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Finite Element Exterior Calculus in a nutshell

FEEC is a prime example of a structure-preserving discretization for PDEs.

It applies to the many PDE problems that relate to a Hilbert complex,
with the resulting cohomology and Hodge theory.

FEEC designs discretizations that faithfully capture these structures
at the discrete level, and, in this way, achieve stable and convergent
numerical methods.

DNA plenary @ ICM 2002

DNA, Falk, Winther: Acta Numerica 2006;
Bulletin of the AMS 2010

Numerical analysis antecedents:
Raviart-Thomas 1975; Nédélec 1980, 1986;
Bossavit 1988; Hiptmair 2000

Topology antecedents: Whitney 1957;
Sullivan 1978; Dodziuk, Patodi 1976
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Eigenvalues of the Laplacian

minimize
∫
| grad u|2 subject to

∫
|u|2 = 1, u = 0 on boundary

Finite element discretization

λ1 = 9.279

9.190

λ2 = 11.245

11.166

λ3 = 12.453

12.327

λ4 = 15.835

15.678

4K P1 elements:

16K P4 elements:
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Eigenvalues of the 1-form Laplacian

minimize
∫
(| curl u|2 + |div u|2) subject to

∫
|u|2 = 1, u · n = curl u = 0 on bdry

λ1 = 1.94 λ2 = 2.02 λ3 = 2.26P1 4K elts

λ1 = 0 λ1 = 0.617 λ2 = 0.658FEEC
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The Maxwell eigenvalue problem with P1 elements

minimize
∫
| curl u|2 subject to

∫
|u|2 = 1, . . .

For Ω = (0, π)× (0, π), λ = m2 + n2, m, n > 0

elts: 16 64 256 1024 4096

2.2606 2.0679 2.0171 2.0043 2.0011
4.8634 5.4030 5.1064 5.0267 5.0067
5.6530 5.4030 5.1064 5.0267 5.0067
5.6530 5.6798 5.9230 5.9807 5.9952

11.3480 9.0035 8.2715 8.0685 8.0171
11.3480 11.3921 10.4196 10.1067 10.0268
12.2376 11.4495 10.4197 10.1067 10.0268
12.2376 11.6980 13.7043 13.1804 13.0452
12.9691 11.6980 13.7043 13.1804 13.0452
13.9508 15.4308 13.9669 14.7166 14.9272

Boffi–Gastaldi

!!

!!
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Discretization

A key result of FEEC are conditions on the finite element spaces
required for stable discretizations of problems arising from Hilbert
complexes. The key requirements are that

The subspaces form a Hilbert subcomplex.
There exist bounded commuting projections from the Hilbert
complex onto the subcomplex.

These conditions have a host of desirable consequences.

In the case of finite elements for the de Rham complexes, such spaces
can be constructed systematically, giving rise to the Periodic Table of
the Finite Elements.
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Structure-preserving finite elements for the de Rham complex

http://umn.edu/∼arnold/femtable/
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FEEC elements

element shape: tetrahedron

shape functions: P2Λ2 (quadratic polynomial 2-forms)

DOFs: 6 per facet + 6 per tetrahedron

total DOFs: 30 per tetrahedron

FEEC name: P2Λ2(∆3)

Traditional name: N2f
2 (Nédélec face elements of

2nd kind of deg 2)

The construction of such
structure-preserving elements has
involved techniques from many
branches of mathematics:

numerical analysis
functional analysis
algebraic topology
differential geometry
homological algebra
representation theory

Key tools:

Hodge theory

the Koszul complex

chain homotopy

Bernstein–Gelfand–Gelfand resolution

10 / 36
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The de Rham complex

The de Rham complex on a bounded Lipschitz domain Ω ⊂ Rn:

0 Λ0(Ω) Λ1(Ω) · · · Λn(Ω) 0d0 d1 dn−1

Λk(Ω) := C∞(Ω, AltkRn) = C∞(Ω)⊗AltkRn, d = exterior derivative

dk ◦ dk−1 = 0

De Rham cohomology:

H k = N (dk)/R(dk−1), dim = kth Betti number

In 3D, via scalar and vector proxies (V = R3):

0 C∞ C∞ ⊗V C∞ ⊗V C∞ 0
grad curl div
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Complexes and PDEs

The de Rham complex underlies many of important PDEs of
mathematical physics:

Laplacian, heat equation, wave equation, nonlinear variants, . . .
Maxwell’s equations, MHD, curl curl problems, . . .
Darcy flow, div–curl problems. . .

Other PDEs require other complexes:

• Hessian complex (elastic plates, Einstein–Bianchi eqs of GR)

0 C∞ C∞ ⊗ S C∞ ⊗T C∞ ⊗V 0hess curl div

symm. matrices trace-free matrices

• Elasticity complex (elasticity, plasticity, dislocations, GR)

0 C∞ ⊗V C∞ ⊗ S C∞ ⊗ S C∞ ⊗V 0def inc div

symm.grad curl T curl matrix div

• div div complex, grad curl complex, . . .
13 / 36



The Sobolev–de Rham complex

There is a bounded Hilbert complex version of the de Rham complex
for each Sobolev index s ∈ R:

0 HsΛ0 Hs−1Λ1(Ω) · · · Hs−nΛn 0d d d

These encode that d is 1st order. They all give the same cohomology.

THEOREM (UNIFORM REP’N OF COHOMOLOGY, COSTABEL–MCINTOSH ’10)

Let Ω be a bounded Lipschitz domain. Then there exist finite dimensional
spaces Hk

∞ ⊂ Λk(Ω), k = 0, . . . , n, independent of s, which represent the
cohomology of every Sobolev–de Rham complex:

N (d, HsΛk) = R(d, Hs+1Λk−1)⊕Hk
∞.

14 / 36



The L2 de Rham complex

Another variant, the L2 de Rham complex, is most relevant to FEEC:

0 L2Λ0 L2Λ1 · · · L2Λn 0d0 d1 dn−1

This is an unbounded Hilbert complex:

dk : L2Λk → L2Λk+1 is a closed densely defined operator. It’s domain is

HΛk = { u ∈ L2Λk | du ∈ L2Λk+1 }.

The L2 de Rham complex again gives the same de Rham cohomology.

It also gives rise to a dual complex:

0 L2Λ0 L2Λ1 · · · L2Λn 0
d∗1 d∗2 d∗n

Using it we obtain an elliptic PDE at each level, the Hodge Laplacian:

dk−1d∗k + d∗k+1dk : L2Λk → L2Λk.
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Closed Hilbert complexes

A crucial property for a Hilbert complex is that it be closed, i.e., that
each d has closed range.

We shall see that the de Rham complex is closed. This has many
consequences, crucial to FEEC:

Harmonic forms: N (d, HΛk) = R(d, HΛk−1)⦹H, H = N ∩R⊥

Duality: N (d, HΛk)⊥ = R(d∗, H∗Λk+1)

Hodge decomposition: L2Λk = R(d, HΛk−1)⦹H⦹R(d∗, H∗Λk+1)

Poincaré inequality: ‖u‖ ≤ c‖du‖ ∀u ⊥ N (d)

Hodge Laplacian BVP: dd∗u + d∗d u = f
is well-posed up to harmonic forms

16 / 36



Finite dimensional cohomology implies closed range

Directly proving that a Hilbert complex is closed can be difficult. But
it is sufficient to prove that the cohomology is finite-dimensional.

THEOREM

If S : X→ Y is a bounded linear operator on Banach spaces and
dim(Y/R(S)) < ∞, thenR(S) is closed in Y.

COROLLARY

If a complex X S−→ Y T−→ Z has finite dimensional cohomology, thenR(S) is
closed in Y.

17 / 36



Consequences of the Costabel–McIntosh theorem

For the de Rham complex, all the needed properties are consequences
of the Costabel–McIntosh theorem:

Cohomology dimensions are finite & independent of the smoothness.

The Sobolev–de Rham complexes are closed for all s.

The L2 de Rham complex is closed.
=⇒ harmonic forms, Hodge decomp., Poincaré ineq.,

well-posed Hodge Laplacian

Regular potentials: dHΛk = dH1Λk.

Regular decomposition: HΛk = dH1Λk−1 + H1Λk

Compactness property: HΛk ∩H∗Λk ↪→ L2Λk is compact

18 / 36
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Systematic derivation of complexes and their properties

What other complexes are there? Do they possess the properties
needed for their analysis and discretization? E.g., are they closed? Is
the cohomology independent of the Sobolev regularity?

Inspired by the BGG resolution, we give a systematic derivation
of numerous complexes in n-dimensions.

Starting with two input Hilbert complexes satisfying certain
assumptions, we construct an output complex which inherits
their properties.

The cohomology dimensions of the output complex ≤ the sum of
those of the original complexes.

With an additional assumption, we get equality. In fact, the
output cohomology spaces are isomorphic to the direct sum of
those of the input complexes.

20 / 36



Complexes from complexes in four easy steps

1. Input complexes: two bounded Hilbert complexes,

0 Z0 Z1 · · · Zn 0

0 Z̃0 Z̃1 · · · Z̃n 0

D0 D1 Dn−1

D̃0 D̃1 D̃n−1

where
Zk = Vk ⊗Ek, Z̃k = Ṽk ⊗ Ẽk

for Hilbert spaces Vk, Ṽk = Vk+1 and finite dimensional Hilbert spaces
Ek, Ẽk.

For example, if the Z complex is the Sobolev–de Rham complex, then
Zk = Hs−kΛk, so Vk = Hs−k and Ek = Altk.

21 / 36



Linking maps

2. We also require linear operators sk : Ẽk → Ek+1 from which we
obtain linking maps Sk = id⊗ sk : Z̃k → Zk+1.

0→ V0 ⊗E0 V1 ⊗E1 · · · Vn ⊗En → 0

0→ Ṽ0 ⊗ Ẽ0 Ṽ1 ⊗ Ẽ1 · · · Ṽn ⊗ Ẽn → 0

D0 D1 Dn−1

D̃0

S0

D̃1

S1

D̃n−1

Sn−1

We further require

Anticommutivity: Sk+1D̃k = −Dk+1Sk

Injectivity/surjectivity: ∃ J < n s.t. sk is

{
injective, 0 ≤ k ≤ J,
surjective k ≥ J

22 / 36



Reduction

3. Reduce the first J + 1 spaces of the first complex from Zk = Vk ⊗Ek

to Vk ⊗Fk where Fk = R(sk−1)⊥ ⊂ Ek is the cokernel.

0 V0 ⊗F0 V1 ⊗F1 · · · VJ ⊗FJPFD0 PFD1 PFDJ−1

Similarly, reduce the final n− J spaces of the second complex from
Z̃k = Vk+1 ⊗ Ẽk to Vk+1 ⊗ F̃k where F̃k = N (sk) ⊂ Ẽk:

ṼJ+1 ⊗ F̃J+1 ṼJ+2 ⊗ F̃J+2 · · · Ṽn ⊗ F̃n 0D̃J+1 D̃J+2 D̃J

23 / 36



Splicing

4. Finally, splice together the two sequences

0 V0 ⊗F0 V1 ⊗F1 · · · VJ ⊗FJPFD0 PFD1 PFDJ−1

ṼJ+1 ⊗ F̃J+1 ṼJ+2 ⊗ F̃J+2 · · · Ṽn ⊗ F̃n 0D̃J+1 D̃J+2 D̃J

through this diagram:

VJ ⊗FJ VJ+1 ⊗EJ+1

ṼJ ⊗ ẼJ ṼJ+1 ⊗ F̃J+1

DJ

D̃J

SJ
=⇒ VJ ⊗FJ ṼJ+1 ⊗ F̃J+1D̃J(SJ)−1DJ

24 / 36



Summary of the construction

0→ V0 ⊗E0 · · · VJ ⊗EJ VJ+1 ⊗EJ+1 · · · Vn ⊗En → 0

0→ Ṽ0 ⊗ Ẽ0 · · · ṼJ ⊗ ẼJ ṼJ+1 ⊗ ẼJ+1 · · · Ṽn ⊗ Ẽn → 0

1. Input complexes (of tensor product form)

2. Linking maps (anticommuting and J-surjective/injective)

3. Space reduction

4. Splicing
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Cohomology of the output complex

THEOREM

The dimension of the kth cohomology space of the output complex is bounded
by the sum of the dimensions of the kth cohomology spaces of the two input
complexes. Equality holds iff the linking maps induce the zero map on
cohomology, i.e., Sk(N (D̃k)) ⊂ R(Dk).

COROLLARY

If the input complexes have finite dimensional cohomology, so does the
output complex. Consequently, it has closed ranges.

THEOREM

With an additional assumption (∃Ki : Z̃i → Zi with S = DK− KD̃), there
is a cochain map from the direct sum of the input complexes to the output
complexes which induces an isomorphism on cohomology.

26 / 36
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The first family of applications

Fix 0 ≤ J < n. For the two input complexes take Sobolev–de Rham
complexes tensored with AltJ and AltJ+1, respectively:

0→ HsΛ0 ⊗AltJ Hs−1Λ1 ⊗AltJ · · · Hs−nΛn ⊗AltJ → 0

0→ Hs−1Λ0 ⊗AltJ+1 Hs−2Λ1 ⊗AltJ+1 · · · Hs−n−1Λn ⊗AltJ+1 → 0

d d d

d d d

Vi = Ṽi−1 = Hs−i, Ei = Alti ⊗AltJ, Ẽi = Alti ⊗AltJ+1

The linking maps si : Alti ⊗AltJ+1 → Alti+1 ⊗AltJ are naturally
defined in terms of components:

Mk1···ki︸︷︷︸
antisym

l1···lJ+1︸ ︷︷ ︸
antisym

si
7−→ M [k1···kil1]︸ ︷︷ ︸

antisymmetrize

l2···lJ+1

28 / 36



The linking maps

THEOREM

1. The algebraic maps si : Alti ⊗AltJ+1 → Alti+1 ⊗AltJ are injective for
i ≤ J and surjective for i ≥ J.

2. The maps Si = id⊗si satisfy the anticommutativity and
J-injectivity/surjectivity assumptions.

The si in terms of vector proxies. In 3D, Altk, k = 0, 1, 2, 3, identifies with R, V, V, R.

J\ i 0 1 2 3

0 R V V R

1 V M M V

2 V M M V

3 R V V R

id vskw tr

mskw S1 vskw

ι mskw id

vskw : M→ V, axial vector of the skew part

tr : M→ R, trace

mskw : V→M, axial vector to matrix

ι : R→M, scalar to scalar matrix: c 7→ c I

S1 : M→M, S1τ = τT − tr(τ)I (bijection)
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The output complexes in 3D

Hs ⊗R Hs−1 ⊗V Hs−2 ⊗V Hs−3 ⊗R

Hs−1 ⊗V Hs−2 ⊗M Hs−3 ⊗M Hs−4 ⊗V

Hs−2 ⊗V Hs−3 ⊗M Hs−4 ⊗M Hs−5 ⊗V

Hs−3 ⊗R Hs−4 ⊗V Hs−5 ⊗V Hs−6 ⊗R

30 / 36
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Complexes from complexes from complexes

We can iterate this procedure, using the output complexes as inputs to derive
more complexes. For example,

elasticity complex + Hessian complex =⇒ conformal elasticity complex

which involves the deviatoric strain tensor dev def u, and a third order
differential operator known as the Cotton tensor and arising in relativity.

0→ Hs ⊗V Hs−1 ⊗ S Hs−3 ⊗ S Hs−4 ⊗V→ 0

0→ Hs−1 Hs−3 ⊗ S Hs−4 ⊗T Hs−5 ⊗V→ 0

def inc div

hess

ι

curl

S1

div

vskw

⇓
0→ Hs ⊗V Hs−1 ⊗ (S∩T) Hs−4 ⊗ (S∩T) Hs−5 ⊗V→ 0dev def Cott div

The first Poincaré inequality for this complex is a strengthened Korn’s inequality:

‖u‖H1 ≤ c(‖u‖L2 + ‖dev def u‖L2 )
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A 2D example, continuous and discrete

The construction gives us tools to extend the periodic table of finite
elements to more complexes. We end with a simple example.

Beginning with an H2 de Rham complex and an H1 vector-valued
de Rham complex, we get a 2D elasticity complex:

0 H2 H1 ⊗V L2 0

0 H1 ⊗V L2 ⊗M H−1 ⊗V 0

curl div

curl

id

div

skw

⇓
0 H2 L2 ⊗ S H−1 ⊗V 0curl curl div

The corresponding L2 Hilbert complex is what we need to discretize
mixed elasticity finite elements.

0 H2 H(div, S) L2 ⊗V 0curl curl div
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Finite element discretization

Discretize with finite elements on a triangulation:

H2: Argyris quintic 1968 (P5)
H1 ⊗V: 2 copies of Hermite quartic elements (P4 ⊗V)
L2: piecewise cubics with vertex continuity (P3)
L2 ⊗M: 2 copies of “nonstandard” variant of BDM, Stenberg 2010 (P3 ⊗M)
H−1 ⊗V: 2 copies of DG2 (P2 ⊗V)

0 ×2 0

0 ×2 ×2 ×2 0

curl div

curl

id

div

skw

The top sequence was studied by Falk and Neilan 2013 as a discretization for
the Stokes complex.
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The resulting complex

The resulting output complex is a discretization of the 2D elasticity
complex.

The scalar space (Airy potential) is Argyris.
Stress: symmetric matrices with rows in Stenberg P3 space
Displacement: DG2 vectors

0 0curl curl div

mixed elasticity elements proposed by J. Hu–S. Zhang 2015
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Other elements/other complexes

A similar construction may be given for the original mixed elasticity
elements of Arnold–Winther 2002 (cf. Arnold–Falk–Winter, IMA vol. 142).

0 0curl curl div

Lots of recent progress for other complexes:

elasticity complex in 3D: Chen–Huang 2021

Hessian complex: Hu–Liang 2020, Chen–Huang 2020 (VEM)

div div complex: Chen–Huang 2020, Hu–Liang–Ma (2021)

Will there be a periodic table of finite elements for these other complexes?
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Conclusions

A closed Hilbert complex has a rich structure which underlies
the behavior of many fundamental PDE.

Discretizing the complex in a structure-preserving fashion
provides stable convergent numerical methods, which can
otherwise be difficult to find.

This program is quite complete for the de Rham complex, with
applications to Darcy flow, electromagnetism, MHD, etc.

Via a BGG-inspired construction, we start from well-understood
complexes and systematically derive new ones, extending the
applications of FEEC to elasticity, plate theory, GR, . . .

Cohomology and other structural aspects of the output
complexes are determined from that of the input complexes.

There is still work to be done to produce the “periodic table of
finite elements” for the newly derived complexes.

DNA and K. Hu, Found. Comput. Math. 2021
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