(n^{-\gamma}\right)$$

où
$$\gamma := \min \left[\frac{1}{2(2\alpha+1)}, \frac{1}{2} - \frac{1}{2(2\alpha+1)} \right]$$
 et $n^{-\gamma} = \max \left[\frac{\lambda_n}{n}, \frac{\sqrt{n}}{\lambda_n} \right]$

Introduction

Imputation par régression dans le modèle linéaire fonctionnel

Modèle fonctionnel de convolution

Introduction

Imputation par régression dans le modèle linéaire fonctionnel

Modèle fonctionnel de convolution

Modèles à variables latentes

		Variables latentes	
		Qualitatives	Quantitatives
Variables observées	Qualitatives	Modèles de	Modèles de
		classes latentes	traits latents
	Quantitatives	Modèles de	Modèles d'équations
		profils latents	structurelles

Problème : définition de la notion de densité pour des données fonctionnelles

Pseudo-densité

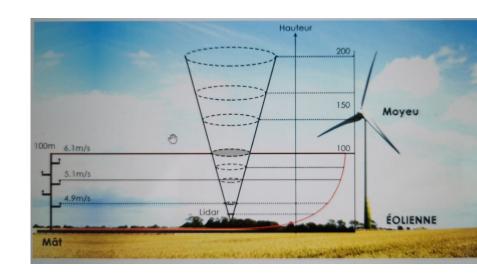
- Scores de la décomposition K-L de $X:(\xi_j)_{j\geq 1}$
- ightharpoonup Densités des scores : $(f_j)_{j\geq 1}$
- ▶ Probabilités de petites boules : $p(x|h) = \mathbb{P}(\|X x\| \le h)$
- Résultat de Delaigle et Hall (2010) :

$$\log p(x|h) = C_1(k,\lambda) + \sum_{j=1}^k \log f_j(x_j) + o(k)$$

Pseudo-log-densité :

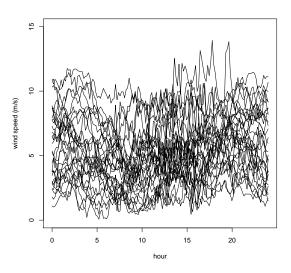
$$\ell(x|k) = \frac{1}{k} \sum_{j=1}^{k} \log f_j(x_j)$$

Données éoliennes (1)



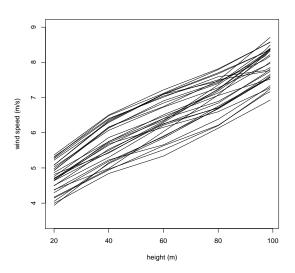
Données éoliennes (2)

Vitesse du vent fonction du temps



Données éoliennes (2)

Vitesse du vent fonction de la hauteur



Données éoliennes (3)

- Stage de M2 de Nizar Soilihi (2019) :
 - Modèle : $VV^{150} = \int_{20}^{100} \theta(h) VV(h) \mathrm{d}h + \varepsilon$
 - Estimateur : type ridge avec pas de mesure non constants
- Perspectives :
 - Autres modèles : modèle non linéaire, modèle complètement fonctionnel, . . .
 - Variables additionnelles : température, pression, ...
 - Données manquantes
 - Données circulaires