Intensity estimation for spatial point processes observed with noise

Lionel Cucala

METMA

September 2006

Outline

Perturbed point processes.
The deconvolution method.
An asymptotic study.
The bandwidth selection procedure.
A simulation study.

• Y point process defined on $X \subseteq \mathbb{R}^2$.

$$z_i = y_i + \epsilon_i, \quad i = 1, \cdots, n$$

$$z_i = y_i + \epsilon_i, \quad i = 1, \cdots, n$$

$$\{\epsilon_i, i = 1, \cdots, n\} \ i.i.d. \sim g(.)$$

$$z_i = y_i + \epsilon_i, \quad i = 1, \cdots, n$$

$$\{\epsilon_i, i = 1, \cdots, n\} i.i.d. \sim g(.)$$

$$\epsilon_i \perp y_i, \quad i=1,\cdots,n$$

Y point process defined on X ⊆ ℝ².
We observe Z = {z₁, · · · , z_n} on the bounded domain D ⊆ X such that

$$z_i = y_i + \epsilon_i, \quad i = 1, \cdots, n$$

$$\{\epsilon_i, i = 1, \cdots, n\} \ i.i.d. \sim g(.)$$

 $\epsilon_i \perp y_i, \quad i = 1, \cdots, n$ Goal: estimate $\lambda_Y(s)$ for every point $s \in D$.

Diggle (1985):

Diggle (1985):

$$\forall s \in \mathbb{R}^2, \hat{\lambda}_{Z,h}(s)$$

METMA 2006 – p.4/18

Edge correction:

Edge correction:

Deconvolution method

Deconvolution method

Assume $\forall t \in \mathbb{R}^2$, $|\mathcal{F}(g)(t)| > 0$.

Deconvolution method

Assume $\forall t \in \mathbb{R}^2, |\mathcal{F}(g)(t)| > 0.$

 $z_{i} = y_{i} + \epsilon_{i}, \quad i = 1, \cdots, n$ $\Rightarrow \lambda_{Z} = \lambda_{Y} * g$ $\Rightarrow \mathcal{F}(\lambda_{Z})(.) = \mathcal{F}(\lambda_{Y})(.) \mathcal{F}(g)(.)$ $\Rightarrow \mathcal{F}(\lambda_{Y})(.) = \mathcal{F}(\lambda_{Z})(.) / \mathcal{F}(g)(.)$ $\Rightarrow \lambda_{Y} = \mathcal{F}^{-1}(\mathcal{F}(\lambda_{Z})(.) / \mathcal{F}(g)(.))$

No edge-correction:

No edge-correction:

$$\begin{split} \lambda_{Y,h}^*(s) &= \sum_{j=1}^n \frac{1}{(2\pi)^2} \int_{\mathbb{R}^2} e^{is't} \Big\{ \int_{\mathbb{R}^2} e^{-it'z} \frac{1}{h^2} K\Big(\frac{z-z_j}{h}\Big) \\ & \nu(dz) / \mathcal{F}(g)(t) \Big\} \nu(dt) \\ &= \sum_{j=1}^n \frac{1}{h^2} K_h^*\Big(\frac{s-z_j}{h}\Big), \end{split}$$

where $K_h^*(t) = \frac{1}{(2\pi)^2} \int_{\mathbb{R}^2} e^{it'y} \mathcal{F}(K)(y) / \mathcal{F}(g)(y/h) dy$.

A priori edge-correction:

A priori edge-correction:

 $\begin{aligned} \hat{\lambda}_{Y,h}(s) &= \mathcal{F}^{-1} \left(\mathcal{F}(\hat{\lambda}_{Z,h})(t) / \mathcal{F}(g)(t) \right)(s) \\ &= \sum_{j=1}^{n} \frac{1}{(2\pi)^2} \int_{\mathbb{R}^2} e^{is't} \left\{ \int_{G_h} \frac{e^{-it'z} \frac{1}{h^2} K\left(\frac{z-z_j}{h}\right)}{p_h(z)} \right. \\ &\left. \nu(dz) / \mathcal{F}(g)(t) \right\} \nu(dt). \end{aligned}$

A posteriori edge-correction:

A posteriori edge-correction:

$$\lambda_{Y,h}^{**}(s) = \frac{\lambda_{Y,h}^*(s)}{p_h^*(s)}.$$

The asymptotic study

The asymptotic study

Conclusions:

The asymptotic study

Conclusions:

No estimator is asymptotically unbiased.

Conclusions:

No estimator is asymptotically unbiased.

We choose:

$$\lambda_{Y,h}^{**}(s) = \frac{\sum_{j=1}^{n} \frac{1}{h^2} K_h^* \left(\frac{s-z_j}{h}\right)}{\int_D \frac{1}{h^2} K_h^* \left(\frac{s-u}{h}\right) \nu(du)}, \forall s \in G_h'.$$

Conclusions:

No estimator is asymptotically unbiased.

We choose:

$$\lambda_{Y,h}^{**}(s) = \frac{\sum_{j=1}^{n} \frac{1}{h^2} K_h^* \left(\frac{s-z_j}{h}\right)}{\int_D \frac{1}{h^2} K_h^* \left(\frac{s-u}{h}\right) \nu(du)}, \forall s \in G_h'.$$

asymptotically unbiased if homogeneous Poisson process,

Conclusions:

No estimator is asymptotically unbiased.

We choose:

$$\lambda_{Y,h}^{**}(s) = \frac{\sum_{j=1}^{n} \frac{1}{h^2} K_h^* \left(\frac{s-z_j}{h}\right)}{\int_D \frac{1}{h^2} K_h^* \left(\frac{s-u}{h}\right) \nu(du)}, \forall s \in G_h'.$$

asymptotically unbiased if homogeneous Poisson process,
reduces to Diggle estimator when no measurement error.

The bandwidth selection

METMA 2006 – p.11/18

The bandwidth selection

Adaptation of the gaussian reference rule to the bidimensional noisy case.

A band-limited kernel

A band-limited kernel

$$K_0(t) = \frac{48}{\pi} \frac{t^3 \cos(t) - 6t^2 \sin(t) + 15 \sin(t) - 15t \cos(t)}{t^7}$$

A band-limited kernel

$$K_0(t) = \frac{48}{\pi} \frac{t^3 \cos(t) - 6t^2 \sin(t) + 15 \sin(t) - 15t \cos(t)}{t^7}$$

Figure 3: Profile of the kernel K_0

$$\mathcal{F}(K)(t) = (1 - t_1^2)^3 (1 - t_2^2)^3 \mathbb{1}_{[-1,1]^2}(t).$$

$$\mathcal{F}(K)(t) = (1 - t_1^2)^3 (1 - t_2^2)^3 \mathbb{1}_{[-1,1]^2}(t).$$

 $\mathcal{F}(g)$ usually explicit.

$$\mathcal{F}(K)(t) = (1 - t_1^2)^3 (1 - t_2^2)^3 \mathbb{1}_{[-1,1]^2}(t).$$

- $\square \mathcal{F}(g)$ usually explicit.
- Inverse Fourier transforms obtained by a numerical Simpson procedure

 $\{y_i, i = 1, \cdots, n\} \text{ from an inhomogeneous P.P with intensity} \\ \lambda_Y(s) = C [1 + 0.7 \cos (2\pi(||s|| - 0.5))].$

 $\{y_i, i = 1, \cdots, n\} \text{ from an inhomogeneous P.P with intensity} \\ \lambda_Y(s) = C [1 + 0.7 \cos (2\pi(||s|| - 0.5))].$

•
$$\{\epsilon_i, i=1,\cdots,n\}$$
 i.i.d. $\sim g$.

 $\{y_i, i = 1, \cdots, n\} \text{ from an inhomogeneous P.P with intensity} \\ \lambda_Y(s) = C [1 + 0.7 \cos (2\pi(||s|| - 0.5))].$

•
$$\{\epsilon_i, i=1,\cdots,n\}$$
 i.i.d. $\sim g$.

$$z_i = y_i + \epsilon_i, \quad i = 1, \cdots, n$$

$$ISE = \int_{[0,1]^2} \left(\hat{\lambda}_{Z,h_{opt}} - \lambda_Y(s)\right)^2 \nu(ds)$$

$$ISE = \int_{[0,1]^2} \left(\hat{\lambda}_{Z,h_{opt}} - \lambda_Y(s) \right)^2 \nu(ds)$$
$$ISE^* = \int_{[0,1]^2} \left(\lambda^*_{Y,h^*}(s) - \lambda_Y(s) \right)^2 \nu(ds)$$

$$\begin{split} ISE &= \int_{[0,1]^2} \left(\hat{\lambda}_{Z,h_{opt}} - \lambda_Y(s) \right)^2 \nu(ds) \\ ISE^* &= \int_{[0,1]^2} \left(\lambda^*_{Y,h^*}(s) - \lambda_Y(s) \right)^2 \nu(ds) \\ ISE^{**} &= \int_{[0,1]^2} \left(\lambda^{**}_{Y,h^*}(s) - \lambda_Y(s) \right)^2 \nu(ds). \end{split}$$

Table 3: Gaussian error, σ =0.02

	ISE	ISE^*	ISE^{**}
1st quartile ($*10^3$)	1.0600	1.6745	0.9038
median ($*10^3$)	1.3939	1.9613	1.0279
3rd quartile ($*10^3$)	1.5899	2.2432	1.3158

Table 5: Gaussian error, σ =0.02

	ISE	ISE^*	ISE^{**}
1st quartile ($*10^3$)	1.0600	1.6745	0.9038
median ($*10^3$)	1.3939	1.9613	1.0279
3rd quartile ($*10^3$)	1.5899	2.2432	1.3158

Table 6: Gaussian error, σ =0.05

	ISE	ISE^*	ISE^{**}
1st quartile ($*10^3$)	0.8185	1.4153	0.6655
median ($*10^3$)	1.2474	1.7199	0.9298
3rd quartile ($*10^3$)	1.5281	1.8908	1.2138

METMA 2006 – p.16/18

Table 9: Laplace error, σ =0.02

	ISE	ISE^*	ISE^{**}
1st quartile ($*10^3$)	1.0444	1.4676	0.8274
median ($*10^3$)	1.4129	1.7275	1.0025
3rd quartile ($*10^3$)	2.1357	1.9753	1.2334

Table 11: Laplace error, σ =0.02

	ISE	ISE^*	ISE^{**}
1st quartile ($*10^3$)	1.0444	1.4676	0.8274
median ($*10^3$)	1.4129	1.7275	1.0025
3rd quartile ($*10^3$)	2.1357	1.9753	1.2334

Table 12: Laplace error, σ =0.05

	ISE	ISE^*	ISE^{**}
1st quartile ($*10^3$)	0.7869	1.1814	0.7689
median ($*10^{3}$)	1.4859	1.4223	1.1308
3rd quartile ($*10^3$)	2.0375	1.5114	1.4210

METMA 2006 – p.17/18

Figure 3 : Up-left figure: Contours of λ_Y . Up-right figure: Contours of $\hat{\lambda}_{Z,h_{opt}}$. Down-left figure: Contours of λ^*_{Y,h^*} Down-right figure: Contours of λ^{**}_{Y,h^*}