Estimation de l'intensité d'un processus ponctuel spatial bruité

Lionel Cucala

Journées MAS

Septembre 2006

Plan

Les processus ponctuels bruités.
La méthode de déconvolution.
L'étude asymptotique.
Le choix de la largeur de bande.
Une étude de simulation.

• Y processus ponctuel défini sur $X \subseteq \mathbb{R}^2$.

 Y processus ponctuel défini sur X ⊆ ℝ².
 On observe Z = {z₁, · · · , z_n} sur le domaine borné D ⊆ X tel que

 Y processus ponctuel défini sur X ⊆ ℝ².
 On observe Z = {z₁, · · · , z_n} sur le domaine borné D ⊆ X tel que

$$z_i = y_i + \epsilon_i, \quad i = 1, \cdots, n$$

 Y processus ponctuel défini sur X ⊆ ℝ².
 On observe Z = {z₁, · · · , z_n} sur le domaine borné D ⊆ X tel que

$$z_i = y_i + \epsilon_i, \quad i = 1, \cdots, n$$

$$\{\epsilon_i, i = 1, \cdots, n\} \ i.i.d. \sim g(.)$$

Y processus ponctuel défini sur X ⊆ ℝ².
On observe Z = {z₁, · · · , z_n} sur le domaine borné D ⊆ X tel que

$$z_i = y_i + \epsilon_i, \quad i = 1, \cdots, n$$

$$\{\epsilon_i, i = 1, \cdots, n\} i.i.d. \sim g(.)$$

 $\epsilon_i \perp y_i, \quad i = 1, \cdots, n$

Y processus ponctuel défini sur X ⊆ ℝ².
On observe Z = {z₁, · · · , z_n} sur le domaine borné D ⊆ X tel que

$$z_i = y_i + \epsilon_i, \quad i = 1, \cdots, n$$

$$\{\epsilon_i, i = 1, \cdots, n\} \ i.i.d. \sim g(.)$$

 $\epsilon_i \perp \!\!\!\perp y_i, \quad i = 1, \cdots, n$ But: estimer l'intensité $\lambda_Y(s)$ sur D.

Diggle (1985):

Diggle (1985):

$$\forall s \in \mathbb{R}^2, \hat{\lambda}_{Z,h}(s)$$

Correction au bord:

Correction au bord:

La méthode de déconvolution

La méthode de déconvolution

• On suppose $\forall t \in \mathbb{R}^2, |\mathcal{F}(g)(t)| > 0.$

La méthode de déconvolution

• On suppose $\forall t \in \mathbb{R}^2, |\mathcal{F}(g)(t)| > 0.$

$$z_{i} = y_{i} + \epsilon_{i}, \quad i = 1, \cdots, n$$

$$\Rightarrow \lambda_{Z} = \lambda_{Y} * g$$

$$\Rightarrow \mathcal{F}(\lambda_{Z})(.) = \mathcal{F}(\lambda_{Y})(.) \mathcal{F}(g)(.)$$

$$\Rightarrow \mathcal{F}(\lambda_{Y})(.) = \mathcal{F}(\lambda_{Z})(.) / \mathcal{F}(g)(.)$$

$$\Rightarrow \lambda_{Y} = \mathcal{F}^{-1} \big(\mathcal{F}(\lambda_{Z})(.) / \mathcal{F}(g)(.) \big)$$

Sans correction de bord:

Sans correction de bord:

$$\begin{split} \lambda_{Y,h}^*(s) &= \sum_{j=1}^n \frac{1}{(2\pi)^2} \int_{\mathbb{R}^2} e^{is't} \Big\{ \int_{\mathbb{R}^2} e^{-it'z} \frac{1}{h^2} K(\frac{z-z_j}{h}) \\ & \nu(dz) / \mathcal{F}(g)(t) \Big\} \nu(dt) \\ &= \sum_{j=1}^n \frac{1}{h^2} K_h^* \Big(\frac{s-z_j}{h} \Big), \end{split}$$

où $K_h^*(t) = \frac{1}{(2\pi)^2} \int_{\mathbb{R}^2} e^{it'y} \mathcal{F}(K)(y) / \mathcal{F}(g)(y/h) dy.$

Correction de bord a priori:

Correction de bord a priori:

 $\begin{aligned} \hat{\lambda}_{Y,h}(s) &= \mathcal{F}^{-1} \left(\mathcal{F}(\hat{\lambda}_{Z,h})(t) / \mathcal{F}(g)(t) \right)(s) \\ &= \sum_{j=1}^{n} \frac{1}{(2\pi)^2} \int_{\mathbb{R}^2} e^{is't} \left\{ \int_{G_h} \frac{e^{-it'z} \frac{1}{h^2} K\left(\frac{z-z_j}{h}\right)}{p_h(z)} \right. \\ &\left. \nu(dz) / \mathcal{F}(g)(t) \right\} \nu(dt). \end{aligned}$

Correction de bord a posteriori:

Correction de bord a posteriori:

$$\lambda_{Y,h}^{**}(s) = \frac{\lambda_{Y,h}^{*}(s)}{p_h^{*}(s)}.$$

Conclusions:

Conclusions:

Aucun estimateur asymptotiquement sans biais.

Conclusions:

Aucun estimateur asymptotiquement sans biais.On choisit:

$$\lambda_{Y,h}^{**}(s) = \frac{\sum_{j=1}^{n} \frac{1}{h^2} K_h^* \left(\frac{s-z_j}{h}\right)}{\int_D \frac{1}{h^2} K_h^* \left(\frac{s-u}{h}\right) \nu(du)}, \forall s \in G_h'.$$

Conclusions:

Aucun estimateur asymptotiquement sans biais.On choisit:

$$\lambda_{Y,h}^{**}(s) = \frac{\sum_{j=1}^{n} \frac{1}{h^2} K_h^* \left(\frac{s-z_j}{h}\right)}{\int_D \frac{1}{h^2} K_h^* \left(\frac{s-u}{h}\right) \nu(du)}, \forall s \in G_h'.$$

 asymptotiquement sans biais pour des processus de Poisson homogènes,

Conclusions:

Aucun estimateur asymptotiquement sans biais.On choisit:

$$\lambda_{Y,h}^{**}(s) = \frac{\sum_{j=1}^{n} \frac{1}{h^2} K_h^* \left(\frac{s-z_j}{h}\right)}{\int_D \frac{1}{h^2} K_h^* \left(\frac{s-u}{h}\right) \nu(du)}, \forall s \in G_h'.$$

 asymptotiquement sans biais pour des processus de Poisson homogènes,

• se ramène à l'estimateur de Diggle si erreur nulle.

Le choix de la largeur de bande

Le choix de la largeur de bande

Adaptation de la règle de référence gaussienne au cas bidimensionnel et bruité.

Un noyau à bande limitée

Un noyau à bande limitée

$$K_0(t) = \frac{48}{\pi} \frac{t^3 \cos(t) - 6t^2 \sin(t) + 15 \sin(t) - 15t \cos(t)}{t^7}$$

Un noyau à bande limitée

$$K_0(t) = \frac{48}{\pi} \frac{t^3 \cos(t) - 6t^2 \sin(t) + 15 \sin(t) - 15t \cos(t)}{t^7}$$

Figure 3: Profil du noyau K_0

$$\mathcal{F}(K)(t) = (1 - t_1^2)^3 (1 - t_2^2)^3 \mathbb{1}_{[-1,1]^2}(t).$$

$$\mathcal{F}(K)(t) = (1 - t_1^2)^3 (1 - t_2^2)^3 \mathbb{1}_{[-1,1]^2}(t).$$

 $\mathcal{F}(g)$ généralement explicite.

$$\mathcal{F}(K)(t) = (1 - t_1^2)^3 (1 - t_2^2)^3 \mathbb{1}_{[-1,1]^2}(t).$$

 $\mathbf{P}(g)$ généralement explicite.

Les transformées de Fourier inverses sont obtenues par procédure numérique (Simpson).

 $\{y_i, i = 1, \cdots, n\} \text{ issues d'un P.P. inhomogène d'intensité} \\ \lambda_Y(s) = C \left[1 + 0.7 \cos\left(2\pi(||s|| - 0.5)\right)\right].$

 $\{y_i, i = 1, \cdots, n\} \text{ issues d'un P.P. inhomogène d'intensité} \\ \lambda_Y(s) = C \left[1 + 0.7 \cos\left(2\pi(||s|| - 0.5)\right)\right].$

•
$$\{\epsilon_i, i=1,\cdots,n\}$$
 i.i.d. $\sim g$.

 $\{y_i, i = 1, \cdots, n\} \text{ issues d'un P.P. inhomogène}$ d'intensité $\lambda_Y(s) = C \left[1 + 0.7 \cos\left(2\pi(||s|| - 0.5)\right)\right].$

•
$$\{\epsilon_i, i=1,\cdots,n\}$$
 i.i.d. $\sim g$.

$$z_i = y_i + \epsilon_i, \quad i = 1, \cdots, n$$

Notons

Notons

$$ISE = \int_{[0,1]^2} \left(\hat{\lambda}_{Z,h_{opt}} - \lambda_Y(s) \right)^2 \nu(ds)$$

Notons

$$ISE = \int_{[0,1]^2} \left(\hat{\lambda}_{Z,h_{opt}} - \lambda_Y(s) \right)^2 \nu(ds)$$
$$ISE^* = \int_{[0,1]^2} \left(\lambda^*_{Y,h^*}(s) - \lambda_Y(s) \right)^2 \nu(ds)$$

Notons

$$\begin{split} ISE &= \int_{[0,1]^2} \left(\hat{\lambda}_{Z,h_{opt}} - \lambda_Y(s) \right)^2 \nu(ds) \\ ISE^* &= \int_{[0,1]^2} \left(\lambda_{Y,h^*}^*(s) - \lambda_Y(s) \right)^2 \nu(ds) \\ ISE^{**} &= \int_{[0,1]^2} \left(\lambda_{Y,h^*}^{**}(s) - \lambda_Y(s) \right)^2 \nu(ds) \end{split}$$

Table 3: Erreur gaussienne, σ =0.02

	ISE	ISE^*	ISE**
1er quartile ($*10^3$)	1.0600	1.6745	0.9038
médiane (*10 ³)	1.3939	1.9613	1.0279
3ème quartile ($*10^3$)	1.5899	2.2432	1.3158

Table 5: Erreur gaussienne, σ =0.02

	ISE	ISE^*	ISE**
1er quartile ($*10^3$)	1.0600	1.6745	0.9038
médiane (*10 ³)	1.3939	1.9613	1.0279
3ème quartile ($*10^3$)	1.5899	2.2432	1.3158

Table 6: Erreur gaussienne, σ =0.05

	ISE	ISE^*	ISE**
1er quartile ($*10^3$)	0.8185	1.4153	0.6655
médiane ($*10^3$)	1.2474	1.7199	0.9298
3ème quartile ($*10^3$)	1.5281	1.8908	1.2138

MAS 2006 - p.16/18

Table 9: Erreur laplacienne, σ =0.02

	ISE	ISE^*	ISE**
1er quartile ($*10^3$)	1.0444	1.4676	0.8274
médiane (*10 ³)	1.4129	1.7275	1.0025
3ème quartile ($*10^3$)	2.1357	1.9753	1.2334

Table 11: Erreur laplacienne, σ =0.02

	ISE	ISE^*	ISE**
1er quartile ($*10^3$)	1.0444	1.4676	0.8274
médiane (*10 ³)	1.4129	1.7275	1.0025
3ème quartile ($*10^3$)	2.1357	1.9753	1.2334

Table 12: Erreur laplacienne, σ =0.05

	ISE	ISE^*	ISE**
1er quartile ($*10^3$)	0.7869	1.1814	0.7689
médiane (*10 ³)	1.4859	1.4223	1.1308
3ème quartile ($*10^3$)	2.0375	1.5114	1.4210

MAS 2006 - p.17/18

Figure 3 : En haut à gauche: Contours de λ_Y . En haut droite: Contours de $\hat{\lambda}_{Z,h_{opt}}$. En bas à gauche: Contours de λ_{Y,h^*}^* . En bas à droite: Contours de λ_{Y,h^*}^{**}