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Space-time finite element methods

why space-time? (instead of space discretization & time stepping)

@ high-order approximation in both space and time is simple to obtain
@ spectral convergence of the space-time error can be obtained by p-refinement
o stability is achieved under a local CFL condition

e the numerical solution is available at all times in (0,T)

drawback: high complexity

time dipendent problem in d space dimensions — (d + 1)-dimensional problem

Ilaria Perugia Space-time DG methods for waves



Outline

@ model problem: the acoustic wave equation
@ space-time discontinuous Galerkin (DG) discretization
@ reduction of the complexity:

o Trefftz basis functions + tent pitching [1], [2]
o tensor-product (in time) elements and combination formula [3]

[1] A. Moiola, I. Perugia, A space-time Trefftz discontinuous Galerkin method for the acoustic
wave equation in first-order formulation, Num. Math., 139 (2018), 389-435.

[2] 1. Perugia, J. Schéberl, P. Stocker, C. Wintersteiger, Tent pitching and Trefftz-DG method for
the acoustic wave equation, Comput. Math. with Appl., 70 (2020), 2987-3000.

[3] P. Bansal, A. Moiola, I. Perugia, C. Schwab, Space-time discontinuous Galerkin approximation
of acoustic waves with point singularities, IMA J. Numer. Anal., online.
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Model problem

the acoustic wave problem as a 1st order system

Q=9x(0,T), QcC R? Lipschitz, bounded polygon/polyhedron

¢ = ¢(x) piecewise constant on a fixed, finite polygonal/polyhedral partition {Q;} of
f € L%Q), vo € L3(Q), o9 € L2(Q)?

find (v, o) such that

Vv—i—%—(::O, V~a+c_2%: in Q
v(-,0) =vg, o(:,0) =00 on 2

v=0 on 9Q x [0, T]

20d oder Wowe inﬁau (provided Huox G0 is o jrodiewt )
O A0V Q] bt/ bouaony

U € ([0, T); Hy () N C ([0, T); L*(Q)) N H?(0,T; H(Q))

[Dautray, Lions, 1992]
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Some references

space-time finite element methods for wave problems

@ early works (FEM): [Hughes, Hulbert, 1988, 1990], [French, 1993], [Johnson, 1993], ...

@ DG: [Falk, Richter, 1999], [Yin, Acharya, Sobh, Haber, Tortorelli, 2000],
[Monk, Richter, 2005], [Costanzo, Huang, 2005], [Abedi, Petracovici, Haber, 2006],
[van der Vegt, 2006], [Feistauer, Hajek, Svadlenka, 2007], ...,
[Gopalakrishnan, Monk, Sepilveda, 2015], [Dorfler, Findeisen, Wieners, 2016],
[Gopalakrishnan, Schéberl, Wintersteiger, 2017, 2019], ...

o Trefftz: [Maciag, Wauer, Sokala, 2005-2011], [Liu, Kuo, 2016],
[Petersen, Farhat, Tezaur, 2009], [Wang, Tezaur, Farhat, 2014]
[Egger, Kretzschmar, Schnepp, Tzukermann, Weiland, 2014, 2015],
[Banjai, Georgoulis, Lijoka, 2017], [Barucq, Calandra, Diaz, Shishenina, 2018, 2020],

(1], 2]

o recent, on tensor-product meshes: [Steinbach, Zank, 2019], [Ernesti, Wieners, 2019], [3]
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Space-time variational formulation ngﬁrSItat

do

ov
_ ) —20v _ : _
Vv + o =0, V-o+c Bt_f in@Q ‘Ewave(v,a)—(f,o)‘

multiply by test functions 7 and w, respectively, and integrate by parts in @ = Q x (0,7):

é;(VV+%¥0').~.: dV « SQ(V'O'*C'Z% )w dv:<‘£FWdV ?

space-time variational formulation

ow or
= V-r+c?—)+o - (Vw+—)|dV +/ T 42 d
/ [U( @ t) o ( w t)} w }(a’ ¢ “vw)dx

=/ fde—l—/ (o'o~7'+c_2vow)dx
Q Qx{0}

o Vu+ %‘Z = 0 holds in C([0, T]; Ho(div; 2)*)

o V- d+c_2% = f holds in L2(0,T; H~1())
e v=0o0n 9N x [0,T] is imposed weakly (details in [3])
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Space-time discontinuous Galerkin discretization

oo Ov
Vv+ — =0 Voo+c 2= = in@Q=Qx(0,T
0, =/  nQ=92x(07T)
e introduce a polytopic space-time mesh T, = {K} of Q, with ¢ constant in each element
e multiply by test functions and integrate by parts element by element
o discretize (v, o) and (w,T) in discontinuous, piecewise polynomial spaces Vp(Tp)

o replace interelement traces by numerical fluxes

elemental DG formulation

[ (T ) o (e ) av

+/ [(@h‘rh-i-a'h’wh)-n);{-l- (&h'7h+c_2ﬁh’wh) n’}(i| dS:/ fwpdV
OK K

where (n%, nﬁ() € R¥*! denotes the unit normal vector to K pointing outside K

global DG formulation

add over all K € T;, — Apc (v, oh; wh, Th) = {oc(Wh, Th)
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Assumption on the meshes and numerical fluxes

assumption on 7j

each internal face F' is either

o space-like: ¢|n¥| < nf. (F C F;7*°), or

o time-like: nt, =0 (F C ]:}tlime) 1
‘ \
Fl=ax{0}, FL:=ax{T} ] K I
FP =09 % (0,T) 0 ~ 5
h

assumptions on the numerical fluxes

vy, o, on FPeuFr (upwind fluxes)
fon} + Blonln {or} +ovp]n on Fime (DG-elliptic fluxes)
Dp, = o =
Vo oo on .7-'2
0 op —avng on ]-';?
. 1
a, B € Loo(]:,tl'me U ]-—}?), a=pF=0 |[Egger&al., 2014], af > 1 [Monk, Richter, 2005]
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Assumption on the approximation spaces

1% o]
recall the definition of the wave operator Ewa\,e(w, T) = (V ST+ 0728—1: , Vw + i)

for all (wp,Tr) € Vp(Trh), Lwave(wn, Tr) € Vp(Th)

this is satisfied, e.g., if the restriction of V,(7;) to each mesh element is made of

o total degree space-time polynomials ]P’Qt,
@ tensor product (in time) polynomials P§ x IP’f,

o Trefftz polynomials Luwave(wn, Tr) = (0,0)
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@ case of tensor product (in time) meshes*

key property: coercivity in seminorm

Apc(Vh, h;vh, o) = |(vh, o) |Bg

DG seminorm

‘(w’T)lgG =3 || "l ||L2(J-'Space H[[ e ||L2(J-‘SF"”°e + ||a2[[w]]NHL2(J-'t'me)d ||ﬁ I ]]N”L?(J-‘t”"e)
U G O R Ei
(FRuFl) 2 L2(FHuF;,) L2(Fy)

by adapting [Monk, Richter, 2005], one deduces well-posedness, with no condition on h¢

*The case of general, admissible meshes requires minor, technical changes.
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Well-posedness

‘Well-posedness

()
Apce (Ve 0 We, T ) = O V(W te) e\, (T, ) = (ve,02)=(0,0)

L) (Wo, ) =(Ve, 0% ) = 0=Apg (Vg 0%, Vg, 00) = | (V“’U“)l;a
= all juups Oud boundary Haces of vy tued 07 an doao

W) dueto i), ) guesthat, ¥(we ) eV, (),
S ((V'U“‘LC—?%)W&* (VVq+ %‘t}l) -'tg‘)d\/:o

k
'UA) ’\‘QJA*(’/ Wy, = 2> auwd g = 2 Oud Oedu e W(V&:OZ)

Soluves fi WWOJUM.OU,S Wowe 4quakio i 2acth k
) Fhow 4) awd (i), deduce hat (ve,02) = (0,0) .
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Error estimates

o case of tensor product (in time) meshes

tn

error estimates (with no condition on h;)

assume that all the traces of the analytical solution on mesh faces are in L2
— error bound in the L2 norm in space at every discrete time t,:

e (v = vl 2 (ax geny) + 19 = TrllL2@xgtap < 10 0) = (Vh, 0n)lbe(q,)

S |(v,0) = (v, o) |pg+
N——

€V (Th)

(proven by restricting to partial space-time cylinders Qn = Q X (0,t5))
projector II:
o total degree space-time polynomials Pi,t: construction in [Monk, Richter, 2005]
o tensor product (in time) polynomials P} x P?: L? projection [3]

o Trefftz polynomials: best approximation [1]
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Trefftz finite element spaces (case |

recall:  Lyave (w,T)

I
A~
<
s‘
_l’_
o
b
‘Q)
<
g
+
b

Trefftz spaces
continuous spaces T(K) == {(w,T) € H (K): Luave(w, T) = (0,0)}
T(Th) = {(w,7) € H'(T3)*: (w,7),, € T(K) VK €Tp}

discrete spaces V,(K) C T(K), Vp(Tn) C T(Tr)

in each element K, the linear operator Loave is

o homogeneous (= all terms are derivatives of the same order)

e with constant coefficients
= Taylor polynomials of (smooth) functions in ker(Lwave) are in ker(Luwave)

therefore, we can choose V,(K) C T(K)

o as a subspace of the polynomial space PP (K)!+49

o with the same order of approximation in h as ]IDP(K)1+d for functions in ker(ﬁwave)
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Trefftz approximation spaces (f = 0)

Example:

OTPT1(K)

e I O

a )

@ reduction of number of degrees of freedom to that of a d-dimensional problem

Trefftz polyn. TP(K) full polyn. PP(K)
d+1=1+1 2p + 1 T+ 1)(p+2)
d+1=2+1 (p+1)2 tp+)(P+2)(p+3)
d+1=3+11 glp+DE+2)2p+3) | 51+ D +2)(p+3)(p+4)

O(p?) O™

dim(T?(K)) = O(p?) <« dim(PP(K)) = O(p?+!)

o same orders of approximation in h as with the full polynomial spaces
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Trefftz approximation spac

Netgen/NGSolve [2] P., Schoberl, Stocker, Wintersteiger, 2020

d =1, smooth solution, Cartesian mesh; Trefftz (blue) and QP (orange) polynomials

1073 1073
10741 W 1074 W
10—5, —— QF 10—5, —— QF
10764 10764
10774 10774
s 1074 s 107%4
T 107°] T 107°]
107104 107104
10114 10-11
10712 107124
10134 10134
10-14] 107144
3 4 5 6 7 8 9 10 11 0 40 80 120 160 200 240 280

dof

p-version: error (in L2(Q x {T})) vs. polynomial degree (left) and number of dof.s (right)
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Space-time Trefftz DG method: analysis

[1] Moiola, P., 2018

e in T(7}), the DG seminorm is actually a norm
o existence and uniqueness of solutions follow from Apg(vh, oh; v, 0h) = |(vh, U'h)‘%c

e error bounds in the (spatial) L2 norm on space-like interfaces (e.g. on Q x {t,}) and in
DG norm also follow

@ error bounds in a global, mesh-independent norm (L?(Q), in the best case scenario*)
have also been proven in [1] by a modified duality argument from [Monk, Wang, 1999]

piecewise smooth coefficients: space-time quasi-Trefftz DG method
[Imbert-Gérard, Moiola, Stocker, 2020]

*i.e. for d =1 or d > 1 and no time-like faces (for impedance b.c.) ;
in H=1(0,T; L2(2)) x L?(0, T; H~*(Q)?) for tensor product elements (with Dirichlet b.c.)
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Tent pitching (hyperbolic problems)

PDE-driven, front-advancing mesh construction technique
t

T

F x

@ progressively advancing in time and stacking tent-pitched objects on top of each other

@ each tent is union of (d 4 1)-dimensional simplices

o the high of each tent (local advancement in time) is chosen so that the casuality
constraint of the PDE is respected (local CFL condition)

— the PDE is explicitly solvable within each tent

[Falk, Richter, 1999], [Yin, Acharya, Sobh, Haber, Tortorelli, 2000] [Ungbr, Sheffer, 2002],
[Monk, Richter, 2005], [Abedi, Petracovici, Haber, 2006], ...,

[Gopalakrishnan, Monk, Septlveda, 2015], [Gopalakrishnan, Schéberl, Wintersteiger, 2017, 2019]
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Tent pitching & Trefftz

n n n

advancing front X
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Tent pitching & Trefftz

characteristic speed %

I N n

Ilaria Perugia

advancing front X
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Tent pitching & Trefftz
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Tent pitching & Trefftz

solution at the tent bottom —  solution at the tent top
o Trefftz (no volume terms): solution of local problems [1], [2]; for an interior tent:
/ ((thh—i-ah wp) - N% + (crh~7'h+c_2 vp, wh) nf;{) ds
K top
- _/ <<vﬁ°t T+ ot wn) o+ (T e o) n%) @
O bot

e mapping + RK or Taylor [Gopalakrishnan, Schéberl, Wintersteiger, 2017, 2019]
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Tent pitching & Trefftz
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Tent pitching & Trefftz
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Tent pitching & Trefftz

the solution within these two tents can be evolved in parallel
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Tent pitching & Trefftz
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Tent pitching & Trefftz
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Tent pitching & Trefftz
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Tent pitching & Trefftz
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Tent pitching & Trefftz
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Tent pitching & Trefftz
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Tent pitching & Trefftz
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Tent pitching

d = 2 and refined mesh towards a corner
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al results: Trefftz + tent pitching

Netgen/NGSolve [2] P., Schéberl, Stocker, Wintersteiger, 2020

d = 3, smooth solution, Trefftz on tent-pitched meshes; h- and p-version

3+1 dimensions 3+1 dimensions

100 6x107* . 4x107' 3x 107! 1 2 3 2

convergence of order p+ 1 in h (left) and exponential convergence in p (right)
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Numerical results: Trefftz + tent pitching

d = 2, smooth solution, Trefftz; tensor product (in time) meshes and tent-pitching

10-6 —e— tents 1 thread —e— tents 1 thread
—=— Cartesian in time 10t —=— tents 6 threads
—»— tents 12 threads
1077 —e— tents 24 threads
Cartesian-in time
5 ]
£ lo-s £ 10
o =]
107 1071
10—10
N = 7 2 2 - v 7 2 2
’L*XO 40 6‘/‘10 A$103$10 1)(\,0 40 6‘/‘“) A*@a*w
h h
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Numerical results: Trefftz + tent p

d = 2, singular solution, Trefftz on tent-pitched meshes

U(r, p,t) = cos(10t) sin(v ) J, (10 1)

v=2 o UecH3 Q)

—e— uniform mesh
—=— refined mesh

1072

error

1073

= 3 ) 3
40 6‘/‘“) A)(y() $x§) 1*y0

3
dof-13

p = 3; spatial mesh at ¢ = 0: uniform (blue) or with corner refinement (orange)
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Tensor product meshes, focus on singular solutions

Regularity theory in 2D [Kokotov, Plamenevskii, 1999, 2004], [Luong, Tung, 2015]
S:={c;, j=1,...,M} set of all vertices of {Q;}, in which c is piecewise constant

acoustic waves exhibit conical singularities at S: regularity results are given in weighted
Sobolev spaces in Q with weight function

Ds(x) =T, |x —c;|%, & €[0,1)*

e [ul 11 g) = 195 Vull L2 (a2 (Hy' () ¢ HY()

(used for the analysis of DG + time-stepping [Miiller, Schétzau, Schwab, 2018]).

Example: if vg,up € C§°(Q), oo = —Vug, f € C(Q), 36 € [0,1)M such that Vi, kx € N,

ve CRN([0,T]; Hy T2 () o € CR([0,T]; Hy"' (Q))
[Miiller, 2017
k
* 2 o 2 2 2 R o, |2
el gy = el oy ol e o Tl ) = mz_jz /Q (<1>5+mfz‘a|2;m|D ul*) dx.
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Tensor product meshes

[3] Bansal, Moiola, P., Schwab, 2020
tensor product (in time) space-time meshes
o time mesh: 7;ft partition of (0,T) into N intervals I,
@ spatial meshes: for each 1 <n < N, ’T,z; ,n shape-regular mesh of

o with non-degenerating faces
o aligned with {Q;}
o each mesh element touches at most one element of S

@ space-time mesh: Ty, := T,(Q) :={K = Kx X I, : Kx € 72;", 1<n< N}
abstract error analysis (Galerkin error < L? projection error)
the critical solution regularity is the regularity in space of o close to any ¢ € S:

if F'is a time-like face of an element K adjacent to a corner c,
then o, € L'(F)?, not necessarily L?(F)?

— modify the DG seminorm and apply Hélder in L!-L>° (instead of Cauchy-Schwarz)
[Wihler, 2002]
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Tensor product meshes

mesh grading in space (like in the elliptic case)

lack of smoothness — loss in the accuracy of the L? projection of the solution in the
elements K = Kx X I, that are close to any c € S
a reduction of the size of Ky depending on

@ the corner weight dc
@ the polynomial approximation degree px

can restore the largest possible convergence rates
suitable graded spatial meshes 7;1’1 can be constructed from a quasi-uniform initial

mesh 75¢ of Q of size hx by J levels of local bisection refinement (J = J(hx, dc, px))
[Gaspoz, Morin, 2009]

uniform, hx = 0.25 graded, p =1 graded, p = 2
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Error bounds on locally refined meshes

assume, for simplicity, constant ¢, uniform p

o fix h¢, hx > 0, and construct the uniform mesh ’T,ft and the locally refined mesh TFZ;
hx

e on any time-like face F, define the numerical flux parameters as a = 87! = ]
Cllx

o assume that chy ~ hx (hx is the size of the largest element of Th);)

for every discrete time t,,, we have

_ 1
||C 1(7’ _vh)HL?(Qx{tn}) + llo — °'h||L2(Q><{tn})2 <|(v,0) — (Uh7°'h)|DG(Qn) < APT2

(same convergence rates as for smooth solutions)

Remark: dim(V (7)) = O(h=3)  (like for a (2 + 1)-dimensional elliptic problem)

Q: Can we obtain the same convergence rates with O(h~?2) degrees of freedom ?
(like for a 2-dimensional elliptic problem)
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Combination formula

o the assumption cht =~ hx is necessary to obtain the highest convergence rates

o stability of the DG formulation and best approximation-type estimates are valid with
no condition on h;

@ the solutions obtained with anysotropic (in time) space-time meshes are not accurate,
still they contain meaningful information

ly
T(0,0) coarsest space-time mesh

(L, finest space-time mesh (red)
T(ix,1;) intermediate meshes

L&-1----r-®

Wtle) = (V(1,10)2 O (1,1)) sOIution on Ty,

wp = w(r, 1) full space-time solution
L L

wg 1= ZW(Z’L_” — ZW(Z,LL,D “sparse” solution
1=0 =1 [Bungartz, Griebel, 2004]

Ix

Count of degrees of freedom (h-version): # d.o.f.s for wp <238 = O(h23)
# d.ots for wg <228 = O(h}?)

(=~ one time-step on the finest spatial mesh)
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al results: combination formula

i [3] Bansal, Moiola, P., Schwab, 2020
& FEniCS

p+1/2

+1/2
Expected convergence rates: full O(Ndofs)™ . , sparse O(Ndofs)™ 2

100 —-— p=1,56 100 —— p=1,56
- p=1,FG ~. -8 p=1,FG
--- oMY - --- oMY
3 —= O(M0%7) —= oM7°7)
10~
- 107!
£l £l
g E)
w <
s1072 s
© o
s 5 1072
= =
102
S 107 -
104
107 10° 107 10° 10°

10° ° ° 10° 10° 107
Number of degrees of freedom, M, [log] Number of degrees of freedom, M, [log]

p =1, full (blue), sparse (red)
smooth solution, uniform meshes (left), conical singularity, spatially graded meshes (right)

+1 +1
Obtained convergence rates: full O(Ndofs)_pT, sparse (’)(Ndofs)_pT
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al results: combination formula

i [3] Bansal, Moiola, P., Schwab, 2020
& FEniCS

_pt+1/2 _pt+1/2
Expected convergence rates: full O(Ndofs) 3, sparse O(Ndofs) 2

10° —&- p=2,56 10°
o - p=2,FG
10t 8 -=- om3)
—= oM7) 107!
1072
= =)
S 2102
w103 S0
5 5
© @
sl07* F107%
= =
1075,
N 10
107°,
- 10-
10 10° 107 10° 10°

10° ° ° 10° 10° 107
Number of degrees of freedom, M, [log] Number of degrees of freedom, M, [log]

p = 2, full (blue), sparse (red)
smooth solution, uniform meshes (left), conical singularity, spatially graded meshes (right)

+1 +1
Obtained convergence rates: full O(Ndofs)_pT, sparse (’)(Ndofs)_pT
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Thank you for your attention!
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